
Journal of Network and Computer Applications 203 (2022) 103354

A
1
n

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Context-aware distribution of fog applications using deep reinforcement
learning
Nan Wang a, Blesson Varghese b,∗

a Mindtrace Ltd., UK
b University of St Andrews, UK

A R T I C L E I N F O

Keywords:
Fog computing
Decentralised cloud
Edge computing
Context-aware distribution

A B S T R A C T

Fog computing is an emerging paradigm that aims to meet the increasing computation demands arising from
the billions of devices connected to the Internet. Offloading services of an application from the Cloud to the
edge of the network can improve the overall latency of the application since it can process data closer to user
devices. Diverse Fog nodes ranging from Wi-Fi routers to mini-clouds with varying resource capabilities makes
it challenging to determine which services of an application need to be offloaded. In this paper, a context-aware
mechanism for distributing applications across the Cloud and the Fog is proposed. The mechanism dynamically
generates (re)deployment plans for the application to maximise the performance efficiency of the application by
taking operational conditions, such as hardware utilisation and network state, and running costs into account.
The mechanism relies on deep Q-networks to generate a distribution plan without prior knowledge of the
available resources on the Fog node, the network condition, and the application. The feasibility of the proposed
context-aware distribution mechanism is demonstrated on two use-cases, namely a face detection application
and a location-based mobile game. The benefits are increased utility of dynamic distribution by 50% and 20%
for the two use-cases respectively when compared to a static distribution approach used in existing research.
1. Introduction

The next generation of Cloud applications is anticipated to leverage
computing resources available at the edge of the network (Varghese and
Buyya, 2018; Satyanarayanan, 2017; Dias de Assunção et al., 2018).
Resources at the edge of the network will be more constrained in
terms of processing capabilities when compared to the Cloud (Hong and
Varghese, 2019; Varghese et al., 2019, 2016). The computing paradigm
that makes use of resources both in the Cloud and along the Cloud–Edge
continuum is referred to as Fog computing (Bonomi et al., 2012; Hu
et al., 2017).

In Cloud computing, applications that service end-user devices re-
side in Cloud data centres. Fog applications, on the other hand, will
be serviced by both distant Clouds and Fog resources near user de-
vices. This is done to bring latency-sensitive computing to the Fog
resource (Wang et al., 2017) and make the application more responsive
for the end-user (Satyanarayanan, 2017; Wang et al., 2017; Chen et al.,
2017). Similarly, the volume of data that is transferred to the Cloud for
processing, which can be expensive in monetary terms, can be reduced
if processed nearer to the source on Fog resources (Varghese et al.,
2016; Hong and Varghese, 2019). The benefits include improving the

∗ Corresponding author.
E-mail address: bv6@st-andrews.ac.uk (B. Varghese).

overall Quality-of-Service (QoS) of the application that directly impacts
a user’s experience as well as making them cost-efficient.

Distributing applications across the Cloud and the Fog can be
achieved if applications are designed as a composition of multiple
services (McChesney et al., 2019; Donassolo et al., 2019; Bittencourt
et al., 2017; Gupta et al., 2017). Either one or more application services
in the Cloud can be brought to the edge of the network, which may be
geographically closer to end-users. This would require the deployment
of the appropriate services in three ways: (i) Cloud-only — all the
services are hosted in the Cloud VM; (ii) Fog-based — some of the
services are hosted in a Fog node while the rest in the Cloud VM; (iii)
Fog-only — all services are hosted in a Fog node (McChesney et al.,
2019). The number of services that will move to the Fog from the
Cloud will be based on the availability of Fog resources and network
conditions at any given time. Offloading application services from the
Cloud to the Fog is a complex task because Fog resource availability
and utilisation, and network conditions change over time.

It is challenging to determine how many and which services need
to be moved to the Fog in the face of variable systems and network
conditions. A key question to address in such a context is which of the
services of an application should be distributed across the Cloud and Fog?
vailable online 14 April 2022
084-8045/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jnca.2022.103354
Received 12 June 2021; Received in revised form 15 January 2022; Accepted 20 F
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ebruary 2022

http://www.elsevier.com/locate/jnca
http://www.elsevier.com/locate/jnca
mailto:bv6@st-andrews.ac.uk
https://doi.org/10.1016/j.jnca.2022.103354
https://doi.org/10.1016/j.jnca.2022.103354
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2022.103354&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Ad hoc distribution across the Cloud and Fog can be detrimental to
the performance of the application and in turn, affects the QoS. In this
article, QoS is the combination of the computation and communication
latencies of the distributed application. Therefore, to maximise the
performance of an application it is necessary to determine the best
combination of services that are distributed across the Cloud and the
Fog. A variety of factors will need to be considered for determining this,
including resource availability and utilisation on the Fog and network
conditions. Also, the economic model used at the Fog (whether the Fog
is more expensive than the Cloud) is important in arriving at a decision.
This naturally results in a trade-off between the overall QoS and the
monetary cost.

The research problem targeted in this article is ‘the distribution of Fog
applications across a multi-layer Fog computing system’. The three research
questions addressed to tackle the problem are:

Q1: When should a Cloud application make use of the Fog for improv-
ing performance?

Q2: How many services of an application should be placed on the Fog?
Q3: What is the trade-off between QoS and monetary costs when using

Fog computing?

We propose a deep Reinforcement Learning (RL) based approach to
address the research problem. RL is considered a good solution for this
because: (i) it provides the capability to learn an optimal solution; (ii)
it does not require a pre-trained model in contrast to other machine
learning mechanisms. This means that no prior knowledge of Fog nodes
is required. In this research, Deep Q-Network (DQN), a model-free RL
approach is employed, which works well with continuous input and
discrete output, to develop the context-aware distribution mechanism
in a Fog system.

The contributions of this research are as follows:
(1) The formulation of the problem and a mathematical model to capture

the distribution of an application across Cloud and Fog resources, both in
terms of the QoS of the application and the running costs on Cloud and
Fog resources. The distribution problem is long-term, and the goal is to
maximise the overall benefits of a series of deployments of applications,
which has not been considered in existing works.

(2) The design and development of a context-aware mechanism to dis-
tribute modular applications in a three-tiered distributed system hierarchy.
Existing research for offloading modules from the Cloud to the Fog is
based on static distribution or scheduling of the application by relying
on initial deployment. The mechanism we propose on the other hand
distributes the modular components across Cloud and Fog resources
in a dynamic manner. The decision of which components needs to be
distributed is made based on operational conditions, such as hardware
utilisation of the Fog node and network state between the Cloud and the
Fog resource whenever it is required once an application is deployed
to improve the overall performance both in terms of QoS and running
costs.

(3) The application of deep RL for distributing modular Fog applica-
tions. The DQN-based offloading algorithm proposed in this paper can
effectively select a Fog-based deployment plan that leads to the highest
utility of an application service. Configuring the distribution of appli-
cations at run-time through learning from the operational environment
and feedback of each deployment is highly desirable in the Fog where
the applications deployed and system and network conditions change
rapidly.

The feasibility of the proposed context-aware distribution mecha-
nism is validated using two fog-computing use-cases: a mobile game
and a face detection system. These workloads are a natural fit for using
the Fog since they are latency-critical — the response time is affected
by the distance between the end device and the application server.
The merit of the context-aware distribution mechanism is observed in
that to select an appropriate deployment plan only has a sub-second
overhead. Additionally, we observed that the proposed mechanism
effectively outperforms the other static deployment approaches for both
2

Fig. 1. Illustration of the distribution of a modular Fog application. Data movement is
indicated by directed arrows, width of which represents the amount of data transmitted.

use-cases. Through the analysis of cost-efficient, QoS-aware and hybrid
strategies, and the impact of Fog pricing, it is also found that the
benefits of context-aware distribution mechanism are more significant
when it is optimised towards the QoS of applications and Fog resources
are priced less than Cloud resources.

The remainder of this paper is organised as follows. Section 2
presents background to modular Fog applications and discusses related
research. Section 3 presents the mathematical model that underpins
the Fog system, and the problem tackled in this article. Section 4
presents a context-aware methodology for distributing a modular Fog
application across the Cloud and the Fog using deep RL. Section 5
presents two real use-cases that can benefit from Fog computing and
the experimental setup. Section 6 evaluates the proposed methodology
and results obtained using the chosen use-cases. Section 7 concludes
this article by considering future work.

2. Background and related work

This section presents the background to modular Fog applications
and presents the related work on distribution of applications across the
Cloud and the Fog.

2.1. Modular Fog applications

Many existing Cloud applications are service-based and modular,
which are geo-distributed across clusters of systems (Thai et al., 2014,
2018). These applications are a good design fit for Fog computing
because: (i) some of the application modules can be moved from the
Cloud to the Fog; (ii) modular applications lend themselves to flexible
usage of Fog resources.

Currently, Cloud applications are distributed horizontally across
clustered systems. In a Fog system, the application will need to be
distributed vertically across multiple tiers. Fig. 1 compares different
types of distributions of a modularised Cloud application in a three-tier
Fog system. The modularised Cloud application is either the original
modular applications that consist of a collection of modules or applica-
tions that are partitioned to suit a Fog system. These modules (the blue,
red and green modules in Fig. 1) work together to provide the overall
functionality of the application.

Three distribution scenarios can be applied to a modularised Cloud
application, namely the Cloud-only, the Fog-based and the Fog-only
distribution. In the Cloud-only scenario, the server of the Cloud appli-
cation is hosted in a Cloud VM and the front-end application is installed
on an end device (e.g. smartphone). While the front-end application is
active, the end device sends data to the server in the Cloud as indicated
by the directed arrow in Fig. 1. The width of the arrow is representative
of the amount of data sent. In the Fog-based scenario there could be
several distribution plans depending on the number of modules to be

deployed on a Fog node. In the Fog-only scenario, all the modules are

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

b
m
a
e
T
F
2
t
b

t
e
s
e
W
r
F
b
o

d
f
a
s

Fig. 2. A classification of existing research on Fog application distribution.
deployed in a Fog node such that all data received from an end device
is processed in the Fog node.

