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a b s t r a c t

We revisit the classical problem of the self-similar, finite-time collapse of three vortices. We extend the
study to the generalised two-dimensional Euler equations as well as the generalised three-dimensional
quasi-geostrophic equations. In both these situations, the flow is fully controlled by a materially-
conserved field of a generalised vorticity (or potential vorticity) related to the streamfunction by a
modified Poisson’s equation, in which the standard Laplacian is replaced by a fractional Laplacian. We
first determine the conditions for the self-similar collapse of three point vortices, as well as the collapse
time in a broad parameter space. We then consider the evolution of finite-core, two-dimensional and
three-dimensional vortices under initial conditions corresponding to the collapse of equivalent point
vortices. We show that the interaction precipitates the merger of the two like-signed vortices in the
vortex triad.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vortices, or swirling masses of fluid, are ubiquitous in the fluid
ynamics of both two-dimensional (2D) and three-dimensional
3D) flows, and their interactions play a central role in many
undamental processes. For example, they collectively drive the
ynamics of 2D incompressible turbulence, see e.g. [1], where the
istribution of vortex sizes has been shown to play a fundamental
ole in the evolution of energy across scales in both the freely-
ecaying and forced cases [2,3]. In the oceans, vortices contribute
large part of the mass transport, see [4], while in Jupiter’s

tmosphere, stable arrays of vortices have recently been observed
n polar latitudes [5].

The merger of two like-signed vortices is associated with the
nverse energy cascade in 2D turbulence through the generation
f larger vortices, while also contributing to the direct enstrophy
ascade through the generation of small-scale debris and fila-
ents. Vortex merger also plays a fundamental role in the mixing
f heat and chemical constituents in oceanic and atmospheric
lows.

In this paper we consider a type of interaction between three
ortices that leads to their collapse toward a single point in
inite time. The collapse of three vortices is a special case of the
eneral collapse of N vortices, albeit arguably the most likely
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case statistically. For point vortices, this collapse takes the form
of an exact self-similar reduction of the vortex separations to
zero. For equivalent finite-core vortices, the collapse does not
remain exactly self-similar but precipitates a strong interaction
between the vortices, and in particular the merger of the two like-
signed vortices of the vortex triad. While the natural setting in
which to study these interactions is in the context of 2D flow, the
same ideas can be applied to 3D quasi-geostrophic flows. These
introduce a vertical structure to the vorticity distribution while
retaining a layerwise 2D flow, and can therefore be regarded as
lying somewhere between the 2D and fully 3D systems.

The mathematical formalism to study flows with vorticity
was first introduced by Helmholtz [6]. Kirchhoff [7] introduced
and used the notion of point vortices in a 2D flow. Poincaré [8]
proved that a system of three 2D point vortices was integrable.
Gröbli [9] studied for the first time the self-similar motion of
three point vortices. Later Synge [10] provided a classification
of their motion. The motion of three point vortices was also
independently studied by Novikov [11], Aref [12], Tavantzis and
Ting [13]. The problem of the self-similar collapse for 2D vortices
has been extensively studied in the literature, e.g. by Novikov
and Sedov [14], Kimura [15,16,17], Aref [18], and more recently
by Krishnamurthy and Stremler [19]. The collapse interaction
of finite-area 2D vortices has been studied by Vosbeek et al.
[20]. Badin and Barry [21] extended the study of the collapse
of three point vortices to the 2D generalised Euler equations,
including the so-called ‘surface quasi-geostrophic’ (SQG) equa-
tions. The SQG equations are relevant to the surface potential

temperature dynamics in rotating stratified environments such as

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Summary of the classical models.
n α β Name Green’s function

2 1
1/2

0
1

2D EulerSQG (2π )−1 log r−(2πr)−1

3 1
3/2

1
0

3D QGNone −(4πr)−1(2π2)−1 log r

planetary atmospheres and oceans. The general motion of three
SQG point vortices has been studied by [22] while the motion
of three ageostrophic point vortices is addressed in [23]. More
recently, Reinaud [24] revisited the collapse of point vortices
and the collapse interaction of finite-core vortices in both the
3D quasi-geostrophic (QG) and the SQG equations. The present
contribution is the natural extension to the latter study beyond
the classical 2D Euler, SQG and 3D QG systems.

The 2D Euler and SQG equations are only two members of a
amily of 2D dynamical models depending on a single parame-
er, α, defined fully in the following section. Here, we refer to
his family as the generalised Euler equations. The important
ynamical feature is that the locality of vortex interactions de-
reases as the parameter α increases [25]. Similarly, the 3D QG
system can be viewed as a single member of a family of 3D
models with layerwise-2D flow fields. A remarkable feature of
the subsequent analysis for point vortices is that the three-vortex
evolution in both the 2D and 3D generalised systems is identical
and dependent only on a single parameter β .

The paper is organised as follows. Section 2 describes the
governing equations of the system. The conditions leading to the
self-similar collapse of a triad of point vortices are derived in
Section 3. Results for the collapse of point vortices are presented
in Section 4, while the results for the collapse interaction of three
2D finite-area vortices and three 3D finite-volume vortices are
presented in Sections 5 and 6 respectively. Concluding remarks
are given in Section 7.

2. Mathematical model

We consider the following dynamical system in Rn,

−(−∇
2)αϕ = q, (1)

∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

= 0. (2)

u = −
∂ϕ

∂y
, & v =

∂ϕ

∂x
, (3)

where ϕ is the streamfunction, q is the active scalar, x, y are the
first two coordinates of Rn and u, v are the first two components
of the velocity field. ∇2 is n-dimensional Laplacian and 0 < α <
/2. The special though important limiting case α = n/2 will
lso be discussed. Although the results presented in the paper are
alid for all n ≥ 2, we are primarily concerned with the cases
= 2 and n = 3, relevant to physical systems such as fluids.

