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Materials and Methods 

Single crystal synthesis 

Single crystals of CeRh2As2 and LaRh2As2 were grown in Bi flux. Elemental metals with 

the ratio of Ce(La):Rh:As:Bi = 1:2:2:30 were placed in an alumina crucible which was 

subsequently sealed in a quartz tube filled with argon at a partial pressure of 300 mbar. The 

ampule was heated to 1150 ºC for 4 days and slowly cooled down to 700 ºC for a week. Grown 

single crystals were extracted by selectively removing the Bi flux in diluted nitric acid. The 

composition and the crystal structure were determined by Energy-dispersive x-ray spectroscopy 

(EDXS) and both powder and single crystal x-ray diffraction analysis. Detailed crystal structure 

information is shown in Fig. S1, Table S1 and S2.   

 

Specific heat 

The specific heat measurements were carried out using the relaxation time method in a 

Quantum Design Physical Property Measurements System (PPMS) down to temperatures of 0.5 

K, and a custom compensated heat-pulse calorimeter for temperatures between 0.04 and 100 K in 

magnetic fields up to 12 T (46). The specific-heat data of LaRh2As2 were used to subtract a non-

electronic contribution. 

 

Thermopower 

The thermopower was measured within the ab-plane between 2.5 K and 290 K using a 

modified sample holder for the thermal transport option of a PPMS. The instrument applies a 

relaxation time method. A low-frequency square-wave heat pulse is generated by a resistive 

heater. The temperature difference along the sample is measured with two calibrated bare-chip 

Cernox sensors. 

 

Ac susceptibility 

The magnetic ac-susceptibility was measured using a homemade set of compensated 

pick-up coils of 2 mm length and 6000 turns each. The inner and outer diameter was 1.8 mm and 

5 mm, respectively. A superconducting modulation coil produced the excitation field of 175 μT 

at 5 Hz. The output signal of the pick-up coils was amplified using a low temperature 

transformer (LTT-m from CMR) with a winding ratio 1:100 and a low noise amplifier SR560 

from Stanford Research Systems. Our setup uses a National Instruments 24 bits PXIe-4463 

signal generator and 24 bits PXIe-4492 oscilloscope as data acquisition system with digital lock-

in amplification. The ac-susceptibility measurements were performed for H || ab and H || c using 

a small single crystal of a volume of ∼500 μm3 down to 45 mK in an external magnetic field of 

up to 15 T in a MX400 Oxford dilution refrigerator. The data from temperature sweeps were 

normalized to their respective value in the normal state at 0.5 K for all the magnetic fields 

applied. For the field sweeps, the absolute value of the signal at different temperatures is given, 

normalized to the field-dependent value in the normal state at 0.35 K. Low field data were 

removed because of noise due to flux jumps in a superconducting magnet. The complete data is 

shown in Fig. S5 and S7. 

 

Resistivity 

For resistivity measurements a standard four-point method was employed with current 

and voltage contacts along a line perpendicular to the c-axis using an excitation current of 100 

μA. The four contacts were spot-welded on the sample using gold wires with 25 μm diameter. 
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The signal was amplified by a low-temperature transformer with a winding ratio of 1:100 and the 

output of the transformer was measured using a SR830 lock-in amplifier at a frequency of 113.7 

Hz. 

 

Magnetostriction 

The linear magnetostriction coefficient λ = (1/L)(dL/dH)T was measured using a 

miniaturized high-resolution capacitance dilatometer of CuBe (47). The length change ∆L of the 

sample was measured perpendicular to the c-axis. Using an ultrahigh-resolution Andeen-

Hagerling capacitance bridge, the absolute value of the dilatometer capacitance was measured 

with a resolution of 10−6 pF, corresponding to a length resolution of 0.02 Å. The experiments 

were carried out in an Oxford Instruments K100 dilution refrigerator with a superconducting 

magnet in magnetic fields up to 5 T. 

 

Magnetization 

Magnetization measurements were carried out using a commercial vibrating sample 

magnetometer, Quantum Design Magnetic Property Measurement System (MPMS-VSM), for 

the high-temperature range between 1.8 and 380 K, and a custom high-resolution capacitive 

Faraday magnetometer for the low-temperature range between 0.05 and 2 K and magnetic fields 

up to 12 T (48). 

