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OBJECTIVE: To analyse the Growing Up in Scotland cohort for predictors of obesity at age 12, present at school entry (age 5–6).
METHODS: The initial model included literature-based risk factors likely to be routinely collected in high-income countries (HICs), as
well as “Adverse/Protective Childhood Experiences (ACEs/PCEs)”. Missing data were handled by Multiple Chained Equations.
Variable-reduction was performed using multivariable logistic regression with backwards and forwards stepwise elimination,
followed by internal validation by bootstrapping. Optimal sensitivity/specificity cut-offs for the most parsimonious and accurate
models in two situations (optimum available data, and routinely available data in Scotland) were examined for their referral burden,
and Positive and Negative Predictive Values.
RESULTS: Data for 2787 children with full outcome data (obesity prevalence 18.3% at age 12) were used to develop the models.
The final “Optimum Data” model included six predictors of obesity: maternal body mass index, indoor smoking, equivalized income
quintile, child’s sex, child’s BMI at age 5–6, and ACEs. After internal validation, the area under the receiver operating characteristic
curve was 0.855 (95% CI 0.852–0.859). A cut-off based on Youden’s J statistic for the Optimum Data model yielded a specificity of
77.6% and sensitivity of 76.3%. 37.0% of screened children were “Total Screen Positives” (and thus would constitute the “referral
burden”.) A “Scottish Data” model, without equivalized income quintile and ACEs as a predictor, and instead using Scottish Index of
Multiple Deprivation quintile and “age at introduction of solid foods,” was slightly less sensitive (76.2%) but slightly more specific
(79.2%), leading to a smaller referral burden (30.8%).
CONCLUSION: Universally collected, machine readable and linkable data at age 5–6 predict reasonably well children who will be
obese by age 12. However, the Scottish treatment system is unable to cope with the resultant referral burden and other criteria for
screening would have to be met.

International Journal of Obesity; https://doi.org/10.1038/s41366-022-01157-5

BACKGROUND AND RATIONALE
The global obesity pandemic is proceeding apace, with little
evidence as yet that any jurisdiction has successfully controlled
its growth, despite many well-intended intervention policies
and programmes of diverse types [1–3]. Among these inter-
ventions, several studies have prospectively evaluated the use
of universal or targeted screening, to predict child obesity
before it becomes well established and relatively difficult to
treat successfully [3]. A pre-requisite for such screening is a
validated predictive algorithm based on universally available
(routinely collected), machine-readable (i.e., amenable to
computerised analysis to enable efficient population-based
screening) and linkable predictor variables, derived from

prospective cohort studies with high-quality predictor and
outcome data – ideally population-based.
The volume and variety of studies developing (and in some

cases validating, internally and/or externally) such predictive
models have grown rapidly over the last decade, to the point
where a number of systematic reviews have been published,
identifying the primary studies’ respective strengths and weak-
nesses, and making recommendations for methodological
improvement [4–6]. Almost none of the primary studies reviewed,
however, have examined the comparative validity of prediction
models in mid-childhood for later childhood obesity, especially
pre-pubertally, when the prognosis for adult health is largely set in
place, given that overweight children’s weight-for-height tracks
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strongly into adulthood [7]. No studies we are aware of have
examined which routinely collected predictor variables, from a
variety of routinely collected databases, are critical to the
reasonably valid prediction of obesity pre-pubertally. This study,
therefore, addresses the research question: Which predictors,
collected between antenatal life and age 5–6, from what kinds of
routinely collected databases, allow reasonably valid prediction of
obesity at age 12?
This study analyses a high-quality child cohort, the Growing Up

in Scotland Study (GUS), originally representative of infants born
in 2004/5 and living in Scotland at 10 months of age, to derive a
range of multivariable predictive models for obesity at age 12 (the
latest follow-up wave on this cohort), using a range of predictor
variables that are largely routinely collected, machine-readable
and linkable in various High-Income Countries (HICs). The over-
arching goal is to identify the key data-elements for national child
obesity surveillance systems in HICs, based on data collected
universally in early to mid-childhood, for the prediction of obesity
at age 12, as a first step towards universal screening at, for
example, school entry (age 5–6 in Scotland). The aim of such
screening would be the early identification of children at high risk,
and the offering of effective child/family treatment before the
child’s obesity is fully established – and almost certainly less
treatable [3] – in pre-pubertal life.

