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a b s t r a c t

Aims: We study the impact of an Upwind scheme on the numerical convergence of simulations of
the Hall and Ohmic effect in neutron stars crusts. While simulations of these effects have explored a
variety of geometries and wide ranges of physical parameters, they are limited to relatively low values
of the Hall parameter, playing the role of the magnetic Reynolds number, which should be not exceed
a few hundred for numerical convergence.
Methods: We study the evolution of the magnetic field in a plane-parallel Cartesian geometry. We
discretise the induction equation using a finite difference scheme and then integrate it via the
Euler forward method. Two different approaches are used for the integration of the advective terms
appearing in the equation: a Forward Time and Central in Space (FTCS) and an Upwind scheme. We
compare them in terms of accuracy and performance. We explore the impact of the Upwind method
on convergence according to the ratio of planar to vertical field and the Hall parameter.
Results: In the limit of a low strength planar field the use of an Upwind scheme provides a vast
improvement leading to the convergence of simulations where the Hall parameter is 2 orders of
magnitude higher than that of the FTCS. Upwind is still better if the planar field is stronger, yet,
the difference of the maximum value of the Hall parameter reached is within a factor of 10 or a few.
Moreover, we notice if the schemes diverge their behaviour is very different, with FTCS producing
infinite energy, while the Upwind scheme only temporarily increasing the overall magnetic field
energy.
Conclusions: Overall, the Upwind scheme enhances the efficiency of the simulations allowing the
exploration of environments with higher value of electric conductivity getting us closer than before
to realistic environmental conditions of magnetars.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Several decades of observations of strongly magnetised neu-
ron stars (NSs) have revealed violent phenomena such as out-
ursts and flares in magnetars, which is related to magnetic field
volution (Mazets et al., 1999; Turolla et al., 2015; Kaspi and
eloborodov, 2017; Zelati, 2018; Coti Zelati et al., 2018). Further-
ore, their thermal evolution indicates that their magnetic field

s powering, at least part of, their thermal evolution through the
onversion of magnetic energy into heat (Haensel et al., 1990;
halybkov and Urpin, 1997; Pons et al., 2007). Even when in-
luding normal rotational powered pulsars, their evolution in the
− Ṗ diagram and braking indices have been interpreted to hint
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magnetic field evolution (Blandford and Romani, 1988; Urpin,
1994; Urpin et al., 1997; Gonthier et al., 2007; Gullón et al., 2014;
Gourgouliatos and Cumming, 2015; Igoshev and Popov, 2015;
Popov, 2015; Johnston and Karastergiou, 2017; Pons and Viganò,
2019; Igoshev and Popov, 2020). While these effects address the
question of the long term evolution, they also provide the nec-
essary triggers for short term events due to physical instabilities
leading to explosive events (Gourgouliatos et al., 2015).

Even before the abundance of magnetar data, magnetic field
evolution in the neutron star has been theoretically formulated
and attributed to the Hall effect and Ohmic decay in the crust
and ambipolar diffusion in the core and deeper crust (Bland-
ford et al., 1983; Jones, 1988; Goldreich and Reisenegger, 1992).
Ambipolar diffusion and Ohmic decay are dissipative processes,
whereas the Hall effect is conservative. Therefore, its simulation
is more complex and prone to physical and numerical instabilities
due to the formation of sharp discontinuities and current sheets
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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hat are not formally dissipated unless some other dissipate ef-
ect is accounted for (Vainshtein et al., 2000; Gourgouliatos and
ollerbach, 2016; Kitchatinov, 2017, 2019).
Despite these hurdles, numerical simulations of the Hall effect

ave been successfully implemented in a spherical geometry un-
er axisymmetry (Hollerbach and Rüdiger, 2002, 2004; Pons et al.,
009; Viganò et al., 2012, 2013; Gourgouliatos and Cumming,
014b). Indeed, the simulation of the Hall effect in association
ith Ohmic decay leads to a manageable Hall parameter (the
quivalent of Reynolds number in Hall MHD). However, if the in-
uction equation contains only the Hall term, application of Euler
chemes fails to simulate correctly the propagation of the infor-
ation within the numerical grid and this leads to the instability
f the scheme (Falle, 2003).
Euler method is the simplest way of numerical integration