 

Supplementary Text 

 

Note on the thermopower of Kondo-lattice systems 

The T-dependence of the thermopower was measured down to 2.5 K. The saturation of S/T 

to a constant value in the zero-temperature limit is usually seen at lower T. The thermopower of 

CeRh2As2 changes sign to negative S below about 4 K. Since S → 0 in the zero T limit, S(T) has 

to go through a minimum at lower T. A phonon drag effect is expected to be negligible due to the 

crystal quality with low RRR values. The thermal conductivity measured simultaneously with 

the thermopower increases monotonously with increasing T. It shows no peak at low T due to 

Umklapp scattering as typically seen in very clean single crystals. A phonon-drag peak in S(T) is 

usually accompanied by such a peak in thermal conductivity. Rather, the features in S(T) are 

caused by a combination of Kondo scattering and thermal population of higher CEF levels: In 

the data we observe a maximum at about 80 K and a shoulder at about 15 K.  In Kondo lattice 

systems the main contribution to the thermopower is given by the Kondo scattering on the 

ground-state doublet of the crystalline electric field (CEF) and on the thermally populated higher 

multiplet states. From the CEF analysis (3 doublets) we found that the first excited level is 

located at about 30 K (similar value as the Kondo temperature) and the second level at about 180 

K. From the position of the maximum in S(T) theoretical calculations predict Tmax = (0.3 - 0.6) 

ΔCEF/kB giving ΔCEF/kB ~ 130 - 270 K in agreement with the ΔCEF/kB ~180 K from the CEF 

analysis. A comprehensive study can be found in this work (49). 

 

Subtraction of the nuclear Schottky contribution in the specific heat data at low temperatures 

The low-T heat capacity of CeRh2As2 was measured in zero magnetic field and in an 

external field aligned along both the c-axis (H || c) and the basal ab-plane (H || ab) of the 

tetragonal crystalline structure. In all measurements we observed upturns in C/T below T ≈ 0.2 
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K, the intensity of which increases systematically with the square of the magnetic field. An 

example is shown in Fig. S2 in which the raw data for C/T are plotted versus T at zero field and 

at 10 T. At µ0H = 0 the upturn is very weak and visible only below 0.06 K, but at µ0H || ab = 10 

T (empty red circles) this effect is strong and visible below 0.2 K. With µ0H || c = 10 T (filled red 

circles), however, this contribution is not so distinct because it adds to that of the 

superconducting transition located at about 0.2 K.  

These features are due to the nuclear contribution to the specific heat. Since the Ce atom has 

zero nuclear moment and the contribution from the Rh nuclear moment is relevant only well 

below 1 mK (50,51), the only relevant contribution to the specific heat originates from the 75As 

atoms (100% abundance). 75As atoms have nuclear angular momentum I = 3/2, a magnetic 

moment µI = gNµNI with µN = 5.05 × 10-27 J/T (nuclear magneton) and gN, the nuclear g-factor, 

and an electric quadrupole moment Q = 0.3 × 10-28 m2. In the tetragonal unit cell of CeRh2As2 

they occupy two positions, As(1) and As(2) at which the field gradient eq is slightly different.  

In zero magnetic field the splitting of the nuclear energy levels is given by Δε = (1/2)e2qQ 

which corresponds to a (NQR) frequency νQ = Δ/h. In magnetic field, however, or in 

magnetically ordered compounds the energy level degeneracy is further lifted and the splitting is 

proportional to the effective magnetic field at the nuclei Δε = - gNµNBeff (Zeeman energy). This 

energy splitting Δε is mostly of the order of a few mK and therefore visible in specific heat data 

as the high-temperature part of a Schottky anomaly which is proportional to T -2 (see, e.g., refs. 

51,52) and is proportional to B2.  

The specific heat at low temperatures is then given by three contributions: 

 

𝐶 = 𝐶𝑛 + 𝐶𝑒𝑙 + 𝐶𝑝ℎ =
𝛼

𝑇2
+ γ𝑇 + 𝛽𝑇3 

 

, where Cel + Cph are the electronic and phonon contributions and α is the proportional factor in 

the nuclear Schottky specific heat. The phonon contribution is very small below 1 K and can 

safely be ignored in this analysis. Since the Cn contribution is strong at low temperatures, to 

extract the α parameter it is convenient to plot the data as: 

 
𝐶(𝑇)

𝑇
=

𝛼

𝑇3
+ 𝛾 

 

and extrapolate the linear-in-T behavior at very low T, i.e., in the range where the nuclear term 

dominates. This is exemplarily shown in the inset of Fig. S2 in which C/T vs T -3 is plotted for 

the data at 10 T in both field directions. The data can reliably be fitted with a linear function in 

the low-T range. The fits yield: αab(10 T) = 3.36 × 10−4 JK/mol and αc(10 T) = 3.49 × 10−4 

JK/mol. Both data sets show a similar α which is expected since the effective field at the As 

nuclei is very close to the external applied field. After having extracted α at all fields we have 

plotted α versus B2 to check consistency with the Schottky equation. A linear fit to the data yields 

a zero field nuclear parameter: α(0 T) = (1.57 ± 0.2) × 10−5 JK/mol. We have subtracted the 

nuclear contribution from all data presented and analyzed in the main text. A more detailed 

analysis will be presented in a forthcoming paper. 