Although employing Fog computing has been proven to be effective
to improve the QoS of Cloud applications (Wang et al., 2017; Sarkar
et al., 2018), using Fog computing services is challenging. This is
because the Fog is restricted due to limited hardware resources and
the availability of resources changes over time due to varying network
and system conditions. The question of when and how to utilise a Fog
node for elastic Fog applications is not well addressed in the literature.
Therefore, in this paper, the impact of different distribution plans on
the performance of elastic Fog applications is explored and a context-
aware distribution mechanism that generates an optimal distribution
plan is proposed.

2.2. Related work

The distribution of applications across the Cloud and the Fog (or
resources located at the edge of the network) has been investigated in
the context of related areas, namely Fog computing, Multi-access Edge
Computing (MEC) and Mobile Cloud Computing (MCC). A classification
of existing research is shown in Fig. 2. In this article, five classifications
are highlighted based on (i) the direction of offload, (ii) the type of
application, (iii) the parameters that are optimised in the problem
space, (iv) the modelling techniques used, and (v) the approaches used
for distributing computation workloads.

Based on the direction of offload, computational workloads can either
e offloaded from end-user devices to the MEC/Fog platform (Ndiku-
ana et al., 2019; Wu et al., 2018; Chen, 2014; Lu et al., 2020; Machida

nd Andrade, 2021), or from the Cloud to the MEC/Fog platform (Lin
t al., 2007; Chen et al., 2015; Gao et al., 2003; Báguena et al., 2016).
his paper focuses on offloading computations from the Cloud to the
og platforms. In contrast to the replication of either data (Lin et al.,
007; Gao et al., 2003) or application (Chen et al., 2015) in the Fog,
his work proposes a method to configure the offloaded computation
y taking the Fog environment into account.
Based on the type of application, either a monolithic (single applica-

ion whose computational tasks cannot be distributed or divided (Zhang
t al., 2016)) or a modular (an application that is composed of different
ervices that can be geo-distributed (Mahmud et al., 2018; Hosseinpour
t al., 2016)) application can be executed in the Fog/Edge environment.
hen monolithic applications are offloaded there are fewer software

elated-challenges than resource challenges that need to be addressed.
or example, monolithic application do not need to be partitioned,
ut mapped to suitable resources that can meet its requirements and
bjectives.

Modular applications, on the other hand, require partitioning to
etermine feasible Fog/Edge services that can be offloaded. Such of-
loading strategies may use manual techniques for partitioning an
pplication into multiple services (Wang et al., 2017). For mapping the
ervices that need to be mapped onto resources multiple techniques
3

are proposed. For example, probing resources (Fog/Edge nodes) with
micro-tasks to estimate the performance when more computationally
intensive services are offloaded (Meurisch et al., 2017); the data sizes
are different for the micro tasks and the computationally intensive
service. The estimations are used for a decision support mechanism.
Similarly, partitioning based on task-input data is proposed to de-
termine whether to execute the tasks locally in end devices or MEC
servers (Wang et al., 2016). This paper focuses on the partial offloading
of modular Cloud applications. The workloads being considered are
representative of both latency-sensitive mobile game and bandwidth-
hungry image processing, which have not been thoroughly studied in
other offloading research.

Based on the parameters that are optimised in the problem space,
parameters such as energy consumption (Zhang et al., 2016; Park
et al., 2015), monetary costs (Do et al., 2015), the overall Quality-
of-Service (QoS) (Brogi and Forti, 2017; Lin et al., 2020), latency and
bandwidth (Wang et al., 2017; Varghese et al., 2019; Deb et al., 2021)
are used. This paper studies the impact of offloading on both the
QoS of applications and the cost of Fog-based distribution. The aim of
the proposed context-aware offloading algorithm is to select the best
distribution plan in order to obtain the highest utility of application
services.

Another classification of Fog application distribution is based on
predictive models (Nayeri et al., 2021; Guevara et al., 2020). When
developing offloading strategies, it is essential to know how well the ap-
plications would perform in a given Fog computing system. Predictive
models are often employed to estimate parameters, such as QoS (Brogi
and Forti, 2017), cost (Do et al., 2015), and energy consumption (Park
et al., 2015) of applications given the context of Fog systems. In order
to gather training data for modelling, benchmarking is carried out on
Fog systems either offline (He et al., 2018; Junior et al., 2019) or
online (Meurisch et al., 2017; Eom et al., 2015). A disadvantage of these
methods is that they require training data to build predictive models
that deal with unseen data in inference. However, it is impractical
to benchmark a Fog application on every available Fog node in a
real-world setting due to the heterogeneity and the volume of Fog
nodes. Therefore, the system optimisation problems are tacked by using
RL (Alam et al., 2016; Xu et al., 2017; Haj-Ali et al., 2019; Lu et al.,
2020; Rui et al., 2021a), which provides an agent to learn on-the-fly
how to behave in an environment by taking actions and seeing the
results.

Model-free RL mechanisms are implemented when designing of-
floading (Dinh et al., 2018) and scheduling (Zhao et al., 2021) policies
in edge computing. The Q-learning based algorithm in this work does
not require that mobile users have prior knowledge of wireless channel
information. The chosen Q-learning algorithm in this work is effective
but also limited since the state variables are discretised from continuous
values, which does not apply to the case when a large set of state
variables is needed to account for the heterogeneity of Fog nodes. In

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

o
i
o
T
t
a
t

v
t
n
r
n

𝑈

a
o
r
T

w
s
s
s

𝐶

w
w
s

𝐶

contrast, the DQN algorithm chosen in this paper is more suitable for
the complex Fog environment.

DQN has been tested in recent works on MEC and Fog comput-
ing (Rui et al., 2021b). A DQN-based approach to dynamically orches-
trate networking, caching and computing resources for smart cities
applications is employed in He et al. (2017). Similarly, a DQN-based
scheduling algorithm is adopted in Wang et al. (2019) to solve the op-
timal offloading problem. Both these works, however, assume that Fog
applications are distributed statically and only focus on the scheduling
of jobs. Our work, on the contrary, apply DQN-based solutions to a
different problem of distributing Fog application across the multi-layer
Fog computing environment.

Based on the approaches used for distribution, they may either be
classified as static or dynamic (Islam et al., 2021). Static distribution
refers to when the Cloud–Fog/MEC partition of an application remains
the same (i.e. the same services or modules of an application are
offloaded) and does not adapt to the varying context of the Fog systems
over time. Energy-efficient (Zhang et al., 2016) and heuristic (Bahreini
and Grosu, 2017) techniques are considered for static deployments.

In addition to the above static approaches, FogTorch (Brogi and
Forti, 2017) is designed as an offloading framework that uses a greedy
heuristic approach for deriving offloading plans. This framework helps
to deploy multi-component IoT applications in multi-layer Fog com-
puting systems by searching through all possible deployment plans.
However, this work is more useful at the design time when the ap-
plications are tested with all deployment plans, and it only considers
network conditions as the system state. On the contrary, the context-
aware distribution of Fog applications proposed in this paper works at
the run time when a real-time configuration of the deployment plan
is needed and considers the state of Fog computing nodes. Moreover,
the proposed offloading algorithm in this paper is evaluated on a test-
bed comprising an embedded system representative of the Fog node,
whereas many of the existing offloading solutions for Fog computing
are evaluated using simulations.

3. Problem model

This section presents modularised applications that can be dis-
tributed in a Fog system. Subsequently, the mathematical model for
the context-aware distribution of the modular components of the ap-
plication in a Fog system is considered. The suitability of RL for the
context-aware distribution problem is then discussed.

3.1. Problem model

Table 1 shows the mathematical notation employed in this research
for a Device–Fog–Cloud system. Application server 𝑎 is modular and
comprises 𝑁 different modules. 𝑎 is hosted on a Cloud VM and the users
f 𝑎 install the client-side application on their devices. When a Fog node
s available to provide computing services, Distribution Manager (DM)
f 𝑎 would need to decide whether a redistribution of 𝑎 is beneficial.
he redistribution decision is to find the optimal 𝑘 ∈ {0…𝑁} such that
he first 𝑘 modules of the application are deployed on a Fog node (we
ssume a sequential workflow with device input to the first module of
he application).

Fog applications may have a short life cycle on a Fog node due to
arying computing capabilities that will be available on the node (Tor-
onesi et al., 2019). When the resource availability on the Fog and
etwork conditions change, the initial deployment may be less efficient,
esulting in performance degradation. Therefore, the application will
eed to be redeployed with a new distribution configuration.

In this context, the distribution strategy 𝑆 of 𝑎 will need to combine
a series of deployment plans. The problem addressed in this paper is to
determine and manage 𝑚 successive distributions of a modular Fog applica-
tion in the face of variable resource availability and network conditions of
a Fog system.
4

Table 1
Notation of parameters to model a Fog computing system.

Parameter Description

𝑎 A server of a modular application

𝑘 The number of modules to be deployed on a Fog node in
one deployment

𝑆 A distribution strategy containing 𝑚 deployment plans

𝑈 Utility of a Fog application

𝑚 Number of deployments in a distribution problem of a Fog
application

𝑇 Completion time of one deployment

𝑅 Number of user requests being processed in one deployment

𝐶 Overall cost of one deployment

𝐶𝐶 Cost of using Cloud computing services

𝑃𝐶 Price of a reserved Cloud VM

𝜆 Ratio of the unit price of Fog resource
(CPU/memory/storage) to Cloud resources

𝑃𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 Price of a unit of resource (CPU/memory/storage) in a
customised Cloud VM

𝑅𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 Average used units of resource (CPU/memory/storage) in a
Fog node in one deployment

The objective is to maximise the utility of 𝑆 for 𝑎. Utility functions
are frequently employed in Fog computing research, for example, to
measure revenue of Fog services (He et al., 2018; Zhang et al., 2017b)
and performance of Fog networks (Zhang et al., 2017a). Eq. (1) defines
the utility in this paper, which accounts for the trade-off between the
QoS of 𝑎 and its running cost given 𝑆.