WHAT IS KNOWN ABOUT RISK FACTORS FOR CHILDHOOD
OBESITY IN HICS?
A thorough systematic review [8] of 282 epidemiological studies in
HICs assessed potential risk factors for childhood obesity,
measured from prenatal life to age 2 years - since 0–2 years is
the age range within which most routinely collected data on
potential risk factors are available in most HICs. That review,
combined with a very recent Dutch prognostic study [9],
systematically identifying all “candidate predictor variables in
the literature for predicting obesity at age 8,” found the following
risk factors to be replicated across a number of high-quality
studies (those in brackets have been replicated in far fewer studies
and so are not as clearly evidenced):

● Male sex of child
● Various markers of parental socioeconomic status, including

maternal education, family income, and deprivation-index of
residential address – all routinely collected in Scotland

● Maternal pre-pregnancy data: high body mass index, (low
parity)

● Maternal pregnancy data: high gestational weight gain,
gestational diabetes, smoking

● Birth data: birthweight (Caesarean birth)
● Infancy and early childhood data: high weight gain in first year

of life, no breastfeeding; (early feeding of solids); (low
socioeconomic status); (low maternal bonding); (high anti-
biotic use); (childcare attendance)

Of these potential predictors of later childhood overweight/
obesity, almost all (except the last three listed, within the last
bullet) are routinely collected in many HICs. However, they have
been as yet little utilised in national surveillance systems for
monitoring or predicting childhood overweight/obesity, with a
view to informing prevention.
Some of the candidate risk factors listed above require primary

data collection after the perinatal period. In Scotland these data
are collected during Health Visitor home visits, which, since 2013,
have been routine up to age 27–30 months (recently changed to
4–5 years); data include duration of breastfeeding; age of
introduction of solid foods, and presence of smoking in the home
of the child [4–6, 8, 9]. Other predictor variables listed above may
not be routinely collected in some countries – e.g., weight and

height at age 5–6, but are collected in Scotland, in a universal
Primary 1 (first grade) examination, which could easily provide the
basis for a more comprehensive screening for a wider range of risk
factors for obesity at a later age. Since this is the first age at which
a very large proportion of each birth cohort are accessible for
physical examination as they enter school, we have used body
mass index (BMI) at age 5–6 in all our prediction models for
obesity at age 12, rather than BMI at other ages.
In previous work with the GUS obesity data, we published [10] a

multivariate predictive analysis identifying the following indepen-
dent risk factors for having an “obesogenic growth trajectory”
between ages 4 and 8:

● overweight/obesity in the mother during the child’s mid-
childhood

● maternal smoking in the pregnancy.

In 2018, a detailed body-weight-for-heights analysis for GUS
subjects followed up to age 10 showed rapid increases in the rates
of obesity and overweight between ages 6 and 10, as well as
widening inequality in these rates by various measures of social
class (family income, as well as area deprivation of family
residence measured via the Scottish Index of Multiple Deprivation
[SIMD]) [11].
Two recent publications by our group have found surrogates

within the GUS dataset for the majority of questions comprising
the “Adverse Childhood Experiences (ACEs)” score [12–14]. Several
studies have explored the relationship between ACEs and obesity
and found an association between experiencing more ACEs and
higher BMI [15–18]. Recent evidence from the Growing Up in
Ireland study, which is very similar to GUS in design, found that
ACEs up to the age of 9 were predictive of obesity at age 13 [19].
Although models controlled for caregiver BMI, as well as diet and
exercise, they did not control for BMI in mid-childhood or
maternal BMI in pregnancy. The ACEs instrument has been
criticised as inherently imbalanced because it omits any con-
sideration of positive childhood influences on later health and
well-being. We, therefore, use ACEs measures in combination with
GUS-collected proxies for established measures of “Protective
Childhood Experiences (PCEs)” [20].

METHODS AND MATERIALS
Source of data and participants
The GUS cohort study is the largest Scottish cohort (longitudinal) study of
children launched in the last two decades. This analysis used data from
Birth Cohort 1 (n= 5217) born in 2004/5 with families first interviewed
when the child was aged 10 months. These children and their families have
been recurrently interviewed, examined and followed-up since infancy: a
total of nine sequential face-to-face interviews have been conducted with
each family to age 12, in 2016–17. Full details of the sampling and design
of the GUS study can be found in the Data Documentation [21–23].

