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Abstract

It can be deduced from the Burnside Basis Theorem that if G is a finite

p-group with d(G) = r then given any generating set A for G there exists

a subset of A of size r that generates G. We have denoted this property B.

A group is said to have the basis property if all subgroups have property

B. This thesis is a study into the nature of these two properties. Note all

groups are finite unless stated otherwise.

We begin this thesis by providing examples of groups with and without

property B and several results on the structure of groups with property B,

showing that under certain conditions property B is inherited by quotients.

This culminates with a result which shows that groups with property B

that can be expressed as direct products are exactly those arising from the

Burnside Basis Theorem.

We also seek to create a class of groups which have property B. We pro-

vide a method for constructing groups with property B and trivial Frattini

subgroup using finite fields. We then classify all groups G where G/Φ (G)

is isomorphic to this construction. We finally note that groups arising from

this construction do not in general have the basis property.

Finally we look at groups with the basis property. We prove that groups

with the basis property are soluble and consist only of elements of prime-

power order. We then exploit the classification of all such groups by Higman

[5] to provide a complete classification of groups with the basis property.
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Chapter 1

Introduction

Generating sets for groups have been a topic of interest for many years; along

with presentations, they are one of the easiest ways of describing a group

and can themselves tell us something about the internal structure of the

group. In this tradition we investigate two generating properties of groups

throughout this thesis. We seek to describe how these properties affect the

structure of a group and, if possible, provide a classification of all groups

with each property. Note that all groups are finite unless stated otherwise.

A generating set A of a group G can be defined as being a subset of

elements of G from which each element of G can be expressed as a finite

product of the elements of A and their inverses. If A is any subset of a

group G then we denote 〈A〉 as the subgroup of G generated by A, and if

G = 〈A〉 then we say that A generates G. Contrasting this is the idea of

non-generators. An element x of a group G is a non-generator if for any set

A containing x that generates G then A\{x} also generates G. It is worth

noting here that the set of non-generators is known as the Frattini subgroup,
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denoted Φ (G). This is not the traditional definition of the Frattini subgroup.

It is more commonly defined as the intersection of all maximal subgroups in

a group G (we address this in Section 2.1.1).

Continuing with some notation for a given group G we define d(G) to be

the least number of generators required to generate G. For example given a

cyclic group Cn then d(Cn) = 1, and if G is any non-trivial dihedral group

then d(G) = 2. This leads us to a simple definition of what it means for a

generating set of a group to be minimal.

Definition 1.0.1. A generating set A is said to be minimal if no proper

subset of A is also a generating set.

Using this definition we can establish our first property.

Definition 1.0.2. A group G is said to have property B if all minimal

generating sets have the same size.

We note that this is equivalent to saying that if A is a generating set

of a group G then A contains a subset of size d(G) that also generates the

group.

It is not immediately obvious whether or not property B is inherited by

subgroups; in fact we will see that this is not the case. This gives rise to our

second property.

Definition 1.0.3. A group G is said to have the basis property if all sub-

groups of G have property B.

From this definition it is easy to see that if a group has the basis property

then it also has property B.
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1.1 History

In this section we will highlight some of the previous research into the two

properties we will investigate.

The first work that provided a classification of some of the groups with

property B was the Burnside Basis Theorem [8, 5.3.2]. To describe this we

must first define the commutator subgroup of a group G as G′ = [G,G] =

〈aba−1b−1 | a, b ∈ G〉.

Theorem 1.1.1 (Burnside Basis Theorem). Let G be a finite p-group. Then

Φ (G) = G′Gp. Also if |G : Φ (G) |= pr then every set of generators of G

has a subset of size r that also generates G.

The first part of the Theorem gives us information about the structure

of the Frattini subgroup and so the proof is omitted. The second part shows

that G behaves like a vector space.

Proof. Let G = 〈x1, . . . , xd〉. Then the Frattini quotient G/Φ (G) is gen-

erated by the elements x1Φ (G) , . . . , xdΦ (G). Since G/Φ (G) is a vector

space of dimension r over the field Fp it has a basis of size r of the form

{xi1Φ (G) , . . . , xirΦ (G)}. Thus G is equal to 〈xi1 , . . . , xir ,Φ (G)〉 and since

the Frattini subgroup is the set of non-generators then G = 〈xi1 , . . . , xir〉.

Now if G satisfies the hypothesis of the Burnside Basis Theorem then

d(G) = r. For clearly d(G) cannot be less than r otherwise we could generate

G/Φ (G) by less than r elements contradicting G/Φ (G) being a vector space

of dimension r. Also d(G) cannot be greater than r since the Burnside Basis
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Theorem tells us G can be generated minimally by r elements. Therefore if

G is a p-group it has property B.

Raffaele Scapellato and Libero Verardi in their 1991 paper [10] investi-

gate a class of groups called matroid groups. They begin by establishing a

definition of independence. In their paper a set X is said to be independent

if for all x in X, 〈X\{x},Φ (G)〉 6= 〈X,Φ (G)〉. They then define G to be a

matroid group if it satisfies the following properties:

(i) G has property B,

(ii) If X and Y are two minimal generating sets of G of the same size then

for all x ∈ X\Y there exists y ∈ Y \X such that (X\{x})∪ {y} is also

a minimal generating set of G,

(iii) Any independent subset X of G is contained in a minimal generating

set of G.

It can be noted here that the second two properties are satisfied by vector

spaces.

Scapellato and Verardi view the matroid property as being one analogous

to that of the Burnside Basis Theorem, stating that as a consequence of the

Burnside Basis Theorem all finite p-groups are matroid groups.

In their paper Scapellato and Verardi begin by showing that a group

is a matroid group if and only if its quotient by the Frattini subgroup is

also a matroid group, and they provide a theorem describing properties of

subgroups of a matroid group.

Theorem 1.1.2. [10, Theorem 1.2] Let G be a matroid group with Φ (G) = 1

and H a proper subgroup of G. Then:
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(i) all the minimal generating sets of H have the same size, d(H);

(ii) for all independent subsets X of H, |X| ≤ d(H);

(iii) d(H) < d(G).

In another paper [9] of the same year Scapellato and Verardi show that if

a group with trivial Frattini subgroup satisfies conditions (ii) and (iii) from

Theorem 1.1.2 then it is a matroid group.

In the second section Scapellato and Verardi prove several results on

matroid groups with trivial Frattini subgroup including a classification of

all such groups. They begin by showing that if G is a matroid group with

Φ (G) = 1 then all elements of G have prime-power order. Then, using the

Classification of Finite Simple Groups to eliminate certain examples, they

show that a matroid group with Φ (G) = 1 is soluble. The section finishes

with a theorem that classifies all such groups.

Theorem 1.1.3. [10, Theorem 2.5] A finite group G, with Φ (G) = 1, is a

matroid group if and only if one of the following conditions is satisfied:

(i) G is an elementary abelian p-group;

(ii) |G| = pnq and the Fitting subgroup is elementary abelian of order pn,

where p and q are primes with p ≡ 1 (mod q), and an element of order

q induces a power automorphism on the Fitting subgroup.

For finite groups the Fitting subgroup of G is the largest normal nilpotent

subgroup of G. A power automorphism is an automorphism that sends an

element to some power of that element. By definition a power automorphism

preserves subgroups and so greatly restricts the structure of a group.
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The final section of the Scapellato and Verardi paper goes on to provide

results on how to construct examples of matroid groups and also states a

theorem that describes the structure of a matroid groupG such thatG/Φ (G)

is as described in Theorem 1.1.3.

Theorem 1.1.4. Theorem [10, 3.1] Let G be a matroid group, such that

|G/Φ (G)| = pnq, and p ≡ 1 (mod q). Then:

(i) G has a unique Sylow p-subgroup;

(ii) all the Sylow q-subgroups of G are cyclic;

(iii) if P is the Sylow p-subgroup of G and Q a Sylow q-subgroup of G, then

Φ (G) = Φ (P )× Φ (Q);

(iv) P possesses an automorphism of order q, which induces a power au-

tomorphism on P/ (P ∩ Φ (G)).

This paper was the major inspiration on our work on property B. We

began our work by trying to replicate the results Scapellato and Verardi

provided in their paper for groups with property B.

They returned to their work in 1994 [11] focusing on groups that only

satisfied their property on independence from the first paper. It should

also be noted that whilst Scapellato and Verardi did not explicitly deal with

groups with the basis property as a consequence of Theorem 1.1.2 all matroid

groups have the basis property.

Work into the basis property has been mostly limited to the world of

semigroups. In 1978 Jones published a paper [7] which firstly looked at

semigroups with the basis property, looking at groups with the basis prop-

erty towards the end of the paper. Jones begins his paper by stating that if

6



S is an inverse semigroup and U 6 V 6 S then a U -basis for V is a subset

X of V which is minimal such that 〈U ∪ X〉 = S. From this, one can see

that a minimal generating set for V (called a basis in the paper) is simply

a ∅-basis. This leads to the definition of two properties.

Definition 1.1.5. An inverse semigroup S has the strong basis property if

for any inverse subsemigroup V of S and inverse subsemigroup U of V any

two U -bases for V have the same size.

Definition 1.1.6. An inverse semigroup S has the basis property if for any

inverse subsemigroup V of S any two bases for V have the same size.

In the first four sections of Jones’ paper he provides results on the struc-

ture of various types of inverse semigroups (including commutative inverse

semigroups, Brandt semigroups and groups) with the strong basis property,

building on work from a previous paper [6]. He also details two cases where

the basis property and the strong basis property are in fact equivalent. This

all comes together in Theorem 4.8 of [7] which describes necessary and suffi-

cient conditions for an inverse semigroup to satisfy the strong basis property.

It is in section 5 of Jones’ paper where we see the results on the basis

property of groups. Here he details results that show that a group with

the basis property is soluble and all elements of such a group have prime-

power order. He additionally shows that homomorphic images of groups

with the basis property also have the basis property. We will provide our

own proofs to these results in Chapter 5 (namely Lemma 5.2.2, Lemma 5.2.1

and Corollary 5.2.3). Jones also notes that Graham Higman [5, Theorem

1] classified the soluble groups with all elements of prime-power order in
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his 1956 paper. A classification of groups with the basis property based on

this was announced by N. K. Dickson and Jones in [7], but as far as we can

tell this has yet to be published. However a classification of groups with

the basis property was announced by A. Al’Khalaf [1] exploiting Higman’s

result, but his classification requires a technical condition on the p-group.

We will also provide a classification in Chapter 5 and whilst ours is also based

on Higman’s result, our classification is established from a construction of

groups with property B.

Following on from the Jones paper is a 2002 paper [2] which shows that

the finite quasiprimary groups — that is, those groups in which the order of

each element is pn or qm for two distinct primes p and q — also satisfy the

basis property.

1.2 Thesis Outline

We begin this thesis by establishing some common results from both group

and module theory. The results on group theory relate mostly, although

not exclusively, to the Frattini subgroup and its properties. We then look

at group rings and group algebras which lead us into module theory. Here

we establish the basic definitions of module theory and provide several well

known results by Maschke, Clifford and Krull–Schmidt. The theorems pro-

vided in this chapter are used throughout to establish our results.

Chapter 3 provides several results that hold for groups with property

B. We begin by showing that property B transfers to the quotient by the

Frattini subgroup.
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Lemma 3.1.1. A group G has property B if and only if G/Φ (G) has

property B.

We then provide examples of groups with and without property B and show

that not only p-groups have property B.

Proposition 3.1.6. If G is the dihedral group Dp of order 2p, where p is

a prime number, then G has property B.

Using Lemma 3.1.1 we then establish that dihedral groups of order 2pn,

denoted D2pn , also have property B.

We move on to look at subgroups and quotients of groups with property

B. When looking at subgroups we provide an example showing that not all

subgroups of groups with property B also have property B, and then state

a trio of results which show the conditions for which property B is inherited

by quotients.

Lemma 3.2.2. If G is a group with property B and G splits over a minimal

normal subgroup M then G/M has property B.

Proposition 3.2.3. If G is a group with property B and M is an abelian

minimal normal subgroup of G then G/M has property B.

Corollary 3.2.4. If G is a soluble group with property B then any quotient

G/N also has property B.

Finally, we conclude the chapter by looking at the direct product of groups

with property B and how their structure is affected.

Theorem 3.3.1. The group G×H has property B if and only if G×H is

a p-group.
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In Chapter 4 we provide a construction for groups with property B and

trivial Frattini subgroup. Partly inspired by Scapellato and Verardi (specif-

ically Theorem 1.1.4) and our result on dihedral groups of order 2pn, we

demonstrate a way of constructing a class of groups with property B and

trivial Frattini subgroup from a finite field. We then classify all groups G

with G/Φ (G) as given by our construction. Note that it follows from Lemma

3.1.1 that all such groups have property B.

Theorem 4.1.4. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm, where q is

a prime such that qm | pn−1. Define G to be the semidirect product V oφH

where H acts on V by multiplication in Fpn. Then:

(i) G has property B,

(ii) d(G) = k + 1 where V is a direct sum of k irreducible FpH-modules,

(iii) Φ (G) is trivial.

Theorem 4.2.1. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm, where q is

a prime such that qm | pn − 1. Let G be any group such that G/Φ (G) is

isomorphic to the semidirect product V oφ H where H acts on V via the

multiplication in Fpn. Then:

(i) G has a unique Sylow p-subgroup P ,

(ii) G is the semidirect product of P by Q for any Sylow q-subgroup Q and

all Sylow q-subgroups of G are cyclic,
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(iii) Φ (G) = Φ (P ) × 〈xqm〉 where 〈xqm〉 is the subgroup of index qm in

Q = 〈x〉. In fact xq
m

lies in the centre of G.

Chapter 5 sees us focus our attention on groups with the basis property.

As mentioned earlier we establish our own proofs for several results detailed

by Jones in [7]. The main result of this chapter is the classification of groups

with the basis property.

Theorem 5.3.2. Let G be a finite group. Then G has the basis property

if and only if either:

(i) G is a p-group, or

(ii) G = P o Q where P is a p-group, Q a non-trivial cyclic q-group and

every non-identity element of Q acts fixed-point freely on P .

We conclude with Chapter 6 which provides an in depth summary of the

work of the thesis. We also ask some open questions relating to property

B and the basis property, and provide some guidance and motivation for

studying these questions.
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Chapter 2

Preliminary Results

In this chapter we provide background material for all the mathematics

presented in this thesis. Whilst this thesis works within the field of group

theory we use group rings and module theory to help prove many of our

results. The first section states some standard group theory, mainly focusing

on the Frattini subgroup and its properties. The second section highlights

the standard definitions of a group ring which leads us into building up some

of the fundamental ideas of module theory. Finally we conclude with proofs

of Maschke’s theorem, Clifford’s theorem and the Krull–Schmidt theorem

which form the cornerstone of the work we do in module theory.

It should be noted that throughout this thesis all groups are finite; thus

when referring to a group we are specifically referring to a finite group.
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2.1 Some Basic Group Theory

2.1.1 The Frattini Subgroup

The Frattini subgroup, denoted Φ (G), is most commonly defined as the

intersection of all maximal subgroups. As we noted in the previous chapter,

the Frattini subgroup also has the property that it is the set of all non-

generators of the group, where an element x of a group G is a non-generator

if for any set A containing x that generates G then A\{x} also generates G.

We now prove this result.

Lemma 2.1.1 (Frattini). If G is a group then Φ (G) is the set of non-

generators of G.