 

Crystal electric field analysis 
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The crystal field Hamiltonian for Ce in the tetragonal environment is given by H = B2
0O2

0 + 

B4
0O4

0 + B4
4O4

4 where Bn
m are the crystal electric field parameters and On

m are Stevens operators 

(53,54). The magnetic susceptibility is calculated as  

 

𝜒𝐶𝐸𝐹,𝑖 = 𝑁𝐴(𝑔𝐽𝜇𝐵)
2 1

𝑍
( ∑ 2|⟨𝑚|𝐽𝑖|𝑛⟩|2

1 − 𝑒−(𝛽(𝐸𝑛−𝐸𝑚)

𝐸𝑛 − 𝐸𝑚
𝑒−𝛽𝐸𝑛 + ∑|⟨𝑛|𝐽𝑖|𝑛⟩|2𝛽𝑒−𝛽𝐸𝑛

𝑛𝑚≠𝑛

) 

 

, where 𝑍 = ∑ 𝑒−𝛽𝐸𝑛
𝑛 , 𝛽 = 1/𝑘𝐵𝑇, and 𝑖 = 𝑥, 𝑦, 𝑧. The calculated inverse magnetic 

susceptibility including the molecular field contribution 𝜆𝑖 as 𝜒𝑖
−1 = 𝜒𝐶𝐸𝐹,𝑖

−1 − 𝜆𝑖 is given to fit 

the experimental data. The presented fits (see Fig. S3) are obtained from the doublet ground state 

|Γ7
(1)> = 0.88 |∓3/2> - 0.47 |±5/2> with the first excited state |Γ6> = |±1/2> at 30 K and the 

second excited level |Γ7
(2)> = 0.47 |±3/2> + 0.88 |∓5/2> at 180 K. 𝜆𝑖 is set to 36 mol/emu for 

both fields. These states are obtained from a diagonalization of the crystal field Hamiltonian with 

the parameters of B2
0 = 6.5 K, B4

0 = 0.1 K, and B4
4 = 2.8 K. The energy splitting for the two 

lower-lying states is comparable to the Kondo energy scale of TK ~ 20 - 40 K, which is given by 

the relation of Smag(TK/2) = (1/2)Rln x , where x = 2 for a doublet and 4 for a quartet ground state. 

The ground state can have a nature of a quartet state when the wave function of the first-excited 

level partially contributes to the ground state through a possible mixing channel such as Kondo 

interactions. 

 

Role of magnetic field on superconductivity 

To understand the key physics underlying the response of superconductivity to magnetic 

fields, it helps to rewrite the general Hamiltonian HN as: 

 

𝐻𝑁 = 𝜖00,𝑘𝜏0𝜎0 + 𝜖𝑥0,𝑘𝜏𝑥𝜎0 + 𝜖𝑦0,𝑘𝜏𝑦𝜎0 + 𝜖𝑧𝑥,𝑘𝜏𝑧𝜎𝑥 + 𝜖𝑧𝑦,𝑘𝜏𝑧𝜎𝑦 + 𝜖𝑧𝑧,𝑘𝜏𝑧𝜎𝑧. 

 

We have argued that 𝜖𝑧𝑧,𝑘 can be ignored since it corresponds to a long-range real-space 

hopping, so in the following we consider the limit 𝜖𝑧𝑧,𝑘 = 0. The Hamiltonian HN yields two 

bands with energies 

 

𝐸±,𝑘 = 𝜖00,𝑘 ± 𝜖𝑘̃ = 𝜖00,𝑘 ± √𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2 + 𝜖𝑧𝑥,𝑘
2 + 𝜖𝑧𝑦,𝑘

2 . 

 

Here we will consider the limit that 𝜖̃  >> ∆ and 𝜖̃ >> gμB|H|, that is the band separation is larger 

than the superconducting gap and the Zeeman energy.  

We take the Zeeman Hamiltonian to be 

 

𝐻𝑍 = 𝑔𝑎𝑏μ𝐵(𝐻𝑥𝜎𝑥 + 𝐻𝑦𝜎𝑦)𝜏0 + 𝑔𝑧μ𝐵𝐻𝑧𝜎𝑧𝜏0. 