nd straightforward to apply. Realistic neutron stars have high,
ut finite, conductivity and the actual evolution can be simulated
sing such schemes, provided the conductivity is low enough
o that the ratio of the magnitude of the Hall term over the
hmic is 10-100 (Gourgouliatos and Cumming, 2014b). More
ophisticated techniques have been used, such as Godunov shock
apturing schemes (Viganò et al., 2012, 2013). These approaches
ave permitted the numerical integration of the Hall-induction
quation for higher values of the Hall parameter. Other works
ave relied on spectral methods for the numerical integration
f the equations (Hollerbach and Rüdiger, 2002, 2004; Pons and
eppert, 2007; Wareing and Hollerbach, 2009; Cho and Lazar-
an, 2009; Wareing and Hollerbach, 2010a). Three dimensional
tudies, so far, have used mixed approaches, combining spec-
ral and finite difference methods while using Crank–Nicolson
nd Adams–Bashforth schemes for time integration (Wood and
ollerbach, 2015; Gourgouliatos et al., 2016). Each method has
ts own strengths and weaknesses and the appropriate choice
epends on the nature of the phenomenon the study focuses
n. Spectral methods are faster and better suited for spherical
ystems, naturally matching the geometry of the crust, yet, their
mplementation on a crust whose density varies over several or-
ers of magnitude may be complicated. Finite difference methods
re slower, yet, resolve more efficiently discontinuities. Mixed
ethods, i.e. spectral in the angular and finite difference in the ra-
ial direction remove the issues of density stratification, but may
ot resolve that well any shocks or strong currents in the angular
irection. A Cartesian 3-D code generated through the platform
imflowny has lead to the solution of the generalised induction
quation using high order numerical schemes for the time and
patial discretisation (Viganò et al., 2019). Numerical integration
sing the Pencil code has been used for the study of turbulence
ue to Hall-MHD (Brandenburg, 2020). Still in Cartesian geom-
try, integration of the Hall-MHD equation and exploration of
nstabilities has been performed using both finite difference and
pectral methods (Gourgouliatos et al., 2015; Gourgouliatos and
ollerbach, 2016). In these works the maximum value of the Hall
arameter reaches was in the range of ∼200.
Overall, these simulations, while they have revealed several

mportant properties of strongly magnetised neutron stars, they
ave also demonstrated the limitations of the integration
chemes. Indeed, the use of Godunov schemes (Viganò et al.,
012) has allowed numerical convergence for higher values of the
all parameters. However, the nature of the Hall-MHD equations
ontaining advective terms, suggests that a possible improvement
s through the use of a relatively simple Upwind scheme. In this
ork we explore this scenario, using a simplified plane-parallel
artesian problem, and we demonstrate the conditions leading to
n enhancement to numerical integration.
The structure of this paper is as follows: We present the
athematical setup of the problem in Section 2. In Section 3 we

2

analyse our strategy and our setup of the model and illustrate
how Upwind schemes treats them. We present our simulations
and the results in Section 4. We conclude in section Section 5.

2. Problem formulation

We approximate the neutron star crust by a Coulomb lattice
of fixed ions and electrons that are free to move (Goldreich and
Reisenegger, 1992). The evolution of the crustal magnetic field
is described by Hall-MHD, sometimes referred to as electron-
MHD in this context, where electrons are the only species moving.
Under this approximation, we can relate the electron motion to
the electric current:

ve = −
j

ene
= −c

∇ × B
4πene

(1)

where e is the electron charge, ne the electron number density, c
he speed of light, and B the magnetic field. Ohm’s law reads:

= −
ve × B

c
+

j
σ

, (2)

where σ is the electric conductivity. Substituting the above ex-
pression for the electric field into the induction equation, while
neglecting the displacement current, and by virtue of Ampère’s
law we obtain the following equation for the magnetic field
evolution
∂B
∂t

= −∇ ×

[
c

4πnee
(∇ × B) × B +

c2

4πσ
∇ × B

]
(3)

The first term on the right hand of Eq. (3) is associated with the
Hall effect whilst the second term with Ohmic dissipation.