Proof. Assume that there exists x ∈ Φ (G) such that G = 〈x,X〉 but G 6=

〈X〉, i.e. x is not a non-generator. Now x 6∈ 〈X〉 so let M be a subgroup

maximal such that 〈X〉 6M and x 6∈M . Now if there exists a subgroup H

such that M < H 6 G then x ∈ H and H = G by the maximality of M .

Thus M is maximal in G, but since x ∈ Φ (G) and the Frattini subgroup is

contained in all maximal subgroups, x lies in M . Thus G = 〈x,X〉 6 M is

a contradiction and x is in fact a non-generator. Since x was arbitrary all

elements of Φ (G) are non-generators.

Now suppose that x is a non-generator which does not lie in the Frattini

subgroup. Then there exists a maximal subgroup M of G such that x 6∈M

and so M 6= 〈x,M〉. However as M is maximal G = 〈x,M〉 and as x is a

non-generator G = M which is a contradiction. Thus x ∈M and so does in

fact lie in the Frattini subgroup.

One can quickly establish that the Frattini subgroup is characteristic.
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As any automorphism maps a maximal subgroup to a maximal subgroup

the intersection of all maximal subgroups will remain fixed under any auto-

morphism — hence the Frattini subgroup is characteristic. We now provide

a few more of the basic properties of the Frattini subgroup.

Lemma 2.1.2. If G is a group, N a normal subgroup of G, and H a sub-

group of G then:

(i) if N 6 Φ (H) then N 6 Φ (G),

(ii) Φ (N) 6 Φ (G),

(iii) Φ (G/N) > Φ (G)N/N with equality if N is contained in Φ (G).

Proof. (i) If N 66 Φ (G) then there exists a maximal subgroup M such that

M does not contain N and so G = MN . Clearly H = H ∩ G = H ∩MN

which is, by Dedekind’s Modular Law, (H ∩M)N . Since N is contained

in Φ (H) it is a set of non-generators of H and so H = H ∩M and thus

H 6M . But N is a subgroup of H and so N 6M a contradiction.

(ii) This follows from part (i). Since Φ (N) is characteristic in N it is

normal in G and clearly Φ (N) 6 Φ (N). Thus by replacing N and H in

part (i) by Φ (N) and N , here Φ (N) 6 Φ (G).

(iii) Maximal subgroups of G/N have the form M/N where M is a max-

imal subgroup of G containing N by the Correspondence Theorem. Thus

if J is the intersection of all maximal subgroups of G that contain N then

Φ (G/N) = J/N . Now J contains Φ (G), as Φ (G) is the intersection of all

maximal subgroups of G, and J contains N so J > Φ (G)N . Thus we can

deduce that Φ (G/N) > Φ (G)N/N .
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Now if N 6 Φ (G) then N is contained in all maximal subgroups M of

G. So J = Φ (G) and the result follows.

2.1.2 Other Group Theory Results

Here we list a number of results that hold for groups. We begin by describ-

ing a result known as the Frattini argument. It describes the relationship

between normal subgroups and their Sylow subgroups in the original group.

Lemma 2.1.3. If H is a normal subgroup of a finite group G and P a Sylow

p-subgroup of H then G = NG(P )H.

Proof. Let g ∈ G then P g 6 H and P g is a Sylow p-subgroup of H. Thus

P g = P h for some h ∈ H by Sylow’s Theorem. Therefore gh−1 is contained

in the normaliser NG(P ) and so g is contained in NG(P )H. Hence G 6

NG(P )H and thus G = NG(P )H.

Throughout this thesis we work a great deal with elements of prime-

power order and how elements of co-prime order interact. To that end we

provide a result that shows how automorphisms of q-power order affect p-

groups ([3, 5.3.5]).

Theorem 2.1.4. Let p and q be distinct primes. If A is a q-group of au-

tomorphisms of the p-group P , then P = CH, where C = CP (A) and

H = [P,A]. In particular, if H 6 Φ (P ) then A = 1.

To prove this we use the following results from Gorenstein’s book [3]. We

omit the proofs as they are not used elsewhere in this thesis ([3, 5.2.3], [3,

5.3.2] and [3, 2.6.4]). It can be noted here that Lemma 2.1.7 is a particularly

well known result.
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Lemma 2.1.5. Let p and q be distinct primes and let A be a q-group of

automorphisms of the abelian p-group P . Then we have

P = CP (A)× [P,A] .

Lemma 2.1.6. Let p and q be distinct primes and let A be a q-group of

automorphisms of the p-group P that stabilises some normal series of P .

Then A = 1.

Here a group of automorphisms A of a group G stabilises a normal series,

G = G1 DG2 D · · ·DGn = 1, if every automorphism of A fixes every normal

subgroup Gi and the induced action on the factors Gi/Gi+1 is trivial.

Lemma 2.1.7. If K is a non-trivial normal subgroup of the p-group G, then

K ∩ Z(G) 6= 1.

Proof of Theorem 2.1.4. The proof of this theorem can be split into two

cases. First assume that H lies in Z(P ), the centre of P . Now let φ be an

element of A and define αφ to be the mapping from P to its subgroup H

that takes an element x and sends it to x−1 (xφ). Now if x, y ∈ P then

(xy)αφ = (xy)−1 (xy)φ = y−1x−1 (xφ) (yφ) ,

as φ is an automorphism and

y−1x−1 (xφ) (yφ) = x−1 (xφ) y−1 (yφ) .

as x−1 (xφ) is an element of H 6 Z(P ). So (xy)αφ = (x)αφ (y)αφ and

thus αφ is a homomorphism. As αφ maps P into itself it is in fact an

endomorphism for each φ ∈ A. The kernel of αφ will be the set of all

elements x ∈ P such that xφ = x which is simply the centraliser of φ in
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P . One can also see by definition the image of αφ is a subgroup of H.

Since H 6 Z(P ) the image of P under αφ is contained in an abelian group,

thus the derived subgroup P ′ = [P, P ] is contained in the kernel of αφ.

Now kerαφ =
{
x ∈ P | x−1 (xφ) = 1

}
= {x ∈ P | xφ = x} = CP (φ) and so

P ′ 6 CP (φ) for all elements φ ∈ A. Thus P ′ lies in C = CP (A).

Now let P̄ = P/P ′, C̄ = CP̄ (A) and H̄ =
[
P̄ , A

]
. By definition P̄ is

abelian and so by Lemma 2.1.5 P̄ = C̄ × H̄. Now H̄ is the image of H in

P̄ and so P = C1H where C1 is the pre-image of C̄ in P . However A acts

trivially on P ′ and C̄, and so A stabilises this series C1 D P ′ D 1. Hence

by Lemma 2.1.6 we have thet A acts trivially on C1. Thus C1 6 C and

P = CH.

Now we assume that H 66 Z(P ) and certainly H 6= 1. For x, y ∈ P and

φ ∈ A then

[xy, φ] [y, φ]−1 = (xy)−1(xy)φ
(
y−1(yφ)

)−1
,

= y−1x−1(xφ)(yφ)(yφ)−1y,

= y−1x−1(xφ)y,

= [x, φ]y .

So [x, φ]y is equal to [xy, φ] [y, φ]−1 which is in [P,A] = H. Hence H is

normal in P . Thus by Lemma 2.1.7 K = H ∩Z(P ) is non-trivial. Certainly

Z(P ) is A-invariant since it is characteristic and so we can also see that for
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φ, ψ ∈ A and x ∈ P

[x, φ]−1 [x, φψ] =
(
x−1(xφ)

)−1 (
x−1(xφ)ψ

)
,

=
(
(xφ)−1x

) (
x−1(xφ)ψ

)
,

= (xφ)−1(xφ)ψ,

= [x, φ]ψ .

Thus [x, φ]ψ = [x, φ]−1 [x, φψ] ∈ [P,A] = H so H is A-invariant. Therefore

K is also A-invariant. Now define D to be the subgroup of P generated by

all x ∈ P such that [x,A] 6 K. Clearly C is contained in D. Again we

pass to a quotient so let P̄ = P/K and let C̄ = CP̄ (A) and H̄ =
[
P̄ , A

]
,

similarly to before. If x ∈ P and [x,A] is in K then A centralises the image

of x in P̄ . It follows therefore from the definition of D that the image of

D in P̄ is contained in C̄. Conversely if x̄ is an element of C̄ then [x̄, A] is

the identity in P̄ and so [x,A] lies in K where x is any pre-image of x̄ in P .

Thus x ∈ D and so the image of D in P̄ is C̄. We also note that as before

H̄ is the image of H in P̄ .

Since K is non-trivial the order of P̄ is strictly less than the order of

P . We now proceed by induction and assume the result holds for groups of

order less than P (our base case |P | = 2 obviously holds). By induction on

the order of P we have P̄ = C̄H̄, and from above this implies that P = DH.

If [x,A] lies in K for every choice of x ∈ P , then H = [P,A] 6 K 6 Z(P )

which contradicts the assumption. So D < P and D is invariant under A

as both K and C̄ are. Now recall that C 6 D and hence by induction

D = C [D,A]. Now P = DH = C [D,A]H = CH since as D < P then

[D,A] 6 K 6 H.
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Finally if H is a subgroup of the Frattini subgroup of P then P =

CΦ (P ). However, as observed previously, Φ (P ) is the set of non-generators

which implies that P = C = CP (A). Thus A is trivial.

As a corollary of this theorem we have a result by Philip Hall found in

Robinson [8, 5.3.3].

Corollary 2.1.8 (Hall). Let G be a group of order pm and let |G : Φ (G)| =

pr. Then the order of CAut(G) (G/Φ (G)) divides p(m−r)r and the order of

Aut(G) divides np(m−r)r where n = |GL(r, p)|.

Proof. Take a prime q with q 6= p that divides the order of the centraliser.

Let A be the Sylow q-subgroup of the centraliser and so by definition [G,A] 6

Φ (G). Theorem 2.1.4 says that A is trivial and thus the results follows.

2.2 Module Theory, Group Rings and Group

Algebras

2.2.1 Modules, Representations and Group Rings

The idea of a module over a ring is that of a generalised vector space, where

instead of taking the scalars to be from a field we take them from a ring.

Modules also generalise abelian groups as abelian groups can be viewed as

modules over Z. Hence, like a vector space, a module is an additive abelian

group with multiplication between scalars from the ring and elements in the

module distributive. We define this formally below:

Definition 2.2.1. If R is a ring then a right R-module is an abelian group

M together with an operation M ×R→M (usually denoted as xr for r ∈ R
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and x ∈M) such that given r, s ∈ R and x, y ∈M the following hold:

• (x+ y)r = xr + yr,

• x(r + s) = xr + xs,

• x(rs) = (xr)s,

• x1R = x if R has an identity element.

Similarly one can define a left R-module, and if R is a commutative ring

then left R-modules become right R-modules by defining xr := rx. In this

case we refer to the object as an R-module. An additive subgroup N of M

is an R-submodule of M such that if x is any element of N and r ∈ R then

xr also lies in N . We can also see that if F is a field then an F -module is

in fact a vector space over the field F .

Vector spaces and modules are important in representation theory. IfG is

a group, F a field and V a vector space over F then a homomorphism ρ which

maps from G to the general linear group GL(V ) is a linear representation

of G over F , often also called an F -representation. Throughout this thesis

we use vector spaces of finite dimension, n, where n is also known as the

degree of the representation. It is also worth defining that if ker ρ is trivial

then the representation is said to be faithful.

Group rings and group algebras are the basic structures that allow us to

look at module representations of groups. If G is a group and R any ring

with an identity then the group ring, typically written RG, is defined to be

the set of all sums
∑

g∈G rgg where rg is an element of R. The group ring
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then has the following rules of addition and multiplication:∑
g∈G

rgg

+

∑
g∈G

sgg

 =
∑
g∈G

(rg + sg) g,

and ∑
g∈G

rgg

∑
g∈G

sgg

 =
∑
g∈G

∑
hk=g

rhsk

 g.

One can see that under these operations RG is a ring with an identity

element 1R1G, often written simply as 1. One can also see that RG contains

a copy of R (by making rg = 0 for all non-identity elements in G) as a

subring and a copy of G within its set of invertible elements (where rg = 1R

and rh = 0 for all g, h ∈ G with g 6= h).

If F is a field then the group ring FG is not only a ring but also has the

natural vector space structure:

f

∑
g∈G

fgg

 =
∑
g∈G

ffgg,

where f is an element of the field. This comes from the definition of group

ring multiplication with r1 = f and all other rg = 0. This FG is known as

the group algebra of G over F . In fact the group algebra FG is a module over

itself where submodules correspond to right ideals. The dimension of the

group algebra FG as a vector space is simply the size of the group G, as the

elements of G form a basis. Often the field taken for the group algebra

is the real or complex numbers in the research field known as ordinary

representation theory. However throughout this thesis our field will be finite,

since our module representations correspond to conjugation of elementary

abelian subgroups.

Now suppose that ρ : G → GL(M) is an F -representation of G with
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degree n. Then M can be viewed as a right FG-module via:

x

∑
g∈G

fgg

 =
∑
g∈G

fg (xgρ) ,

where x is an element of M , and gρ is the action of ρ on the element g.

One can see this satisfies the module axioms. In fact one can show that the

class of F -representations of G with degree n and the class of n-dimensional

right FG-modules are in one-to-one correspondence — thus we call two

representations equivalent if they arise from two isomorphic modules. Since

all groups are finite the group algebra FG is finite dimensional and all finitely

generated FG-modules are finite dimensional.

2.2.2 Completely Reducible Modules

Let M be an FG-module where F is a finite field. If M contains a proper

non-zero submodule then M is said to be reducible. However if M contains

no such submodule then it is an irreducible, or simple, module. One can

obtain irreducible FG-modules from the group algebra as shown below.

Lemma 2.2.2. An irreducible FG-module is isomorphic (as a module) with

some quotient FG/I where I is a maximal right ideal of FG.

Proof. Let M be an irreducible FG-module and choose a non-zero element

x ∈ M . If r is an element of the group algebra then φ : r 7→ xr is a

homomorphism of modules. Now φ has non-zero image since x is a non-zero

element, and since M is irreducible the image of φ must in fact be M . So by

the first isomorphism theorem M is isomorphic to the quotient FG/I where

I = kerφ. Since M is irreducible I must be a maximal right ideal by the

Correspondence Theorem.
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If M and N are FG-modules the external direct sum is

M ⊕N = { (m,n) | m ∈M,n ∈ N },

with operations

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2) ,

and

(m,n) r = (mr, nr) ,

with r ∈ FG. If V is any FG-module possessing two submodules M and

N such that V = M + N and M ∩ N = 0, then V ∼= M ⊕ N (defined as

above). We call this situation the internal direct sum and note that due to

this isomorphism we view internal and external direct products the same. A

module that can be written in a non-trivial way as a direct sum is known as

decomposible, otherwise it is known as indecomposible. Note that M ∼= M⊕0

always holds so this is not included as a valid decomposition. If M is a direct

sum of irreducible submodules thenM is said to be completely reducible. The

condition we frequently use for complete reducibility is Maschke’s theorem

[8, 8.1.2].

Theorem 2.2.3 (Maschke). If G is a finite group and F a finite field of

characteristic co-prime to the order of G, then every FG-module is com-

pletely reducible.

To prove Maschke’s Theorem we use the following lemma.

Lemma 2.2.4. Let F be a finite field and M an FG-module. Then the

following are equivalent:
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(i) M is a sum of irreducible submodules,

(ii) M is a direct sum of irreducible submodules,

(iii) for all submodules N there is a complement P such that M = N ⊕ P .