 

In the limit that the band splitting  𝜖̃ >> gμB|H|, we can express HZ in the pseudospin basis, 

which is the eigenbasis of HN. To define pseudospin, we note that the product of time-reversal 

(T) and inversion (I) symmetries imply that there are at least two degenerate states at each 

momentum. In particular, we can choose one of these states to be pseudospin-up and the 

degenerate pseudospin-down state is found by applying the symmetry TI to the pseudospin-up 

state. Note that since the pseudospin-up and down states are degenerate, we can choose any 

(S2) 

(S3) 

(S1) 
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linear combination of these to be our basis states. Here, we choose a pseudospin basis that shares 

the same rotation properties as usual spin under the point group operators of D4h (55,56). Here 

we express the Pauli matrices for pseudospin as 𝑠𝑖. 

When the Zeeman Hamiltonian is expressed in the pseudospin basis, there will be intraband 

and interband terms. The interband terms will not be changed appreciably by superconductivity 

because 𝜖̃ >> ∆. However, the intraband terms will represent an effective pseudospin Zeeman 

field, which will then play a role similar to the usual Zeeman field in superconductivity without 

spin-orbit coupling. For either band, this intraband relationship between spin and pseudospin 

takes the form 

 

𝜎𝑥 → 𝛾𝑥,𝑘𝑠𝑥 + 𝛾𝑚,𝑘𝑠𝑦 

𝜎𝑦 → 𝛾𝑚,𝑘𝑠𝑥 + 𝛾𝑦,𝑘𝑠𝑦 

𝜎𝑧 → 𝛾𝑧,𝑘𝑠𝑧. 
 

This shows that that field direction experienced by pseudospin is not generally the same as 

the applied field direction of the Zeeman field (here, these field directions are only the same for 

applied fields oriented along the z-axis). The form of these 𝛾𝑖,𝑘 is not particularly informative. 

However, it is possible to find the following useful relationship 

 

𝛾𝑥,𝑘
2 + 𝛾𝑚,𝑘

2 =
𝜖𝑥0,𝑘

2 + 𝜖𝑦0,𝑘
2 + 𝜖𝑥𝑧,𝑘

2

𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2 + 𝜖𝑥𝑧,𝑘
2 + 𝜖𝑦𝑧,𝑘

2  

𝛾𝑦,𝑘
2 + 𝛾𝑚,𝑘

2 =
𝜖𝑥0,𝑘

2 + 𝜖𝑦0,𝑘
2 + 𝜖𝑥𝑦,𝑘

2

𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2 + 𝜖𝑥𝑧,𝑘
2 + 𝜖𝑦𝑧,𝑘

2  

𝛾𝑧,𝑘
2 =

𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2

𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2 + 𝜖𝑥𝑧,𝑘
2 + 𝜖𝑦𝑧,𝑘

2 . 

 

Pseudospin-singlet states 

One consequence of Eq. S5 is that the magnitude of the pseudospin Zeeman field is in 

general smaller than that of the original Zeeman field. This has an immediate physical 

significance for the Pauli limiting field for an even parity, pseudospin-singlet superconductor 

that is independent of the pairing symmetry. For example, for an applied Zeeman field Hz, the 

effective magnitude of Zeeman field felt by the pseudospin is √𝛾𝑧,𝑘𝐻𝑧 < 𝐻𝑧, so the Pauli field 

will be generally increased. Indeed, for a pseudospin-singlet state, only the magnitude of the 

pseudospin Zeeman field is needed to compute the Pauli limiting field (2). In general, this 

magnitude depends upon k, so that the Pauli limiting field will be expressed as an average over 

the Fermi surface. Since the 𝛾𝑖,𝑘 are non-zero, there will in general be Pauli limiting (albeit less 

than that for a usual spin-singlet superconductor). Notice that if gab = gz then Eq. S5 generally 

indicates that the Pauli limiting field is largest for the applied field along the z-direction since 

𝛾𝑧,𝑘
2  < 𝛾𝑥,𝑘

2 + 𝛾𝑚,𝑘
2 , 𝛾𝑦,𝑘

2 + 𝛾𝑚,𝑘
2 , independent of the pairing symmetry of the pseudospin-singlet 

gap function. 

 

Pseudospin-triplet states 

For odd-parity, pseudospin-triplet states the Pauli limiting fields depend upon both the 

direction and magnitudes of the pseudospin Zeeman fields (2). It is therefore important to also 

(S4) 

(S5) 
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express the superconducting gap functions in the pseudospin basis. Here we consider explicitly 

states Δ̃𝑒 = 𝜏0𝜓(𝑘) and Δ̃𝑜 = 𝜏𝑧𝜓(𝑘) where 𝜓(𝑘) can be an even-parity pairing state describing 

the superconducting state in a Ce plane (and 𝜓(𝑘) can be of arbitrary symmetry, for example s-

wave or d-wave). When the Ce planes are uncoupled, the Δ̃𝑒 and the Δ̃𝑜 states will be degenerate. 