Ethical review. This project was approved in early 2020 by an expedited
Usher Institute Research Ethics process, University of Edinburgh, since no
contact with human subjects was involved, and all data were anonymised in
the archived form they were received. As described in the Data Documenta-
tion [21–23], all subjects in the original GUS cohort study gave informed
consent for their data to be collected, analysed for research purposes,
including being anonymously linked to other datasets where required.
The age 12 GUS follow-up data include interviewer-measured height and

weight at five separate ages, allowing the calculation of each subject’s weight-
for-height, categorised according to standard percentile cut-offs from a
historical UK population sample [24]: underweight; normal; overweight; obese.

Analyses and study power. We used multiple logistic regression to analyse
age-12 weight-for-height in the “obese” category as our primary outcome,
and previously collected data in the GUS cohort as our candidate predictor
variables [11]. Our extensive experience analysing GUS data showed that
the available number of children with complete weight-for-height data at
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age 12 (N= 2787—see below), despite study attrition, is still sufficiently
large to identify “clinically significant” (i.e., OR > 1.2 or <0.8) predictors of
persistent obesity at age 12, and provide reasonably precise estimates of
their effects, for even relatively uncommon risk factors affecting only about
one quarter of the cohort population.
As overall summary measures of best fit and most parsimonious model’s

predictive validity, we analysed Nagelkerke’s R2, Harrell’s C-statistic, and
the area under each final model’s Receiver Operator Characteristic Curve
(AUROC), as well as the positive and negative predictive values of the
model at the optimal sensitivity/specificity cutoff (maximising Youden’s
Index, the sum of sensitivity and specificity, which assumes equal relative
harms arising from false positive and false negative screens). Our analysis
plan was therefore to produce the following outputs:

● the most sensitive/specific predictive algorithms for the primary
outcome (obesity at age 12), using all the literature-derived candidate
predictor variables in the full GUS dataset which were collected by age
6. Priority in selection of variables for initial model inclusion was given
to life-course predictor variables (i.e., measured from prenatal life
onwards), for which data are frequently routinely collected, machine-
readable, and linkable at the population level in HICs - for example in
perinatal and Health Visitor databases.

● a sensitivity analysis of which subsets of predictor variables, in the best
fit and most parsimonious full models based on all GUS candidate
predictors, perform best in national settings where data sources for
those predictors are not universally available/machine-readable/
linkable to other data for the purposes of population screening:
perinatal data; Health Visitor data; and other routine data collection
(e.g., age 5–6 BMI measured in schools, as in Scotland).

Outcome
The main outcome is obesity at age 12, defined according to the
Information Services Division Scotland, which uses UK growth reference
standards to produce BMI centiles with standard cutoffs, following Cole’s
method [25], and for population health monitoring purposes, defines child
obesity as a BMI greater than or equal to 95th centile [26] of the historical
population’s “normal” distribution.

Predictors
Potential predictors were chosen based on previous research (see above),
availability in the GUS cohort, and their feasibility to be collected routinely
in HICs. These predictors were: (1) mother’s age at child’s birth (<20, 20–29,
30–39 ≥ 40 years age groups); (2) mother’s ethnicity (white vs other -
Scottish population-based samples contain such small percentages of any
given “non-White” ethno-racial group that they are generally combined to
increase statistical power; (3) child’s birth order, (4) maternal smoking in
pregnancy (yes vs no), (5) mother’s BMI as a continuous variable, measured
in sweep 6 (when children were 5–6 years); (6) GDM or diabetes in
mother’s pregnancy; (7) maternal education (initially classified according to
the Scottish Credit and Qualifications Framework and categorised into: (a)
higher or above, (b) standard grade/other, and (c) no qualifications); (8)
location (referring to baseline geographical area dichotomised into: urban
vs rural); (9) equivalized household income quintile at recruitment; (10)
SIMD quintile of family residence address at recruitment; (11) household
indoors smoking in the family home, assessed at sweeps 1 and 5–9; (12)
whether the child was delivered by caesarean; (13) gestational age at birth
(<3 weeks early vs ≥3 weeks early); (14) birthweight (<2500 g vs ≥2500 g);
(15) breastfeeding (never, <6 months, and ≥6 months); (16) age at
introduction to solid foods (dichotomised according to Scottish guidance
at the time [27, 28] into: <4 months vs ≥4 months); (17) child’s sex; (18)
child’s ethnicity (“white” vs “other” – typical Scottish population samples
do not include sufficient numbers of non-white subjects to allow analysis
by sub-ethnicity sub-categories, and the publicly available dataset there-
fore combines them); (19) child’s BMI, measured in sweep 6 at age 5–6, as
continuous variable; (20) ACEs count—we were able to find proxy variables
for seven out of ten ACEs: physical abuse, emotional neglect, domestic
violence, substance misuse, mental illness, parent in prison, and
separation; (21) PCEs count -proxy variables were found for five out of
seven PCEs: “I am able to talk to my family about my feelings;” “my family
stands by me during difficult times;” “I feel a sense of belonging in school;”
“I feel supported by friends;” and, “at least two non-parent adults take
genuine interest in me.” A fuller account of variable construction is
available in Supplementary Material Part A.