or n = 2, the equations are known as the generalised 2D Euler
quations, with the special case α = n/2 = 1 corresponding
o the standard Euler equations governing the evolution of a 2D
ncompressible flow. Another important case is the surface quasi-
eostrophic (SQG) model, discussed in [26], corresponding to n =

and α = 1/2. For n = 3, the equations are the generalised 3D
uasi-Geostrophic (QG) equations. For reference, the standard 3D
G equations correspond to n = 3 and α = 1. The parameters
or the three main standard physical models are summarised in
able 1.
For n = 2, the flow is planar and 2D in the (x, y)−plane. Even

or n > 2, Eq. (2) implies that advection remains 2D, i.e. restricted
o the (x, y)−plane.
2

Eq. (1) can be formally inverted using the appropriate Green’s
unction

(x; x′) = −
Cn,−α

|x − x′|
β
, (4)

given e.g. by Stinga [27] in an unbounded domain with

β = n − 2α, forβ ̸= 0, (5)

and

Cn,−α =
Γ (n/2 − α)
4αΓ (α)πn/2 , (6)

where Γ is the standard Gamma function, Γ (x) =
∫

∞

0 ux−1e−u du
or x ∈ (0, ∞).

As mentioned above, the standard 2D Euler equations cor-
espond to α = n/2 = 1, hence β = 0. In this case, the
reen’s function G(x; x′) = (2π )−1 log |x − x′

|. A similar Green’s
unction is obtained for n = 3 and α = 1.5, namely G(x; x′) =

2π2)−1 log |x − x′
|. The general formulae to recover these Green’s

unctions are given in [27]. We will see that the relations derived
n the next section to determine the conditions for collapse with
̸= 0 are in fact also valid for the case β = 0.

. Conditions for self-similar collapse

We consider 3 active particles of strength κ ′

i located at xi in an
nbounded domain. As these particles induce a circulating flow
round them, we will henceforth call these active particles ‘point
ortices’ for all α for simplicity. The strength κ ′

i of vortex i is
he space-integrated active scalar multiplied by Cn,−α . The active
calar field is therefore

(x) =
1

Cn,−α

3∑
i=1

κ ′

i δ(x − xi), (7)

where δ() is the Dirac distribution in Rn. The streamfunction
induced by the three vortices then follows from the definition of
Green’s function:

ϕ(x) = −

3∑
i=1

κ ′

i

|x − xi|β
, ∀x ̸= xi. (8)

Following [24] we denote ℓij = xi−xj. Since the vortices move
only horizontally, parallel to the (x, y)-plane, vortex collapse to
a single point can occur iff all three vortices are initially in the
same (x, y)-plane. The two non-zero velocity components of point
vortex i are given by

(ui, vi) =

3∑
j=1,j̸=i

κj

|ℓij|
β+2 (−ℓ

y
ij, ℓ

x
ij), (9)

where κi = βκ ′

i , and ℓxij and ℓ
y
ij are the x and y-components of ℓij.

q. (9) and the formulae derived from it are formally valid even
or β = 0, i.e. for α = n/2. Furthermore, this dynamical system
s Hamiltonian, and may be written

i =
dxi
dt

= −
1
κi

∂H
∂yi

, vi =
dyi
dt

=
1
κi

∂H
∂xi

, (10)

where

H = −
1
2

3∑
i=1

3∑
j=1,j̸=i

κiκj

|ℓij|
β
. (11)

s the ‘excess energy’.
The equations governing the evolution of the squared dis-

ances between the vortices s2 = |ℓ |
2, s2 = |ℓ |

2 and s = |ℓ |
1 23 2 13 3 12
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ollow from (9) and read

ds21
dt

= 2κ1∆

(
1

sβ+2
2

−
1

sβ+2
3

)
, (12)

ds22
dt

= 2κ2∆

(
1

sβ+2
3

−
1

sβ+2
1

)
, (13)

ds23
dt

= 2κ3∆

(
1

sβ+2
1

−
1

sβ+2
2

)
, (14)

where ∆ = ℓx12ℓ
y
23−ℓ

y
12ℓ

x
23 is twice the area of the triangle formed

by the three vortices, assuming the vortices 1 → 2 → 3 are
organised in a counter-clockwise direction. We assume that the
collapse evolution of the distances si is self-similar, i.e. si(t) =

f (t) si, where si ≡ si(0). Heron’s formula for the squared area of
a triangle, 4∆2

= 2(s21s
2
2 + s21s

2
3 + s22s

2
3)− s41 − s42 − s43, implies that

∆(t) = f 2(t) d, where d ≡ ∆(0). Substituting in (12), we find

ds21
dt

= s21
df 2

dt
= 2κ1d

1
f β (t)

(
1

s
β+2
2

−
1

s
β+2
3

)
. (15)

olving Eq. (15) gives

(t) =

(
1 −

t
τ

) 1
β+2

, (16)

here f (t) reduces to 0 at the finite collapse time

= −
s21

(β + 2)κ1d

(
1

s
β+2
2

−
1

s
β+2
3

) . (17)

The uniqueness of τ implies Eqs. (13) and (14) must also lead
to the same value. This results in the following two constraints

κ1s
β

1 (s
β+2
3 − s

β+2
2 ) = κ2s

β

2 (s
β+2
1 − s

β+2
3 ) = κ3s

β

3 (s
β+2
2 − s

β+2
1 ). (18)

A further constraint comes from the fact that the scaled Hamilto-
nian

H ′
= −2H =

κ1κ2

sβ3
+

κ1κ3

sβ2
+

κ2κ3

sβ1
(19)

s invariant by construction. This invariance implies

κ1κ2

sβ3 (t)
+

κ1κ3

sβ2 (t)
+

κ2κ3

sβ1 (t)
=

1
f β (t)

(
κ1κ2

s
β

3

+
κ1κ3

s
β

2

+
κ2κ3

s
β

1

)
,

leading to
κ1κ2

s
β

3

+
κ1κ3

s
β

2

+
κ2κ3

s
β

1

= 0, (20)

or the trivial solution f (t) = 1 which corresponds to a relative
equilibrium. Note that for α = n/2, corresponding to β = 0, the
scaled Hamiltonian H ′ has the form

κ1κ2 log s3(t) + κ1κ3 log s2(t) + κ2κ3 log s1(t)
= (κ1κ2 + κ1κ3 + κ2κ3) log f (t)+

κ1κ2 log s3 + κ1κ3 log s2 + κ2κ3 log s1 (21)

which is invariant iff

κ1κ2 + κ1κ3 + κ2κ3 = 0.