Proof. (ii)⇒ (i) This is trivial as a direct sum of irreducible submodules is

clearly a sum of irreducible submodules.

(i) ⇒ (ii) Suppose that M =
∑

i∈I Ni as a sum of irreducible submod-

ules. Now choose J ⊆ I to be maximal such that L =
∑

j∈J Nj is the direct

sum
⊕

j∈J Nj . Assume that L is not equal to M . Thus there exists an

Ni such that Ni 6⊆ L. Now Ni ∩ L is not equal to Ni by definition and so

Ni ∩ L = 0 as Ni is an irreducible submodule. However this implies that

Ni + L = Ni ⊕ L, which contradicts the maximality of J . Thus M must be

L and so M is a direct sum of irreducibles.

(iii) ⇒ (ii) Assume that (iii) holds. Now take N to be a direct sum

of irreducible submodules of M of largest dimension. We now claim that

N = M . If N 6= M then M = N ⊕ P , for some complement P , by our

assumption. Let V be an irreducible submodule of P so N + V = N ⊕ V as

V is a submodule of the complement of N . But N ⊕ V is a direct sum of

irreducible submodules of larger dimension, contradicting our choice of N .

Thus M = N and is a direct sum of irreducible submodules.

(ii) ⇒ (iii) Let M =
⊕

i∈I Ni be a direct sum of irreducible of sub-

modules and let N be a submodule of M . Now choose J ⊆ I to be max-

imal such that N ∩
⊕

i∈J Ni = 0. Thus we can then form the direct sum

L =
⊕

i∈J Ni ⊕ N . If Nj 66 L then Nj ∩ L = 0 as Nj is irreducible. Thus

Nj + L = Nj ⊕ L = Nj ⊕
(⊕

i∈J Ni

)
⊕N which is

⊕
i∈J∪{j}Ni ⊕N . This
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implies
⊕

i∈J∪{j}Ni ∩ N is zero contradicting the maximality of J . Hence

L = M and for any submodule N of M there exists P =
⊕

i∈J Ni, such that

N ∩ P = 0 and P is a complement such that M = N ⊕ P .

Proof of Maschke’s Theorem. Let M be an FG-module of finite dimension.

To show that M is completely reducible we need only that show any sub-

module N is a direct summand of M by Lemma 2.2.4.

Viewing M as a vector space we can write M = N ⊕ L, where L is a

subspace of M . Define π to be the projection from M to N which is a linear

map. To construct an FG-homomorphism we use an averaging process.

Define π1 to be the mapping from M to M such that for m ∈M and g ∈ G

mπ1 =
1

|G|
∑
g∈G

(mg)πg−1.

This exists since G is a finite group of order not divisible by the charac-

teristic of F , and as π is a linear mapping so is π1. In fact π1 is an FG-

homomorphism as it is compatible with the multiplication of G since for any

given m ∈M

(mx)π1x
−1 =

1

|G|
∑
g∈G

(mxg)πg−1 · x−1,

=
1

|G|
∑
y∈G

(my)πy−1, (after substituting y = xg)

= mπ1,

and thus (mx)π1 = mπ1x. Since the image of π is N and N is a submodule

of M the image of π1 is a submodule of N . However given any elements

n ∈ N and g ∈ G then (ng)π = ng and so

nπ1 =
1

|G|
∑
g∈G

(ng)πg−1 =
1

|G|
∑
g∈G

ngg−1 =
1

|G|
∑
g∈G

n = n,
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which is why we need the averaging process. Thus N is a submodule of

the image of π1 and so imπ1 = N . Now since any element of N under π1

maps to itself π1 is a projection map from M into N . If x ∈ N ∩ kerπ1

then xπ1 = 0 which implies x = 0 and hence N ∩ kerπ1 = 0 . If m is any

element of M then m = mπ1 + (m − mπ1) with mπ1 ∈ imπ1 = N . Now

(m−mπ1)π1 = mπ1 − mπ1 = 0 as π1 is an idempotent. Thus m − mπ1

is contained in the kernel of π1 and so M = imπ1 + kerπ1. Therefore

M = N ⊕ kerπ1.

Maschke’s Theorem requires the characteristic of the field to be co-prime

to the order of the group G. This actually includes the case where the

characteristic is zero, however we will not use such fields in this thesis.

The next result on module theory we use is the Krull–Schmidt Theorem.

The Krull–Schmidt Theorem holds for a variety of algebraic structures but

we apply it to modules. Note we only give a special case of the theorem.

Theorem 2.2.5 (Krull–Schmidt). Let F be a finite field and M an FG-

module. If M1 ⊕ · · · ⊕Mn and N1 ⊕ · · · ⊕Nm are two decompositions of M

into irreducible submodules, then n = m.

For the proof of this theorem we use the Jordan–Hölder Theorem. The

Jordan–Hölder Theorem tells us that if M = M1 ⊃ M2 ⊃ · · · ⊃ Mn = 0

and M = N1 ⊃ N2 ⊃ · · · ⊃ Nm = 0 are two composition series not only are

they of equal length but there exists a bijection that shows the factors are

isomorphic. We only show that given two chains of submodules, they are of

equal length.

Theorem 2.2.6 (Jordan–Hölder). Let F be a finite field and M be an FG-
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module and let M = M1 ⊃ M2 ⊃ · · · ⊃ Mn = 0 and M = N1 ⊃ N2 ⊃ · · · ⊃

Nm = 0 be two composition series. Then both series are of the same length.

Proof. Let M = M1 ⊃ M2 ⊃ · · · ⊃ Mn = 0 and M = N1 ⊃ N2 ⊃ · · · ⊃

Nm = 0 be two composition series. We proceed by induction on n. If n = 1

then M is an irreducible module and so the result follows. So assume that

n > 1 and the theorem holds for values less than n. If M2 = N2 then

by induction the theorem holds and we conclude m = n. So assume that

M2 6= N2 and so M2+N2 = M . Thus the quotients M/M2
∼= N2/ (M2 ∩N2)

and M/N2
∼= N2/ (M2 ∩N2) are simple. Now if we take a composition series

for M2 ∩N2 we see by induction this must have composition length n − 2.

However this means that N2 has a descending chain of length n − 1, but

by induction the theorem holds for N2 and so all chains have length n− 1.

Therefore n = m.

Proof of Krull–Schmidt Theorem. Let M1 ⊕ · · · ⊕Mn and N1 ⊕ · · · ⊕ Nm

be two decompositions of M as a direct sum of irreducible submodules.

Certainly 0 ⊂M1 ⊂M1⊕M2 ⊂ · · · ⊂M and 0 ⊂ N1 ⊂ N1⊕N2 ⊂ · · · ⊂M

are two composition series, whose factors are M1, . . . ,Mn and N1, . . . Nm

precisely. The result then follows from the Jordan–Hölder Theorem.

The final condition for complete reducibility that we use in this thesis

is Clifford’s Theorem [8, 8.1.3]. We do not use this as often as Maschke’s

Theorem however, unlike Maschke’s Theorem, it makes no restrictions on

the field or the group.

Theorem 2.2.7 (Clifford). Let G be any group, F any finite field, M an

irreducible FG-module, and H a normal subgroup of G. Then:
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(i) if S is an irreducible FH-submodule of M , then M is the sum of Sg

for all g ∈ G and each Sg is an irreducible FH-module. Thus M is

completely reducible as an FH-module,

(ii) if S1, . . . , Sk are representatives of the isomorphism types of irreducible

FH-submodules of M and Mi is the sum of all FH-submodules of M

isomorphic to Si, then M = M1 ⊕ · · · ⊕Mk and Mi is a direct sum of

FH-modules isomorphic with Si,

(iii) G permutes the Mi transitively by means of the right action on M .

Proof. (i) Let S be an irreducible FH-module of M and consider L =∑
g∈G Sg. Given x ∈ G

Lx =

∑
g∈G

Sg

x =
∑
g∈G

Sgx =
∑
y∈G

Sy = L,

and so L is an FG-submodule of M . However as M is irreducible L = M

and so M =
∑

g∈G Sg. Now take, for all h ∈ H, Sgh = Sghg−1g which

is contained in Sg as ghg−1 ∈ H. Thus Sg is an FH-submodule of M . If

T 6 Sg as an FH-submodule then Tg−1 6 S which implies that Tg−1 is

also an FH-submodule of S. Note here this is using the same observation

that as S is an FH-submodule so is Sg and applying it to T and Tg−1.

Therefore as S is irreducible then Tg−1 = 0 or S and therefore T = 0 or

Sg and thus Sg is an irreducible FH-submodule. Hence M is a sum of

irreducible FH-submodules and Lemma 2.2.4 tells us that M is completely

reducible.

(ii) Pick S1, . . . , Sk to be representatives for each of the isomorphism

types of irreducible FH-submodules of M , i.e. if S 6 M is an irreducible
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FH-submodule then S is isomorphic to Si and Si 6∼= Sj , for i 6= j, as

FH-modules. It should be noted that we can do this as any irreducible

FH-module occurs as a quotient of FH (by Lemma 2.2.2), and hence (as

H is finite dimensional) as a composition factor. The complete Jordan–

Hölder Theorem tells us that there is only a finite collection of irreducible

FH-modules.

Now let Mi be the sum of all FH-submodules S of M such that S ∼= Si.

By part (i) M is the sum of all irreducible FH-submodules of M and so

M = M1 + · · ·+Mk. Lemma 2.2.4 gives us that Mi is a direct sum of some

FH-submodules isomorphic to Si.

Claim: M1 + · · ·+Mj = M1 ⊕ · · · ⊕Mj for all j.

Proceeding by induction our base case of j = 1 holds trivially, so assume

the claim holds for j − 1. Now suppose Mj ∩ (M1 ⊕ · · · ⊕Mj−1) is non-

zero. So Mj ∩ (M1 ⊕ · · · ⊕Mj−1) is an FH-submodule and choose N 6

Mj∩(M1 ⊕ · · · ⊕Mj−1) to be an irreducible FH-submodule. Now N 6Mj ,

which is the direct sum of submodules isomorphic to Sj , and all composition

factors of Mj are isomorphic to Sj as FH-modules. The Jordan–Hölder

Theorem tells us that N must be isomorphic to Sj . As N is contained

in M1 ⊕ · · · ⊕Mj−1, which is the direct sum of copies of S1, . . . , Sj−1, N

is isomorphic as FH-modules to some Si for i ∈ {1, . . . , j − 1}. This is a

contradiction and so the intersection Mj ∩ (M1 ⊕ · · · ⊕Mj−1) must in fact

be zero. Thus by induction M1 + · · ·+Mj = M1 ⊕ · · · ⊕Mj for all j.

As a result of this claim M = M1 ⊕ · · · ⊕Mk.

(iii) Suppose S is an irreducible FH-submodule of M . Since Sg is irre-
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ducible as an FH-module from part (i), so Sg is isomorphic to Sj for some j.

If S ∼= T 6Mi as FH-modules then let φ be the isomorphism from S to T .

Now define θ to be the mapping from Sg to Tg by (sg)θ = (sφ)g for s ∈ S.

Clearly θ is a bijection so it remains to show that it is a homomorphism of

FH-modules. So for g ∈ G, h ∈ H and s ∈ S

(sg · h) θ =
(
sghg−1g

)
θ,

=
(
sghg−1

)
φ · g (by definition)

= (sφ)
(
ghg−1g

)
= (sφ) (gh) (as φ is an homomorphism)

= (sg) θ · h.

Hence Sg ∼= Sj for all irreducible S 6 Mi and thus Sg 6 Mj for all irre-

ducible S 6 Mi. Therefore Mig 6 Mj . However Sig ∼= Sj and so Si ∼=

Sjg
−1. Thus, by the same argument, Mjg

−1 6 Mi and hence Mj 6 Mig.

This implies that Mig = Mj and so G permutes the Mi.

Now if {Mi1 , . . . ,Mil} is an orbit then N = Mi1 + · · · + Mil is an FG-

submodule. Thus N = M , as M is irreducible, and G in fact permutes the

Mi transitively.
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Chapter 3

Theoretical Observations

In this chapter we establish several results for groups with property B. We

seek to explain how having property B affects the structure of a group. It

is not clear from the definition that property B is inherited by quotients or

subgroups, and in this chapter we establish the cases in which property B

can be inherited. We begin by showing some basic properties of groups with

the property B and provide examples of groups with and without property

B. Later we show that in general subgroups do not inherit property B from

their parent groups and provide an example to highlight this. We do however

show that in certain cases property B transfers to quotients of groups with

property B.

In the final section we seek to investigate how property B affects the

structure of a group. In particular we show that if a group G has property

B, and can be expressed as a direct product, then G is a p-group.
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3.1 Property B: The Basics

As established in the Introduction a group G with property B is defined to

be a group where every minimal generating set has size d(G), where d(G)

is the smallest number of elements required to generate G. Equivalently a

group with property B is a group where each generating set of G contains a

minimal generating set of size d(G) as a subset. We begin by highlighting

a result that will be key to our investigations into the structure of groups

with property B.

Lemma 3.1.1. A group G has property B if and only if G/Φ (G) has prop-

erty B.

Proof. Let π : G→ G/Φ (G) be the natural map and letX = {a1, a2, . . . , ak}

be a set of elements in G. Note this set generates G if and only if G/Φ (G)

is generated by Y = {Φ (G) a1, . . . ,Φ (G) ak}. Indeed this is obvious in one

direction, from π, since if X generates G then the set of all Φ (G) ai, for

all i ∈ {1, . . . , k}, will generate G/Φ (G). Now if G/Φ (G) is generated by

Y then G would be generated by {a1, . . . , ak} ∪ Φ (G). Since the Frattini

subgroup is the set of non-generators we have that G = 〈a1, . . . , ak〉 = 〈X〉.

Now if G has property B given a generating set Y for G/Φ (G) we can

pass this to a generating set X for G as above. We can reduce this to a

minimal generating set X ′ for G of size d(G) since G has property B. Using

π again we can now pass this minimal generating set to Y ′, its image in

G/Φ (G). Note that Y ′ 6 Y . From above the set Y ′ would be of size d(G)

and is a minimal generating set of G/Φ (G). Otherwise G/Φ (G) could be

generated by a subset of Y ′ and so G would be generated by the pre-image of
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this subset under π, which would be of size less than d(G), a contradiction.

Hence d (G/Φ (G)) = d(G). Now if there exists a minimal generating set

Z of G/Φ (G) of size not equal to d(G) then its pre-image under π, Z ′ say,

would generate G. Then Z ′ would be a minimal generating set for G as Z is

a minimal generating set for G/Φ (G). This contradicts G having property

B and so Z must be of size d(G).

A similar argument proves the converse.

From the Introduction we know that all p-groups have property B (Burn-

side Basis Theorem 1.1.1). Despite this groups with property B are not

common. For example, cyclic groups of non-prime-power order do not have

property B. To prove this we first show a well known result of cyclic groups.

Lemma 3.1.2. If m and n are co-prime then Cmn ∼= Cm × Cn.

Proof. If G = Cmn = 〈x〉 then the order of x is mn. Now let A be the group

generated by xm and B the group generated by xn. Then clearly |G : A|= m

and |G : B|= n and hence G/A = 〈Ax〉 ∼= Cm and G/B = 〈Bx〉 ∼= Cn. Since

n = |A| and m = |B| are co-prime then the intersection A ∩ B is trivial.