Eq. (3) allows the definition of two characteristic time-scales
of the system, the Hall time-scale tH =

4πeneL2
c∥B∥ with ∥B∥ =

ax |B| is the norm of the magnetic field of the system given
y maximum value of the modulus of B within the integration
omain, and Ohmic decay timescale tOhm =

4πσ L2

c2
. Both have the

same, quadratic, dependence on the length-scale of the system
and their ratio is the dimensionless Hall parameter:

RH =
tOhm
tH

=
σ∥B∥
ecne

. (4)

The Hall parameter is a dimensionless tool that compares the
Hall effect and the Ohmic decay in a system. From Gauss’ law
∇ · B = 0 the magnetic field has zero-divergence, thus we can
xpress it in terms of two scalar functions. In our approach we
ssume a plane parallel geometry, where the field has all three
omponents, but all physical quantities depend only on x, z.
ubject to these constraints we write the magnetic field as follows

= Byŷ + ∇Ψ × ŷ (5)

here By(x, z) is the magnetic field component along the y axis
nd Ψ (x, z) is a scalar. We refer to By as the vertical field and to
he components Bx, Bz as the planar field. The form of Ψ provides
he structure of the magnetic field on x − z plane, with contours
f constant Ψ being parallel on the Bxx̂ + Bz ẑ component of the
ield.

We further use Ampère’s law to evaluate the electric current:

=
c
4π

∇ × B =
c
4π

(
−∇

2Ψ ŷ + ∇By × ŷ
)

. (6)

By virtue of Eqs. (1), (6) we can further evaluate the electron fluid
velocity:

ve =
c (

∇
2Ψ ŷ − ∇By × ŷ

)
(7)
4πene
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We substitute the magnetic field from Eq. (5) into the mag-
etic field induction Eq. (3) and we obtain two coupled partial
ifferential equations for Ψ and By

∂By

∂t
=

−c
4πe

{[
∇

(
∇

2Ψ

ne

)
× ŷ

]
· ∇Ψ

+ By
(
∇n−1

e × ŷ
)
· ∇By

}
+

c2

4πσ
∇

2By (8)

∂Ψ

∂t
=

c
4πnee

(
∇By × ŷ

)
· ∇Ψ +

c2

4πσ
∇

2Ψ (9)

The above equation encapsulates the evolution of the magnetic
field due to the Hall effect and Ohmic decay. Regarding the
equation for By (8), the first term on the right hand-side shows
how the field-lines of the x − z plane are bent into By, if the
y−component of the electron velocity is not constant along a
given field line, namely a surface of constant Ψ ; the second term
is the advection of By should the electron number density be not
constant and the final term is the Ohmic decay term. The equation
describing the evolution of Ψ (9) has only two terms in the right
hand-side: the first one describing the advection of Ψ by the
current on the x − z plane and the second one its Ohmic decay.

There are two advective terms in the equation, one arising
from the density stratification and another due to the impact of
the By field on Ψ . In this work we explore a model of minimal
complexity to demonstrate the improvement achieved by the
application of an Upwind scheme. Thus, we assume that ne =

onst. allowing for the following advective velocity for Ψ :

vadv =
c

4πnee

(
∂By

∂z
x̂ −

∂By

∂x
ẑ
)

(10)

This advective velocity is dot-produced with the gradient of Ψ ,
providing the first term of Eq. (9). This term implies that any
information related to the evolution travels in the direction of
the advective term. Thus, if a central difference scheme is used
for the evaluation of the first derivatives it would be prone to
numerical instabilities, as it could take into account downstream
points where the information about the advective field has not
arrived yet. On the contrary, the use of a Upwind scheme takes
into account only the points where the information has arrived
and is anticipated to be more stable numerically.

3. Numerical setup and strategy

The numerical integration of differential equations, even in
1-D systems, containing advective terms is greatly enhanced by
the use of Upwind schemes. In what follows we demonstrate the
implementation of an Upwind scheme for the numerical solution
of Eqs. (8) and (9) and we compare it against the integration with
the usage of central difference derivatives.

We set

B̃ =
c

4πeneL2
B , (11)

allowing to the normalisation of Eq. (3) as follows:

∂B̃
∂ t̃

= −∇ ×

[
(∇ × B̃) × B̃ + R−1

H ∇ × B̃
]

(12)

here time t̃ is measured in Hall-timescale tH units for a mag-
etic field of unit strength. In what follows we shall use the
ormalised magnetic field and drop the tilde.