Writing these two gap functions in the pseudospin basis yields 

 

Δ̃𝑒 = 𝜏0𝜓(𝑘) → 𝜓(𝑘) 

 

Δ̃𝑜 = 𝜏𝑧𝜓(𝑘) →
𝜖𝑧𝑥,𝑘𝑠𝑥 + 𝜖𝑧𝑦,𝑘𝑠𝑦

√𝜖𝑥0,𝑘
2 + 𝜖𝑦0,𝑘

2 + 𝜖𝑥𝑧,𝑘
2 + 𝜖𝑦𝑧,𝑘

2

𝜓(𝑘). 

 

This shows explicitly that the odd-parity state becomes a pseudospin-triplet state. Importantly, 

this triplet state has no 𝑠𝑧 component - the corresponding pseudospin-triplet d-vector is purely in-

plane. Consequently, if the applied field in the pseudospin basis is purely along the z-direction, 

then the spin-susceptibility will be unchanged (since then 𝑑 ⋅ 𝐻̃ = 0 where 𝐻̃ is the field in the 

pseudospin basis). Consequently, a c-axis Zeeman-field will not suppress the superconducting 

state at all, so the Pauli limiting field is formally “infinite" for all temperatures (note this 

conclusion is true provided we remain in the limit 𝜖̃ >> gμB|H|.) 

These general results then reveal the essential physics: for a field along the c-axis, a 

pseudospin-singlet state will have an enhanced, but not infinite Pauli field; while a pseudospin-

triplet state (of the kind discussed here) will have an “infinite Pauli" field. This result is 

independent of the form of 𝜓(𝑘), which describes the pairing in a single Ce plane. This is the 

origin of the field induced transition. We also note these results can be generalized to include an 

odd parity spin-triplet state in a single Ce plane, provided it has a 𝜎𝑧 spin-triplet component and 

provided the spin-singlet component is the dominant component (if such a spin-triplet 

component is dominant, then it will be stable in zero-field, so no phase transition is expected for 

a field oriented along the c-axis). In general an admixture between spin-singlet and spin-triplet is 

allowed in a Ce plane, since these planes do not have inversion symmetry (29,30). 

 

Semi-quantitative model 

Since the general arguments above imply that a c-axis field driven transition between Δ̃𝑒 

and Δ̃𝑜 is generic, it is useful to find a limit where the momentum dependence can be easily 

handled and the theory defined by simple constants to gain a semi-quantitative understanding. 

This can be done near the Γ-point together with the condition t = tc,1 = tc,2. In this case, 

 

𝜖00,𝑘 = 𝑚(𝑘𝑥
2 + 𝑘𝑦

2) − 𝜇 

𝜖𝑥0, 𝑘 = 𝑡 cos (
𝑘𝑧

2
) 

𝜖𝑦0, 𝑘 = 𝑡 sin (
𝑘𝑧

2
) 

𝜖𝑧𝑥,𝑘 = − α𝑘𝑦 

𝜖𝑧𝑥,𝑘 = α𝑘𝑥 

𝜖𝑧𝑧,𝑘 = λ sin 𝑘𝑧 𝑘𝑥𝑘𝑦(𝑘𝑥
2 − 𝑘𝑦

2) ≈ 0 

(S6) 

(S7) 

(S8) 
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𝜖̃ = √𝛼2(𝑘𝑥
2 + 𝑘𝑦

2) + 𝑡2 = √𝛼2𝑘𝐹
2 + 𝑡2 

 

, where the last line applies since we will be considering physics near the Fermi surface. It is also 

useful to consider simple s-wave superconductivity within a Ce layer, that is 𝜓(𝑘) = ∆. From the 

expression of the gap functions in the pseudospin basis and the form of the free energy, it is 

possible to find the ratio of the effective pairing interactions for the even (𝑉𝑒) and odd-parity 

states (𝑉𝑜), 

 

𝑉𝑜

𝑉𝑒
=

α2𝑘𝐹
2

α2𝑘𝐹
2 + 𝑡2

=
𝛼̃2

𝛼̃2 + 1
. 

 

This reveals that both the even and odd-parity interactions are attractive, but the even-parity 

transition will have a higher transition temperature in zero field.  

 

 

Even-parity state with in-plane field 

Let us first consider only the Pauli field for this field orientation. For the pseudospin-singlet 

case, the Pauli fields are enhanced by the inverse square root of the factors given in Eq. S5 

above. For our simple model, and using 𝜙 to give the polar angle on the cylindrical Fermi 

surface, for an applied field Hx applied along x yields the pseudospin magnetic field magnitude: 

 

𝐻̃𝑥(𝜙) = 𝐻𝑥√𝛾𝑥,𝑘
2 + 𝛾𝑚,𝑘

2 =
𝐻𝑥√1 + 𝛼̃2 sin2 𝜙

√1 + 𝛼̃2
. 