Now G/ (A ∩B) is isomorphic to a subgroup of G/A×G/B (by the mapping

g 7→ (Ag,Bg)) but since G/ (A ∩B) and G/A×G/B are both of order mn

they are in fact isomorphic. Thus

Cmn ∼=
G

A ∩B
∼=
G

A
× G

B
∼= Cm × Cn.

Proposition 3.1.3. If G is a cyclic group of non-prime-power order n, then

G does not have property B.
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Proof. Let G = 〈x〉 be as hypothesised. Since G is cyclic d(G) = 1. Now

as G has order n, which can be written as a product of prime-powers n =

pi11 p
i2
2 · · · p

ik
k . From the well established result Cmn ∼= Cm × Cn (Lemma

3.1.2) we can establish that G ∼= C
p
i1
1
× C

p
i2
2
× · · · × C

p
ik
k

with each direct

factor generated by xi say. Hence {x1, x2, . . . , xk} is a minimal generating

set for G of size k > 1 since omitting any of the xi would mean that the

factor 〈xi〉 would not be generated. Thus the result holds.

The smallest non-p-group with property B is the symmetric group on

three points.

Example 3.1.4. The symmetric group on three points S3 has property B

with d(G) = 2.

As a permutation group the elements of the symmetric group on three

points S3 are {(1), (12), (13), (23), (123), (132)}. Now as S3 is not cyclic

d(S3) 6= 1 and since {(12), (23)} generates S3 minimally d(S3) = 2. It

remains to show that any generating set of S3 contains a subset of size two

that generates S3.

If a set X generates S3 it can’t consist only of even permutations, oth-

erwise it would generate A3 not S3. So it must contain at least one odd

permutation. Choose τ to be that odd permutation and σ to be a permuta-

tion not found in 〈τ〉 then the two element subset {σ, τ} of X contains either

two odd permutations or an even permutation and an odd permutation. If σ

is even and τ is odd then 〈σ, τ〉 = S3 as 〈σ〉 = A3
∼= C3. If σ and τ are both

odd then 〈σ, τ〉 > 〈στ−1, τ〉 = S3 as στ−1 is even and so 〈στ−1, τ〉 is as in

the first case. Hence S3 has property B. However this is the only symmetric
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group with property B.

Proposition 3.1.5. The symmetric group Sn does not have property B for

n > 3.

Proof. The symmetric group can be generated by the set of transpositions

{(12), (23), (34), . . . , ((n− 1)n)}. We can see this is minimal since obvi-

ously none of the individual transpositions can be generated by a com-

bination of any of the other transpositions. In fact if we omit one of

these transpositions, {(i (i+ 1))} say, then the set of remaining transpo-

sitions {(12), . . . , ((i− 1)i), ((i+ 1)(i+ 2)), . . . , ((n− 1)n)} generates Si ×

Sn−i with Si being the symmetric group on the points {1, . . . , i} and Sn−i

the symmetric group on the points {i+ 1, . . . , n}. The set of transpositions

is of size greater than d(Sn) = 2 and so the symmetric group does not have

property B.

It is well known that S3 is isomorphic to the dihedral group of order six.

Unlike the symmetric group case however, there is a class of dihedral groups

that have property B.

Proposition 3.1.6. If G is the dihedral group Dp of order 2p, where p is a

prime number, then G has property B.

Proof. We know that d(G) = 2 and G = 〈a, b | ap = b2 = 1, bab−1 = a−1〉.

Take a generating set A for G. Since A * 〈a〉 then A consists of elements of

the form ai for some i ∈ {1, . . . p− 1} and ajb for some j ∈ {1, . . . p} or just

of elements of the form ajb. Since p is prime ai is of order p and elements

of the form ajb are of order two. In the first case all we need to do is take a

subset consisting of one of the powers of a and an element of the form ajb
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to generate Dp. If the generating set just consists of elements of the form

ajb then all we need to do is take two elements of this form and we generate

Dp since aj1baj2b = ak as bab−1 = bab = a−1. Hence G has property B.

Corollary 3.1.7. The dihedral group Dpn of order 2pn, where p is a prime

number, has property B.

Proof. Now Dpn = 〈a, b | apn = b2 = 1, bab−1 = a−1〉 and the Frattini

subgroup of Dpn is the intersection all the maximal subgroups of Dpn . Cer-

tainly 〈a〉 has index two in Dpn and so is maximal. Now 〈ap〉 is the unique

subgroup of 〈a〉 of order pn−1, so is characteristic in 〈a〉. Hence 〈ap〉EDpn ,

so 〈ap, b〉 = 〈ap〉〈b〉 is a subgroup of Dpn . This has index p in Dpn and so

is maximal. The same argument shows that subgroups of the form 〈ap, aib〉

are also maximal.

Conversely if M is a maximal subgroup of Dpn and M 6= 〈a〉 then M ∩

〈a〉 < 〈a〉. So M ∩ 〈a〉 is contained in 〈ap〉. Thus

M = (M ∩ 〈a〉) 〈aib〉 6 〈ap〉〈aib〉 = 〈ap, aib〉.

The intersection of these maximal subgroups is clearly cyclic and since 〈ap〉

is contained in 〈a〉 the Frattini subgroup of Dpn is 〈ap〉. Thus

Dpn/Φ (Dpn) = Dpn/〈ap〉 = Dp,

and as Dp has property B, by Lemma 3.1.1 Dpn also has property B.

3.2 Property B, Subgroups and Quotients

We begin this section by looking at how property B relates to subgroups of

groups with property B. If the subgroups of a group with property B also
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have property B then it is said to have the basis property which we discuss in

Chapter 5. However not all groups with property B have the basis property.

The following example highlights this.

Example 3.2.1. The group with presentation G = 〈x, y | x4 = 1, y3 =

1, x−1yx = y−1〉 = C3 o C4 has property B. However G has the subgroup

〈x2y〉, isomorphic to the cyclic group of order 6 which does not have property

B.

We shall first observe that G has property B. The cyclic subgroups of G

generated by x, xy and xy2 are of order 4. Clearly x has order 4. Note that

(xy)2 = xyxy = x2x−1yxy = x2y−1y = x2 6= 1,

and

(xy)4 =
(
x2
)2

= x4 = 1,

so xy is of order 4. Also note that

(
xy2
)2

= xyyxyy = xyxx−1yxyy = xyxy−1yy = xyxy = (xy)2 = x2 6= 1,

and (
xy2
)4

=
(
x2
)2

= x4 = 1,

so xy2 is of order 4. These subgroups of order 4 are maximal as they have

index 3, as is the cyclic subgroup of order 6 generated by x2y. These are in

fact the only maximal subgroups and so the Frattini subgroup of G is the

intersection of them which is 〈x2〉. By Lemma 3.1.1, G has property B if

and only if G/Φ (G) has property B. In this case

G/Φ (G) = G/〈x2〉 = 〈x, y | x2 = 1, y3 = 1, x−1yx = y−1〉 = C3 o C2
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which is isomorphic to the symmetric group on three points. As we saw

earlier in Example 3.1.4, S3 has property B and thus so does G. Hence G is

a group with property B with a subgroup that does not have property B.

Lemma 3.1.1 shows that the Frattini quotient of a group G has property

B if and only if G has property B. However it is not as simple a proof to

show that all quotients of a group of property B also have property B. If we

impose restrictions on the structure of G and a minimal normal subgroup

of G, we can force property B to transfer to quotients.

Lemma 3.2.2. If G is a group with property B and G splits over a normal

subgroup M , then G/M has property B.

Proof. Let Q be a complement of M so Q ∼= G/M . Pick elements x1, . . . , xd

with d minimal such that 〈x1, . . . , xd〉Q = M . Now G is generated by A =

{x1, . . . , xd, y1, . . . , yk}, where {y1, . . . , yk} is a minimal generating set for

Q. We now show that A is a minimal generating set for G. If we removed

one of the yj we would no longer generate Q, as the yj form a minimal

generating set for Q. The choice of the xi and the minimality of d ensures

we cannot remove any of the xi otherwise we would not generate M , and

thus A is a minimal generating set for G. Since G has property B all minimal

generating sets for G are of size d + k. Since d is fixed this forces k to be

uniquely determined and thus Q has property B.

Proposition 3.2.3. If G is a group with property B and M is an abelian

minimal normal subgroup of G, then G/M has property B.

Proof. If G splits over M then G/M has property B by Lemma 3.2.2. As-

sume G does not split over M and let Q be G/M . Let x1, x2, . . . , xd be
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elements of G such that A = {Mx1,Mx2, . . . ,Mxd} is a minimal generating

set for Q and let X = 〈x1, x2, . . . , xd〉. Then G = MX and M ∩X 6= 1 since

our extension does not split. Now pick a non-identity element y ∈ M ∩X

and form the normal closure 〈y〉X . Since M is abelian 〈y〉X = 〈y〉MX =

〈y〉G = M ; thus M is contained in X and hence G = MX = X. It follows

that {x1, x2, . . . , xd} is a generating set for G and it is necessarily minimal

from our original assumption. Now G has property B and so d(G) = d.

Since we took A to be arbitrary all minimal generating sets of Q are of the

same size. Hence Q has property B with d(Q) = d(G).

From this we can establish the following corollary.

Corollary 3.2.4. If G is a soluble group with property B then any quotient

G/N also has property B.

Proof. Assume G is soluble and has property B. We proceed by induction

on the order of G. Clearly if G is the trivial group then any quotient G/N

has property B, so assume the result holds for soluble groups of order less

than the order of G. Now let M be a minimal normal subgroup of G such

that M is a subgroup of N . Note that since G is soluble M is elementary

abelian. By the Third Isomorphism Theorem we have that,

G/N ∼=
G/M

N/M
,

and by Proposition 3.2.3 we have that G/M has property B. By induction

the quotient of G/M by N/M has property B and thus G/N has property

B.

It is not straightforward to show that property B is inherited by quotients

of insoluble groups. The proof of this would probably require heavy use of
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the Classification of Finite Simple Groups. A first step would be to verify

that no almost simple group has property B. We observe in the following

that no non-abelian simple group has property B.

Example 3.2.5. If G is a non-abelian simple group then G does not have

property B.

Proof. It is well known that ifG is a non-abelian simple group then d(G) = 2.

In fact much more is true, for example Guralnick–Kantor [4] showed that

given any non-trivial element of a non-abelian simple group G, one can find

another element of G such that the two generate G. Now let T be the set

of all elements of order 2. Now 〈T 〉 = G since 〈T 〉 is normal in G. Choose

a minimal subset T0 of T such that 〈T0〉 = G. We now show that the

size of T0 is greater than two. If x, y ∈ T0 have order 2 and a = xy then

x−1ax = yx = (xy)−1 ∈ 〈a〉 and y−1ay = y−1ay2 = yx = (xy)−1 ∈ 〈a〉.

Thus 〈a〉 is normal in 〈x, y〉 and so 〈x, y〉 = 〈a, x〉. This is a dihedral group,

as from above, x−1ax = a−1 gives us the required form, hence T0 must be of

size three or greater. Thus we have two minimal generating sets of different

size and so G does not have property B.

From Proposition 3.1.5 we also know that symmetric groups on n points

for n ≥ 4 do not have property B. In view of this it would be surprising

that insoluble groups have property B.

3.3 Products of Groups with Property B

In this section we demonstrate how property B relates to direct products of

groups. In particular we provide evidence to support our belief that groups

40



with property B are rare. Our theorem in this section shows that those

groups with property B that arise from direct products are precisely those

that are provided by the Burnside Basis Theorem.

Theorem 3.3.1. The group G×H has property B if and only if G×H is

a p-group.

Proof. If G×H is a p-group then it has property B by the Burnside Basis

Theorem. It remains to show that if G × H has property B then it is a

p-group. Assume G × H has property B and let A = {a1, a2, . . . ad} and

B = {b1, b2, . . . , be} be any two minimal generating sets for G and H respec-

tively. Now the set C = {(a1, 1) , . . . , (ad, 1) , (1, b1) , . . . , (1, be)} minimally

generates G×H since removing any element would stop us generating one

of the direct factors. This implies d(G×H) = d+ e. It follows that G must

have property B, with d(G) = d, since if G has two generating sets of size d

and d′ respectively then d(G×H) = d+ e = d′+ e and hence d′ must equal

d. Similarly one can see H must have property B also and d(H) = e.

Now let X be any generating set for G. Using the well known isomor-

phism Cmn ∼= Cm × Cn (m,n co-prime, Lemma 3.1.2) we construct from

X a generating set X? for G consisting of elements of prime-power order.

This is done by replacing any element x of order n = pi11 p
i2
2 · · · p

ik
k with the

k elements xrj where rj = n/pikj (for j = 1, . . . , k). Then, as G has property

B, we can find X ′ ⊆ X? such that X ′ is a minimal generating set for G

of size d. In the same way if Y is a generating set for H we can produce

a minimal generating set Y ′ for H of size e consisting only of elements of

prime-power order. Take A = X ′ and B = Y ′ in the previous paragraph to

produce a minimal generating set C for G×H of size d+ e. If a ∈ X ′ and
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b ∈ Y ′ were to have co-prime order then we could replace (a, 1) and (1, b)

by (a, b) and hence we would be able to produce a generating set for G×H

of size smaller than d + e. Therefore there is a prime p such that every

element in X ′ and every element in Y ′ has p-power order. Moreover if we

chose a different generating set for G, say X1, but the same generating set

Y for H the same argument would show that Y ′ and thus X ′1 would contain

no elements of co-prime order. However we have already shown that Y ′ is

generated by elements of p-power order and so the same must be true of X ′1.

Thus p does not depend on the choice of X. A similar argument shows p

does not depend on the choice of Y .

We now show that G is a p-group. Suppose there exists a prime q 6= p

that divides the order of G. Let x be any element of q-power order and

let Z ⊆ X be such that X = {x} ∪ Z generates G. Applying the method

of the previous paragraph we construct the set X? = {x} ∪ Z?. Note that

since x is of q-power order it must be contained in X?. Now X? contains a

subset X ′ that generates G minimally and consists of elements of p-power

order. Therefore x /∈ X ′ which implies that X ′ = Z ′ and it follows that

Z? and hence Z generate G. Thus x is a non-generator of G and so is

contained in the Frattini subgroup. Therefore any Sylow q-subgroup of G

(q 6= p) is contained in the Frattini subgroup. So G/Φ (G) is a p-group

and PΦ (G) /Φ (G) is the Sylow p-subgroup of G/Φ (P ) if P is a Sylow p-

subgroup of G. So G = 〈P,Φ (G)〉 but Φ (G) is the set of non-generators and

thus G = P . Similarly H is a p-group and hence G×H is a p-group.
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Chapter 4

A Standard Construction of

Groups with Property B

In this chapter we seek to construct a class of groups with property B. We

have already seen that dihedral groups of order 2pn, for prime-powers pn,

have property B and in fact closely resemble the groups studied by Scapellato

and Verardi 1.1.4. All of these dihedral groups with property B have the

structure

Cpn o C2,

where the cyclic group of order two acts by inversion. It is no surprise that

the class of groups we construct are of a generalised form of the dihedral

groups P o Q where P is a p-group and Q a cyclic q-group. We begin by

showing that certain groups of the form

(Cp × · · · × Cp)︸ ︷︷ ︸
n times

oCqm ,
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where qm is a prime-power which divides pn−1, have property B and trivial

Frattini subgroup. In the definition of these groups we show how the action

of the complement on the normal subgroup is defined in terms of field mul-

tiplication. We then classify all groups G for which G/Φ (G) has this form.

Lemma 3.1.1 tells us that all such G must have property B.