.1. Discretisation

We consider a square integration domain of unit side with
×z ∈ [0, 1]×[0, 1], that we have discretised for i ∈ {0, 1, . . . , n }
x

3

nd j ∈ {0, 1, . . . , nz}. We denote time with an upper index and
osition with lower indices, with x = iδx and z = jδz, where
x = 1/nx and δz = 1/nz .
We solve numerically Eqs. (8) and (9) using two methods: a

irst order Forward in Time and Central in Space scheme (FTCS)
nd an Upwind scheme (Patankar, 1980).
We define the following operators for a scalar quantity Q n

i,j:

t
(
Q n
i,j

)
≡

Q n+1
i,j − Q n

i,j

δt
(13)

L
(
Q n
i,j

)
≡

Q n
i+1,j + Q n

i−1,j + Q n
i,j+1 + Q n

i,j−1 − 4Q n
i,j

δxδz
(14)

Dx
(
Q n
i,j

)
≡

Q n
i+1,j − Q n

i−1,j

2δx
(15)

Dz
(
Q n
i,j

)
≡

Q n
i,j+1 − Q n

i,j−1

2δz
. (16)

Using these operators, Eqs. (8), once normalised and discretised,
takes the following form:

Dt
(
Bn
y i,j

)
= Dz(L(Ψ n

i,j))Dx(Ψ n
i,j) (17)

−Dx(L(Ψ n
i,j))Dz(Ψ n

i,j)

+R−1
H L(Bn

y i,j). (18)

his form of the equation is applicable on both FTCS and Upwind
chemes. On the contrary, Eq. (9) contains an advective term and
ts form is different in the FTCS and Upwind scheme. In the FTCS
cheme the equation takes the form:

t (Ψ n
i,j) = −Dz(By

n
i,j)Dx(Ψ n

i,j) + Dx(By
n
i,j)Dz(Ψ n

i,j) (19)

+R−1
H L(Ψ n

i,j). (20)

he expression differs, however, when the Upwind scheme is
pplied. In particular, from the definition of Eq. (7) if the term
z(By

n
i,j) > 0 we obtain vadv,x < 0 and vice versa. Similarly, if

x(By
n
i,j) > 0 then vadv,z > 0, notice the different signs of the y

nd z derivatives of the respective terms. Because of this, we need
urther to define four more operators:

x−Q n
i,j ≡

Q n
i,j − Q n

i−1,j

δx
(21)

Dx+Q n
i,j ≡

Q n
i+1,j − Q n

i,j

δx
(22)

Dz−Q n
i,j ≡

Q n
i,j − Q n

i,j−1

δz
(23)

z+Q n
i,j ≡

Q n
i,j+1 − Q n

i,j

δz
. (24)

Under these considerations the form of Eq. (9) takes one of the
following forms depending on the sign of the advective velocity.
For vadv,x > 0 and vadv,z > 0

Dt (Ψ n
i,j) = −Dz(By

n
i,j)Dx+(Ψ n

i,j) + Dx(By
n
i,j)Dz+(Ψ n

i,j)

+R−1
H L(Ψ n

i,j) . (25)

or vadv,x > 0 and vadv,z < 0

t (Ψ n
i,j) = −Dz(By

n
i,j)Dx+(Ψ n

i,j) + Dx(By
n
i,j)Dz−(Ψ n

i,j)

+R−1
H L(Ψ n

i,j) . (26)

or vadv,x < 0 and vadv,z > 0

t (Ψ n
i,j) = −Dz(By

n
i,j)Dx−(Ψ n

i,j) + Dx(By
n
i,j)Dz+(Ψ n

i,j)
−1 n
+RH L(Ψi,j) . (27)
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nd finally, for vadv,x < 0 and vadv,z < 0

Dt (Ψ n
i,j) = −Dz(By

n
i,j)Dx−(Ψ n

i,j) + Dx(By
n
i,j)Dz−(Ψ n

i,j)

+R−1
H L(Ψ n

i,j) . (28)

We have further applied periodic boundary conditions. As our
scheme needs two grid points on either side to evaluate the third
derivatives, we have used two sets of ghost points on all four
sides of the grid. There, we copied the values at the end of the
integration loops as follows:

Q n
−2,j = Q n

nx−1,j

Q n
−1,j = Q n

nx,j

Q n
nx+1,j = Q n

0,j

Q n
nx+2,j = Q n

1,j

Q n
i,−2 = Q n

i,nz−1

Q n
i,−1 = Q n

i,nz
n
i,nz+1 = Q n

i,0
n
i,nz+2 = Q n

i,1 (29)

In our simulations we have used a variable time step, set by
he maximum electron velocity in the system. In systems with
eak magnetic fields, we switch-off this condition as this would
ive rapid dissipation and lead to numerical divergence.