(𝑆, 𝑎) =
𝑚
∑

𝑖=1
(𝛼

𝑇𝑖
𝑅𝑖

+ 𝛽𝐶(𝑘𝑖)) (1)

𝑇 is the time taken to complete a job in a single deployment and 𝑅
is the number of jobs processed in one deployment. The average time
taken to service a single request (𝑇𝑅) represents the QoS of 𝑎 when
dopting a particular deployment. The utility function takes the trade-
ff between the QoS and the running cost 𝐶 into consideration. 𝛼 and 𝛽
epresent the relative importance assigned to the QoS and cost factors.
he running cost of one deployment is a function of 𝑘:

𝐶(𝑘) =

⎧

⎪

⎨

⎪

⎩

𝐶𝐶 , if 𝑘 = 0
𝐶𝐹 , if 𝑘 = 𝑁
𝐶𝐶 + 𝐶𝐹 , otherwise

(2)

here 𝐶𝐹 and 𝐶𝐶 are the costs entailed by employing Fog and Cloud
ervices, respectively. The cost of Cloud services is defined on a sub-
cription basis, as adopted by popular public Cloud service providers
uch as Amazon Web Services (AWS):

𝐶 = 𝑃𝐶 ⋅ 𝑇 (3)

here 𝑃𝐶 is the price of a reserved Cloud VM for hosting an application,
hich is in the unit of dollar per hour. The cost of Fog computing

ervices is defined on a pay-for-resource-used basis:

𝐹 = 𝜆𝑃𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 ⋅ 𝑅𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 ⋅ 𝑇 (4)

where 𝑃𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 is the unit price of Cloud resources including CPU,
memory and storage. 𝜆 represents how expensive Fog resources are
compared to the Cloud resources. In this model 𝜆 is chosen from
[0.001, 0.01, 0.1, 1]. It is assumed that Fog resources are not more expen-
sive than Cloud resources. This may be an incentive for Cloud-native
application providers to make use of the Fog. The cost of Fog-based
application services is in addition to the cost of the Cloud-based appli-
cation services. This is because in this paper, an application is assumed
to have one running server on the Cloud. When an application has

multiple Cloud servers, the cost of Fog-based application services could

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

a

p
o
m
t
e
(
(
a
i

3

d
n
u
p
g
p
a

d
p
c
C
d
c
t
a

s
e
p
f
u
e
s

f
p
T
p
d
d
i

n
h
t
a
d

4

o
(
w
e
t
T

be less than that of the Cloud-based application services as the number
of Cloud servers may decrease due to offloading. 𝑅𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 is the
verage amount of Fog resources used in a single deployment.

The motivation for the above Fog pricing is as follows. Fog ap-
lications may have multiple deployments to respond to the system
r network changes in the environment, and in each deployment, the
odules deployed on a Fog node may vary. Therefore, it is not efficient

o reserve the same amount of Fog resources for an application. For
xample, if resources are reserved for the maximum number of modules
𝑘 = 𝑁), then for deployments with fewer modules moving to the Fog
𝑘 < 𝑁) some of the already paid for Fog resources will not be utilised,
nd vice-versa. Hence, a fine-grained pricing model for Fog resources
s required to support each deployment of modular Fog applications.

.2. Machine learning for distributing Fog applications

A naive mechanism for distributing a Fog application may be always
eploying the same number of services. Such a static strategy does
ot adapt to the varying Fog contexts and may result in applications
nder-performing. A dynamic distribution strategy would instead de-
loy a varying and appropriate number of services in a Fog node
iven the context. Such a dynamic strategy requires a decision-making
rocess that adapts to the context — variable Fog nodes, Fog resource
vailability and network conditions.

To achieve this, the utility, a measure of system performance,
efined in Eq. (1) for every possible deployment plan is used in this
aper to compare the effectiveness of different deployment plans. By
omparing the utility values of an application being deployed on the
loud or the Fog computing platform, it is possible to identify the best
eployment plan of the application. Furthermore, if the utility value
an be accurately estimated, then it is possible to proactively select
he best deployment plan in advance. This results in avoiding poor
pplication performance due to selecting an ad hoc deployment plan.

Supervised learning techniques have been frequently used in Fog re-
earch to make decisions by estimating system performance (Osanaiye
t al., 2017) and cost (Su et al., 2018). These techniques require a
redictive model to be trained on benchmarking data that is obtained
rom heterogeneous Fog nodes and all potential applications that may
se Fog nodes. This is impractical when there is a large volume of het-
rogeneous Fog resources and a variety of applications with different
ystem requirements as seen in real-world computing environments.

Given that there are currently no large-scale Fog computing plat-
orms in the real world, the data that can be collected for training a
redictive model will mainly come from test-beds or even simulations.
his limits the use of models trained with unrealistic data in real-word
latforms. RL is an alternative to the above and is suitable to generate
ynamic distribution strategies. It learns the quality of an offloading
ecision at run-time, thereby making adaptive decisions in the Fog
nfrastructure of varying scale and with different constraints.

Therefore, reinforcement learning is considered a suitable alter-
ative to supervised learning. operate in an environment comprising
eterogeneous Fog nodes and a variety of different Fog applications. In
he following section, the distribution problem of Fog applications as
reinforcement-learning task is presented and then the context-aware
istribution mechanism using Deep Q-Network (DQN) is proposed.

. Context-aware distribution using reinforcement learning

RL is defined as a process to learn the best actions based on rewards
r punishments. A RL problem comprises the following components:
i) agent — the RL algorithm; (ii) environment – a physical world in
hich the agent operates; (iii) state — the current situation of the
nvironment; (iv) action — the operation the agent takes; (v) reward —
he feedback from the environment based on the action the agent takes.
5

he goal of the agent is to collect as much reward as possible through
Table 2
Factors used in the state vector in the reinforcement-learning task.

Parameter Description

𝐶𝑃𝑈𝑢 Current system-wide CPU utilisation of a Fog node

𝐶𝑃𝑈𝑛 Number of logical CPUs in a Fog node

𝐶𝑃𝑈𝑓 Current CPU frequency of a Fog node

𝑀𝐸𝑀𝑝 Total physical memory in a Fog node

𝑀𝐸𝑀𝑝𝑢 Current physical memory usage of a Fog node

𝑀𝐸𝑀𝑠 Total swap memory of a Fog node

𝑀𝐸𝑀𝑠𝑢 Current swap memory usage of a Fog node

𝑆𝑇𝑅𝑑 Total disk space in a Fog node

𝑆𝑇𝑅𝑑𝑢 Current disk usage of a Fog node

𝐼𝑂𝑟 System-wide number of reads from the disk in a Fog node

𝐼𝑂𝑤 System-wide number of writes to the disk in a Fog node

𝐼𝑂𝑟𝑏 System-wide number of bytes read from the disk in a Fog
node

𝐼𝑂𝑤𝑏 System-wide number of bytes written to the disk in a Fog
node

𝐼𝑂𝑏𝑠 System-wide number of bytes sent from a Fog node

𝐼𝑂𝑏𝑟 System-wide number of bytes received by a Fog node

𝐼𝑂𝑝𝑠 System-wide number of packets sent from a Fog node

𝐼𝑂𝑝𝑟 System-wide number of packets received by a Fog node

𝐷𝐹𝐶 Network delay between a Fog node and a Cloud VM

𝐷𝐸𝐶 Network delay between an end device and a Cloud VM

interacting with the environment by trial and error using feedback on
its actions.

In this paper, we transform the above concepts into a Fog context:
(i) the agent in our problem is a DM located in a Cloud VM and respon-
sible for distributing a modular Fog application; (ii) the environment is
a Fog node for deployment (iii) the state is the current representation
of the Fog environment; (iv) the action is to select 𝑘 services of the Fog
application to deploy into the Fog node; (v) the reward is the utility
defined in Eq. (1). The aim of the DM is to select the 𝑘 that results
in the highest utility. This is in line with the theoretical design of a
DQN agent, which is to learn through trial and errors to achieve the
highest reward. RL is considered an appropriate approach for solving
the problem of distribution Fog applications, because the reward for
optimal allocation of resources on each deployment could be delayed,
as the goal is to find an optimal deployment solution for application
providers in the long term.

In the problem defined above, the state of a Fog node at a certain
time consists of 19 factors (Table 2) related to the processor, the
memory, the storage, the disk I/O, and the network I/O in a Fog
node, and the network conditions. These factors are selected to be
representatives of the specification and computing capability of a Fog
node, the network condition and the relative distance between the Fog
node and the Cloud VM. Context-awareness within the computing envi-
ronment is achieved by considering these factors. Although in this work
the Fog node is assumed to be owned by the Cloud service provider,
these metrics could be obtained in a multi-party Fog infrastructure
with a standard application programming interface (we assume given
that multi-Cloud interfaces are available from Apache jclouds,1 similar
Cloud–Fog interfaces will be available). The set of actions is the possible
values of 𝑘, which are 𝑁 + 1 discrete values.

DQN-based Distribution Mechanism: DQN is an algorithm in RL
that uses deep neural networks to represent the mapping between
states and actions (Mnih et al., 2015). It learns an optimal function
to maximise the total reward over several successive steps. This is
suitable for the long-term distribution problem of Fog applications. Due

1 https://jclouds.apache.org/

https://jclouds.apache.org/

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Fig. 3. A deep Q-network for a Fog computing system.
to the changing availability of Fog resources, the state of a Fog-based
application is also expected to change over time. For example, moving
the service to a different Fog node or changing the service that executes
on the Fog. Therefore, the performance of the application may change
over different redeployment rounds, which is different from the Cloud
where the deployment of an application may not happen frequently
over a short time. The DQN-based distribution mechanism takes the
changing contexts into account when learning.