This condition is formally equivalent to Eq. (20) with β = 0.
Hence Eq. (20) is also valid in this special case.

One might expect additional constraints to arise from conser-
vation of linear and angular impulse. Their conservation arises
3

from the fact that the Green’s function G(x; x′) depends only on
the difference x − x′. This implies
∂G
∂x

= −
∂G
∂x′

, &
∂G
∂y

= −
∂G
∂y′

. (22)

his anti-symmetry, also present in the special case β = 0,
mplies conservation of the linear impulse, I = κ1x1+κ2x2+κ3x3.
ince only the x and y-components of the position xi of vortex
are time-dependent, the only two non-trivial constraints are
iven by Ix and Iy, the x and y-components of I respectively.
he anti-symmetry of G also implies conservation of the angular
mpulse, J = κ1(x21+y21)+κ2(x22+y22)+κ3(x23+y23). These quantities
owever are not functions only of the distances s1, s2 and s3.
onetheless, following [18], we can combine Ix, Iy and J to form
n invariant quantity L = (κ1 +κ2 +κ3)J − I2x − I2y depending only
n these distances. For self-similar collapse, L takes the form

= f 2(t)
(
κ1κ2s

2
3 + κ1κ3s

2
2 + κ2κ3s

2
1

)
,

hich is invariant iff

1κ2s
2
3 + κ1κ3s

2
2 + κ2κ3s

2
1 = 0, (23)

r again if the point vortices are in relative equilibrium, f (t) = 1.
We have thus determined three scalar constraints, Eqs. (18),

20) and (23), on the rescaled vortex strengths κi and the dis-
ances si separating them. The constraints, however, are not in-
ependent: one can show that (20) and (23) imply (18).
Without loss of generality, we take κ1 = 1 and s3 = 1, which

ets a time and a length scale for the problem. We then choose
alues for β , κ2 and s1, and use these to solve Eqs. (20) and (23)
o find s2 and κ3. Eq. (23) gives

3 = −
κ2

s22 + κ2s
2
1
. (24)

Note that this implies that κ3 and κ2 have opposite signs. The
fact that not all vortices can have the same sign is a requirement
for vortex collapse, see e.g. [14]. Basically, the angular impulse
J = κ1(x21 + y21)+ κ2(x22 + y22)+ κ3(x23 + y23) must be zero, and this
an only be achieved if the strengths have opposite signs.
Substituting κ3 into (20) leads to an equation to determine s2,

β+2
2 + κ2

s
β+2
1 − 1

s
β

1

s
β

2 − 1 = 0, (25)

hich is solved numerically by dichotomy until the value of s2
hanges by less than 10−12. (Newton–Raphson does not always
onverge.) Not all solutions to these equations correspond to a
hysical vortex triad. The physically relevant solutions are those
or which x3 and y3 are real numbers. Geometrically, this means
hat the circle centred at x1 and of radius s2, and the circle centred
t x2 and of radius s1 intersect at x3, by definition. If the two
ircles do not intersect, collapse is not possible. Without loss of
enerality, we take x1(0) = (−0.5, 0, 0) and x2(0) = (0.5, 0, 0).
hen the initial location of the third vortex is determined from
he distances s1 and s2

3(0) =
s22 − s21

2
. (26)

Then y3 > 0 (counter-clockwise orientation) is given by

y3(0) =

√
s21 − (0.5 − x3(0))2, (27)

hich is real-valued provided s21 − (0.5 − x3(0))2 ≥ 0. Without
oss of generality, we can set 0 < κ2 ≤ κ1 so that the second
ortex is the weaker of the two positive vortices. Then, Eq. (24)
mplies κ3 < 0. For vortex collapse, ds2i /dt < 0, i = 1, 2, 3, imply

< s < s . In particular s < 1.
1 3 2 1
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Fig. 1. Evolution of the three point vortices for β = 0.5, κ = 0.5 and s = 0.75 over the interval 0 ≤ t ≤ 1.289: (a) trajectories of the point vortices, with vortex 1
n red, vortex 2 in blue and vortex 3 in black, (b) distances si(t) between the vortices, (c) distance ratios, (d) geometrical functions gi(t). For panels (b) & (d), i = 1
is in red, i = 2 is in blue and i = 3 is in black. In panel (c), s1/s2 is in red, s3/s2 is in blue and s1/s3 is in black.
Table 2
Parameters for the finite-time collapse of three point vortices with κ2 = 0.5 and s1 = 0.75.
Case β κ3 s2 τ

I 0.5 −0.32799934672702413 1.1149633536646144 1.2890703487205131
II 1.5 −0.31486239284668249 1.1431296077175070 0.58167602508973415
T
t
t
T
v

e
p

4. Results for point vortices

We next present a selection of results for the finite-time col-
apse of three point vortices. The conditions for collapse depend
n three parameters, β , κ2 and s1, offering a very large parameter
pace. Recall that 0 < s1 ≤ 1 and 0 < β < n.
We first focus on two specific cases. We set κ2/κ1 = 0.5

and s1/s3 = 0.75. then take β = 0.5 for the first case (I) and
β = 1.5 for the second case (II). Note β = 0.5 corresponds to
an intermediate regime between the standard 2D Euler dynamics
(β = 0) and the SQG/3D QG dynamics (β = 1), while β = 1.5
corresponds to a regime beyond SQG/3D QG. In general, the flow
characteristics vary continuously with β . The values of κ3 and s2
resulting in a finite-time collapse are given in Table 2 along with
the collapse time τ .

We use these values as the initial conditions in numerical
simulations to determine the trajectories of the point vortices.
Eqs. (10) are integrated in time using the standard fourth-order
Runge–Kutta scheme with an adaptive time step ∆t , controlled
by the maximum vortex velocity umax, specifically ∆t umax(t) =

10−4 umax(0). Following Reinaud [24] we introduce the geometric
functions

gi(t) = 1 −

(
si(t)

)β+2

, i = 1, 2, 3. (28)

si

4

As follows from (16), if the collapse is exactly self-similar, then
g1(t) = g2(t) = g3(t) = t/τ , for t < τ .