Sample size and missing data
The analysis included 2787 children with complete outcome (height, weight,
and age) data, out of 2917 subjects successfully followed up to data
collection sweep 9 in the GUS cohort. Amongst these 2787 subjects, 26.2%
(n= 735) had at least one potential predictor variable missing. Figure 1
depicts the process followed to select the final sample for analysis. An
analysis of jointly missing data [see Supplementary Material Part B] indicated
that missingness may well have resulted in bias. We, therefore, used Multiple
Chained Equations [29], without any auxiliary variables, to impute missing
data – creating 30 imputed datasets in total - for all 2787 GUS subjects with
outcome data, the results of which are presented below.

Statistical analysis
The GUS datasets have survey weights available, which are useful for
estimating population averages corrected for sampling and – to a
degree – attrition biases. However, it has been suggested that the use of
survey weights in regression analyses may have limitations, such as
increasing standard errors or providing unreliable coefficient estimates
[30, 31]. In addition, the GUS datasets available from UKDS for
longitudinal analyses supply weights based only on subjects who
provided data on every sweep, whereas our analysis is based on all
subjects with outcome data at age 12, so using those weights would
have substantially reduced our sample size. Finally, key characteristics
known to predict non-response/attrition in the GUS cohort – maternal
age and education, family income and Index of Multiple Deprivation –
were included in all our multivariate models, after data imputation.
Therefore, weighted analyses were not performed.
First, bivariate analyses were conducted to assess the association

between obesity at age 12 and each potential predictor. 16 of the 21
predictors in the initial “full model,” with a p < 0.1 were selected for further
analysis in a multivariable model: (1) maternal age, (2) maternal BMI, (3)
maternal education, (4) smoking in pregnancy, (5) GDM/diabetes in
pregnancy, (6) location, (7) income quintile, (8) level of deprivation, (9)
indoors smoking, (10) birth by Caesarean section, (11) breastfeeding
(never, less than or more than six months duration), (12) introduction to
solid food before 4 months of age, (13) child’s sex, (14) child’s BMI at age
5–6, (15) ACEs count, and (16) PCEs count.
Secondly, bivariate polychoric correlation analyses were conducted to

determine whether some potential predictors were strongly enough
associated to cause collinearity problems in the multivariate analyses.
We were particularly interested in the correlation between household
income and SIMD; no strong correlation between any pairs of covariates
was found [see Supplementary Material Part C]. Then, predictor-variable
reduction to obtain final models was performed by stepwise selection
(backwards and forwards), with a cut-off p-value of p= 0.06 [32], also
retaining any variables which caused more than a 10% change in other
variables’ beta-coefficients when removed (this consideration, per se,
added no variables to the final model). The “Optimal Data” model with
the best fit consisted of six predictors. To avoid the use of predictor
variables which are not routinely collected and/or machine readable in
some settings, including Scotland, we excluded ACEs and PCEs from the
initial multivariable ‘full model’ to create a second, final Scottish Data
model. It also consisted of six predictors of which two differed from the
six predictors in the Optimal Data model: Scottish Index of Multiple
Deprivation quintile replaced equivalized income and “introduction of
solids before age 4 months” replaced ACEs in the Scottish Data model.
An internal validation was conducted for both final models, “Optimal
Data Availability” and “Scottish Data”, by means of bootstrapping, with
application of the resultant shrinkage factor to revised odds ratio
estimates for all predictors [33].
Finally, the discriminatory performance of each internally validated model

was assessed. This is reported at the bottom of Table 2 as Nagelkerke R2 and
Harrell’s C-statistic for the Optimum Data and Scottish Data models,
respectively. Sensitivity-Specificity and AUROC curves were plotted to show
the full range of sensitivity and specificity. An optimal cut-off point was
selected by Youden’s Index, which maximises the sum of Sensitivity and
Specificity. Analyses were performed using R and Stata version 16. The key R
packages used were: “mice”, “psfmi” and “ROCit” [34–36].