 

This expression reveals that the Pauli limiting field will be increased once 𝛼̃ ≠ 0. This also yields 

the following expression for the upper critical field as a function of temperature 

 

log 𝑡 = ℜ ∑ ⟨
1

𝑛 + 1/2 + 𝑖𝑔𝑎𝑏μ𝐵𝐻̃𝑥(𝜙)/(2π𝑇𝑐𝑡)
−

1

𝑛 + 1/2
⟩

𝜙

∞

𝑛=0

 

 

, where the ⟨𝑓⟩𝜙 means average over the angle 𝜙 and t = T/Tc. We have extended this expression 

to include the orbital suppression of the magnetic field as follows 

 

log 𝑡 = ⟨∫ 𝑑𝑢
∞

0

cos(𝐻̃(𝜙)𝑢/𝐻𝑃𝑡) exp(−𝐻𝑢2/𝐻𝑃𝑡2𝛼𝑚) − 1

sinh(𝑢)
⟩

𝜙

 

 

, where 𝛼𝑚 = √2 Horb/HP is the Maki parameter, HP = √2∆/(gabμB), and Horb = 2e−γTc
2Φ0π/𝑣̃𝐹

2. 

This expression was used to fit the upper critical field curve for the state Δ𝑒 for in-plane fields 

using 𝛼̃ and 𝛼𝑚 as fitting parameters. The value Horb = 7.4 T found using the WWH formula as 

discussed in the main text was used. The fitting parameters chosen where 𝛼̃ = 3.4 and 𝛼𝑚 = 7.1. 

 

Even-parity state with c-axis field 

(S9) 

(S10) 

(S11) 

(S12) 
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For this field orientation, the pseudospin magnetic field magnitude is 

 

𝐻̃𝑧 =
𝐻𝑧

√1 + 𝛼̃2
. 

 

This immediately yields 

 
𝐻𝑃

𝑐

𝐻𝑃
0 = √1 + 𝛼̃2 

 

, where HP
0 = √2∆/(gcμB) showing the enhancement of the Pauli field for this field orientation. 

Including the orbital field, yields the expression for the critical field 

 

log 𝑡 = ∫ 𝑑𝑢
∞

0

cos(𝐻𝑢/𝑡) exp(−𝐻𝑢2/𝑡2𝛼𝑚) − 1

sinh(𝑢)
. 

 

This expression was used to determine the upper critical field for Δ𝑒 for the field along the c-

axis. Here the value for 𝛼̃ = 3.4, gab/gc = 1.43/1.11 (See the section Determination of the g-

factor) (yielding HP
0 = 1.90), and Horb = 17.2 T were used. 

 

Odd-parity state with c-axis field 

Now let us turn to the spin-triplet state Δ𝑜 for the field along the c-axis. As explained above 

(just below Eq. S4), for this field orientation, Δ𝑜 has no Pauli suppression. Consequently, there is 

only an orbital suppression for this state and we use 

 

log 𝑡 = ∫ 𝑑𝑢
∞

0

exp(−𝐻𝑢2/𝑡2𝛼𝑚) − 1

sinh(𝑢)
. 

 

To compute the upper critical field in this case requires Tc,o, the transition temperature for 

the odd-parity state and also Horb,o, the upper critical field for the odd-parity state. Given that the 

physics for both the even-parity and odd-parity state are the same when there is no c-axis 

coupling, it is reasonable to find Tc,o and Horb,o from the even-parity values by choosing a scale 

factor of the ratio of |Δ𝑜|/|Δ𝑒|. Here we set Tc,o = 0.87 Tc,e, and Horb,o = 17.7 T.  

 

Determination of the first order boundary from the even to odd-parity state 

To find the phase boundary between the even and odd-parity states, the free energy for these 

states in a magnetic field must be determined. Given that the even-parity state exhibits strong 

Pauli paramagnetism and that the phase boundary occurs at relatively low fields for the odd-

parity state, we ignore the role of vortices in this analysis. In particular, we use the free energy of 

a superconductor in a Zeeman field 

 

 

𝑓𝑖 =
∆2

𝜆𝑖
− 4𝜋𝑘𝐵𝑇ℜ ∑ [√𝜔̃𝑛

2 + ∆2 − 𝜔̃𝑛]

∞

𝑛=0

 

(S13) 

(S14) 

(S15) 

(S16) 

(S17) 
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, where  𝜔̃𝑛 = 𝜔𝑛 + 𝑖𝑔𝑐𝜇𝐵𝐻̃𝑧, 𝜔𝑛 = 𝑘𝐵𝑇𝜋(2𝑛 + 1), and  𝜆𝑖 = 𝑁(0)𝑉𝑖 (the index i refers to even 

or odd parity). For the even-parity state we take 𝐻̃𝑧 as given by Eq. S13. For the odd-parity state 

we take 𝐻̃𝑧 = 0 and Tc,o = 0.74 Tc,e (Tc,o here corresponds to the temperature at which the two 

critical field lines cross – this implicitly accounts for some reduction in the triplet gap due to 

orbital effects, leading to a lower ratio than before). The first-order boundary is found by setting 

𝑓𝑒 = 𝑓𝑜. 