Results are presented in Fig. 1 for case I and in Fig. 2 for case II .
hey show the expected behaviour, validating the equations used
o obtain the initial conditions. In both cases, the trajectories of
he vortices are spirals and evidently converge to a single point.
he evolution of the distances si(t) confirms the collapse of the
ortex triad at the predicted collapse time t = τ in Eq. (17)

and listed in Table 2. The results also confirm that three distance
ratios s1(t)/s2(t), s3(t)/s2(t) and s1(t)/s3(t) are time independent,
indicating that the evolution of the vortex triad is self-similar.
Moreover, as predicted, the geometrical functions gi(t) all fall
onto the same straight line t/τ .

Table 2 indicates that the values of κ3 and s2 are similar for
both cases. The tangential velocity induced by each point vortex
falls off as 1/dβ+1, where d is the distance from the vortex. Hence,
when the vortices are sufficiently close together, the velocity of
the point vortices increases as β is increased. This explains why
the collapse occurs earlier for β = 1.5 than it does for β = 0.5.

We next provide an overview of the conditions which lead to
vortex collapse for β = 0.25, 0.5, 0.75 and 1.5. (The case β = 1,
which models both SQG dynamics (n = 2, α = 1/2), and 3D
QG dynamics (n = 3, α = 1), is discussed in [24].) Recall that
0 < β < n, with β → 0 as α → n/2, and β → n as α → 0. For
ach value of β , we determine s2 and κ3 in the (κ2, s1) parameter
lane. We use 500 values for κ and for s , both equally spaced
2 1
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Fig. 2. Evolution of the three point vortices for β = 1.5, κ2 = 0.5 and s1 = 0.75 over the interval 0 ≤ t ≤ 0.5816: (a) trajectories of the point vortices, with vortex
in red, vortex 2 in blue and vortex 3 in black, (b) distances si(t) between the vortices, (c) distance ratios, (d) geometrical functions gi(t). For panels (b) & (d), i = 1

s in red, i = 2 is in blue and i = 3 is in black. In panel (c), s1/s2 is in red, s3/s2 is in blue and s1/s3 is in black.
5

n
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q

w
v
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n the interval (0, 1]. Results are shown in Fig. 3 (recall we have
aken s3 = 1, so all distances are effectively scaled by s3.)

For a given value of β , and for each value of κ2, there is a
hreshold s1 = Sc below which no physical solution exists —
ollapse cannot occur. The threshold corresponds to s21 − (0.5 −

3(0))2 = 0, i.e. y3(0) = 0 with the three vortices aligned (∆ = 0)
nd in mutual equilibrium, τ → ∞. For smaller s1 the solution
or y3(0) is purely imaginary and thus not physical. The threshold
c increases as κ2 increases. Moreover, for fixed κ2, the threshold
c increases as β increases. This means that the range of s1 where
ollapse is possible decreases as both κ2 and β increase. The
eft panels of Fig. 3 show that s2 remains between 1 and 1.5
hroughout parameter space, generally increasing with κ2 and de-
reasing with s1. The middle panels indicate that κ3 is only weakly
ependent on s1, and roughly proportional to κ2. The right panels
how that the collapse time τ reaches a local minimum (along the
ed dotted line indicated), but over most of the parameter space τ

ncreases with s1 and decreases with κ2. Comparing the different
alues of β (recall β increases downward), τ generally decreases
s β increases. This is consistent with the fact that increasing β

eans stronger short-range interactions.
The upshot is that, for all κ2, we can always find vortex

riad configurations which collapse self-similarly in finite time.
he size of the region of the parameter space where collapse is
ossible decreases as β increases and as κ2 increases.
It is worth remarking that β can be larger than 2 if n > 2. We

ave also computed the conditions for collapse when 2 < β < 3.
he results exhibit the same trends discussed for β ≤ 2 (not
hown).
5

. Collapse interactions of finite-area vortices, n = 2

We next consider the motion of three 2D finite-area vortices,
= 2. The initial locations xi and the rescaled strengths κi

re chosen to coincide with those of equivalent point vortices
ollapsing in finite time. Since the far-field flow induced by a
inite-area vortex is close to that of an equivalent strength point
ortex, the evolution of three well-separated finite-area vortices
ill closely resemble that of the equivalent point vortex system,
rovided vortex separations remain large compared with the
ortex radii. As vortex separations approach the order of the
ortex radii, however, deformations develop on the shape of the
ortices. In particular, as two like-signed vortices approach one
nother a critical separation exists, below which the deformations
ecome large enough that an irreversible (partial) merging of
he two like-signed vortices takes place. Since the inward spi-
alling motion of the vortices collapses their separation, and to
he extent that the finite-area vortices follow the point vortex
volution for separations larger than the critical merger distance,
e can be confident that vortex merger will always occur for

nitial conditions coinciding with collapsing point vortices.
We consider vortices with an initially parabolic distribution of

he active scalar,

i(x) =

{
qim
√
1 − (r ′/ri)2, r ′

≤ ri,
0, r > rj.

(29)

here qim is the maximum value of the active scalar in the ith
ortex, ri is its radius and r ′

= |x − xi| is the radial distance, in
2, from its centre. In SQG (n = 2, α = 0.5), this distribution
orresponds to a solid-body rotation for r ′ < r for a single
i
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Fig. 3. Conditions for the collapse of three point vortices in the (κ2, s1) parameter plane, with 0 ≤ κ2, s1 ≤ 1. Each row is for fixed β , with β = 0.25, 0.5, 0.75 and
1.5 from top to bottom. The first column gives the distance s2 , the second column gives the rescaled vortex strength κ3 , and the third column gives the collapse
time τ . The red solid line shows the limit of the parameter space where collapse is possible. Local minima in τ are indicated by the dotted lines in the panels in
the right column.
elliptical vortex, see [28] and avoids a logarithmic singularity
in tangential velocity that exists in the simpler uniform-patch
distribution.