.2. Initial conditions

We explore the impact of the Upwind method on convergence
ubject to two main parameters: the ratio of planar to vertical
ield and the value of the Hall parameter RH . The structure of the
agnetic field is the same, given by the following expressions:

y = B0x2z2(x − 1)(z − 1) ,

Ψ = Ψ0xz(x − 1)(z − 1) . (30)

he expression for By has a peak at (2/3, 2/3) whereas the one
or Ψ peaks at (1/2, 1/2). We note that the initial conditions for
y and Ψ have the same values for x = 0 and x = 1; and z = 0
nd z = 1, and the derivatives:
∂By

∂x
|z=0 =

∂By

∂x
|z=1 = 0 ,

∂By

∂z
|x=0 =

∂By

∂z
|x=1 = 0 , (31)

mplying that the electron fluid velocity normal to the boundaries
f the domain is initially equal to 0.
In the limit where By dominates the evolution and high con-

uctivity, the system will evolve towards a state where the con-
ours of constant Ψ will tend to coincide with the ones with
onstant By. If conductivity becomes weaker, By will dissipate in
he system and the magnetic field energy will decrease, while
he components of the field will try to obtain an advective–
iffusive equilibrium similar to the Hall attractor (Gourgouliatos
nd Cumming, 2014a). For systems where the By component is
omparable to the planar components the system will have a
ore complex evolution due to the interplay of the currents due

o Ψ and their impact on By.
In our simulations we have set the value of B0 = 105 so that

he integral of the magnetic field energy equals:

y =
1
8π

∫
B2
ydxdz =

1
8π

. (32)

e further define the energy in the planar components Bx and Bz
n a similar manner:

xz =
1

∫ (
B2
x + B2

z

)
dxdz . (33)
8π
4

We vary the value of Ψ0 so that the ratio of the energy corre-
sponding to the Bx and Bz component over the By energy to be
0.01, 0.1, 0.5 and 1, by setting Ψ0 equal to 0.653, 2.067, 4.62 and
6.53. Obviously, a state where the planar field is identically zero
Ψ = 0 leads to a system that does not evolve other than for the
decay of By.

.3. Convergence criteria

To successfully compare the two schemes we use the follow-
ng convergence criteria. The magnetic field energy decays solely
ue to Ohmic effect (Hollerbach and Rüdiger, 2002), with the
ollowing equation describing the magnetic energy decay:

∂

∂t

(
1
2

∫
V
B2dV

)
= −

1
RH

∫
V
j2dV . (34)

Thus, our fist convergence criterion is that the energy in the
magnetic should monotonically decrease. Moreover, the same
electric current distribution leads to a slower magnetic field decay
for runs if a higher RH is chosen. Nevertheless, given the non-
linearity of the evolution, the electric currents later on, will not
be identical for runs with different values of RH , thus a direct
comparison may not be possible.

We studied the difference given by the terms

m =

|
∂
∂t

( 1
2

∫
V B2dV

)
+

1
RH

∫
V j2dV |

1
RH

∫
V j2dV

(35)

or several runs (C001 200, U001 200, C010 100, U010 100, C050
00, U050 100), and we find that it remains within a few percent.
e note however that there is a rising trend of this value with
igher RH , indicative of the impact of the numerical dissipation
or higher Hall parameters that we have already noted.

We note that a further criterion that can be used in this
ontext (Wareing and Hollerbach, 2010b) is the evolution of the
agnetic helicity which is given by the following expression:

∂

∂t

(∫
V
A · B dV

)
= −

1
RH

∫
V
B · j dV , (36)

here A is the vector potential so that ∇ ×A = B. Given that our
ode integrates directly the quantities By and Ψ the evaluation of
will require a further integration, as its Ax and Az components

re related to integrals of By and this would introduce further
umerical errors. So we confine ourselves to our first criterion
elated to the energy which is more accurate.

A second criterion that we impose for convergence is the size
f the time-step. In the simulations, we use a Courant condi-
ion (Courant et al., 1952) by setting the size of the timestep
t = 0.1 CP δx δz, where CP =

1
max{|ve|,0.5}

. The electron velocity
is evaluated from Eq. (7) with a central difference scheme for the
derivatives of Ψ and By. This choice slows down the integration,
once strong currents form, and thus electron velocities, to prevent
numerical divergence. However, if a numerical instability occurs
leading to high values of the derivatives, it will halt the evolution
of the system by enforcing a very small δt . We have also used a
base value for the electron velocity 0.5, as for very weak magnetic
fields, the value of |ve| become very small and it would lead to a
very large timestep making the Ohmic term numerically unstable.
Thus, our second criterion is that the timestep does not become
zero.