Fig. 3 describes the DQN-based context-aware distribution mech-
anism in a Fog environment. It involves a DM, a set of states, a set
of actions per state (𝑘 values). The state 𝑠 of a Fog node is requested
before each deployment is made by the DM in a Cloud VM. When a Fog
application is to be distributed, the current state is fed into the DQN.

The state of the Fog environment needs to be known for deploying
𝑘 modules to the Fog node and 𝑁 − 𝑘 modules on the Cloud VM.
Selecting a particular 𝑘 value for the distribution plan relative to a
specific state provides the DM with a reward (the utility of a single
deployment). The goal of the DM is to maximise the accumulated
utility over 𝑚 deployments. It does this by adding the maximum utility
attainable from future states to the utility for achieving its current state,
effectively influencing the current selection of 𝑘 value by the potential
future utility. This potential utility is a weighted sum of the expected
values of the utility of all future steps starting from the current state.

The DQN approximates a Q function between 𝑠 and 𝑘 and updates
the model during a series of deployments. Initially, the DM requests
an observed state from a Fog node and randomly deploys the first 𝑘
modules on the node. After this deployment has been completed (all
user requests have been processed), the job completion time 𝑇 and used
Fog resources 𝑅𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟 are reported to calculate the utility of this
deployment. Subsequently, the DM uses the utility as feedback to the
neural network. In the following deployments, the DM starts to learn a
predictive model to find the optimal 𝑘 from the 𝑁+1 distribution plans
such that the overall utility of 𝑚 successive deployments is maximised.

Algorithm 1 describes the DQN-based distribution mechanism of a
Fog application. The system continuously trains a DQN, the parameters
of which are listed in Table 3. The DQN takes an input state 𝑠 and
outputs 𝑄 values over all possible distribution plans (𝑘 values). Episodic
training is considered for the scenario of multiple deployments. An
episode can be defined by different restrictions, for example a budget
constraint or a maximum number of successive deployments. In this
work one episode consists 𝑚 successive deployments. The DQN first
6

Algorithm 1: DQN-based distribution mechanism
1 Initialise replay memory 𝐷 with capacity 𝑑
2 Initialise k-value function 𝑄 with random weights 𝜃
3 Initialise target k-value function �̂� with weights �̂�
4 foreach episode do
5 Request the Fog node for the initial state 𝑠1
6 for 𝑗 ∈ {1,… , 𝑚} do
7 With probability 𝜖 select a random value 𝑘, otherwise

select 𝑘𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑄(𝑠𝑗 , 𝑘; 𝜃)
8 Deploy the first 𝑘 modules of application 𝑎 in the Fog

node
9 Deploy the rest modules of 𝑎 in the Cloud VM
10 Observe 𝑇 ,𝑅𝑐𝑝𝑢, 𝑅𝑚𝑒𝑚, 𝑅𝑠𝑡𝑟, 𝑠𝑗+1 and calculate utility 𝑈𝑗
11 Set 𝑠𝑗+1 = 𝑠𝑗
12 Store (𝑠𝑗 , 𝑘𝑗 , 𝑈𝑗 , 𝑠𝑗+1) in replay memory 𝐷
13 if 𝑙𝑒𝑛(𝐷) > 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 then
14 Sample random minibatch of 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 from 𝐷
15 foreach (𝑠𝑞 , 𝑘𝑞 , 𝑈𝑞 , 𝑠𝑞+1) do
16 if episode terminates at step 𝑞 + 1 then
17 𝑦𝑞 = 𝑈𝑞
18 else
19 𝑦𝑞 = 𝑈𝑞 + 𝛾𝑚𝑎𝑥𝑘′ �̂�(𝑠𝑞+1, 𝑎′; �̂�)
20 end
21 Perform a gradient descent step on

(𝑦𝑞 −𝑄(𝑠𝑞 , 𝑘𝑞 ; 𝜃))2 with respect to 𝜃
22 𝑄 = �̂�
23 end
24 if 𝜖 > 𝜖𝑚𝑖𝑛 then
25 𝜖 = 𝜐𝜖
26 end
27 end
28 end
29 end

initialises a replay memory specified capacity (Line 1). This is the expe-

rience replay mechanism in a DQN that reuses previous experience to

improve model performance. Then the neural networks are initialised

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

a
i
o

g
d
r
f
c
u
f
o

3
i
t
(
s
c
i

s
m
p
a
f
a
C
i
e
a
p
i
a

5

G
f
s
F
w
i
d

r
b
D
s
t

F
h

Table 3
Parameter of the Deep Q Network.

Parameter Description

𝜖 Exploration rate of the DNN in the Cloud agent

𝜖𝑚𝑖𝑛 Minimum exploration rate of the DNN in the Cloud agent

𝛾 Discount rate to calculate the future discounted reward in
the DNN in the Cloud agent

𝜐 Decay rate to decrease the number of explorations as the
DNN gets good at predictions

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 Number of randomly sample experiences to replay in the
DQN

𝑑 Maximum number of experiences to store in the replay
memory 𝐷 in the DQN

with random weights (Lines 2–3). In each episode, the Fog node is
requested for the initial state (Line 5), and then 𝑚 deployment requests
are processed (Line 6). The episode terminates when the 𝑚th deploy-
ment is completed. In each deployment, 𝑘 is selected either randomly
with an exploration rate 𝜖 or by the current 𝑄 function (Line 7). Conse-
quently, the DM deploys the associated modules on the Fog node and
the Cloud VM, respectively (Lines 8–9). After the jobs in this deploy-
ment are completed, the DM calculates the utility of this deployment.
Replay memory is implemented so that past experiences (including 𝑠,
𝑘, 𝑈) is remembered and can be reused to train the model efficiently.
The next state of the Fog node is also remembered (Lines 10–12).
To learn from past experiences, the DM takes a random sample from
its replay memory and train the current model to minimise the loss,
which is the squared difference between the target and the predicted
𝑄 values (Lines 13–22). The exploration rate 𝜖 is continuously reduced
as the model performance gets better (Lines 24–26). By defining a
minimum exploration rate 𝜖𝑚𝑖𝑛 it is ensured that the DM explores for at
least this amount of time.

Strategies: through tuning 𝛼 and 𝛽, we are able to define different
strategies of the context-aware distribution approach, including: (i)
Cost-effective – when 𝛼 is 0, the DQN is trained to minimise the overall
cost of redistribution; (ii) QoS-aware – when 𝛽 is 0, the DQN is trained
to minimise the average application’s QoS of the redistribution; (iii)
Hybrid – when 𝛼 and 𝛽 are not 0, the DQN is trained to minimise the
weighted sum of these two factors.

As comparisons to the context-aware approaches with the above
strategies, 𝑁 + 1 static distribution approaches of a Fog application
are considered. When employing a static distribution approach, the DM
keeps deploying the same 𝑘 modules of 𝑎 on a Fog node in the 𝑚-episode
distribution.

5. Experimental evaluation

In this section, the context-aware distribution approaches presented
in Section 4 are evaluated. The Fog use-cases and the hardware plat-
form employed in this research are presented.

5.1. Fog use-cases

Two applications are employed for evaluating the context-aware
distribution mechanism. The first is a real-time face detection applica-
tion, and the second is a location-based mobile game. Both use-cases are
server-based and a natural fit for Fog computing since they are latency
critical. The chosen use-cases also represent different workloads that
can benefit from Fog computing: the mobile game represents an online
application whose Fog server responds to incoming user requests; the
face detection workload is representative of a data-intensive streaming
application.
7

5.1.1. Real-time face detection
The face detection application is Cloud server-based. An end device

with an embedded video camera captures a continuous video stream
and transmits it to the Cloud server. The goal of the application is to
detect faces from each individual video frame by using Pillow.2 and
OpenCV3 Typically, the application streams the video to the Cloud, and
ll processing is performed on the Cloud server. In the experiments, the
mages captured in real-time are recorded once and repeatedly used in
rder to ensure that our comparisons are even.

By employing Fog computing (data processing near where it is
enerated), the amount of data transferred to the Cloud can be re-
uced, thereby minimising communication latencies, while obtaining
easonable overall system performance. The application is a good fit
or Fog computing since firstly, it is latency-critical and bandwidth
onsuming – response time is heavily affected by the distance between
ser devices and the Cloud server. Secondly, a subset of the services
rom the Cloud can be brought closer to devices to reduce the amount
f data transferred to the Cloud.

The server application is modular and comprises three services (𝑁 =
) for detecting faces from a frame of the video: (i) Grey-scale converter
s a data pre-processing service. As a result of this component, only one-
hird of the size of data will be processed in the remaining procedures.
ii) Motion detector is a data filtering service to reduce computations
pent on similar frames streamed to the server. (iii) Face detector is a
omputationally expensive service that identifies frontal human faces
n a video frame using machine learning.

This application can be distributed in the following four ways: as
hown in Fig. 4: (i) Cloud-only services(𝑘 = 0) – all the services
entioned above are deployed in a Cloud VM; (ii) Fog-based pre-
rocessing (𝑘 = 1) – the grey-scale converter is deployed in a Fog node
nd the other services deployed in a Cloud VM; (iii) Fog-based data
iltering (𝑘 = 2) – the grey-scale converter and the motion detector
re deployed in a Fog node and the face detector is deployed in a
loud VM; (iv) Fog-only services (𝑘 = 3) – all the services are deployed

n a Fog node. If the same distribution plan from the above four is
mployed for a series of deployments, then the approach is considered
s static. The context-aware distribution mechanism proposed in this
aper dynamically (re)selects one of the above four distribution plans
n order to maximise performance by considering the varying states of
Fog node presented in Section 4.