By considering finite-area vortices, we introduce a length scale
to the problem: the vortex size. In the examples considered in this
section we set r1/s3 = 0.2, unless stated otherwise. The smaller
this ratio, the closer the initial system resembles the equivalent
point vortex system, and the longer we expect the finite-area
vortex evolution to follow the point vortex evolution. Similarly
6

to the point vortices, vortex 1 is initially located at (x1, y1) =

(−0.5, 0) and vortex 2 at (x2, y2) = (0.5, 0), giving s3 = ℓ12 =

|x1 − x2| = 1. We next set values for the three parameters β , κ2
and s1, then determine κ3 and s2 satisfying the collapse conditions
for equivalent point vortices. This allows us to determine the
location x3 of the centre of vortex 3. To fully determine vortices
2 and 3, we also need to set qim and ri, i = 2, 3 in order to recover
the targeted rescaled strengths κ2 and κ3, respectively. There are
infinitely many choices. Here we set |qi | = 1, i = 1, 2, 3.
m
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Fig. 4. Top view of the field q showing the collapse of three finite-area vortices in two dimensions, with β = 0.2 (α = 0.9) κ2/κ1 = 1 and s1 = 0.75, t = 0, 70, 77.25
nd 100. Only the domain [−π/2, π/2]2 is shown in the computational domain [−π, π]

2 . Positive q is shown in red, negative q is shown in blue. Dark colours
orrespond to relatively large |q|.
Fig. 5. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 0.2 (n = 2, α = 0.1)
2/κ1 = 1 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is represented in red, i = 2 in
lue and i = 3 in black.
Fig. 6. As in Fig. 4 but for the case β = 0.5 (α = 0.75); the other parameters κ2/κ1 = 1 and s1 = 0.75 are identical. The times shown are t = 0, 39.75, 43, and 100.
oting that the surface-integrated active scalar for vortex i is
2qim πr2i /3, we obtain κi = 2βC2,−αqim πr2i /3. This implies that
|κi/κ1| = (ri/r1)2, and we set ri such that ri = r1

√
|κi/κ1|. Because

he focus in this and the following section is on the triggering
f vortex merger during the collapse, we present cases mostly of
onfigurations with κ1 = κ2; it is in such cases that vortex merger
ends to be most efficient and complete.

The equations are solved using the Combined-Lagrangian Ad-
ection Method (CLAM), developed by [29], using its standard
ettings. The fluid domain is [−π, π]

2 and doubly-periodic. The
elocity field resolution is 10242, while the active scalar is actu-
lly resolved down to a scale 16 times finer. In CLAM, Eq. (1) is
nverted in spectral space (making use of FFTs).

As a diagnostic, we track the location of the vortex centres.
ortices are identified on the 10242 grid as contiguous regions S
f active scalar whose value exceeds the root mean square (rms)
f the field over the full periodic domain. Their centres (xq, yq) are
efined as the active scalar-weighted centres of these regions, i.e.

xq, yq) =

∫∫
S(x, y) q dA∫∫

S q dA
. (30)

It should be noted that the vortices are well confined near the
centre of the domain at all times, thus limiting the influence of
the periodic images. Because the area-average vorticity is zero,
7

the influence of the periodic images falls off at least as fast as the
dipole contribution in the far-field moment expansion.

Fig. 4 shows snapshots of the evolution of the vortex triad
for β = 0.2 (n = 2, α = 0.9), κ2/κ1 = 1 and s1 =

0.75. In this case κ1 ≃ 1.3635 × 10−2 and the collapse time
of equivalent point vortices is τpv = 73.64. Fig. 5 shows the
trajectories of the vortex centres, the evolution of the distances
si(t) and the geometrical functions gi(t) until the two like-signed
vortices merge. The merger time tm is simply detected as the first
time when the diagnostic tool identifying the vortices present in
the flow only finds two vortices, one being the merged vortex
resulting from the fusion of the two like-signed vortices. In this
case tm = 53. The left panel of the figure also includes the full
trajectories, until t → τ , of the equivalent point vortices for
direct comparison. For t < tm, we see that the vortices start
to spiral inwards and closely approach. The match between the
trajectories of the finite-area vortex centres and the trajectories
of the equivalent point vortices is remarkable. The motion of
the vortex centres is very nearly self-similar, as shown in Fig. 5.
In particular, the geometrical functions gi(t) almost fall onto a
single straight line which closely agrees with the point vortex
prediction, t/τpv . This is remarkable considering that, near the
merger event, the two like-signed vortices have become strongly

deformed. The evolution of the vortices shown in Fig. 4 shows the
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Fig. 7. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 0.5
(n = 2, α = 0.75), κ2/κ1 = 1 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is
epresented in red, i = 2 in blue and i = 3 in black.
Fig. 8. As in Fig. 6 but for κ2/κ1 = 0.5; the other parameters β = 0.5 (α = 0.75) and s1 = 0.75 are identical. The times shown are t = 0, 49.75, 70, 77.25 and 100.
Fig. 9. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 0.5
(n = 2, α = 0.75), κ2/κ1 = 0.5 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is
epresented in red, i = 2 in blue and i = 3 in black.
Fig. 10. As in Fig. 4 but for the case β = 1.5 (α = 0.25); the other parameters κ2/κ1 = 1 and s1 = 0.75 are identical. The times shown are t = 0, 31, 33.5 and
4.25.
ormation of long filaments that partially wrap around the large
oherent vortices. The tail of the largest filament is expelled from
he main dipole and experiences a weaker shear than the rest of
he filament. It is therefore less stretched and rolls-up as a small
econdary positive vortex.
In the next examples we examine the effect of increasing β .

ig. 6 shows snapshots of the evolution of the vortex triad for
8

β = 0.5 (n = 2, α = 0.75), with otherwise identical parameters
to those considered previously (κ2 = κ1 and s1 = 0.75). In this
case κ1 ≃ 1.3947×10−2 and the collapse time of equivalent point
vortices is τpv ≃ 54.4. Fig. 9 shows the trajectories of the vortex
centres, the evolution of the distances si(t) and the geometrical
functions gi(t) until the two like-signed vortices merge at tm =

42.
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Fig. 11. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 1.5
n = 2, α = 0.25), κ2/κ1 = 1 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is
epresented in red, i = 2 in blue and i = 3 in black.
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Fig. 12. Evolution of the aspect ratio b/a of the best-fit ellipses for the three
ortices for the case β = 1.5 (n = 2, α = 0.25), κ2/κ1 = 1 and s1 = 0.75 (until
he two like-signed vortices merge). The red line corresponds to vortex 1, the
lue line to vortex 2 and the black line to vortex 3.