4. Simulation results

We run identical simulations with initial conditions and phys-
ical parameters using both the FTCS and Upwind scheme. In our
simulations we have increased progressively the value of R until
H
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Table 1
Simulation runs performed. The first column is the name of the run, subsequent
columns are the energy in the By component, the energy in the Bx and Bz
omponents, the value of RH , whether the simulations converge or not and the
esolution of the run.
Name Ey Exz RH Conv. Res.

C001-50 1 0.01 50 Yes 1002

C001-100 1 0.01 100 Yes 1002

C001-200 1 0.01 200 Yes 1002

C001-500 1 0.01 500 No 1002

U001-200 1 0.01 200 Yes 1002

U001-500 1 0.01 500 Yes 1002

U001-1000 1 0.01 1000 Yes 1002

U001-1000-HR 1 0.01 1000 Yes 2002

U001-2000 1 0.01 2000 Yes 1002

U001-2000-HR 1 0.01 2000 Yes 2002

U001-5000 1 0.01 5000 Yes 1002

U001-5000-HR 1 0.01 5000 Yes 2002

U001-10000 1 0.01 10000 Yes 1002

U001-10000-HR 1 0.01 10000 Yes 2002

U001-20000 1 0.01 20000 Yes 1002

U001-20000-HR 1 0.01 20000 No 2002

U001-INF 1 0.01 ∞ No 1002

Table 2
Simulation runs performed. Columns are the same as in Table 1.
Name Ey Exz RH Conv. Res.

C010-20 1 0.1 20 Yes 1002

C010-50 1 0.1 50 Yes 1002

C010-100 1 0.1 100 Yes 1002

C010-200 1 0.1 200 No 1002

U010-50 1 0.1 50 Yes 1002

U010-100 1 0.1 100 Yes 1002

U010-200 1 0.1 200 Yes 1002

U010-500 1 0.1 500 Yes 1002

U010-500-HR 1 0.1 500 Yes 2002

U010-1000 1 0.1 1000 Yes 1002

U010-1000-HR 1 0.1 1000 Yes 2002

U010-2000 1 0.1 2000 Yes 1002

U010-2000-HR 1 0.1 2000 Yes 2002

U010-5000 1 0.1 5000 Yes 1002

U010-5000-HR 1 0.1 5000 No 2002

U010-10000 1 0.1 10000 Yes 1002

U010-20000 1 0.1 20000 No 1002

the simulation diverges. To deem a simulation as divergent we
require at least one of the two criteria stated in to be fulfilled.
We use as our base resolution 1002, we have also run a few
imulations with higher resolution 2002 to ensure the numerical
onvergence of the runs and investigate the role of numerical
esistivity. We present the parameters used in the simulations
nd whether the run converge or not in Tables 1–4 and stills from
he simulations are shown in Figs. 1–5.

We have performed 54 runs implementing central difference
nd Upwind scheme, using a variety of combinations of the mag-
etic field components and RH . Below we analyse the behaviour
f the magnetic fields for the following runs.
In the series of C001 and U001 runs ( Table 1), we notice that

y is supported by a current on the x − z plane that swirls the
x −Bz field, Fig. 1. Even though the planar field is weak it adopts
state where contours of By and Ψ coincide, especially for high
alues of RH .
Finite difference schemes are known to produce numerical

issipation, in this particular context it is physically interpreted
s numerical resistivity. In the standard resolution runs we per-
ormed (1002) we noticed that the Upwind scheme was con-
erging for very high values of RH , especially when Exz was low
0.01 and 0.1). To assess whether this convergence was because
5

Table 3
Simulation runs performed. Columns are the same as in Table 1.
Name Ey Exz RH Conv. Res.

C050-20 1 0.5 20 Yes 1002

C050-50 1 0.5 50 Yes 1002

C050-100 1 0.5 100 Yes 1002

C050-200 1 0.5 200 No 1002

U050-50 1 0.5 50 Yes 1002

U050-100 1 0.5 100 Yes 1002

U050-200 1 0.5 200 Yes 1002

U050-500 1 0.5 500 Yes 1002

U050-500-HR 1 0.5 500 Yes 2002

U050-1000 1 0.5 1000 No 1002

U050-1000-HR 1 0.5 1000 No 2002

Table 4
Simulation runs performed. Columns are the same as in Table 1.
Name Ey Exz RH Conv. Res.