RESULTS
Participants
For the 2787 children included in the imputed datasets, the
maternal and child characteristics considered as potential
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predictors of obesity at age 12 are shown in Table 1. Just over half
of the children were male, and the majority resided in urban areas.
According to their BMI, 18.3% (393) of the children were in the
obese category at age 12.

Model development and specification
After conducting stepwise regression, the predictors included in
the final models were very similar. Both models included maternal
BMI, indoors smoking, caesarean delivery, child’s sex and child’s
BMI at age 5–6. The final “Scottish Data” model, without ACEs as a
predictor (included in the Optimum Data model), included SIMD
instead of equivalized income, and age at introduction to solid
foods, which were not in the final Optimum Data model.
Table 2 presents the regression coefficients and odds ratios (OR)

for these two models. Internal validation by bootstrapping
showed a shrinkage of 0.974 and 0.981 for the Optimum Data
model and the Scottish Data model, respectively. On the basis of
the respective shrinkage factors, all regression coefficients were
recalibrated, as shown in Table 2.
Sensitivity-Specificity and AUROC curves were plotted (Fig. 2) to

test the two internally validated models’ predictive validity over
the full range of sensitivity and specificity cut-offs. Then, Youden’s
index was calculated; the cut-off thereby selected, by maximising
the sum of Sensitivity and Specificity, had a Youden’s index of
0.217, AUROC= 0.855 (95% CI 0.852–0.859) for the Optimum Data
model, with a Youden’s index was 0.226, AUROC= 0.849 (95% CI
0.846–0.852) for the Scottish Data model, as defined by the
predicted probability of the outcome. Table 3 presents the two-
by-two screening-test validity tables for this cut-off point, for both
final models.
The Optimum Data model’s performance, as shown in Table 3,

misclassified 18.3% (387/2118) of the children as “false positives”

i.e., predicted to be obese at age 12 when the observed outcome
was non-obesity. However, further inspection revealed that 41.4%
(160) of these 387 “misclassified” children were in fact overweight
at age 12, and thus could potentially benefit from referral to a
specialist care at age 5–6. The Scottish Data model misclassified
17.0% (388/2279) of the screened children as false positives;
however, additional inspection showed that 41.5% (161) of these
388 children were overweight at age 12. Effectively, this means
that the children identified as at risk of future obesity or
overweight by the screening, who are “indisputable false
positives” (in that they will not be either obese or overweight at
age 12, and therefore unlikely to benefit at all from referral at age
5–6) would amount to only 10.7% (Optimal Data model) to 10.0%
(Scottish Data model) of all those screened.

DISCUSSION
The results above indicate that a universal obesity-risk screening
programme at age 5–6, as part of a national obesity surveillance
system, would be able to detect over three-quarters (for both of
the two models) of the 18% of Scottish children destined to be
obese at age 12, as well as another 7.6% (Optimum Data model) or
7.1% (Scottish Data model) of those screened who will be
overweight at age 12 – all of whom could potentially benefit from
early referral at age 5–6, before overweight or obesity is well
established. However, the “cost” – in terms of referral burden – of
this screening would be the identification of about one-third (37%
in the Optimum Data model, 31% in the Scottish Data model) of
all 5-to-6-year-olds as “at risk.”
In the present Scottish context, such a referral burden would

likely not be supportable by the existing referral networks in
primary care. Moreover, even if a screening test has shown

Notes:

*Analysis of study a�ri�on undertaken following the eighth sweep of data collec�on found that 70% 

of older mothers living in less deprived areas from the original cohort sample par�cipated at that 

sweep, compared to only 24% of younger mothers living in more deprived areas [26]. 