In Section 4.1 we construct our class of groups and show that they have

both property B and trivial Frattini subgroup. In the following Section

we then seek to generalise results from [10] to obtain detailed information

on the structure of groups in which the Frattini quotient is isomorphic to

our constructed examples. Finally we look at some examples of groups

constructed with the forms described in the previous two sections, focusing

on previous examples looked at in Chapter 3.

4.1 Setting up the Construction

We first take two prime numbers p and q such that qm divides pn − 1 for

n,m ∈ N (note here that N does not include 0). Taking the field Fpn , we

define V to be the additive group of Fpn and let H be the unique cyclic

group of order qm embedded in the multiplicative group of Fpn . We take

a mapping φ from H into the automorphism group of V such that the

image of h ∈ H under φ is the mapping αh : v 7→ vh. Given v, w ∈ V we

can see that (v + w)αh = (v + w)h, which by the distributive law of V is

vh + wh = vαh + wαh, and so αh is a homomorphism. Since αh is clearly

a mapping from V to V , and is invertible since vhh−1 = v, we can see it is

an automorphism. The maps (h1h2)φ and (h1φ)(h2φ) are equal since they

both send v to vh1h2 by the associativity of multiplication in Fpn , and so φ
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is a homomorphism. Hence we can form the semidirect product G of V by

H, denoted as usual by G = V oφ H, where H acts on V by multiplication

in Fpn . We denote elements of the semidirect product as pairs.

By definition V is an elementary abelian p-group and so can be viewed

as a vector space over the field Fp. This means we can view φ as a linear

representation from H into the group of invertible n × n matrices under

multiplication modulo p

φ : H −→ Aut(V ) = GL (V ) = GL (n, p) .

Let R denote the group algebra FpH. So φ induces upon V the structure of

an R-module. Since the characteristic p of our field is co-prime to the order

of the group H, we can apply Maschke’s Theorem 2.2.3. This gives us that

viewed as an R-module V is a direct sum of k irreducible R-submodules

V1 ⊕ · · · ⊕ Vk. Now since each Vi is irreducible it is generated as an R-

module by a single element vi, and thus V is generated as an R-module by

k elements.

Let H = 〈x〉, then elements of the group algebra R have the form∑qm−1
j=0 λjx

j , where the λj are elements of the field Fp. So elements of

Vi have the form

vi

qm−1∑
j=0

λjx
j

 =

qm−1∑
j=0

λjvi
(
xjφ
)

=

qm−1∑
j=0

λjvix
j ,

this being an evaluation of sums and products in Fpn . The module action

of H on V corresponds to conjugation in the semidirect product and hence

Vi is contained in the subgroup of G generated by vi and x. Thus G is

generated by the set {(v1, 1) , (v2, 1) , . . . , (vk, 1) , (0, x)}. We now show this
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generating set is minimal. The subgroup

〈(v1, 1) , . . . , (vi−1, 1) , (vi+1, 1) , . . . , (vk, 1) , (0, x)〉,

is contained in the subgroup (V1 ⊕ . . . Vi−1 ⊕ Vi+1 · · · ⊕ Vk)oH, while if we

remove (0, x) we generate only a subgroup of V . Thus we have proved:

Lemma 4.1.1. Let G be a group of the form V oφ H where H acts on V

by multiplication in the field Fpn, then G is minimally generated by a set

containing k + 1 elements.

The elements in this minimal generating set are of either order p or of

q power order. If there existed elements of order pqi in these groups then

it could be possible to form a smaller minimal generating set. Since we are

establishing a group with property B the following lemma is a helpful result.

Lemma 4.1.2. If G is a group of the form V oφH, where H acts on V by

multiplication in the field Fpn, then G contains no elements of order pqi for

any i ≥ 1.

Proof. By construction the conjugation of (v, 1) by (0, h) is simply (vh, 1).

Thus our semidirect product multiplication is (v, h) (w, k) =
(
v + wh−1, hk

)
,

as is standard. As (v, 1) lies in V it clearly is an element of order p. Similarly

(1, h) is an element of H and so has q power order. Hence if G contained

any elements of order pqi then they would be of the form (v, h) where h is

not the identity.

Claim: (v, h)n =
(
v + vh−1 + vh−2 + · · ·+ vh−(n−1), hn

)
.

Taking a base case of (v, h)2 it is clear to see from our defined multiplication
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this is
(
v + vh−1, h2

)
. Proceeding inductively we assume that

(v, h)i =
(
v + vh−1 + vh−2 + · · ·+ vh−(i−1), hi

)
,

and so

(v, h)i+1 =
(
v + vh−1 + vh−2 + · · ·+ vh−(i−1), hi

)
(v, h) ,

=
((
v + vh−1 + vh−2 + · · ·+ vh−(i−1)

)
+ vh−i, hih

)
,

=
(
v + vh−1 + vh−2 + · · ·+ vh−(i−1) + vh−i, hi+1

)
.

Hence the induction holds.

Claim: (v, h)q
m

is trivial.

By our first claim (v, h)q
m

is
(
v + vh−1 + vh−2 + · · ·+ vh−(qm−1), hq

m)
. The

first entry is v multiplied by the geometric sum
∑qm−1

i=0 h−i =
∑qm−1

i=0 (1/h)i.

Evaluating this geometric sum using standard techniques gives

qm−1∑
i=0

(1/h)i =
(1/h)q

m

− 1

1/h− 1
.

Since h is a non-trivial element of a group of order qm, this sum is zero.

Hence (v, h)q
m

is equal to (0, 1) which is the identity element in G, thus an

element of the form (v, h) has q power order.

We know that V is a direct sum of irreducible submodules by Maschke’s

Theorem. In fact we can see that any submodule vR of V is irreducible.

Lemma 4.1.3. Let v, w ∈ V with v, w both non-zero, then vR ∼= wR. In

particular all vR are irreducible for all v ∈ V .

Proof. If v is a non-zero element of V , define θv : R→ vR by r 7→ vr. Since

V is the additive group of our field Fpn , the kernel of θv consists of those
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elements r =
∑

h∈H λhh in R such that the sum
∑

h∈H λhh equals 0 when

evaluated in Fpn . In particular θv is independent of the choice of v. Hence

if v and w are two non-zero elements of V , then ker θv = ker θw, so by the

First Isomorphism Theorem vR ∼= R/ ker θv = R/ ker θw ∼= wR.

Given that all submodules vR of V are isomorphic to each other to show

they are all irreducible we need only show that there exists one vR that is

irreducible. As V is a direct sum of irreducible submodules, it has at least

one irreducible submodule U . Lemma 2.2.2 says U is cyclic, say U = wR.

The first part of this lemma says vR ∼= wR, so vR is also irreducible.

Theorem 4.1.4. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm. Define G

to be the semidirect product V oφH where H acts on V by multiplication in

Fpn. Then:

(i) G has property B,

(ii) d(G) = k + 1 where V is a direct sum of k irreducible FpH-modules,

(iii) Φ (G) is trivial.

Proof. We retain the notation already established in this section. By Lemma

4.1.1 we know that G is minimally generated by k + 1 elements. Let A be

an arbitrary generating set for G, we show that A possesses a subset of size

k + 1 that generates G. Parts (i) and (ii) follow from this observation.

Claim: There exists some a1 in A such that H = 〈a1π〉 where π : G→ H

is the projection map such that kerπ = V .

Define π : G→ H to be the projection map such that the kernel of π is V .
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Then Aπ generates H since A is a generating set for G. The group H is

cyclic of prime-power order and so there exists an element a1 in A such that

H = 〈a1π〉.

Claim: We can construct wi ∈ V from the elements of A such that A′ =

{a1, w1, . . . , wl} generates G.

By Lemma 4.1.2 there are no elements of order pqi in G and so a1 is of order

qm since |H| = qm. Hence all other elements of A are of the form a = waj1

where w ∈ V , j ≥ 0 with j = j(a) depending on the choice of a. Thus

aa−j1 = w is an element of V and so is of order p. Now let w1, . . . , wl be the

collection of all such aa
−j(a)
1 and we define A′ to be the set {a1, w1, . . . , wl}.

This is a generating set for G by construction.

Claim: V = W =
∑l

i=1wiR.

Let W =
∑l

i=1wiR be the submodule of V generated by the wi. The

intersection V ∩〈a1〉 is trivial since the order of a1 is qm and V is a p-group.

Since A is a generating set for G it follows that G = W 〈a1〉. Now

W = W (V ∩ 〈a1〉) ,

= V ∩W 〈a1〉 (by Dedekind’s Modular Law)

= V ∩G,

= V.

Claim: V is a direct sum of exactly k summands wiR.

By the proof of Lemma 2.2.4, W is the direct sum of some of the distinct

wiR. Since V is the direct sum of k isomorphic irreducible submodules

by the Krull–Schmidt Theorem (Theorem 2.2.5), W must be of the same
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form. Thus V is the direct sum of k isomorphic irreducible submodules

wi1R,wi2R, . . . , wikR. Hence there exists a subset {wi1 , wi2 , . . . , wik , a1} of

A′ of size k+ 1 that generates G. By taking the k elements of A of the form

a = wia
j
1 for each wi ∈ A′ we create a subset of A of size k+1 that generates

G. Thus G has property B with d(G) = k + 1.

It now remains to prove that Φ (G) is trivial.

Claim: (V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vk)oH are maximal subgroups of

G and Φ (G) 6 H.

We can see that the Ki = (V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vk) oH is a sub-

group of G since V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vk is a submodule of V and

so inherits the field multiplication action of H. This subgroup is in fact

maximal as any non-trivial element of G not contained in Ki generates Vi

as a module under the action of H. The intersection of all such Ki is clearly

H and so Φ (G) 6 H.

Claim: No non-trivial subgroup of H is normal in G.

Let (0, h) be any element of H and (v, 1) be any element of V with v 6=

0. If (0, h) was in a non-trivial subgroup of H that was normal in G

then the conjugate of (0, h) by (v, 1) would also lie in H. The conju-

gate (0, h)(v,1) = (−v, 1)(0, h)(v, 1) = (−v, h)(v, 1) since we work addi-

tively in V . By the multiplication we defined for semidirect products this is

(−v, h)(v, 1) =
(
−v + vh−1, h

)
. Thus if (0, h)(v,1) lies in H then −v + vh−1

must be 0. So v = vh−1 and under the field multiplication this implies h = 1

as v 6= 0. Hence no non-trivial element of H conjugates back into H.

Now Φ (G) 6 H and Φ (G) CG so by our previous claim Φ (G) = 1.
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Actually the group that we have constructed is a Frobenius group.

Lemma 4.1.5. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm. Define G

to be the semidirect product V oφH where H acts on V by multiplication in

Fpn. Then G is a Frobenius group.

Proof. A group G is a Frobenius group if it contains a non-trivial proper

subgroup K such that K ∩Kg is trivial for all g ∈ G\K. We seek to show

that H is such a subgroup. Let v 6= 0 and k, h 6= 1 such that (v, k) is any

element in G\H and (0, h) is any non-trivial element of H. Then (0, h)(v,k) =(
−vk, k−1

)
(0, h)(v, k) as we work additively in V and multiplicatively in H.

By the multiplication we defined for semidrect products this is

(
−vk, k−1

)
(0, h)(v, k) =

(
−vk, k−1h

)
(v, k)

=
(
−vk + v

(
k−1h

)−1
, k−1hk

)
=

(
−vk + vh−1k, h

)
.

Thus if (0, h)(v,k) lies in H then −vk + vh−1k must be zero and so vk =

vh−1k. Now since v 6= 0 then k = h−1k and thus h−1 = h = 1. Thus no

non-trivial element of H conjugates back to H and thus H ∩H(v,k) = 1 for

(v, k) /∈ H. Therefore G is a Frobenius group.

In Lemma 4.1.3 we established the structure of the irreducible submod-

ules of V . We can show that these submodules actually construct groups of

the form described in Theorem 4.1.4.

Lemma 4.1.6. (i) There is a unique finite field of characteristic p gener-

ated by a subgroup of order qm of its multiplicative group, namely the
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field Fpr where r is minimal such that Fpr has a multiplicative subgroup

of order qm.

(ii) Any irreducible submodule of V is isomorphic to the additive group of

Fpr (r as in (i)) viewed as an R-module via the field multiplication in

Fpr .

Proof. (i) Given the minimality of r, if H is a multiplicative subgroup of

Fpr of order qm then the field generated by H must be Fpr . Let K and L

be two finite fields of characteristic p generated by multiplicative subgroups

of order qm. Now there exists a finite field F that contains both K and L.

However the subgroup of order qm embedded in the multiplicative group of

F is unique, and thus K and L are generated by the same subgroup and are

equal.

(ii) As in Lemma 4.1.3 let v be a non-zero element of V and let θv be

the homomorphism from R to vR. Since R is commutative the kernel of θv

is a maximal ideal of R. Thus the structure of R/ ker θv is that of a field. If

h is contained in the intersection of H and 1 + ker θv then v(h − 1) = 0 in

the field Fpn . Thus H ∩ (1 + ker θv) = 1 and therefore (H − 1) ∩ ker θv = 0.

So, for h1,h2 ∈ H, if h1θv = h2θv, then h1 = h2. Thus H embeds in the

multiplicative group of R/ ker θv. As H generates R it then follows that

the image of H in R/ ker θv generates R/ ker θv and so by part (i) R/ ker θv

is isomorphic to Fpr . If an element of the additive group of R/ ker θv is

given by ker θv + s then an element h ∈ H acts by multiplication such

that (ker θv + s)h = ker θv + sh = (ker θv + s)(ker θv + h). Therefore vR is

isomorphic to R/ ker θv, where R/ ker θv is viewed as an R-module via the

field multiplication in R/ ker θv.

52



4.2 Quotients by the Frattini Subgroup

We know from Lemma 3.1.1 that if any group has property B then the

quotient of the group by its Frattini subgroup also has property B. In this

section we provide a description of the structure of a group G in which the

quotient G/Φ (G) is isomorphic to the group constructed in Section 4.1. We

also outline the structure of the Frattini subgroup of such a group G.

Theorem 4.2.1. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm. Let G be

any group such that G/Φ (G) is isomorphic to the semidirect product V oφH

where H acts on V via the multiplication in Fpn. Then:

(i) G has a unique Sylow p-subgroup P ,

(ii) G is the semidirect product of P by Q for any Sylow q-subgroup Q and

all Sylow q-subgroups of G are cyclic,

(iii) Φ (G) = Φ (P ) × 〈xqm〉 where 〈xqm〉 is the subgroup of index qm in

Q = 〈x〉. In fact xq
m

lies in the centre of G.

Proof. (i) Let P be a Sylow p-subgroup of G. Then the quotient of PΦ (G)

by Φ (G) is a Sylow p-subgroup of G/Φ (G) and PΦ (G) /Φ (G) is normal in

G/Φ (G), by our hypothesis. This implies that PΦ (G) is normal in G by

the Correspondence Theorem and since PΦ (G) E G the Sylow p-subgroup

of PΦ (G) is PΦ (G)∩P = P . The Frattini Argument (Lemma 2.1.3) states

that if N is a normal subgroup of G with Sylow p-subgroup P then G =

NG(P )N . Applying this to PΦ (G) gives us thatG is equal toNG(P )PΦ (G).

Clearly P is contained in its own normaliser and so G is in fact equal to
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NG(P )Φ (G). Since Φ (G) is the set of non-generators of G we have that

G = NG(P ) and thus P is normal in G. Hence P is the unique Sylow

p-subgroup.

(ii) Let Q be a Sylow q-subgroup.

Claim: G is the semidirect product P oQ.