C100-20 1 1 20 Yes 1002

C100-50 1 1 50 Yes 1002

C100-100 1 1 100 No 1002

U100-20 1 1 20 Yes 1002

U100-50 1 1 50 Yes 1002

U100-100 1 1 100 Yes 1002

U100-200 1 1 200 Yes 1002

U100-500 1 1 500 No 1002

U100-1000 1 1 1000 No 1002

of the presence of numerical resistivity we run the simulations at
higher resolution that would presumably have lower numerical
resistivity and we also run a simulation where we switched-off
completely the Ohmic term. We find that the latter case U001-
INF, was diverging, however, runs U001-20000 was converging
while runs U001-20000-HR and U001-10000-HR were diverging.
This implies that the runs are affected by numerical dissipation
at this stage leading to convergence. This effect also occurs in the
runs where the energy of the planar component is 10% of the
energy of the vertical component, where U010-5000 converges
but run U010-5000-HR diverges. It is no longer the case for runs
where the planar component energy is 50% of the energy of the
vertical component, as there both runs U050-1000 and U050-
1000-HR diverge and the maximum convergence is achieved
for RH = 500 in both resolutions. As these runs were already
emanding, with a typical run lasting a few days, we have not
xplored a higher resolution.
In runs with higher values of the planar magnetic field, we

otice that the evolution becomes more complex as the Bx − Bz
field interact with By. This effect can be seen in the runs of the
U010, U050 and U100 in Figs. 2–4. While initially the vertical field
drives the evolution, the planar field interacts with the vertical.
Quite interestingly, late in the evolution, the field tends to adopt
a particular structure Figs. 2–4, with the planar and vertical fields
following similar contours.

In all families of runs we notice that the simulations employ-
ing the Upwind scheme converge for substantially higher values
of RH compared to the central difference runs. In the runs where
the energy in the planar field was 0.01 of the vertical field, central
difference simulations could reach a maximum value of RH =

200, whereas Upwind runs could reach exceptionally high values
of RH exceeding 103. We need to stress that the choice of the
numerical derivative in the FTCS is second order (being central
difference) and is outperformed by the Upwind scheme where
the forward or backward difference scheme used is first order.

In the families with progressively higher values of planar field
(C010 and U010; C050 and U050; C100 and U100) we notice that
in both FTCS and Upwind runs the maximum value of R for
H
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Fig. 1. Magnetic field structure of the run U001-10000-HR at times t = 0, 0.5, 1 10.
Fig. 2. Magnetic field structure of the run U010-2000-HR at times t = 0, 0.5, 1 10.
Fig. 3. Magnetic field structure of the run U050-500-HR at times t = 0, 0.5, 1 10.
Fig. 4. Magnetic field structure of the run U100-200 at times t = 0, 0.5, 1 10.
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onvergence decreases, but the Upwind scheme still converges
or values of RH that are higher by an order of magnitude or
t least a factor of a few. For instance in the runs where the
nergy on the planar and vertical field are equal (C100 and U100)
TCS scheme converges for up to RH = 50 whereas the Upwind
cheme converges for RH = 200. What is further noteworthy, is
he way the two schemes diverge. FTCS always diverge through a
ery small time-step due to the Courant condition imposed, while
he energy diverges exponentially. On the contrary, in the runs
050-1000 and U100-500 we notice that temporarily the energy
ncreases instead of decreasing. Despite that, the time-step does
ot become zero and still the code continues to run, eventually
issipating any numerical instabilities. Even in the runs that
onverged for both the FTCS and Upwind schemes, i.e. U001-
00 and C001-200, there are some noticeable differences. Runs
mploying FTCS tend to create planar magnetic fields whose lines
f force have sharper angles than the ones using the Upwind
cheme which are smoother, Fig. 5. Because of this, they are more
rone to numerical instability.
The fact that the improvement of the code using the Upwind

cheme is not so dramatic when Ψ becomes large is due to the
act that the Upwind scheme operates on the term containing
he advective velocity appearing in the form of derivatives of B .
y

6

learly, in the aforementioned runs, the significance of the first
erm on the right-hand-side of Eq. (8) becomes higher and affects
he overall convergence of the run. Thus, even if the use of the
pwind scheme is a major improvement in the first term of the
ight-hand-side of Eq. (9), it still cannot secure the simulation
rom instabilities that arise from non-advective terms, such as
his term bending the planar field into the vertical one.