 

Determination of the g-factor 

The anisotropic g-factors used to estimate the Pauli limiting fields were obtained from the 

dc-magnetic susceptibility (χS) and the specific heat as follow. For the spin-1/2 (J = 1/2) single-

ion Kondo system, the Wilson ratio written as 

 

𝑅𝑊  =
𝜋2𝑘𝐵

2

𝜇0(𝜇𝑒𝑓𝑓)
2  

𝜒𝑠

𝛾
 

 

, where (µeff)
2 = g2µB

2J(J+1) and 𝜇0 is the magnetic permeability of vacuum, is given to be 2 

(Ref. 57). The Wilson ratio for the Kondo-lattice CeRh2As2 system is expected to be close to this 

value as the system does not include strong spin-spin interactions. The magnetic susceptibility 

(𝜒𝑠) for H || c is almost saturated below 10 K and reached to ~ 8.4 × 10-3 emu/mol. For H || ab, 

the 𝜒𝑠 tends to saturate upon cooling but diverges in the zero T limit. The saturation value is 

estimated to be 1.4 × 10-2 emu/mol. The Sommerfeld coefficient (𝛾) is estimated to be ~ 1 J/mol-

K2 from the specific heat data at high fields in the zero T limit where superconductivity 

completely vanishes for H || ab. From the assumed value of RW = 2, the effective magnetic 

moments are deduced to be 1.24 µB (0.96 µB) for H || ab (H || c). Accordingly, the saturated 

moments (µsat = µeff /√3) are 0.71 µB (0.55 µB) and the resultant g-factors are 1.43 and 1.11 for H 

|| ab and H || c, respectively. 

The µsat can be alternatively estimated from the wavefunction of the ground state of the 

localized f-orbital crystal electric field configuration of Ce, as described in the above section. 

These values are 0.790 µB and 0.543 µB for H || ab and H || c, respectively, consistent with the 

values from the RW. 

 

Estimation of the Maki parameter from normal state properties 

The Maki parameter obtained from the fit agrees with an estimation in the dirty limit from 

normal state properties αm = 2e2ℏγρn / 2meπ
2kB

2Vmol = 5.7 (Ref. 23), with the electronic charge e, 

Planck’s constant divided by 2π ℏ, the specific-heat Sommerfeld coefficient just above the 

superconducting state γ = 1 J/mol-K2, the normal state resistivity of samples of the same batch ρn 

= 13.3 μΩcm, the electron mass me, the Boltzmann constant kB, and the molar volume Vmol = 545 

× 10-7 m3/mol. A large Maki parameter usually characterizes systems which are susceptible to 

going into a state with a modulated SC order parameter, i.e. a Fulde-Ferrell-Larkin-Ovchinnikov 

(FFLO) state, if they are clean enough (58,59). For our samples with a relatively large ρ0 this is 

unlikely and the kink feature is not typical for an FFLO state where a smooth upturn is expected. 

Note that we don’t detect the helical phase expected for in-plane fields (29). 

 

 

Relation between slopes of transition lines and specific heat jump at a tricritical point.  
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In the following, we assume that the lines separating the superconducting states 1 and 2 

from the normal state N (lines 1-N and 2-N, respectively) are second order and the line 

separating the two superconducting states (line 1-2) is first order as shown in the schematic 

phase diagram (Fig. S8). Following the literature (34), the slopes of the transition lines near the 

multicritical point p1 = (dH/dT)1-N, p2 = (dH/dT)2-N, and p3 = (dH/dT)1-2 are related by  

 

𝑝3 = 𝑝1 (
𝑟 − 1

𝑟 − 𝑦
)  

 

where r is given by the squareroot of the ratio of the specific heat jumps r = (ΔC1-N/ΔC2-N)1/2, and 

y = |p1|/|p2| < 1. We extract the slopes from the susceptibility measurements, since the relative 

error bar between two measurements at constant field or constant temperature is lowest there. 

We find experimentally p1 = (- 25 ± 5) T/K, p2 < -1000 T/K and p3 = (2 ± 1) T/K. Since |p1| << 

|p2| this implies that y ≈ 0 and p3/p1 ≈ - 0.08 = (r - 1)/r so that r ≈ 0.92. Hence the specific heat 

jump ΔC1-N = (0.85 ± 0.1) ΔC2-N where ΔC1-N = ΔC(H < Hkink) and ΔC2-N = ΔC(H > Hkink) (See 

Fig. S4). 
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Fig. S1. 