Our hypothesis on G/Φ (G) ensures that G = PQΦ (G) and since P is

normal, PQ is a subgroup of G. Now Φ (G) is the set of non-generators and

so G = PQ. Since P and Q are Sylow subgroups for different primes their

intersection is trivial and so G = P oQ.

Consider the quotient group Ḡ = G/ (P ∩ Φ (G)), where we use bar

notation for images of subgroups in G.

Claim: Φ
(
Ḡ
)
6 Q̄.

The quotient Ḡ has maximal subgroups in bijection with those of G, as the

maximal subgroups of G always contain P ∩ Φ (G), and so we apply the

Correspondence Theorem. Thus we observe that Φ
(
Ḡ
)

= Φ (G). Apply-

ing the Third Isomorphism Theorem we see that G/Φ (G) is isomorphic to

Ḡ/Φ
(
Ḡ
)
. Therefore Ḡ satisfies the hypothesis of the theorem. Hence the

Sylow p-subgroup of Φ
(
Ḡ
)

is

P

P ∩ Φ (G)
∩ Φ (G)

P ∩ Φ (G)
=

P

P ∩ Φ (G)
∩ Φ

(
Ḡ
)
,

which is trivial. This ensures that Φ
(
Ḡ
)

is a q-group and so Φ
(
Ḡ
)
6 Q̄.

Claim: Φ
(
Ḡ
)

is contained in every maximal subgroup of Q̄ and so Φ
(
Ḡ
)
6

Φ
(
Q̄
)
.

Let W be a maximal subgroup of Q. Then PW is maximal in G and
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thus Φ (G) 6 PW with W a Sylow q-subgroup of PW . Passing into the

quotient group we can see that Φ
(
Ḡ
)
6 PW and W̄ is a Sylow q-subgroup

of PW as W is a Sylow q-subgroup of PW . Since Φ
(
Ḡ
)

is a q-group then

Φ
(
Ḡ
)
6 W̄ . Now W̄ is an arbitrary maximal subgroup of Q̄ (since W is an

arbitrary maximal subgroup of Q) and so Φ
(
Ḡ
)
6 Φ

(
Q̄
)
.

Claim: Q̄/Φ
(
Q̄
)

is cyclic.

We have

Q̄ =
Q (P ∩ Φ (G))

P ∩ Φ (G)
and Φ

(
Ḡ
)

=
Φ (G)

P ∩ Φ (G)
,

and so

Q̄

Φ
(
Ḡ
) ∼= Q (P ∩ Φ (G))

Φ (G)
=
QΦ (G)

Φ (G)
.

By our hypothesis Q̄/Φ
(
Ḡ
)

is cyclic and by the Third Isomorphism Theorem

Q̄

Φ
(
Q̄
) =

Q̄/Φ
(
Ḡ
)

Φ
(
Q̄
)
/Φ
(
Ḡ
) ,

so Q̄/Φ
(
Q̄
)

is cyclic as it is the quotient of a cyclic group.

Claim: Q̄ and Q are cyclic.

Now Q̄ = 〈x,Φ
(
Q̄
)
〉 for some x, then as the Frattini subgroup is the set of

non-generators, Q̄ = 〈x〉 and so is cyclic. We know that

Q̄ =
Q (P ∩ Φ (G))

P ∩ Φ (G)
,

and since Q and P ∩ Φ (G) intersect trivially Q̄ ∼= Q and so Q is cyclic.

(iii) We begin by proving the following claim.

Claim: G/Φ (P ) ∼= P/Φ (P ) o (QΦ (P )) /Φ (P ).

Note that the Frattini subgroup of P is characteristic in P . Since P is
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normal in G, Φ (P ) EG and we have

G/Φ (P ) =
P oQ

Φ (P )
∼=

P

Φ (P )
o
QΦ (P )

Φ (P )
.

Claim: P/Φ (P ) can be viewed as an FpQ-module and is a direct sum of

irreducible submodules.

By the Second Isomorphism Theorem

QΦ (P )

Φ (P )
∼=

Q

Q ∩ Φ (P )
∼= Q,

and so

G/Φ (P ) ∼=
P

Φ (P )
oQ,

where Q inherits its action on P/Φ (P ) from its action on P . By Maschke’s

Theorem, P/Φ (P ) is a sum of irreducible FpQ-modules, say V1 ⊕ · · · ⊕ Vs.

Claim: Φ (P ) = Φ (G) ∩ P .

Similarly to the proof of Theorem 4.1.4 part (iii) define M?
i to be the max-

imal subgroup

M?
i = (V1 ⊕ · · · ⊕ Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vs) oQ,

of P/Φ (P ). Now M?
i corresponds to a subgroup Mi of G and the Correspon-

dence Theorem forces Mi to be maximal, so we can write M?
i = Mi/Φ (P ).

By construction the intersection of all M?
i with P/Φ (P ) is trivial and

hence
⋂s
i=1 (Mi ∩ P ) = Φ (P ). Since Φ (G) is contained within all the Mi

then Φ (G) ∩ P 6 Φ (P ). By the original hypothesis PΦ (G) /Φ (G) ∼=

P/ (Φ (G) ∩ P ) is an elementary abelian p-group. Using Burnside’s Ba-

sis Theorem (1.1.1) we have that Φ (P ) = P pP ′ 6 Φ (G) ∩ P . Hence

Φ (P ) = Φ (G) ∩ P , and since Φ (G) ∩ P is normal in G, Φ (P ) E Φ (G)

follows immediately.
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Claim:
[
P,Φ (P ) 〈xqm〉

]
6 Φ (P ).

Since G is the semidirect product of P and Q, we define θ : Q → Aut(P )

to be the homomorphism determined by the action of Q on P . There now

exist two natural mappings π1 : G→ G/Φ (P ) and π2 : G/Φ (P )→ G/Φ (G)

since Φ (P ) is contained within Φ (G). We showed previously that

G/Φ (P ) ∼= P/Φ (P ) oQ,

and we note here that

G/Φ (G) ∼= P/Φ (P ) oQ/〈xqm〉.

So the kernel of the mapping π2 is 〈xqm〉Φ (P ) /Φ (P ). By the First Isomor-

phism Theorem kerπ2 is normal in G/Φ (P ) and so by the Correspondence

Theorem 〈xqm〉Φ (P ) is a normal subgroup of G. Hence

[
P, 〈xqm〉Φ (P )

]
6 P ∩ 〈xqm〉Φ (P ) 6

(
P ∩ 〈xqm〉

)
Φ (P ) = Φ (P ) .

Claim: 〈xqm〉 commutes with P .

From the previous claim we can note that 〈xqm〉 commutes with P modulo

Φ (P ). Hence 〈xqm〉θ 6 CAut(P ) (P/Φ (P )). By a theorem of Philip Hall

(see 2.1.8) this centraliser is a p-group so 〈xqm〉 is contained in the kernel

of θ. Thus 〈xqm〉 commutes not just with Φ (P ) but with P and Φ (G) =

Φ (P ) × 〈xqm〉. So 〈xqm〉 commutes with P and obviously commutes with

Q = 〈x〉 and therefore xq
m

lies in the centre of PQ which is the centre of

G.
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4.3 Examples of Groups of the Constructed Form

We now look at a few examples of groups that have the form as previously

described. We begin by looking at a re-working of Example 3.1.4.

Example 4.3.1. The symmetric group on 3 points, S3
∼= C3 o C2 has

property B and is a group of the form described in Theorem 4.1.4.

Proof. From Example 3.1.4 we know that S3 has property B and so it re-

mains to show it is of the desired form. Take V = {0, 1, 2} to be the additive

group of the field F3 and H = {1, 2} the multiplicative group of F3. Clearly

V ∼= C3 and H ∼= C2. Using the homomorphism φ : H → Aut(V ), as we

constructed, if v ∈ V then 1φ = α1 : v 7→ v and 2φ = α2 : v 7→ 2v under the

field multiplication from F3. Forming the semidirect product G = V oφ H,

under the action of φ, and our semigroup multiplication, we observe that G

is not abelian and so we can deduce it must be be isomorphic to S3.

We now look at how a class of groups all fit the forms constructed in

the previous sections. In Chapter 3 Proposition 3.1.6 told us that dihedral

groups of order 2p, where p is an odd prime, have property B. We now inves-

tigate how these dihedral groups relate to the forms described in Theorems

4.1.4 and 4.2.1.

Proposition 4.3.2. Dihedral groups of order 2p for some odd prime p are

of the form described in Theorem 4.1.4 being isomorphic to Cp o C2.

Proof. It is well known that the dihedral group Dp is isomorphic to CpoC2

where the cyclic group of order two acts by inversion. Also note that Cp is

isomorphic to the additive group of Fp. The field multiplication action of a

58



unique subgroup of order two embedded in the multiplicative group of Fp is

the same as the inversion action of the C2. This is because when p is odd

the element of order two in the multiplicative group of the field F?p is −1.

Now (−1)2 = 1 and since p is not two −1 is not equal to 1 modulo p. Note

that, in the notation of our constuction, v ((−1) θ) = −v is the inverse of v

in Fp viewed as an additive group. Thus Dp has the form as described in

Theorem 4.1.4.

Following on from Proposition 3.1.6 we explained that a dihedral group

of order 2pn has Frattini quotient isomorphic to Dp and thus by Lemma 3.1.1

Dpn has property B. Therefore we can see that Dpn satisfies the hypothesis

of Theorem 4.2.1.

Proposition 4.3.3. Dihedral groups of order 2pn, for some odd prime p,

are of the form described in Theorem 4.2.1.

Proof. From the proof of Corollary 3.1.7 we saw that the quotient of Dpn

by its Frattini subgroup is isomorphic to Dp which from above is Cp o C2

and is constructed via multiplication in the field Fp. Thus Dpn satisfies the

hypothesis of Theorem 4.2.1.
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Chapter 5

Classifying Groups with the

Basis Property

A group G is said to have the basis property if all subgroups of G have

property B. In this chapter we provide some examples of groups with the

basis property and then establish some results that hold for all groups with

the basis property. We finish by providing a classification of all groups with

the basis property and showing how this links in with the matroid groups

classified by Scapellato and Verardi [10].

5.1 An Introduction to Groups with the Basis Prop-

erty

We know that a p-group has property B from our previous work. Since

a subgroup of a p-group is itself a p-group we can conclude that all p-

groups have the basis property. In fact we can generalise this slightly to
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say that any group with property B and only p-groups as subgroups has the

basis property. As a consequence, the smallest non-p-group with the basis

property is the symmetric group on 3 points. As we have shown previously

this has property B and subgroups isomorphic to C3, C2 and the trivial

subgroup. We now provide an example of a class of groups that have the

basis property.

Example 5.1.1. If p is a prime then the dihedral group of order 2pn, Dpn,

has the basis property.

Proof. If Dpn is a p-group then it has the basis property as observed above.

So assume that Dpn is not a p-group, i.e. that p 6= 2. Thus Dpn has the form

P o 〈b〉 where P is a p-group and 〈b〉 is a subgroup of order 2. Let H be

a subgroup of Dpn . First note that H ∩ P is normal in H and isomorphic

to a cyclic group of order of a power of p. Now let π be the mapping from

Dpn to 〈b〉. The kernel of this mapping is P and so Hπ is either trivial or

〈b〉. If Hπ = 1 then H = H ∩P and so is a cyclic p-group. So let Hπ = 〈b〉.

Now H has a Sylow 2-subgroup so let h be a non-trivial element of H in this

Sylow 2-subgroup. Since Dpn is not a p-group then its Sylow 2-subgroup

is 〈b〉 and so hπ = b. Thus H = (H ∩ P ) 〈h〉 = (H ∩ P ) o 〈h〉 and h acts

by inversion. Therefore H is isomorphic to a dihedral group of order 2pm

(m ≤ n) or H is isomorphic to C2 if H ∩P is trivial. Thus any subgroup of

a dihedral group of order 2pn is either a smaller dihedral group of the same

form or cyclic of prime-power order. Hence Dpn has the basis property.

Of course not all groups with property B have the basis property.

Example 5.1.2. Let G = (C2 × C2) oφ C9 where φ is the composition of
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the natural map from C9 into C3 and the mapping of C3 into the unique

subgroup of order three into Aut(C2×C2) = S3. Then G has property B but

not the basis property.

Proof. Note that φ is the composite of the natural map from C9 into C3 and

the homomorphism that occurs in our construction via field multiplication,

specifically the homomorphism C3 7→ Aut(C2 × C2) coming from our con-

struction via the multiplication in the field F4. Then kerφ is isomorphic to

the cyclic group of order 3 and so kerφ is the unique subgroup of order 3 in

G. Now let M be a maximal subgroup of G that does not contain kerφ. As

M is maximal in G then G is in fact equal to M kerφ, with the intersection

of M and the kernel trivial, as kerφ is a minimal normal subgroup. Thus G

is equal to kerφoM , but this contradicts kerφ being the unique subgroup

of order 3. This follows as M has a subgroup of order 3 by Sylow’s Theorem.

Thus kerφ is contained in every maximal subgroup of G and so is contained

in the Frattini subgroup of G. However, the quotient of G by kerφ is con-

structed by field multiplication in F4 and has trivial Frattini subgroup by

Theorem 4.2.1 part (iii); thus G/Φ (G) has property B, and so by Lemma

3.1.1 so does G. However G does not have the basis property, as it contains

the subgroup C2 × C2 × kerφ isomorphic to C2 × C2 × C3.

5.2 Properties of Groups with the Basis Property

The examples of groups with the basis property so far have all been con-

structed from elements of prime-power order. This is true for all groups

with the basis property, a result which is shown in Jones [7].
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Lemma 5.2.1. If G is a group with the basis property then G consists of

elements of prime-power order.

Proof. Let G be a group with the basis property and suppose that x is an

element of G not of prime-power order. Since G has the basis property

then all subgroups of G must have property B. However the subgroup 〈x〉

of G does not have property B, as it is isomorphic to a cyclic group of

non-prime-power order. Hence no element of G can be of non-prime-power

order.

In our previous chapter we showed that non-abelian simple groups do not

have property B. Clearly this implies that a group with the basis property

contains no non-abelian simple subgroups. This result coupled with the

previous lemma gives us the following result.

Lemma 5.2.2. If G is a group with the basis property then G is soluble.

Proof. Let G be a minimal counter example by order. Since G contains no

non-abelian simple subgroups, G is not simple. Let M be a minimal normal

subgroup of G. If H is a proper subgroup of G, then it has the basis property

and so is soluble by the assumption on G. Hence H/M has property B by

Corollary 3.2.4. Hence G/M and M have the basis property and so by the

assumption on G are soluble. This implies G is simple, a contradiction.

This result is also available in Jones [7]. The major difference between

the proof in Jones and ours is that when proving G cannot be simple he

does not use the Classification of Finite Simple Groups. Instead Jones uses

a result by Thompson [12] that shows all finite minimal simple groups are

two generated. Using this result he then shows a group with the basis
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property can not be simple. From Lemma 5.2.2 one can quickly establish

the following result.

Corollary 5.2.3. If G is a group with the basis property then any homo-

morphic image of G has the basis property.

From Corollary 3.2.4 it follows that any homomorphic image of G has

property B. The Correspondence Theorem then tells us that the quotient

has the basis property.

5.3 Classifying Groups with the Basis Property

From the previous section we have established that finite groups with the

basis property are soluble and only contain elements of prime-power order.

Groups of this type have been classified in Graham Higman’s 1956 paper [5,

Theorem 1].