.1.2. Location-based mobile game
The application is an open-source mobile game similar to Pokémon

o, named iPokeMon. iPokeMon comprises a client4 for the iOS plat-
orm and a server5 that is hosted on a public Cloud. The iPokeMon game
erver was redesigned to be hosted on the Cloud and a Fog node. The
og hosts a game server that handles requests from recognised users
hose data exists in the game database. The Cloud hosts the original

PokeMon server that is able to handle requests from new users whose
ata does not exist in the game database.

The iPokeMon server is tested using Apache JMeter.6 100 HTTP
equests during a connection (a user is playing the iPokeMon game)
etween the user device and the original Cloud server is recorded.
uring this time, the number and type of requests and the parameters

ent through the requests are recorded. Subsequently, JMeter replays
he user requests in the experiments.

This application could be distributed in three ways as illustrated in
ig. 5: (i) Cloud-only services (𝑘 = 0) – the original iPokeMon server is
osted in a Cloud VM; (ii) Fog-based services (𝑘 = 1) – the functionality

2 https://pillow.readthedocs.io
3 https://opencv.org
4 https://github.com/Kjuly/iPokeMon
5 https://github.com/Kjuly/iPokeMon-Server
6
 http://jmeter.apache.org/

https://pillow.readthedocs.io
https://opencv.org
https://github.com/Kjuly/iPokeMon
https://github.com/Kjuly/iPokeMon-Server
http://jmeter.apache.org/

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Fig. 4. The Cloud-only, Fog-based and Fog-only distribution options for the real-time face detection use-case.
Fig. 5. The Cloud-only, Fog-based and Fog-only distribution options for the iPokeMon use-case.
and database to service existing users are hosted in a Fog node and
the functionality and database to service new users are hosted in a
Cloud VM; (iii) Fog-only services (𝑘 = 2) – the original iPokeMon server
is hosted in a Fog node. The static and context-aware approaches for
distributing iPokeMon is defined the same as for FD above.

5.2. Experimental setup and approaches evaluated

Setup: A Device–Fog–Cloud system is set up using a laptop con-
nected to a router via Wi-Fi, an ODROID-XU4 board connected to the
same router via Ethernet, and a t2.micro VM which is running Ubuntu
14.04 LTS provided by AWS Elastic Compute Cloud from its Dublin data
centre. The Fog node is located in the Computer Science Building of
Queen’s University Belfast in Northern Ireland. The ODROID board has
2 GB of DRAM memory, and one ARM Big.LITTLE architecture Exynos
5 Octa processor running Ubuntu.

Table 4 displays the default values of parameters used in the experi-
ments. As defined in Section 3.1, the distribution problem is considered
8

Table 4
Default parameter values.

Parameter Value Parameter Value Parameter Value

𝜆 0.01 𝛾 0.95 𝑃𝑠𝑡𝑟 0.000032

𝑚 20 𝜖 1 𝑃𝑚𝑒𝑚 0.005458

𝛼 −1 𝜖𝑚𝑖𝑛 0.01 𝑃𝑐𝑝𝑢 0.04073

𝛽 −1 𝜐 0.99 ℎ𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑑𝑒 24

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 5 ℎ𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟 2 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 0.001

𝑃𝐶 0.0132

as a series of 𝑚 successive deployments and the objective is to maximise
the overall utility defined in Eq. (1). The values of the parameters 𝛼 and
𝛽 in the utility function are by default −1, such that the utility value
increases when the application latency and the service cost decreases.
In other words, if an application takes a long time to respond a user
request and/or the overall cost of deploying the application on the

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

C
d
f
3
d
v
I
I
l
t
t
l
r

v

D

6

c
s
b
a
f
i

6

s

Fig. 6. Learning curve of the hybrid context-aware approach showing the training improves the episode reward.
d

i
a
e
n
I
t
a
u

loud/Fog, it will have low utility value and vice versa. A total of 20
eployments are considered in each experiment for the DM to learn
or 1,000 episodes, which results in the experiment being run for over
3 h. The prices of Cloud computing resources (𝑃𝐶 , 𝑃𝑐𝑝𝑢∕𝑚𝑒𝑚∕𝑠𝑡𝑟) are
efined as US dollars per hour for a single unit of the resources (a VM,
CPU core, 1-GB memory, 1-GB storage). This is how current Cloud
nfrastructure-as-a-Service such as Google Compute Engine7 is priced.
n the context-aware distribution mechanism, a DQN with two hidden
ayers and 24 nodes is learnt during the 20 deployments (Algorithm 1)
o model the relationship between the system state of a Fog node and
he 𝑘 value. The DQN is implemented with the Keras8 deep learning
ibrary, with the learning rate of 0.001 and 5 memorised experience to
eplay.

To create a realistic Fog computing node, which is likely to have
ariable resource availability over time, the Linux package stress,9 is

chosen to stress test the Fog node. The CPU and memory of the Fog
node are divided into eight units, each unit comprising 1 CPU core and
256 megabytes of memory. For the experiments in Sections 6.2 and 6.3
the Fog node was stressed continuously — the cores execute a workload
that consumes a random value of [0, 7] and the memory is flooded. The
random number is changed every 10 s. This ensures that the system
state changes on the Fog node. The same sequence of the stress tests is
applied to all distribution approaches to ensure that system states are
similar in all experiments.

Approaches Evaluated: Since the application relies on three ser-
vices, there are consequently four static approaches (the Cloud-only
services, Fog-based pre-processing, Fog-based data filtering, and the
Fog-only services) with 𝑘 ∈ {0…3}. A static approach (S-k) means that
for the 20 successive deployments in each distribution, no matter what
the state of the Fog node is, the Distribution Manager always deploys
the first 𝑘 modules on the Fog node and the remaining 𝑁−𝑘 modules on
the Cloud VM. On the contrary, the context-aware approaches (Context-
aware) employ Algorithm 1 and dynamically assign a 𝑘 value using

QN in each deployment.

. Results

The experiments provide insight into the benefits of using the
ontext-aware distribution mechanism of elastic Fog applications. The
ystem overhead of the online decision-making process is discussed
efore the three context-aware approaches and four static distribution
pproaches are compared by measuring the application performance. A
urther discussion on the impacts of varying parameters in the system
s presented.

.1. Training and overhead

Fig. 6 displays the episode reward (i.e. the accumulated utility of 20
uccessive deployments) when the DQNs in the Distribution Manager of

7 https://cloud.google.com/compute/pricing
8 https://keras.io/
9

9

http://manpages.ubuntu.com/manpages/trusty/man1/stress.1.html
Table 5
Statistics of the time (in milliseconds) taken by each decision making of the hybrid
DQNs trained for FD and iPokeMon.

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

85 124 136 139.5 149 248

the FD application 6(a) and iPokeMon 6(b) for up to 1,000 episodes.
For both use-cases, the episode reward is observed to gradually increase
with the number of episodes, which means the DQN is getting better
performance with more experiences. The episode reward reaches and
stays in its maximum point from around 600 and 400 episodes, at which
point a total of 12,000 and 8,000 deployments have been carried out
by the Distribution Manager for FD and iPokeMon respectively. This
means the DQNs have learnt an optimal distribution plan for the 20
successive deployments and could not increase the utility anymore.
Therefore, for the analysis of the context-aware distribution approaches
(including QoS-aware, cost-effective and hybrid) in the following sec-
tions, we present the DQNs trained with 600 and 400 episodes for FD
and iPokeMon respectively, except specified otherwise.

As a multi-tenant computing environment, the resource availability
of a Fog node is expected to change rapidly. For example, the system
state acquired by the Distribution Manager may become invalid if the
context-aware distribution mechanism takes a long time to choose a
distribution plan (𝑘 value). Therefore, the shorter the time taken by
each execution of the decision-making process (Lines 7–26 in Algorithm
1), the more real-time response is achieved. Each time the Distribution
Manager generates a redistribution plan, it takes 85–250 ms (Table 5).
This overhead may be ignored when compared to the time taken for
processing a single video frame using the Cloud-only method, which is
nearly 2 s from empirical results. In the iPokeMon use-case, this over-
head translates into the time taken to process 1–2 iPokeMon requests
using the Cloud-only distribution method. Since each deployment of the
iPokeMon server is expected to process a large number of user requests,
the overhead is negligible.

6.2. Performance

It is observed from empirical results that the DQNs converges af-
ter 400 episodes of training for the chosen use-cases. Therefore, the
results presented in this section are obtained during the 400th–500th
episode of the DQNs. The 100 episodes involves 2,000 (i.e. 100 ∗ 𝑚)
eployments of the applications in total.

Figs. 7 and 8 illustrate the distribution of the utility of each exper-
ment (including 20 deployments) when the static and context-aware
pproaches are employed for both use-cases. The utility values in the
xperiments are negative because as defined in Eq. (1), the value is
egatively affected by both the application latency and the service cost.
n other words, if in a particular deployment an application takes a long
ime to respond a user request and/or the overall cost of deploying the
pplication on the Cloud/Fog is large, this deployment will have low
tility value and vice versa.

https://cloud.google.com/compute/pricing
https://keras.io/
http://manpages.ubuntu.com/manpages/trusty/man1/stress.1.html

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Fig. 7. Distribution of utilities over 100 experiments when applying different strategies to the FD application.
Fig. 8. Distribution of utilities over 100 experiments when applying different strategies to the iPokeMon application.
Fig. 9. Average time taken to process a single video frame in FD using static
distribution approaches.

Three combinations of (𝛼, 𝛽) are considered: (i) (0,−1), which rep-
resent a cost-aware strategy (Fig. 7(a) and 8(a)); (ii) (−1, 0), which
represents a QoS-aware strategy (Fig. 7(b) and 8(b)); and (iii) the
default setting, i.e. (−1,−1), which represent a hybrid strategy (Fig. 7(c)
and 8(c)).