** All 2787 subjects with outcome data were analysed a�er data imputa�on for missing predictor-

variables, using Mul�ple Chained Equa�ons

GUS birth cohort at sweep 1

N= 5217

GUS birth cohort at sweep 9

N= 2917

2300 children from the original 
cohort were lost during follow-up*

GUS birth cohort at sweep 9 with 

data on weight status aged 12

N=2787**

130 children with missing outcome 
data

2052 children with complete 
predictor and outcome data

735 children missing data on one or 
more predictor variables

Fig. 1 Flow chart – missingness of data by GUS study stage. Flow chart displaying missingness of data from initial sample at Sweep 1 to
analytical sample at Sweep 9.
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reasonable sensitivity and specificity, as well as “total test
positives” (referral burden) at the prevailing risk prevalence, does
not mean screening should proceed. The full set of criteria for
making such a decision are well documented in the pioneering
publications by Wilson and Jungner, and Raffle and Muir Gray
[37, 38]. In particular, evidence would be needed on any
potentially harmful “labelling effects” of such screening on
children screened positive, and on the long-term effectiveness
of treatment on referral.
Predictors of pre-adolescent obesity in this study were mostly

consistent with the previous literature: maternal BMI, particularly
if the mother was obese during pregnancy, and having higher
levels of ACEs were the strongest predictors of pre-adolescent
obesity. “Obesity engenders obesity” was the conclusion of a
recent review exploring the impact of maternal obesity in
pregnancy on child metabolic outcomes, with heavier women
giving birth to heavier babies, who in turn are more likely to
become overweight or obese [39], whilst high levels of ACEs has
been consistently associated with subsequent obesity [15–18].
The child’s BMI at age 5–6 was additionally associated with later
obesity, in line with other findings on obesity throughout
childhood [40], as well as having been born by Caesarean
section, and being male, which have also been found to be
predictive of obesity in other studies [41]. A household member
smoking inside the home was also associated with higher risk for
child obesity, and this association appeared stronger than that
for smoking in pregnancy, which was not statistically significant
in our adjusted model: previous evidence, however, suggests
stronger effects of maternal smoking in pregnancy even after

Table 1. Observed data.

N= 2787 n/mean %/SD

Maternal age (years) <20 88 3.2

20–29 953 34.3

30–39 1636 58.8

≥40 104 3.7

Missing 6

Maternal BMI (Kg/m2) 26.9 5.6

Missing 457

Maternal education Higher and above 2248 80.8

Standard grade/
other

378 13.6

No qualifications 156 5.6

Missing 5

Smoked in pregnancy, yes 485 17.7

Missing 46

GDM/diabetes in pregnancy, yes 26 0.9

Missing 0

Location, urban 1842 66.1

Missing 0

Income quintile SW1 Top quintile 620 24.4

4th quintile 636 25.0

3rd quintile 505 19.9

2nd quintile 472 18.6

Bottom quintile 311 12.2

Missing 243

SIMD quintile SW1 Least deprived 1 655 23.5

2 627 22.5

3 599 21.5

4 441 15.8

Most deprived 5 465 16.7

Missing 0

Indoors smoking, yes 807 29.0

Missing 0

Child was born by
caesarean

737 26.4

Missing 0

Breastfeeding ≥6 months 840 30.2

<6 months 1083 38.9

Never 863 30.2

Missing 1

Introduction to solid foods, ≥4 months 2424 88.0

Missing 32

Child’s sex, male 1404 50.4%

Missing 0

BMI age 5–6 kg/m2 16.2 1.8

Missing 172

Obesity age 11–12 516 18.5

ACE – Physical abuse 491 18.4

Missing 123

ACE – Emotional neglect 560 21.3

Missing 159

ACE – Domestic violence 59 2.2

Missing 80

Table 1. continued

N= 2787 n/mean %/SD

ACE – Mental illness 1024 36.7

Missing 0

ACE – Parent in prison 20 0.7

Missing 0

ACE – Parental
separation

817 29.3

Missing 0

ACEs count 0 830 29.8

1 963 34.6

2 591 21.2

3 286 10.3

4+ 117 4.2

Missing 0

PCE – Share feelings with family 2010 72.5

Missing 14

PCE – Family support in difficult times 2624 94.6

Missing 14

PCE – Feel they belong in their school 1884 71.8

Missing 162

PCE – Friends support them 1695 61.4

Missing 25

PCE – Two non-parent adults 293 10.6

Missing 27

PCEs count 0–2 763 27.5

3 898 32.7

4–5 1.113 40.1

Missing 13
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controlling for other passive smoking effects, such as father’s
smoking [42]. These studies do not appear to have controlled for
whether the mother continued to smoke in the household after
birth. Overall, these predictive factors point to a range of family
environmental and potentially genetic factors which are playing
a role in levels of childhood obesity being seen in many HICs.
This familial background is important to consider when planning
interventions for childhood obesity.
Our purpose, however, in assessing the predictive validity of