Theorem 5.3.1 (Higman, 1956). Let G be a soluble group in which every

element is of prime-power order. Let p be a prime such that G has a non-

trivial normal p-subgroup, and let P be the greatest such normal p-subgroup.

Then G/P is either:

(i) a cyclic q-group, for q a prime other than p,

(ii) a generalised quaternion group and p is odd,

(iii) a group of order paqb with cyclic Sylow subgroups and q is a prime that

divides pa − 1.

Thus G has order divisible by at most two primes, and G/P is metabelian.
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Using this theorem we can form a classification for all groups with the

basis property.

Theorem 5.3.2. Let G be a finite group. Then G has the basis property if

and only if either:

(i) G is a p-group, or

(ii) G = P oQ where P is a p-group, Q a non-trivial cyclic q-group, and

every non-identity element of Q acts fixed-point freely on P .

Here an element y of Q is said to act fixed-point freely if its centraliser

CP (y) is trivial. To show every non-identity element of Q acts fixed-point

freely it is sufficient to show a generator z of the unique subgroup of order

q acts fixed-point freely. For if g ∈ Q and g is non-trivial then 〈z〉 6 〈g〉, so

z = gm for some m. If g fixes a point then so does z.

Certainly one direction of this proof is relatively straight forward. We

have already shown that if G is a p-group then it has the basis property. Let

us then consider a group G = P oQ, where P is a p-group, Q is a non-trivial

cyclic q-group, and every non-trivial subgroup of Q acts fixed-point freely

on P . The following lemma helps us establish that groups of this form are

in fact those from Chapter 4.

Lemma 5.3.3. Let G be the semidirect product of an elementary abelian

p-group P by a cyclic q-subgroup Q. Then the following are equivalent:

(i) every non-identity element of Q acts fixed-point freely on P ,

(ii) G = P o Q is constructed via the field multiplication in some finite

field Fpn.
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Proof. (ii)⇒ (i): Recall from Chapter 4 that if G is constructed via the field

multiplication in Fpn then G = V oH where V is the additive group of Fpn

and H is the unique subgroup of order qm embedded in the multiplicative

group of Fpn . In the proof of Lemma 4.1.6 we noted that h ∈ H fixes v

when v(h − 1) = 0 and thus either h = 1 or v = 0. Hence if G = P o Q

is constructed via the field multiplication in Fpn , then every non-identity

element of Q acts fixed-point freely on P .

(i) ⇒ (ii): We begin by assuming that (i) holds and thus every non-

trivial subgroup of Q acts fixed-point freely on P . If we view P as an

FpQ-module, by Maschke’s Theorem, we can write P as a direct sum of

irreducible submodules

P = V1 ⊕ V2 ⊕ · · · ⊕ Vk.

Now each Vi is a quotient of the group algebra FpQ and so Vi ∼= FpQ/Ii

where Ii is a maximal ideal of FpQ. As Ii is maximal, the quotient FpQ/Ii

has the structure of a finite field. Since every non-trivial subgroup of Q

acts fixed-point freely on P it certainly acts fixed-point freely on Vi. Hence

the intersection Q ∩ (1 + Ii) is trivial. Thus Q embeds in the multiplicative

group of the field FpQ/Ii such that the image of Q in this quotient generates

it as a field. Therefore each FpQ/Ii is isomorphic to the field Fpr where r

is minimal such that Fpr has a multiplicative subgroup of order qm as in

Lemma 4.1.6 part (i).

As the Vi are all isomorphic to the finite field Fpr then P can viewed

as a direct copy of k copies of Fpr . Here Q acts on each summand by

multiplication from its embedding in the multiplicative group of Fpr . From

Lemma 4.1.6 part (ii) we see this is true for V , the additive group of the
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field Fprk , which is the base of our group when it is constructed via field

multiplication. Hence P and V are isomorphic as FpQ-modules we deduce

that P oQ is isomorphic to V oQ as constructed by the field multiplication

in Fprk .

Returning to our proof of Theorem 5.3.2 remember that G = P o Q,

where P is a p-group, Q is a non-trivial cyclic q-group, and every non-identity

element of Q acts fixed-point freely on P . Note that if x is an element of

Q the set of fixed-points is {y ∈ P | yx = y} = {y ∈ P | xy = yx} = CP (x).

Now if H is a subgroup of G then its Sylow p-subgroup H ∩ P is normal

by the Second Isomorphism Theorem. If Q̄ is a Sylow q-subgroup of H

then by Sylow’s Theorem, Q̄ 6 Qg for some element g ∈ G and if x̄ ∈ Q̄

is a non-identity element then x̄ = g−1xg for some non-identity element

x ∈ Q. Thus the centraliser of x̄ in H ∩ P is CH∩P (xg), which is contained

in CP (xg). This is CP (x)g as P is normal in H and so is trivial as non-

identity elements of Q act fixed-point freely on P . Hence all subgroups of

G satisfy the hypothesis, so to show that G has the basis property, it is

sufficient to show that the hypothesis on G ensures that G has property B.

Claim: Every non-identity element ofQ acts fixed-point freely on P/Φ (P ).

We temporarily work in the quotient group G/Φ (P ). Let x be a non-identity

element of Q and R the subgroup 〈x〉 of Q. Suppose that x has fixed-points
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in P/Φ (P ) and let U = FixP/Φ(P ) (x) the set of all such fixed-points. Then

U = FixP/Φ(P ) (x) ,

= { y ∈ P/Φ (P ) | xy = x },

= { y ∈ P/Φ (P ) | y−1xy = x },

= { y ∈ P/Φ (P ) | xy = yx },

= CP/Φ(P ) (x) .

By Maschke’s Theorem P/Φ (P ) = U ⊕W when viewed as an FpR-module.

By definition [U,R] = 0, as we are working in modules, so if U , the set of

fixed points FixP/Φ(P ) (x), is not trivial then [PΦ (P ) , R] 6 W < P/Φ (P ).

Thus [P,R] is a proper subgroup of P . Now Theorem 2.1.4 tells us that

P = CP (R) · [P,R] and so CP (R) 6= 1. Thus CP (x) cannot be trivial which

contradicts the existence of fixed-points. Thus the claim must hold.

Recall that we are working in the quotient G/Φ (P ) which is isomorphic

P/Φ (P )oQ since Φ (P )∩Q = 1. Therefore P/Φ (P ) is an elementary abelian

subgroup and thus by Lemma 5.3.3 the quotient G/Φ (P ) is constructed via

field multiplication and so has property B.

Returning from the quotient to our original group G, we have shown

that G/Φ (P ) is constructed via field multiplication and so Φ (G/Φ (P )) = 1

from Theorem 4.1.4. Hence Φ (G) ≤ Φ (P ). However, since P is normal

in G, it follows from Lemma 2.1.2 that this is in fact equality. Therefore

G/Φ (G) has property B and G has property B by Lemma 3.1.1.
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5.4 Proof of Theorem 5.3.2: The Converse

Let G be a group with the basis property. To prove the converse of Theorem

5.3.2 we use the following proposition.

Proposition 5.4.1. Let G be a finite group with the basis property. Then

G/Φ (G) is a semidirect product constructed via the multiplication in some

field.

To prove this we begin by assuming that G is a minimal counter ex-

ample. Since G has the basis property it is soluble by Lemma 5.2.2, and

every quotient also has the basis property. Now if Φ (G) is non-trivial then

G/Φ (G) satisfies the conclusion by the minimality of G and thus so does

G. So Φ (G) is trivial. Any non-identity element must be of prime-power

by Lemma 5.2.1 and thus we can apply Theorem 5.3.1. So let p be a prime

such that G has a non-trivial normal p-subgroup, and let P be the maximal

normal p-subgroup of G. Then G/P is either:

(i) a cyclic q-group, for q a prime other than p,

(ii) a generalised quaternion group and p is odd,

(iii) a group of order paqb with cyclic Sylow subgroups and q is a prime

that divides pa − 1.

We begin with Case (ii).
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5.4.1 Case (ii): G/P is a generalised quaternion group with

p an odd prime

The following lemma helps us show how a group of the form shown in Case

(ii) of Higman’s Theorem cannot have the basis property.

Lemma 5.4.2. Let Q be a generalised quaternion group and V be an irre-

ducible FpQ-module for an odd prime p on which Q acts faithfully. Then

the group V o Q has minimal generating sets of cardinality 2 and 3. In

particular, V oQ does not have property B.

Proof. Let Q be a generalised quaternion group with presentation

〈a, b | a2n−1
= 1, b2 = a2n−2

, b−1ab = a−1〉,

and let H be the semidirect product V o Q. If v is a non-zero element of

V then {a, b, v} is a minimal generating set for H, as omitting either a or

b would fail to generate Q and omitting v would only generate Q. As Q

acts faithfully on V the action of a on V does not commute with the action

of b on V . Thus b is not represented by −I ∈ Z (GL(V )) (where I is the

identity matrix) and so there exists v ∈ V such that v 6= 0 and, denoting

the action of Q on V by exponentiation, vb 6= −v. Let L be the subgroup

of H generated by vb and a. We seek to show this is in fact H. Certainly

V L = H. Now (vb)2 = (v + vb
−1

)b2. From the definition of L it contains

a2n−2
= b2 = (vb)2(v + vb

−1
)−1 so it follows that L contains v + vb

−1 6= 0.

Hence L contains 〈v + vb
−1〉L = 〈v + vb

−1〉V L = V . It follows that L = H

and so H has a minimal generating set of size 2.

Suppose that Case (ii) holds. Let Q be the Sylow 2-subgroup, so Q ∩ P

is trivial, G = P o Q and Q ∼= G/P . We know that quotients of groups
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with the basis property also have the basis property so we quotient by the

Frattini subgroup of P . Thus we can assume P is elementary abelian and so

can view it as an FpQ-module. By Maschke’s Theorem P is the direct sum

of irreducible submodules. Letting V be one of these irreducible summands

of P , we can construct the subgroup V oQ by the same action of Q on P .

This has the basis property as it is a subgroup of G/Φ (P ). Now if there is

an element of Q in the kernel of the action of Q on V this element would

commute with all elements of V , giving us an element of non-prime-power

order in V oQ — contradicting the fact that V oQ has the basis property.

Thus the action of Q on V is faithful. However Lemma 5.4.2 states such

a group, V o Q, does not have the property B. Thus G does not have the

basis property and hence Case (ii) does not hold.

5.4.2 Case (iii): G/P = Cqm oCpn where qm = kpn+1, with no

elements of composite order

Again we begin by letting Q = G/P = Cqm o Cpn , with Cqm = 〈y〉 and

Cpn = 〈x〉. If m = 0 then G = P and our group is as in Case (i). Equally

if n = 0 then G is also as in Case (i), so assume that m,n 6= 0. Note that

no non-identity elements of 〈x〉 commute with any non-identity elements of

〈y〉. Let M be a minimal normal subgroup of G. The following theorem

gives us detail on the structure of M .

Theorem 5.4.3. If M is a non-trivial irreducible FpQ-module then, when

viewed as an Fp〈x〉-module, M is a direct sum of copies of the group algebra

Fp〈x〉.

Proof. We begin the proof by letting R = Fp〈x〉 let π be the projection map
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from the free Fp-algebra Fp[X] to R that is defined by X 7→ x.

Claim: R has a chain of submodules R = R0 > R1 > · · · > Rpn = 0 where

each quotient is trivial as an Fp〈x〉-module.

Note that π is surjective as X 7→ x. Now Xpn − 1 lies in kerπ and so the

ideal
(
Xpn − 1

)
will be contained in kerπ. The dimension of the quotient

of Fp[X] by an ideal (f(X)) is the degree of f(X) and so

pn = dim
Fp[X]

(Xpn − 1)
> dim

Fp[X]

kerπ
= dimR,

by the First Isomorphism Theorem. Note the ideal
(
Xpn − 1

)
= (X − 1)p

n

as we are in characteristic p. Now kerπ =
(

(X − 1)p
n
)

, as the dimension

of R is pn, and hence R ∼= Fp[X]/
(

(X − 1)p
n
)

as rings. So as the ring

structure of R induces its module structure it follows Fp[X]/
(

(X − 1)p
n
)

can also be viewed as an Fp〈x〉-module.

Submodules of R are ideals of R and these correspond to ideals of Fp[X]

containing
(

(X − 1)p
n
)

. Since Fp[X] is a principal ideal domain its ideals

are of the form (f(X)). Such an ideal contains
(

(X − 1)p
n
)

if and only if

f(X) divides (X − 1)p
n

, and so f(X) = (X − 1)i where 0 ≤ i ≤ pn. These

ideals form a chain and so we deduce that R has a chain of submodules

R = R0 > R1 > · · · > Rpn = 0,

where Ri corresponds to
(

(X − 1)i
)
⊆ Fp[X].

Let β (X) be an element of the ideal
(

(X − 1)i
)

of Fp[X]. Then the

element β (X) (X − 1) is contained in the ideal
(

(X − 1)i+1
)

of Fp[X]. So

((
(X − 1)i+1

)
+ β (X)

)
(X − 1) = 0,
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in Fp[X]/
(

(X − 1)i+1
)

and hence((
(X − 1)i+1

)
+ β (X)

)
X =

(
(X − 1)i+1

)
+ β (X) .

As x acts upon Fp[X]/
(

(X − 1)i+1
)

via right multiplication by X, we can

conclude that
(

(X − 1)i
)
/
(

(X − 1)i+1
)

, and hence Ri/Ri+1, is a trivial

Fp〈x〉-module.

Now observe that the dimension of Ri/Ri+1 is 1 and so there is a homo-

morphism θ : Ri → Fp with kernel Ri+1. We can also note that an element

β ∈ Ri has the form

β =

pn−1∑
j=i

bj (x− 1)j ,

since an element of
(

(X − 1)i
)

has the form

(X − 1)i g(X) =

pn−1∑
j=i

bj (X − 1)j + (X − 1)p
n

h(X),

for some bj ∈ Fp and h(X) ∈ Fp[X]. Thus θ maps β to bi.

Claim: FpQ has a chain of FpQ-submodules S = S0 > S1 > · · · > Spn = 0

where Si =
⊕qm−1

j=0 Riy
j .

Let S = FpQ and define Si to be
∑qm−1

j=0 Riy
j . Now Ryj is the subspace

of S spanned by the set
{
yj , xyj , x2yj , . . . , xp

n−1
}

. Thus S is the direct

product
⊕qm−1

j=0 Ryj as we are partitioning the basis for S. As Riy
j 6 Ryj

we conclude that Si is in fact a direct sum
⊕qm−1

j=0 Riy
j .

Now Si is closed under addition since for all r, s ∈ Ri then ryj + syj =

(r + s)yj ∈ Riyj . We can also note that Si is closed under multiplication

by y as Riy
jy = Riy

j+1 and so y simply cyclically permutes the summands.

Multiplication by x in Si is as follows

Riy
jx = Rixx

−1yjx = Rix
−1yjx,
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as Rix = Ri since Ri is an Fp〈x〉-module. As 〈y〉 is normal in Q then

x−1yjx = yk for some k. Thus Riy
jx = Riy

k and so Si is closed under

multiplication by x. Hence Si is an FpQ-submodule.

Recall that Ri > Ri+1 and so we conclude that Si > Si+1. Hence S has

a chain of FpQ-submodules

S = S0 > S1 > · · · > Spn = 0,

with dimSi = qm dimRi = qm (pn − i).

Claim: The quotients Si/Si+1 are all isomorphic to each other.