It is observed for both use-cases that, for all strategies, context-
aware approach outperforms the static approaches. For example, when
the DQN is trained to minimise cost for FD (Fig. 7(a)), it achieves the
same maximum utility as S-1 and S-2. In the experiments, S-n refers to a
static approach that always deploy the first 𝑛 modules of an application
onto the Fog. An improvement over S-1, S-2 and S-3 are indicated by
the fact that its third quartile of the utility (−0.00058) is larger than the
median of the utility obtained by the three static approaches (−0.0006,
−0.0009 and −0.0008 respectively). The minimum utility achieves by
the DQN is higher than the maximum utility achieves by S-3, which
means that the cost-optimised DQN never deploy the entire application
on the Fog node. This is because, with more modules deployed on the
Fog node, there is more cost of using the Fog resources, even though
the overall job completion time is reduced.

Similarly, the context-aware approach for iPokeMon (Fig. 8(a))
tends to benefit from the lessons learnt through S-1 and S-2. It achieves
the maximum (−0.00009) and median (−0.0004) utilities that are close
to S-2, while successfully improves the third quartile (−0.0006) when
compared to S-2 (−0.00078). This is due to the Distribution Manager’s
selection of S-1 in a number of deployments.

The benefit of applying the context-aware approach is more obvious
for FD compared to iPokeMon when the DQN is trained to maximise the
QoS (i.e. to minimise the job completion time, Fig. 7(b)). The majority
of the utilities achieved by the context-aware approach is larger than
10
that achieved by all four static approaches. To better understand the
difference of the QoS when applying different static approaches, Fig. 9
provides a breakdown of the average time to process a single video
frame when the Fog node system is not stress-tested (i.e. almost all
CPU cores and memory are available). The overall time is divided into
the data transmission time, the time taken by the three modules of
the application — grey-scale conversion, motion detection, and face
detection. It is inferred that the main difference of the QoS comes from
the data transmission time. For example, by applying 𝑆 − 1, 𝑆 − 2 and
𝑆 − 3, the transmission time is reduced from 2.28 s (s) to 0.77s, 0.52s
and 0.11s respectively. The first two modules of the application, namely
grey-scale conversion and motion detection take a short time between
0.003 and 0.004, no matter where they are hosted. The face detection
module causes the other main difference among these approaches as
there is a 0.2s delay observed when it is hosted on the Fog node instead
of the Cloud VM. Such differences of QoS among the static approaches
are expected to be magnified in the experiment for Fig. 7(b) when the
Fog resources are deliberately restricted. Therefore, by in the context-
aware approach, the DQN tends to only choose the optimal deployment
from S-1, S-2 and S-3 to avoid the long transmission time caused by S-0.

When applying the QoS-aware strategy to iPokeMon 8(b), the
context-aware approach improves the overall application performance
over the static approaches by achieving the highest median (−0.048)
and third quartile (−0.053) values of utility. However, in the best
and worst cases, the context-aware approach performs slightly worse
than S-3 by 0.3% and S-1 by 2%. This difference is indicative that the
context-aware approach has more benefits for FD 7(b) since there is a
larger QoS gain over iPokeMon.

When we consider both the cost and the QoS (Fig. 7(c) and 8(c)), the
distribution of all approaches for both use-cases is similar to the QoS-
aware strategy. The reason is that with the default parameter setting,
the difference of QoS among the approaches happens to have a larger
influence than the difference in costs. Therefore, in the next section,
we further investigate the impact of different parameter settings on the
utility.

6.3. Impact of utility parameters

From empirical study, we found that when assigning different
weights to 𝛼 and 𝛽 (i.e. the relative importance of QoS and cost),
the performance of all approaches varies. Another factor that makes
a difference is 𝜆, which indicates how expensive the Fog resources are
priced compared to the Cloud resources. Hence, several different values

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

f
a

d
i
F
i
t
w
c
m
c
u
o
r
{
t
a
o
b

𝛼
v
a
r
a
o
a

Fig. 10. Average cost of a single deployment using static distribution approaches with varying 𝜆.
Fig. 11. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 0 with varying 𝜆 for the FD application.
Fig. 12. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 0 with varying 𝜆 for iPokeMon.
b
o
b
𝜆
o
t
c
C

p
a
𝜆
t
s
t
S
s
a
a
C

𝜆
c
w
t
0
n

or (𝛼, 𝛽) and 𝜆 are applied to explore their impacts on the distribution
pproaches.

Fig. 10 presents the relationship between the average cost of a single
eployment and 𝜆 for FD and iPokeMon when the Fog node system
s not stress tested. It is noted that in the FD use case although the
og computing services effectively improve the QoS (Fig. 9), its cost
ncreases drastically when 𝜆 is larger than 0.1 10(a). For example,
he cost of S-3 is as 200 and 2,000 times large as the cost of S-0,
hen 𝜆 is 1 and 10 respectively. In such cases, when 𝛽 ≠ 0 the

ontext-aware approach would always tend to choose S-1 in order to
inimise the cost factor in Eq. (1). This would not distinguish the

ontext-aware approach from the static approaches. For the iPokeMon
se case 10(b), the increase in cost is moderate. For instance, the cost
f S-2 is close to 0.1, 1.3, and 13 times of S-0 when 𝜆 is 0.01, 0.1 and 1
espectively. Therefore, in the following experiments we consider 𝜆 ∈
0.0001, 0.001, 0.1} for FD and 𝜆 ∈ {0.001, 0.1, 1} for iPokeMon to explore
he impact of 𝜆 over the application performances. We also present the
nalysis of varying importance assigned to the QoS and cost factors
ver the application performances, by applying 𝜆∕𝛽 ∈ {0.1, 1, 10} for
oth use-cases.

Fig. 11 displays the performance of different approaches when
∕𝛽 = 0 (i.e. the cost-efficient strategy) with the higher and lower
alues of 𝜆 in addition to the medium 𝜆 (Fig. 7(a)). The Fog resources
re randomly restricted as in Section 6.2. When 𝜆 = 0.1, i.e. Fog
esources are priced as one-tenth of Cloud resources, the context-aware
pproach acts the same as S-0 since S-0 has a clear advantage over the
ther static approaches. When 𝜆 = 0.001, i.e. Fog resources are priced
s one-thousandth of Cloud resources, the context-aware approach can
11

a

enefit from the Fog services. Note that under such an assumption the
verall costs of Fog-based distribution approaches (S-1, S-2 and S-3)
ecome less than the Cloud-only distribution approach (S-0). When
= 0.01 (Fig. 7(a)), i.e. Fog resources are priced as one hundredth

f Cloud resources, the context-aware approach benefits from some of
he Fog-based distribution approaches (S-1 and S-2). In this case, the
osts of Fog-based distribution approaches are slightly more than the
loud-only distribution approach.

Fig. 12 displays the performance of iPokeMon when different ap-
roaches are applied with the cost-efficient strategy and with the higher
nd medium values of 𝜆 in addition to the lower 𝜆 (Fig. 8(a)). When
= 1 (i.e. Fog resources are priced the same as Cloud resources),

he context-aware approach acts the same as S-0 since S-1 has a
ignificant advantage over the other static approaches. When 𝜆 = 0.1,
he distribution of utility in the context-aware approach is close to
-0, with a variance in the median value caused by the occasional
election of S-2 and S-3. When 𝜆 = 0.01 (Fig. 8(a)), the context-aware
pproach mainly benefits from the Fog-based, and Fog-only distribution
pproaches as the costs of these deployment plans are less than the
loud-only distribution approach.

Fig. 13 presents the performance of FD when applying different
values with the hybrid strategy when 𝛼∕𝛽 = 0.1, i.e. when the

ost is considered as 10 times important as the QoS. It is found that
hen 𝜆 = 0.1, the gaps between the five approaches are similar to

he gaps observed in the cost-aware strategy (Fig. 11(a)). When 𝜆 is
.01 (Fig. 13(b)) or 0.001 (Fig. 13(c)), the context-aware approach is
o longer dominated by the most cost-efficient deployment (i.e. S-0)
nd is able to benefit from the Fog-based and Fog-only deployment

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Fig. 13. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 0.1 with varying 𝜆 for the FD application.
Fig. 14. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 0.1 with varying 𝜆 for iPokeMon.
Fig. 15. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 1 with varying 𝜆 for the FD application.
Fig. 16. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 1 with varying 𝜆 for iPokeMon.
Fig. 17. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 10 with varying 𝜆 for the FD application.
plans. This is because by assigning importance to the QoS factor, the
context-aware approach starts to acknowledge the large reductions
of application latency introduced by S-2 and S-3. The context-aware
approach, regardless of 𝜆 values, outperforms the static approaches
with the higher utility in the interquartile range.

Similarly, the iPokeMon use-case is tested with high, medium, and
low 𝜆 values (1, 0.1, 0.01) with the hybrid strategy when 𝛼∕𝛽 = 0.1
(Fig. 14). It is found that when 𝜆 = 1, the context-aware approach
12
is dominated by S-0 (i.e. the Cloud-only deployment), as was seen in
the cost-aware strategy (Fig. 12(a)). When 𝜆 is 0.1 (Fig. 14(b)) or 0.01
(Fig. 14(c)), the application performance achieved by applying static
approaches is comparable. The context-aware approach can achieve the
best performance with the highest median value of the utility, though
the performance gain in this use-case is less significant compared to
the FD use-case. We interpret this finding as a result of the fact that
the QoS improvement in iPokeMon is less significant than that in FD.