routinely collected early-to-mid-childhood variables for obesity at
age 12, was purely to quantify these variables’ multivariable
predictive validity. The Scottish Data model, not including ACEs as
a predictor, is slightly more predictive, in terms of its superior
specificity (79.2%, versus 77.6% for the Optimum Data model) and
lower referral burden (30.8% versus 37%). We hope that future
work will now be able to pilot actual screening programmes, with
full and robust evaluation of all the consequences, including
potentially harmful “labelling” effects in both true and false
positives, and any false reassurance effects to future obesity cases
missed by the screen, as well as the all-important frequency and
consequences of referral/treatment failure. Then a full ethical,

logistical and health economic analysis is warranted to determine
the full pros and cons of such a screening programme.

Study strengths
This study uses data from a large birth cohort, which was sampled
to be representative of the population. These data are far richer
than those from routinely collected data sources, or growth-based
cohorts, and include repeated height and weight data which were
directly measured.

Study limitations
As is typical in cohort studies, GUS suffers from differential attrition,
which means that it is more likely to lose families from the most
deprived backgrounds, as already noted. While some researchers
might attempt to correct for resulting attrition biases, we are of the
view that there are no entirely satisfactory methods for doing so
within the analytical approaches used here. As our models included
key subject characteristics known to predict non-response/attrition
in the GUS cohort (e.g., maternal age and education, family income,
and SIMD) and we used data imputation based on Multiple Chained
Equations, the impact of attrition bias on our results should be

Table 2. Final prediction models for obesity at age 12.

N= 2787 Optimum data model Scottish data model

Before internal validation After
internal
validation

Before internal validation After
internal
validation

B OR 95% CI B B OR 95% CI B

Intercept −17.182 −16.742 −16.622 −16.312

Maternal BMI (Kg/m2)1 0.070 1.07 1.05 1.10 0.068 0.070 1.07 1.05 1.10 0.068

Indoors
smoking2

No 1.00 1.00

Yes 0.313 1.37 1.05 1.78 0.305 0.463 1.59 1.23 2.05 0.454

Equivalized
income1

Top quintile −0.224 0.80 0.51 1.25 −0.218

4th quintile −0.255 0.77 0.51 1.19 −0.249

3rd quintile −0.007 0.99 0.66 1.50 −0.007

2nd quintile 0.237 1.27 0.85 1.89 0.231

Bottom
quintile

1.00

SIMD1 Q1 (least
deprived)

1.00

Q2 0.419 1.52 1.05 2.20 0.411

Q3 0.304 1.35 0.93 1.98 0.298

Q4 0.386 1.47 0.98 2.20 0.378

Q5 (most
deprived)

0.571 1.77 1.20 2.62 0.560

Introduction to
solid foods2

<4 months 1.00

≥4 months −0.355 0.70 0.51 0.96 -0.349

Child’s sex1 Female 1.00 1.00

Male 0.507 1.66 1.31 2.11 0.494 0.509 1.66 1.31 2.10 0.499

BMI age 5–6 (Kg/m2)2, 3 0.781 2.18 2.00 2.38 0.761 0.765 2.15 1.97 2.34 0.751

ACEs count4 0 1.00

1 0.321 1.38 1.00 1.90 0.313

2 0.709 2.03 1.43 2.89 0.691

3 0.857 2.36 1.55 3.58 0.835

4+ 0.853 2.35 1.31 4.19 0.831

Nagelkerke R2 0.384 0.374 0.373 0.364

C statistic 0.855 0.851 0.848 0.845
1,2,3,4The data sources for these predictors are, in typical high-income countries: 1: Pre/Perinatal Dataset; 2: Health Visitor Dataset; 3: Primary School Dataset; 4:
New primary data collection.
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Fig. 2 Sensitivity/specificity plots and receiver operator curves. A “Optimum Data Availability” and B “Scottish Data” models.

Table 3. Two-by-two table of prediction models’ validity at selected cut-off.