As before, the early evolution of the finite-area vortices is
emarkably close to that of equivalent point vortices, and the vor-
ices spiral inwardly in a nearly self-similar manner, as shown in
anel (c) of Fig. 7. Similarly, the three geometrical functions gi(t),
= 1, 2, 3 nearly fall onto the straight line t/τpv of the exact self-
imilar point vortex collapse. Again, large filaments of positive q
orm and are stretched by the differential rotation induced by the
arge vortex dipole formed after the merger of the two like-signed
ortices. We see that the filament is more sensitive however
o perturbations in this case, and Kelvin–Helmholtz like roll-ups
orm along the filament. This is a consequence of the increase
n β . The increased sensitivity of filaments has been observed
reviously when comparing the stability properties of sheared
nd stretched vortex strips in the standard 2D Euler equations
β = 0) and in the SQG system (β = 1), see [30]. This sensitivity
s due to shorter-range interactions occurring with increasing β .
oth the stabilising effects of adverse shear and stretching [31,32]
re reduced, leading to an increased propensity for vortex roll-up.
It is also instructive to consider a case with κ2 ̸= 1. To this

nd, Fig. 8 shows snapshots of the evolution of the vortex triad
or β = 0.5 (n = 2, α = 0.75), κ2 = 0.5κ1 and s1 = 0.75.
s in the previous case, κ1 ≃ 1.3947 × 10−2 but the collapse
ime of equivalent point vortices is delayed to τpv = 92.42. Fig. 9
hows the trajectories of the vortex centres, the evolution of the
istances si(t) and the geometrical functions gi(t) until the two
ike-signed vortices merge at tm = 75.5. Then, most of the smaller
weaker) vortex is absorbed by the larger (stronger) one while
9

hedding some of its material into a stretched filament which
reaks into smaller vortices. As in the two previous cases, the
hree geometrical functions gi(t), i = 1, 2, 3 nearly fall onto the
traight line t/τpv of the exact self-similar point vortex collapse.
We next revert back to κ2/κ1 = 1 and increase β further.

ig. 10 shows snapshots of the evolution of the vortex triad for
= 1.5 (n = 2, α = 0.25), κ2/κ1 = 1 and s1 = 0.75. In

his case κ1 ≃ 9.5598 × 10−3 and τ = 38.18. Fig. 11 shows the
rajectories of the vortex centres, the evolution of the distances
i(t) and the geometrical functions gi(t) until the two like-signed
ortices merge at tm = 31.
Initially, the evolution of the gi(t) closely follows the straight

ine t/τpv before slowly departing from it. Typically gi(t) > t/τ ,
ndicating that the bigger departures of si(t) seen in panel (b) of
ig. 11 are due to a time-scale mismatch arising from the defor-
ation of the vortices. The three curves gi(t), i = 1, 2, 3 remain
owever very close together. It is nonetheless remarkable how
losely the trajectories of the finite-area vortex centres and of the
oint vortices match, indicating that the difference between the
wo cases is related to a time-scale mismatch. The thin filaments
enerated during the strong interactions between the vortices
apidly destabilise and break into series of small-scale roll-ups.

We also measure the leading-order deformation of the vortices
y determining the aspect ratio b/a, b ≤ a, of the ellipses best-fit
o the vortices. The best-fit ellipse is the ellipse having the same
eometrical centre

xg , yg ) =

∫∫
S(x, y) dA∫∫

S dA
, (31)

and the same geometrical second order moments Mxx, Mxy and
Myy,

Mxx =

∫∫
S
(x − xg )2dA, Mxy =

∫∫
S
(x − xg )(y − yg )dA,

Myy =

∫∫
S
(y − yg )2dA,

(32)

as the vortex. Results are shown in Fig. 12. The rapid oscillations
of the aspect ratio show that the vortices pulsate. This is a
consequence of initially circular vortices rapidly adjusting in the
deformation field induced by the other vortices, and then freely
pulsating. Note that the pulsation has no discernible impact on
the vortex trajectories at any stage of the evolution. Near the
merger time the deformation rapidly increases, in particular for
vortex 2 which is, at the onset of merger, approximately located
between vortices 1 and 3.

To further investigate the small departure of the functions gi(t)
from the analytical prediction of the point vortex triad in this
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Fig. 13. Same as Fig. 11 but for smaller vortices, with r1/s3 = 0.1.
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Fig. 14. Close up showing the destabilisation of the shear zone formed between
he two like-signed vortices when they merge for β = 1.8 (α = 0.1) κ2/κ1 = 1
t t = 54.4.

ase, we repeat the simulation with smaller, more compact vor-
ices. For a given distance between the vortices, smaller vortices
ith the same qm are less sensitive to deformation. We set the
adii of all vortices to be half of their previous values by taking
1/s3 = 0.1. Consequently, κ1, proportional to r21 , is 2.3899×10−3

r four times smaller, and τpv = 152.7 is four times larger.
he trajectories of the vortex centres, the distances si(t) between
he vortices, and the geometric functions gi(t) are presented in
ig. 13. Since the vortices are smaller, they travel further along
he spiral trajectories before the two like-signed vortices merge.
n this case, the two like-signed vortices merge by t = 146.75.
he closer agreement with the point vortex trajectories seen here
onfirms that the small departure observed for r1/s3 = 0.2 is due
o finite-core effects, i.e. vortex deformation.

The same general trends are observed if we further increase
. An additional numerical simulation, performed for a vortex
riad with β = 1.8 (n = 2, α = 0.1), κ2 = κ1 and s1 = 0.75,
xhibits a new route for the generation of small scales when β

is large. In this case r1/s3 = 0.2, κ1 ≃ 4.4694 × 10−3, and
τpv = 65.49. As before, the trajectories closely approximate those
of the equivalent point vortices at early times, but spiral inward
more rapidly at later times (not shown).