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese

u
m
e
n
s
o
d
a
t
i
a
w
a

E
(
m
o
i
t

7

w
g
(
m
w
T
t

m
F
m
p
a
T
w
n

t
l
w
t
t
a
c
t
t
D
s
t
p
i

Fig. 18. Distribution of utilities over 100 experiments when 𝛼∕𝛽 = 10 with varying 𝜆 for iPokeMon.
(
a
r
o
O
c
i
a
t

C

F
e
–

D

c
i

R

A

B

B

B

B

B

C

C

C

D

D

D

Fig. 15 displays the default hybrid strategy applied to the FD
se-case, with the higher and lower values of 𝜆 in addition to the
edium value in Fig. 7(c). Since the cost and QoS factors are of

qual importance in this strategy, the context-aware approach does
ot keep selecting the most cost-efficient S-0 as seen in the previous
trategies with a high 𝜆 value. With this hybrid strategy, regardless
f 𝜆 values, the context-aware approach can benefit from Fog-based
istribution approaches. The interquartile range of the utility when
pplying the context-aware approach is either close to or higher than
he other static approaches, which means the context-aware approach
s adaptable to varying pricing methods and outperforms the static
pproaches. Similar finding is observed when distributing iPokeMon
ith the hybrid strategy with high (Fig. 16(a)), medium (Fig. 16(b)),
nd low (Fig. 8(c)) 𝜆 values.

When QoS is considered 10 times more important than cost in
q. (1), little difference is observed when tuning 𝜆 in both use-cases
Fig. 17 and 18. The impact of 𝜆 in this specific hybrid strategy is
itigated by the diminished importance of running cost. The benefits

f the context-aware approach are more significant in FD than in the
PokeMon use-case. This is because the performance gain achieved on
he Fog-based FD is larger than on the Fog-based iPokeMon.

. Conclusions

Native Cloud applications exploit microservices architecture in
hich an application is composed of multiple services that are geo-
raphically distributed. Cloud applications can leverage edge resources
referred to as Fog nodes) to improve their overall QoS in a computing
odel referred to as Fog computing. Fog nodes are resource constrained
hen compared to the Cloud and may be available intermittently.
herefore, distributing the application across the Cloud and Fog is not
rivial.

The key challenge addressed in this paper is the distribution of a
odular application, comprising multiple services across the Cloud and

og in a dynamic manner. To tackle the challenge, a context-aware
echanism was proposed that dynamically generates (re)deployment
lans for the application to maximise the performance efficiency of the
pplication by taking the overall QoS and running costs into account.
he mechanism relies on deep RL to generate a distribution strategy
ithout prior knowledge of the available resources on the Fog nodes,
etwork conditions, and the Fog application.

The above context-aware distribution approach is validated on
wo use-cases, namely a real-time face detection application and a
ocation-based mobile game. Both these are representative of real
orkloads. The experimental results obtained from different distribu-

ion approaches for the chosen use-cases highlight the following: (i)
he context-aware distribution mechanism can increase the utility on
verage by 50% for the FD application and 20% for iPokeMon, when
ompared to static approaches; (ii) when cost is the dominant factor
hat affects the utility, if Fog resources are priced less than the Cloud
he DM is motivated to select Fog-based deployments. Otherwise the
M sticks to Cloud-only deployments as it is the most economical

olution; (iii) when QoS is the dominant factor that affects utility,
he context-aware distribution mechanism outperforms the static ap-
roaches by up to 60% for the face detection use-case and 25% for
PokeMon.
13
Limitations and Future Work: The limitations of the current work are:
i) Multi-tenancy is not considered in this paper. When multiple Fog
pplications share the same Fog node, the context changes become the
esult of the actions taken by all applications’ DMs. (ii) The impact
f different Cloud pricing models is not investigated in this paper.
ther Cloud services, such as container-based services and serverless
omputing, maybe more cost-efficient than the VM-based services used
n this work. (iii) The context-aware offloading solution is evaluated on
small-scale Cloud–Fog–Device as a prototype. In the future, we aim

o extend this work to address the above.

RediT authorship contribution statement

Nan Wang: Conceptaulization, Methdology, Software, Validation,
ormal analysis, Investigation, Writing – original draft. Blesson Vargh-
se: Conceptualization, Methodology, Investigation, Resources, Writing
review & editing, Supervision, Project administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

lam, M.G.R., Tun, Y.K., Hong, C.S., 2016. Multi-agent and reinforcement learning
based code offloading in mobile fog. In: Int. Conf. on Information Networking. pp.
285–290.

águena, M., Samaras, G., Pamboris, A., Sichitiu, M.L., Pietzuch, P., Manzoni, P., 2016.
Towards enabling hyper-responsive mobile apps through network edge assistance.
In: IEEE Annual Consumer Communications and Networking Conference. IEEE, pp.
399–404.

ahreini, T., Grosu, D., 2017. Efficient placement of multi-component applications in
edge computing systems. In: ACM/IEEE Symp. on Edge Comput.. ACM, p. 5.

ittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M., 2017. Mobility-
aware application scheduling in fog computing. IEEE Cloud Comput. 4 (2),
26–35.

onomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the
IoT. In: Wksp. on Mobile Cloud Comp.. pp. 13–16.

rogi, A., Forti, S., 2017. Qos-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4 (5), 1185–1192.

hen, X., 2014. Decentralized computation offloading game for mobile cloud
computing. IEEE Trans. Parallel Distrib. Syst. 26 (4), 974–983.

hen, Z., Hu, W., Wang, J., Zhao, S., Amos, B., Wu, G., Ha, K., Elgazzar, K., Pillai, P.,
Klatzky, R., et al., 2017. An empirical study of latency in an emerging class of edge
computing applications for wearable cognitive assistance. In: ACM/IEEE Symp. on
Edge Comput.. ACM.

hen, Z., Jiang, L., Hu, W., Ha, K., Amos, B., Pillai, P., Hauptmann, A., Satya-
narayanan, M., 2015. Early implementation experience with wearable cognitive
assistance applications. In: Workshop on Wearable Systems and Applications. ACM,
pp. 33–38.

eb, P.K., Misra, S., Mukherjee, A., 2021. Latency-aware horizontal computation
offloading for parallel processing in fog-enabled IoT. IEEE Syst. J..

ias de Assunção, M., da Silva Veith, A., Buyya, R., 2018. Distributed data stream
processing and edge computing: A survey on resource elasticity and future
directions. J. Netw. Comput. Appl. 103, 1–17.

inh, T.Q., La, Q.D., Quek, T.Q.S., Shin, H., 2018. Learning for computation offloading
in mobile edge computing. IEEE Trans. Commun. 66 (12), 6353–6367.

http://refhub.elsevier.com/S1084-8045(22)00023-6/sb1
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb1
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb1
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb1
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb1
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb2
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb3
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb3
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb3
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb4
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb4
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb4
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb4
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb4
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb5
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb5
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb5
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb6
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb6
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb6
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb7
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb7
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb7
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb8
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb9
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb10
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb10
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb10
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb11
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb11
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb11
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb11
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb11
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb12
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb12
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb12

Journal of Network and Computer Applications 203 (2022) 103354N. Wang and B. Varghese
Do, C.T., Tran, N.H., Pham, C., Alam, M.G.R., Son, J.H., Hong, C.S., 2015. A proximal
algorithm for joint resource allocation and minimizing carbon footprint in geo-
distributed fog computing. In: Int. Conf. on Information Networking. IEEE, pp.
324–329.

Donassolo, B., Fajjari, I., Legrand, A., Mertikopoulos, P., 2019. Fog based framework
for IoT service provisioning. In: Proc. of the IEEE Consumer Communications and
Networking Conf..

Eom, H., Figueiredo, R., Cai, H., Zhang, Y., Huang, G., 2015. Malmos: Machine learning-
based mobile offloading scheduler with online training. In: IEEE Int. Conf. on
Mobile Cloud Comp., Services, and Eng..

Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A., 2003. Application specific data
replication for edge services. In: Int. Conf. on World Wide Web. ACM, pp. 449–460.

Guevara, J.C., da S. Torres, R., da Fonseca, N.L., 2020. On the classification of fog
computing applications: A machine learning perspective. J. Netw. Comput. Appl.
159, 102596.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R., 2017. IFogSim: A toolkit
for modeling and simulation of resource management techniques in the internet
of things, edge and fog computing environments. Softw. - Pract. Exp. 47 (9),
1275–1296.

Haj-Ali, A., Ahmed, N.K., Willke, T., Gonzalez, J., Asanovic, K., Stoica, I., 2019. A view
on deep reinforcement learning in system optimization. arXiv:arXiv:1908.01275.

He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y., 2018. Multitier fog computing
with large-scale IoT data analytics for smart cities. IEEE Internet Things J. 5 (2),
677–686.

He, Y., Yu, F.R., Zhao, N., Leung, V.C., Yin, H., 2017. Software-defined networks with
mobile edge computing and caching for smart cities: A big data deep reinforcement
learning approach. IEEE Commun. Mag. 55 (12), 31–37.

Hong, C.-H., Varghese, B., 2019. Resource management in fog/edge computing: A
survey on architectures, infrastructure, and algorithms. ACM Comput. Surv. 52 (5).

Hosseinpour, F., Plosila, J., Tenhunen, H., 2016. An approach for smart management
of big data in the fog computing context. In: IEEE Int. Conf. on Cloud Computing
Technology and Science. IEEE, pp. 468–471.

Hu, P., Dhelim, S., Ning, H., Qiu, T., 2017. Survey on fog computing. J. Netw. Comput.
Appl. 98 (C), 27–42.

Islam, M.S.U., Kumar, A., Hu, Y.-C., 2021. Context-aware scheduling in fog computing:
A survey, taxonomy, challenges and future directions. J. Netw. Comput. Appl. 180,
103008.

Junior, W., Oliveira, E., Santos, A., Dias, K., 2019. A context-sensitive offloading system
using machine-learning classification algorithms for mobile cloud environment.
Future Gener. Comput. Syst. 90, 503–520.

Lin, Y., Kemme, B., Patino-Martinez, M., Jimenez-Peris, R., 2007. Enhancing edge
computing with database replication. In: IEEE Int. Symp. on Reliable Distributed
Systems. IEEE, pp. 45–54.

Lin, H., Zeadally, S., Chen, Z., Labiod, H., Wang, L., 2020. A survey on computation
offloading modeling for edge computing. J. Netw. Comput. Appl. 169, 102781.