The energy decay in models U001-5000 and U001-10000-
R both in high and low resolution is the same for the both
esolutions in the long run, Fig. 6. However, in the first stages
f evolution the resolution plays a significant role, suggesting
hat the effects observed are more affected by the resolution
ather than the resistivity. Regrading the planar component, that
s energetically subdominant, it shows initially some oscillations,
ue to the effect of swirling from the vertical field. These effects
re affected by the resolution of the scheme. This suggests that a
hoice of RH in the order of 103, even if it leads to a scheme that
onverges numerically, it may be concealing some of the finer
eatures of the evolution which have some non-trivial impact.

Comparing runs with different initial ratios of planar to verti-
al fields, Fig. 7, we notice, that the runs with stronger planar
ields have an overall faster decay, due to the interplay of the
lanar with the vertical field and the more complex evolution. As
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Fig. 5. Magnetic field structure of the run C001-200 (a) and U001-200 (b) at
t = 0.5.

we have chosen here a value of RH = 200, we notice that the
lanar field eventually decays exponentially, while the vertical
onverges to a constant value, that of a uniform field. This is
vident also from Figs. 3 and 4 panel (d) where in both cases
he vertical field becomes uniform, whereas the planar adopts a
tructure of a single maximum. This is related to our choice of
he initial topology of the field, with By having a positive net flux,
whereas Ψ having a single maximum.

5. Conclusions

In this paper we have shown that the use of an Upwind
scheme greatly improves the convergence of Hall-MHD numerical
simulations. The scheme is applied in the advective term and
decreases the possibility of the appearance of numerical instabil-
ity, allowing for simulations with higher values of RH compared
o runs using the FTCS scheme. The improvement can be ap-
roximately two orders of magnitude for runs where the planar
agnetic field has 1% of the energy compared to the vertical, and
factor of a few for the runs where the two components contain
he same amount of energy. The constraint of a maximum value
n RH ∼ 100 for the FTCS scheme is in agreement with previous
orks that employed a plane-parallel geometry (Gourgouliatos
t al., 2015; Gourgouliatos and Hollerbach, 2016).
This improvement can enhance the efficiency of runs of Hall-

HD simulations allowing for higher values of conductivity,
hich is closer to realistic conditions for magnetars. Because
f such constraints, most models employ crusts where the Hall
arameter is lower than what would realistically be expected,
ostly reflecting a numerical hurdle rather than a physical lim-

tation. We note that in the present work, we have explored

plane-parallel model of a crust with uniform density, where

7

Fig. 6. Magnetic energy decay for models U001-5000 (blue), U001-10000 (or-
ange), U001-5000-HR (green) and U001-10000-HR (red). In the top panel (a) the
energy of the vertical component is plotted, in the middle panel (b) the energy
of the planar component and in the bottom panel (c) the total energy.

the Upwind scheme was only applied to the advection term
of the flux Ψ . In the more realistic approach of a stratified
density, there is an additional advection term in the By com-
ponent corresponding to a non-linear shock wave similar to
Burger’s Equation. This term could be further implemented with
an Upwind scheme. Even in a uniform density crust, subject to
the constraint of axisymmetry, there exists an advective term,
which needs to be accounted for in the calculation. Things may
become more complex in the state-of-the art three-dimensional
simulations (Wood and Hollerbach, 2015). These simulations are
spectral and the implementation of an Upwind scheme would
require a different framework for its operation, possibly using a
finite difference approach. This type of approach could however
introduce a variety of other problems such as slowing of the
numerical code and singularities on the axis.

Overall we conclude that the inclusion of an Upwind scheme,
even if it is technically simple to implement, it leads to an im-
pressive improvement of the performance of the numerical code,
and is worth exploring its application in different contexts such
as axisymmetric simulations.
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Fig. 7. Magnetic energy for models U001-200 (red), U010-200 (green), U050-
200 (orange) and U100-200 (blue). In the top panel (a) the energy of the
vertical component is plotted, in the middle panel (b) the energy of the planar
component and in the bottom panel (c) the total energy.
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