“Optimum Data Availability” Cut-
off: 0.217

“Scottish Data” Cut-off: 0.226

N= 2118 True (observed) outcome N= 2279 True (observed) outcome

Obese Non-obese TOTALS Obese Non-obese TOTALS
Predicted outcome Obese 297 387 784 Obese 314 388 702

Non-obese 92 1342 1434 Non-obese 98 1479 1577

TOTALS 389 (Obese) 1729 (Non-Obese) TOTALS 412 (Obese) 1867 (Non-Obese)

Sensitivity: 297/389 = 76.3% Sensitivity: 314/412= 76.2%

Specificity: 1342/1729 = 77.6% Specificity: 1479/1867= 79.2%

PPV 297/784= 37.8% PPV: 314/702= 44.7%

NPV 1342/1434= 93.6% NPV: 1479/1577= 93.8%

Referral Burden: 784/2118 = 37.0% Referral Burden: 702/2279 = 30.8%

Of the 387 “false positives” from the Optimal data model 160 (41.4%) were overweight, so that those unlikely to benefit at all would be 227 or 10.7% of all
those screened; of the 388 “false positives” from Scottish data model 161 (41.5%) were overweight, so that those unlikely to benefit at all would be 227 or
10.0% of all those screened.
PPV positive predictive value, NPV negative predictive value.
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limited. Furthermore, we note that in both our final models (Table 2)
maternal education did not appear as an independent predictor,
and equivalized income was not statistically significant in the
Optimum Data Model (although SIMD showed statistically signifi-
cant effects for Q2 and Q5 in the Scottish Data Model.)
In addition, many of the predictive factors are self-reported, and

thus may be affected by social desirability bias. Breastfeeding and
birth data were collected at Sweep 1 when children were
10 months old and may therefore be affected by recall bias.
An important consideration for those wanting to use our results

in an actual screening programme is the extent to which our two
final predictive models (Optimum Data and Scottish Data) involve
major differences in routine data collection and its associated
costs, as well as their intrusiveness/respondent burden. On
reflection, we suspect that even our limited proxy-set of ACE
indicators is not feasible to collect universally in most settings,
even in HICs, because some of the questions are so sensitive,
potentially interfering with the often-delicate relationship
between Health Visitors/Community Nurses and high-risk families.
This obviously implies that the Scottish Data model - relying as it
does on the question “At what age were solid foods begun?” –
rather than ACE indicators, is much more feasible data collection
strategy for the prediction of future obesity risk. As well, the
slightly higher specificity of the Scottish Data model (79.2% versus
77.6% for the Optimum Data model), leads to a more manageable
referral burden (31% versus 37% of all children screened,
respectively), at virtually identical sensitivities (76.3% versus
76.2%, respectively).

CONCLUSIONS
As the first step in that necessarily long and deliberative process,
we believe this study has demonstrated that an acceptable level
of predictive validity for obesity at age 12 can be achieved very
cost-effectively, using only a half-dozen predictor variables which
are routinely collected before age 6 in many countries. These
analyses will inform the design of future National Obesity
Surveillance Systems for any similar setting—i.e., countries,
mostly high-income, which have for some decades had a
significant public health problem of child obesity. Such systems
should ideally not only measure (and monitor over time) the
magnitude of these health outcomes and their trends. These
systems should also facilitate early identification of the highest-
risk children and their families, before persistent and/or severe
excess weight problems develop, as priority targets for cost-
effective, early, treatment and prevention interventions delivered
to children at high risk, well before full-blown obesity is
established. However, the quantification of such risk-prediction
algorithms’ predictive validity is but one of many evidentiary
elements required to justify the implementation of such
programmes, given the considerable uncertainties around
referral-system capacity, long-term treatment efficacy, effective-
ness, and efficiency, as well as the potential side-effects of
screening (especially labelling effects in false positives). Perhaps
most importantly, the high prevalence of obesity at age 12 in this
cohort (18.3%) meant that using even the more specific Scottish
Data model would lead to nearly a third of children being
referred for specialist treatment – likely an unsupportable referral
burden in even the wealthiest countries.

DATA AVAILABILITY
All data analysed in this study are available on request to the UK Data Archive. Due to
the complexity of the analyses in this study, involving several sorts of software, all
computer codes utilised are available on request, by email to the corresponding
author.
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