Lu, H., Gu, C., Luo, F., Ding, W., Liu, X., 2020. Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforcement
learning. Future Gener. Comput. Syst. 102, 847–861.

Machida, F., Andrade, E., 2021. PA-Offload: Performability-aware adaptive fog offload-
ing for drone image processing. In: 5th IEEE International Conference on Fog and
Edge Computing. pp. 66–73.

Mahmud, R., Ramamohanarao, K., Buyya, R., 2018. Latency-aware application module
management for fog computing environments. ACM Trans. Internet Technol. 19
(1), 9.

McChesney, J., Wang, N., Tanwer, A., de Lara, E., Varghese, B., 2019. DeFog: Fog
computing benchmarks. In: ACM/IEEE Symp. on Edge Comp.. pp. 47–58.

Meurisch, C., Gedeon, J., Nguyen, T.A.B., Kaup, F., Muhlhauser, M., 2017. Decision
support for computational offloading by probing unknown services. In: IEEE Int.
Conf. on Computer Comm. and Networks.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al., 2015. Human-level
control through deep reinforcement learning. Nature 518 (7540), 529.

Nayeri, Z.M., Ghafarian, T., Javadi, B., 2021. Application placement in fog computing
with AI approach: Taxonomy and a state of the art survey. J. Netw. Comput. Appl.
185, 103078.

Ndikumana, A., Tran, N.H., Ho, T.M., Han, Z., Saad, W., Niyato, D., Hong, C.S., 2019.
Joint communication, computation, caching, and control in big data multi-access
edge computing. IEEE Trans. Mob. Comput..

Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K.-K.R., Dlodlo, M., 2017. From cloud
to fog computing: A review and a conceptual live vm migration framework. IEEE
Access 5, 8284–8300.

Park, S.-W., Park, J., Bong, K., Shin, D., Lee, J., Choi, S., Yoo, H.-J., 2015. An energy-
efficient and scalable deep learning/inference processor with tetra-parallel MIMD
architecture for big data applications. IEEE Trans. Biomed. Circuits Syst. 9 (6),
838–848.

Rui, L., Zhang, M., Gao, Z., Qiu, X., Wang, Z., Xiong, A., 2021a. Service migration in
multi-access edge computing: A joint state adaptation and reinforcement learning
mechanism. J. Netw. Comput. Appl. 183–184.
14
Rui, L., Zhang, M., Gao, Z., Qiu, X., Wang, Z., Xiong, A., 2021b. Service migration in
multi-access edge computing: A joint state adaptation and reinforcement learning
mechanism. J. Netw. Comput. Appl. 183–184, 103058.

Sarkar, S., Chatterjee, S., Misra, S., 2018. Assessment of the suitability of fog computing
in the context of internet of things. IEEE Trans. Cloud Comput. 6 (1), 46–59.

Satyanarayanan, M., 2017. The emergence of edge computing. Computer 50 (1), 30–39.
Su, Z., Xu, Q., Luo, J., Pu, H., Peng, Y., Lu, R., 2018. A secure content caching scheme

for disaster backup in fog computing enabled mobile social networks. IEEE Trans.
Ind. Inf. 14 (10), 4579–4589.

Thai, L., Barker, A., Varghese, B., Akgun, O., Miguel, I., 2014. Optimal deployment of
geographically distributed workflow engines on the cloud. In: IEEE Int. Conf. on
Cloud Comp. Tech. and Science. pp. 811–816.

Thai, L., Varghese, B., Barker, A., 2018. A survey and taxonomy of resource optimisa-
tion for executing bag-of-task applications on public clouds. Future Gener. Comput.
Syst. 82, 1–11.

Tortonesi, M., Govoni, M., Morelli, A., Riberto, G., Stefanelli, C., Suri, N., 2019.
Taming the IoT data deluge: An innovative information-centric service model for
fog computing applications. Future Gener. Comput. Syst. 93, 888–902.

Varghese, B., Buyya, R., 2018. Next generation cloud computing: New trends and
research directions. Future Gener. Comput. Syst. 79, 849–861.

Varghese, B., Leitner, P., Ray, S., Chard, K., Barker, A., Elkhatib, Y., Herry, H., Hong, C.,
Singer, J., Tso, F.P., Yoneki, E., Zhani, M., 2019. Cloud futurology. Computer 52
(9), 68–77.

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S., 2016.
Challenges and opportunities in edge computing. In: IEEE Int. Conf. Smart Cloud.
pp. 20–26.

Varghese, B., Wang, N., Nikolopoulos, D., Buyya, R., 2019. Feasibility of fog computing.
In: Handbook of Integration of Cloud Computing, Cyber Physical Systems and
Internet of Things. Springer.

Wang, Y., Sheng, M., Wang, X., Wang, L., Li, J., 2016. Mobile-edge computing: Partial
computation offloading using dynamic voltage scaling. IEEE Trans. Commun. 64
(10), 4268–4282.

Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.S., 2017. ENORM: A framework
for edge node resource management. IEEE Trans. Services Comput. 1.

Wang, Y., Wang, K., Huang, H., Miyazaki, T., Guo, S., 2019. Traffic and computation co-
offloading with reinforcement learning in fog computing for industrial applications.
IEEE Trans. Ind. Inf. 15, 976–986.

Wu, Y., Ni, K., Zhang, C., Qian, L.P., Tsang, D.H., 2018. NOMA-Assisted multi-access
mobile edge computing: A joint optimization of computation offloading and time
allocation. IEEE Trans. Veh. Technol. 67 (12), 12244–12258.

Xu, J., Chen, L., Ren, S., 2017. Online learning for offloading and autoscaling in
energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3
(3), 361–373.

Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S., Zhang, Y.,
2016. Energy-efficient offloading for mobile edge computing in 5g heterogeneous
networks. IEEE Access 4, 5896–5907.

Zhang, H., Qiu, Y., Chu, X., Long, K., Leung, V.C., 2017a. Fog radio access networks:
Mobility management, interference mitigation, and resource optimization. IEEE
Wirel. Commun. 24 (6), 120–127.

Zhang, H., Zhang, Y., Gu, Y., Niyato, D., Han, Z., 2017b. A hierarchical game framework
for resource management in fog computing. IEEE Commun. Magazine 55 (8),
52–57.

Zhao, X., Huang, G., Gao, L., Li, M., Gao, Q., 2021. Low load DIDS task scheduling
based on Q-learning in edge computing environment. J. Netw. Comput. Appl. 188,
103095.

Nan Wang received the Ph.D. degree in computer science from Queen’s University
Belfast, UK. She is a product lead at Mindtrace Ltd., UK. She obtained MRes in Web
Science and Big Data Analytics from the University College London, UK, and M.Sc.
in Management and Information Technology from the University of St Andrews, UK.
She obtained her undergraduate degree from Beijing Jiaotong University, China. Her
research interests include resource management for edge/fog computing systems and
machine learning.

Blesson Varghese received the Ph.D. degree in computer science from the University
of Reading, UK on international scholarships. He is a Reader (Associate Professor) in
computer science at the University of St Andrews and an honorary faculty member at
Queen’s University Belfast. He is the Principal Investigator of the Edge Computing Hub
and was a Royal Society Short Industry Fellow to British Telecommunications plc. His
interests include developing and analysing novel parallel and distributed systems and
applications that span the cloud–edge–device continuum. More information is available
from http://www.blessonv.com

http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb13
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb14
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb14
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb14
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb14
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb14
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb15
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb15
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb15
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb15
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb15
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb16
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb16
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb16
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb17
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb17
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb17
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb17
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb17
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb18
http://arxiv.org/abs/arXiv:1908.01275
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb20
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb20
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb20
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb20
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb20
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb21
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb21
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb21
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb21
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb21
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb22
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb22
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb22
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb23
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb23
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb23
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb23
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb23
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb24
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb24
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb24
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb25
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb25
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb25
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb25
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb25
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb26
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb26
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb26
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb26
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb26
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb27
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb27
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb27
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb27
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb27
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb28
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb28
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb28
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb29
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb29
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb29
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb29
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb29
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb30
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb30
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb30
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb30
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb30
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb31
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb31
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb31
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb31
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb31
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb32
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb32
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb32
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb33
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb33
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb33
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb33
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb33
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb34
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb34
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb34
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb34
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb34
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb35
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb35
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb35
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb35
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb35
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb36
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb36
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb36
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb36
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb36
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb37
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb37
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb37
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb37
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb37
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb38
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb39
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb39
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb39
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb39
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb39
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb40
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb40
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb40
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb40
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb40
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb41
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb41
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb41
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb42
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb43
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb43
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb43
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb43
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb43
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb44
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb44
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb44
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb44
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb44
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb45
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb45
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb45
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb45
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb45
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb46
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb46
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb46
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb46
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb46
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb47
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb47
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb47
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb48
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb48
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb48
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb48
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb48
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb49
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb49
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb49
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb49
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb49
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb50
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb50
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb50
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb50
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb50
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb51
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb51
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb51
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb51
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb51
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb52
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb52
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb52
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb53
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb53
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb53
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb53
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb53
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb54
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb54
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb54
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb54
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb54
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb55
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb55
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb55
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb55
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb55
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb56
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb56
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb56
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb56
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb56
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb57
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb57
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb57
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb57
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb57
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb58
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb58
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb58
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb58
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb58
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb59
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb59
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb59
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb59
http://refhub.elsevier.com/S1084-8045(22)00023-6/sb59
http://www.blessonv.com

	Context-aware distribution of fog applications using deep reinforcement learning
	Introduction
	Background and related work
	Modular Fog applications
	Related work

	Problem model
	Problem model
	Machine learning for distributing Fog applications

	Context-aware distribution using reinforcement learning
	Experimental evaluation
	Fog use-cases
	Real-time face detection
	Location-based mobile game

	Experimental setup and approaches evaluated

	Results
	Training and overhead
	Performance
	Impact of utility parameters

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