The novel feature in this case is shown in Fig. 14, presenting
a close up of the vortex interaction at t = 54.4. As the two
like-signed vortices merge, a strong shear zone develops between
them. This shear zone then breaks up into a series of small
roll-ups which develop inside the merging structure, leading to
a rapid generation of small scales in the flow. This typically
happens at larger values of β , when interactions are short range.
 e

10
6. Collapse interaction of finite-volume vortices, n = 3

We next focus on the evolution of finite-volume 3D vortices,
n = 3. We consider spheres of uniform q. Vortex i is thus initially
specified by

qi(x) =

{
qim, r ′ < ri,
0, r ′ > ri

(33)

here r ′
= |x − xi| is the radial distance, in R3, from the centre

f vortex i. In QG (n = 3, β = 1), this corresponds to solid-
ody rotation for r < ri for an isolated vortex. It is noteworthy
hat the uniform distribution (33) is related to the active scalar
istribution (29) used in the previous section for n = 2, if we
latten the sphere to a disk, but assign the active scalar in the
isk half the vertical integral of q over the sphere [28].
To enable collapse, the centres of all three vortices are taken

o lie in the plane z = 0. As before, vortex 1 is centred at
−0.5, 0, 0) and vortex 2 is centred at (0, 5, 0, 0) such that s3 = 1.
nside all three vortices, q takes the same magnitude, |qim| =

π . The scaled vortex strength is κi = 4C3,−αβqimπr3i /3, where
n,−α is the constant defined by Eq. (6). We set r1/s3 = 0.2 so
hat the vortices behave point-like at least for the early stages
f the evolution. Since |κi/κ1| = (ri/r1)3, setting a value for κ2
etermines the radius r2 of vortex 2. Then, setting values for s1
nd β allows one to determine the location and the radius of
ortex 3, using the conditions (25) and (24) for the collapse of
oint vortices of the same scaled strengths.
The flow evolution is simulated using the Contour-Advective

emi-Lagrangian (CASL) algorithm, introduced in [33] and first
dapted to 3D QG dynamics in [34]. As for n = 2, Eq. (1) is
nverted in spectral space. The flow domain is a triply-periodic
ube, with side length 2π .
Vortices are identified as contiguous volumes of uniform q.

heir centres are again the active-scalar weighted centres of
he vortex volumes, which now coincide with their geometrical
entres.
The first example illustrated is for β = 0.5 (n = 3, α =

.25), κ2 = κ1 ≃ 1.33687 × 10−2 and s1 = 0.75. The collapse
ime for equivalent point vortices is τpv = 56.76. Fig. 15 shows
napshots of the flow and Fig. 16 shows the trajectories of the
ortex centres, the evolution of the distances si(t) and of the
eometrical functions gi(t) until the vortices merge. The two like-
igned vortices merge at tm = 52. By this time, the vortices have
lready strongly deformed and have departed from the trajecto-
ies of the equivalent point vortices. This explains why in this
ase merger occurs at a later time than the actual collapse time
τpv = 56.76) of the equivalent point vortices. The early evolution
f the vortices does however conform to the self-similar motion
f the equivalent point vortices, as shown by the near matching
f the geometrical functions gi(t) with the straight line t/τpv at

arly times. Again, large filaments are produced during the strong
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Fig. 15. Top view of the vortex bounding contours in the collapse of three vortices in 3D, for β = 0.5 (α = 0.75), κ2/κ1 = 1 and s1 = 0.75. Times shown (top row)
re t = 0, 15, 26 and 35. Orthographic view (bottom row) at an angle of 60◦ from the vertical at t = 35 (bottom row). The shade of the contours indicates the
epth: dark contours are near the bottom, while light contours are near the top of the vortices.
Fig. 16. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 0.5
n = 3, α = 0.75) κ2/κ1 = 1 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is
epresented in blue, i = 2 in red and i = 3 in black.
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nteraction. Filamentation occurs at nearly all heights occupied
y the vortices. This produces a highly-convoluted distribution of
ctive scalar.
The last example illustrated is for β = 1.5 (n = 3, α = 0.25),

2 = κ1 ≃ 2 × 10−2 and s1 = 0.75. The collapse time for
quivalent point vortices is τpv = 18.2. The two like-signed finite-
olume vortices merge at tm = 16. Fig. 17 shows snapshots of
he vortices while Fig. 18 shows the trajectories of the vortex
entres, the evolution of the distances si(t) and of the geometrical
unctions gi(t). Results show a very good match between the mo-
ion of the vortex centres and the motion of the equivalent point
ortices until the like-signed vortices merge, see in particular
anel (c) of Fig. 18. Fig. 17 again shows that, during the initial
tage of the merger, the vortices are less deformed in this case for
= 1.5 than in the previous case for β = 0.5 (having otherwise

dentical parameters). For n = 3 (i.e. 3D), the deformation of
he vortices does not affect the geometrical functions gi(t) as
uch as it does for n = 2 (i.e. 2D). For β = 1.5, the filaments
enerated by the interaction are thinner compared to the ones
ccurring for β = 0.5, and they break rapidly into small-scale
tructures. This generates more small-scale secondary coherent
11
vortices and debris. Similarly to the 2D cases, we estimate the
vortex deformation by evaluating the aspect ratios b/a and c/a,

< b < a, of the best-fit ellipsoids. The best-fit ellipsoid is the
llipsoid having the same geometrical centre and second order
oments as the vortex.
Results are shown in Fig. 19. As in the 2D cases, the vortices

ulsate weakly. (It should be noted that in this case, by symmetry,
he vertical axis of the vortices does not tilt. The intermediate
emi-axis length b of the initially spherical vortices, remains con-
tant and corresponds to the vortex half-height. This is a direct
onsequence of the lack of vertical advection of the vortices. The
orizontal aspect ratio is therefore a/c.) Again, at the onset of
erger the most deformed vortex is vortex 2.
To quantify the effect of deformation on the vortex trajecto-

ies, we measure the difference |∆s(t)| between the finite core
nd equivalent point vortex centres by

∆s(t)| =

(
3∑

(si(t) − li(t))2
)1/2

(34)

i=1



J.N. Reinaud, D.G. Dritschel and R.K. Scott Physica D 434 (2022) 133226

Fig. 17. As in Fig. 15 but for β = 1.5 (α = 0.25); all other parameters are the same, namely κ2/κ1 = 1 and s1 = 0.75. Times shown (top row) are t = 0, 15, 26
and 35. The bottom row again provides an orthographic view of the interaction at t = 35.