CeRh2As2 single crystal axial images (Mo Kα radiation). 
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Fig. S2. 

Specific heat of CeRh2As2 measured in zero magnetic field and in a field of 10 T aligned along 

both the crystallographic c-axis (filled red circles) and the ab-plane (empty red circles). Inset: 

Plot of C/T vs T -3 with linear fits for the lowest temperature data. 
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Fig. S3. 

Inverse magnetic susceptibility in single crystalline CeRh2As2 and the model fits for the crystal 

electric field configuration of Ce (see the supplementary text). 
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Fig. S4. 

C/T data in 4 and 5 T for H || c and the example of the determination of a thermodynamic bulk Tc 

from the entropy balance. Tc is defined at the midpoint of the C/T jump to lead to the same areas 

enclosed by the experimental data and the linearly interpolated lines below and above the jump 

to Tc. The ΔC/T value is enhanced from 1.49 J/mol-K2 to 1.87 J/mol-K2 when the field increases 

from 4 to 5 T. From these data, the change of the jump can be estimated to ∆C(4T)/∆C(5T) ≈ 

0.8, in agreement with the expected change calculated from the slopes of the transition lines in 

the phase diagram (see the supplementary text). 
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Fig. S5. 

Complete data set of magnetic ac-susceptibility in H || ab. A,B, The temperature dependence of 

the imaginary and real part signal in various magnetic fields. C, Field dependence of the real part 

signal in various temperatures. The horizontal dotted lines in (B) and (C) denote the criterion to 

choose Tc and Hc2, respectively.  
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Fig. S6. 

Field-dependent measurements in H || ab. A, magnetic ac-susceptibility for different 

temperatures. B, magnetization at 0.1 K. C, magnetostriction at 0.05 K.  
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Fig. S7. 

Complete data set of magnetic ac-susceptibility in H || c. A,B, The temperature dependence of 

the imaginary and real part signal in various magnetic fields. The horizontal dotted line in (B) 

denote the criterion to choose Tc.   
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Fig. S8. 

Schematic phase diagram for H || c. Here we show the relationship of the slopes between SC1, 

SC2, and the normal state. 
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Table S1. 

Crystallographic data and details of the crystal structure analysis (45) 

 

Formula; molar mass CeRh2As2; 495.77 amu 

Crystal Metallic prism; 0.076  0.071  0.047 mm3 

Space group; formula units P4/nmm (No.129, origin at center); Z = 2 

Lattice parameter (294 K)* 

 

a = 428.01(2) pm 

c = 986.16(5) pm 

Volume; density 180.66(2) × 106 pm3;  9.114 g cm-3 

Data collection Rigaku AFC7 diffraction system, Saturn 724+ detector                                         

Mo Kα radiation λ = 71.073 pm, graphite monochromator 

900 exposures,  = 0.8°               

Structure refinement SHELXL-97 (60) as implemented in WinGX (61) 

Full-matrix least-squares on F 2 (15 parameters) 

Absorption correction Empirical ( = 39.32 mm–1) 

Max. and min. transmission  0.1575 and 0.0504  

Measured/unique reflections 3617 / 435 

Rint 0.048 

Observed reflections  

        (Fo > 4.0 (Fo)) 

R(F); wR2  

Goof = S = 

max 

min 

398 

 

0.028; 0.062 

1.052 

3.44 e Å–3 

– 5.40 e Å–3 

*Refined on 40 reflections from powder diffraction data using the WinCSD software 

package (62) and LaB6 as internal standard (a = 415.69(1) pm) 
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Table S2. 

Atomic coordinates and anisotropic displacement parameters (ADP) Uij (pm2) for CeRh2As2 (45). 

Ueq is defined as one third of the orthogonalized Uij tensor. The anisotropic displacement factor 

exponent taken the form: [-22(h2a*2U11 +...+ 2hka*b*U12)]. U23 = U13 = U12 = 0. 

 

Atom Site x y z Ueq U11 U22 U33 

Ce(1) 2c ¼  ¼ 0.75469(3) 66(1) 71(1) U11 56(2) 

Rh(1) 2a ¾ ¼ ½ 76(1) 86(1) U11 54(2) 

Rh(2) 2c ¼ ¼ 0.11741(4) 71(1) 77(1) U11 60(2) 

As(1) 2a ¾ ¼ 0 70(1) 69(2) U11 72(3) 

As(2) 2c ¼ ¼ 0.36405(6) 65(1) 72(2) U11 51(2) 

 

 

 