Fig. 18. (a) Trajectories of the three finite-core vortex centres until the like-signed vortices merge (solid lines) and full trajectories for the equivalent point vortices
(dotted lines), with vortex 1 in red, vortex 2 in blue and vortex 3 in black, (b) evolution of the distances si(t), (c) geometrical functions gi(t) for β = 1.5
(n = 3, α = 0.25), κ2/κ1 = 1 and s1 = 0.75 (until the two like-signed vortices merge). The dashed black line in (c) shows t/τpv . In (b) and (c), i = 1 is
represented in blue, i = 2 in red and i = 3 in black.

Fig. 19. Evolution of aspect ratios b/a, panel (a), and c/b, panel (b), of the best-fit ellipsoid for the case β = 1.5 (n = 3, α = 0.25), κ2 = κ1 ≃ 2×10−2 and s1 = 0.75
(until the two like-signed vortices merge). The black line corresponds to vortex 1, the red line to vortex 2, the blue line to vortex 3. The jaggedness of the curve is
due to the coarse time sampling.

12
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Fig. 20. Scaled difference |∆s(t)|/r2h (see text for definition) between the finite core and equivalent point vortex trajectories plotted against a measure of the
eparation of the finite core vortices |s| for (a) β = 0.5 and (b) β = 1.5. All simulations are for otherwise identical parameters: n = 3, κ2 = κ1 and s1 = 0.75. Results
re shown for rh = 0.1 (black solid line), 0.15 (red solid line), 0.2 (blue solid line), 0.25 (black dotted line) and 0.3 (red dotted line). Indicative slopes are indicated
y black dashed lines: |s|−2.5 in (a) and |s|−3.5 in (b).
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here si and li are, respectively, the distances between the finite
ore vortex centres and between the point vortex centres. We
lso examine |s(t)|, a measure of the distance between the finite
ore vortex centres, defined similarly (using si in place of si − li
n the r.h.s. above). As the vortices spiral toward each other,
s(t)| decreases while |∆s(t)| is expected to increase due to the
ncreasing deformation of the vortex cores.

To check this, we have performed additional simulations vary-
ng the common radius rh of the initial vortices while keeping
ll other parameters fixed. Varying rh affects the vortex vol-
mes hence their strengths κi. In order to compare the results,
herefore, we define an equivalent time T

=

( rh
0.2

)3
t (35)

o that T = t for the reference case rh = 0.2. Results are
presented in Fig. 20. Here we show |∆s|/r2h vs |s| before the
vortices merge for (a) β = 0.5 and (b) β = 1.5, both for n = 3,
2 = κ1 and s1 = 0.75. Each curve corresponds to a different
adius rh as indicated. The black dashed lines in these panels give
n indicative slope in the middle range of |s| or T (since |s| ∝

Tc − T )1/(β+2) for the point vortices). The collapse of the curves
ndicates that the difference in the finite-core and point-vortex
rajectories scales like r2h . On the other hand, the dependence on
s| is not a simple power law; there is a much steeper dependence
or large |s| than for intermediate values. We cannot provide a
heory for this behaviour, but a cursory examination indicates
hat it is likely to involve a complicated analysis.

. Conclusion

We have revisited the problem of the finite-time collapse of
hree vortices in the generalised 2D Euler and 3D QG flow models.
or point vortices, the evolution in the two models is identical
nd only depends on the parameter β = n − 2α, where n is
he dimension of space and α is the power of the Laplacian in
he inversion relation between the streamfunction and the active
calar.
We have derived the relations that determine the conditions

or finite-time, self-similar collapse from first principles. We
hen used these conditions to initialise numerical simulations for
inite-core vortices in both the 2D and 3D models.

Instead of complete collapse of all three vortices to a point,
he interaction leads to the merger of the two like-signed vor-
ices at a time earlier than the point vortex collapse time. We
bserve both the creation of large scales through vortex merger,
nd the creation of smaller scales through filamentation and the
13
eneration of small-scale debris. These physical processes have
een associated with both an inverse energy cascade as well as
direct enstrophy (or active scalar variance) cascade in the past,
ee e.g. [35]. Indeed, they are likely to be the primary processes
or energy and enstrophy transfers in any destructive vortex
nteraction, not just in turbulent flows. As β = n − 2α increases,
shear induced by the vortices falls off more rapidly, as 1/dβ+2

where d is the distance from the vortex. During strong vortex
interactions, the size of the filaments decreases as β increases,
and the filaments break down into small-scale structure more
rapidly. This offers a rapid route for the generation of small scales
in these flows.

The agreement between the finite-core and point vortex evo-
lutions down to vortex separations approaching the critical merger
distance, in both the n = 2 (2D) and n = 3 (3D) cases, is
remarkable. As the critical merger distance is approached, vortex
deformations inevitably lead to departures from the point vortex
trajectories. At that point, qualitative differences in the finite-core
deformations between the n = 2 and n = 3 cases become more
ronounced.
In 3D, there is much more freedom for these deformations, and

hey vary with height. The upper and lower extremities of the
ortices are generally more weakly interacting than their mid-
lanes, and are further apart. This has no analogue in 2D, where
nteractions are on-average at closer range even with the same β .
his results in a closer match to the point-vortex dynamics in 3D
han in 2D.

The collapse of three vortices is a special case of the more
eneral collapse of N vortices which has been addressed in the
iterature for 2D flows governed by the standard Euler equa-
ions [36] and references therein. The study of the collapse of
ore than three vortices in generalised Euler and QG flow models

s a potential extension of the present work.
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