Take Ω = {ωi | i ∈ {0, 1, . . . , qm − 1}} and let V be a vector space over Fp

with basis Ω. Define ωiy = ωi+1 (under addition modulo qm) and ωix = ωk

wherever
(
yi
)x

= yk. Recall Q = 〈y〉 o 〈x〉 where no non-identity elements

of 〈x〉 commute with any non-identity elements of 〈y〉. Thus Q has a pre-

sentation of the form

〈x, y | yqm = xp
n

= 1, x−1yx = yt〉,

for some t. Clearly ωiy
qm = ωi. Recall that the action of x on ωi was defined

as ωix = ωk wherever
(
yi
)x

= yk. Conjugation by x induces a permutation

on the elements of 〈y〉 and so
(
yi
)xpn

= yi, thus ωix
pn = ωi. This gives

us a homomorphism ψ : F → GL(V ) where F = 〈x, y〉 is the free group

on two letters. In order to show we have an action we seek to induce a

homomorphism σ : Q → GL(V ), so we show that the kernel of the natural

map F → Q to be contained in kerψ. Since ωiy
qm = ωi and ωix

pn = ωi for

all i then xp
n
,yq

m ∈ kerψ. However, from the presentation of Q,

kerσ = 〈yqm , xpn , x−1yxy−t〉F .
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So to show we have an action we need to show that ωix
−1yx = ωiy

t. This

follows from the definition of the action of x and y on the ωi.

Define φ : Si → V by

qm−1∑
j=0

rjy
j 7→

qm−1∑
j=0

(rjθ)ωj ,

where r0, . . . , rqm−1 ∈ Ri.

Taking any s ∈ Si, say s =
∑qm−1

j=0 rjy
j , then

(sy)φ =

qm−1∑
j=0

rjy
j

 y

φ,

=

qm−1∑
j=0

rjy
j+1

φ,

=

qm−1∑
j=0

(rjθ)ωj+1,

and

(sφ) y =

qm−1∑
j=0

rjy
j

φ

 y,

=

qm−1∑
j=0

(rjθ)ωjy,

=

qm−1∑
j=0

(rjθ)ωj+1,

under the action of y on Ω. Thus (sy)φ = (sφ)y for all s ∈ Si.
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We also calculate

(sx)φ =

qm−1∑
j=0

rjy
j

x

φ,

=

qm−1∑
j=0

(rjx)(yj)x

φ,

=

qm−1∑
j=0

((rjx)θ)ω(yj)x ,

=

qm−1∑
j=0

(rjθ)ωyj

 · x,
=

qm−1∑
j=0

rjy
j

φ · x,

= (sφ)x,

under the action of x on Ω. Hence (sx)φ = (sφ)x and φ is an FpQ ho-

momorphism. An element s ∈ Si lies in the kernel of φ if and only if∑qm−1
j=0 (rjθ)ωj = 0. Since the ωi form a basis this is only true if all rjθ are

zero. This holds if all rj lie in the kernel of θ which is Ri+1. This implies

that

kerφ =

qm−1⊕
j=0

Ri+1y
j = Si+1.

Applying the First Isomorphism Theorem we see Si/Si+1
∼= V .

Hence FpQ can be written as a chain of FpQ-submodules

FpQ = S = S0 > S1 > S2 > · · · > Spn = 0,

with each quotient Si/Si+1
∼= V , where V is a vector space over Fp with

basis Ω and the above action of Q on V .

We now investigate the irreducible factors of V .

76



Proposition 5.4.4. When viewed as an FpQ-module, V is a direct sum of

irreducible submodules one of which is the trivial module and the rest are

direct sums of copies of Fp〈x〉 as Fp〈x〉-modules.

Proof. First let us view V as an Fp〈y〉-module. The action of y on the ωi

implies that V ∼= Fp〈y〉 when viewed as an Fp〈y〉-module. Thus similarly to

R earlier

V ∼=
Fp[Y ]

(Y qm − 1)
,

where y acts on the right hand side via multiplication by Y . By Maschke’s

Theorem V is a direct sum of irreducible Fp〈y〉-modules. Now Y qm − 1 =

f1(Y )f2(Y ) . . . fk(Y ) as a product of irreducible polynomials. These are

distinct as the derivative of Y qm − 1 = qmY qm−1 is co-prime to Y qm − 1. So

let gi(Y ) be the polynomial

gi(Y ) = f1(Y ) . . . fi−1(Y )fi+1(Y ) . . . fk(Y ),

and (gi(Y )) the ideal it generates. We define Vi = (gi(Y )) /
(
Y qm − 1

)
. We

observe here that Vi is a Fp〈y〉-submodule of V .

Claim 1: The Vi are irreducible Fp〈y〉-modules.

Suppose I = (h(Y )) is an ideal of Fp[Y ] such that
(
Y qm − 1

)
⊆ I ⊆ (gi(Y )).

So h(Y ) divides Y qm − 1 = gi(Y )fi(Y ) and gi(Y ) divides h(Y ). Therefore

h(Y ) must be equal to gi(Y ) or Y qm − 1 up to multiplication by a scalar.

Thus I is equal to (gi(Y )) or I =
(
Y qm − 1

)
and hence Vi is an irreducible

Fp〈y〉-module.

Claim 2: V is the direct sum V1 ⊕ · · · ⊕ Vk.

If we take two irreducible summands Vi and Vj with i 6= j, then Vi 6= Vj
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since fi(Y ) | gj(Y ) = f1(Y ) . . . fi(Y ) . . . fj−1(Y )fj+1(Y ) . . . fk(Y ) but fi(Y )

does not divide gi(Y ) = f1(Y ) . . . fi−1(Y )fi+1(Y ) . . . fk(Y ). We now prove

that

V1 + · · ·+ Vi = V1 ⊕ · · · ⊕ Vi =
(si(Y ))

(Y qm − 1)
,

where si(Y ) is defined to be the polynomial fi+1(Y ) . . . fk(Y ). We proceed

by induction. Clearly the base case holds by definition as s1(Y ) = g1(Y ).

Now assume this holds for i and let

W = V1 ⊕ · · · ⊕ Vi =
(si(Y ))

(Y qm − 1)
.

Since the Vi are irreducible W ∩ Vi+1 is equal to 0 or Vi+1. If W ∩ Vi+1 6= 0

then Vi+1 ⊆W which implies that (gi+1(Y )) ⊆ (si(Y )) and so si(Y ) divides

gi+1(Y ). However gi+1(Y ) does not have fi+1(Y ) as a factor, unlike si(Y ),

and so we have a contradiction. Hence W ∩ Vi+1 = 0 and

V1 + · · ·+ Vi + Vi+1 = W + Vi = W ⊕ Vi+1 = V1 ⊕ · · · ⊕ Vi+1 =
(si+1(Y ))

(Y qm − 1)
,

where (si(Y )) + (gi(Y )) = (si+1(Y )) and si+1(Y ) is defined as

si+1(Y ) = gcd (si(Y ), gi(Y )) = fi+2(Y ) . . . fk(Y ).

This implies that

V1 ⊕ · · · ⊕ Vk =
(1)

(Y qm − 1)
=

Fp[Y ]

(Y qm − 1)
= V.

Claim 3: Vi ∼= Vj if and only if i 6= j.

The gcd (g1(Y ), . . . , gi−1(Y ), gi+1(Y ), . . . , gk(Y )) is fi(Y ) and thus

Vi ∼=
V

V1 ⊕ . . . Vi−1 ⊕ Vi+1 ⊕ · · · ⊕ Vk
,

∼=
Fp[Y ]

(Y qm − 1)
/

(fi(Y ))

(Y qm − 1)
,
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which by the Third Isomorphism Theorem is Fp[Y ]/ (fi(Y )).

Now Vi ∼= Fp[Y ]/I where I = (fi(Y )). Assume that the degree of fi(Y )

is d and that fi(Y ) = Y d + cd−1Y
d−1 + · · · + c1Y + c0. The elements of

Vi can be uniquely expressed as I + b(Y ) where the degree of b(Y ) is less

than the degree of fi(Y ). This holds as for any polynomial f(Y ), elements

of Fp[Y ]/ (f(Y )) have the form (f(Y )) + b(Y ), where the degree of b(Y )

is less than the degree of f(Y ), as Fp[Y ] is a Euclidean domain. Thus Vi

has a basis B =
{
I + 1, I + Y, . . . , I + Y d−1

}
= {v1, v2, . . . , vd} and thus

we can consider multiplication by Y as a linear map from V to V where(
I + Y j

)
Y = I+Y j+1 by the group action. Thus

(
I + Y d−1

)
Y = I+Y d =

−
∑d−1

l=0 cl
(
I + Y l

)
as fi(Y ) is in I. Now the matrix of this linear map with

respect to the basis B is the companion matrix

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

...

0 0 0 · · · 1

−c0 −c1 −c2 · · · cd−1


,

and so the characteristic polynomial of A is the determinant of Y −A which

is ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y −1 0 · · · 0

0 Y −1 · · · 0

...
. . .

...

c0 c1 c2 · · · Y + cd−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This is equal to fi(Y ) which we prove by induction on d. For the 1× 1 case

this holds as the characteristic polynomial is Y +c0 which is fi(Y ) for degree
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1. So assume it holds for d− 1. By expanding down the first column A has

characteristic polynomial equal to

Y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y −1 0 · · · 0

0 Y −1 · · · 0

...
. . .

...

c1 c2 c3 · · · Y + cd−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)d−1c0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 · · · 0

Y −1 · · · 0

...
. . .

...

0 · · · Y −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By induction the first part of this equation is equal to

Y
(
Y d−1 + cd−1Y

d−2 + · · ·+ c1

)
= Y d + cd−1Y

d−1 + · · ·+ c1Y,

and the second part involves a upper triangular matrix and so is equal to

c0. Thus the characteristic polynomial is equal to Y d + cd−1Y
d−1 + · · · +

c1Y + c0 = fi(Y ) as claimed.

If Vi = Fp/ (fi(Y )) and Vj = Fp/ (fj(Y )) were isomorphic as Fp〈y〉-

modules then there would exist an isomorphism φ : Vi → Vj . Now Vi has

basis B from above and so Bφ is a basis for Vj . If vl is an element of the

basis B then vly =
(
I + Y l−1

)
Y =

∑d
k=1 alkvl under the action of y where

the alk are elements of the matrix representation A. Thus

(vlφ) y = (vly)φ =

(
d∑

k=1

alkvl

)
φ =

d∑
k=0

clk (vlφ) .

Therefore multiplication by y with respect to the bases B on Vi and Bφ on

Vj have the same matrix. So the characteristic polynomial of multiplication

by y with respect to the bases B on Vi and Bφ on Vj is fi(Y ), and the

characteristic polynomial of multiplication by y with respect to the standard

basis on Vj is fj(Y ). However characteristic polynomials are independent of

basis and so fi(Y ) must equal fj(Y ). But here the fi(Y ) are distinct and

thus Vi is not isomorphic to Vj for i 6= j.
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Claim 4: V is a direct sum of a trivial module and copies of Fp〈x〉 when

viewed as an Fp〈x〉-module.

We will now decompose V as an Fp〈x〉-module. Recall that x acts by per-

muting the ωi by ωix = ωk wherever
(
yi
)x

= yk. Thus there exists one orbit

of length one, corresponding to conjugating the identity. Recall our obser-

vation that no non-identity element of 〈x〉 commutes with any non-identity

element of 〈y〉. Thus no non-identity element of 〈x〉 fixes any non-identity

element of 〈y〉. Therefore all stabilisers of non-identity powers yi are trivial

and so the Orbit-Stabiliser Theorem tells that all other orbits are of length

pn. So take an index set
{
j0, j1, . . . , j(qm−1)/pn

}
such that

{
yj0 , yj1 , . . . , yj(qm−1)/pn

}
,

are representations for these orbits, with j0 = 0 and yj0 = 1 corresponding

to the orbit of length one. It is worth noting here that ωi 7→ yi is an 〈x〉-

isomorphism from Ω to 〈y〉, where this is an isomorphism of sets acted upon

by the group 〈x〉. We can see this is an 〈x〉-isomorphism from the definition

of the action x on Ω as ωix = ωk wherever
(
yi
)x

= yk.

Let Wi = Span
{
ωji , ωji · x, ωji · x2, . . . , ωji · xp

n−1
}

. As 〈x〉 acts regu-

larly on the set
{
ωji , ωji · x, ωji · x2, . . . , ωji · xp

n−1
}

we can see that each

Wi is isomorphic to Fp〈x〉 as an Fp〈x〉-module. Hence V = W0⊕W1⊕ · · · ⊕

W(qm−1)/pn as an Fp〈x〉-module. Note that this is a direct sum as we have

a partition of the basis of Ω.

Let L be an irreducible FpQ-submodule of V and let N be an irreducible

Fp〈y〉-submodule of L and thus V . Now V is a direct sum of k pairwise

non-isomorphic irreducible Fp〈y〉-submodules from Claims 1,2 and 3. So we

can define πi : V → Vi to be the natural projection map. Since N is not
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zero Nπi = Vi, for some i, and since N is irreducible kerπi = 0. Thus

N ∼= Vi as an Fp〈y〉-module. Since Vi 6∼= Vj for all i 6= j, if Nπj 6= 0 the same

argument as before tells us that kerπj = 0 and N ∼= Vj implying that i = j

by assumption on the Vi. Thus Nπj = 0 for j 6= i and N 6 Vi. Since Vi is

irreducible as an Fp〈y〉-module N must equal Vi.

By Clifford’s Theorem part (i) there exists a set {i1, . . . id} such that

L = Vi1 ⊕ · · · ⊕ Vid with each Vij a different irreducible Fp〈y〉-submodule of

L. Since the Vi are pairwise non-isomorphic the homogeneous components

of L are the Vij . Thus part (iii) of Clifford’s Theorem tells us that Q per-

mutes these Vij transitively and thus {Vi1 , . . . , Vid} is an 〈x〉-orbit. Therefore

we conclude that an irreducible FpQ-submodule L of V is a direct sum of

some 〈x〉-orbit on {V1 . . . , Vk}. So let {M1, . . . ,Mr} be the set of all such

irreducible FpQ-submodules L. Since V = V1 ⊕ · · · ⊕ Vk we see that

V = M1 ⊕ · · · ⊕Mr. (5.1)

Remember that the decomposition of V into irreducible Fp〈x〉-modules is

V = W0 ⊕W1 ⊕ · · · ⊕W(qm−1)/pn . (5.2)

The Krull–Schmidt Theorem tells us that any two decompositions of V into

a direct sum of irreducible submodules are the same length. Thus we see

that equation (5.2) is a refinement of equation (5.1) and so each Mi is a

direct sum of copies of the Wj .

Since only W0 is trivial we conclude only one of the Wi is a trivial Fp〈x〉-

module and all the others are copies of Fp〈x〉. Thus V is a direct sum

of irreducible FpQ-submodules which are a trivial module and submodules

which are direct sums of copies of Fp〈x〉 when viewed as an Fp〈x〉-module.
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We now conclude the proof of Theorem 5.4.3. If M is an irreducible FpQ-

module it is isomorphic to a composition factor of S and hence isomorphic

to a composition factor of Si/Si+1, as S has a chain of submodules S =

FpQ = S0 > S1 > S2 > · · · > Spn = 0. As Si/Si+1 is isomorphic to V this

M is isomorphic to a composition factor of V , i.e. one of the Mi. Thus the

conclusion is proved.

Recall that M is a minimal normal subgroup of G with Q = G/P =

Cqm o Cpn = 〈y〉 o 〈x〉 and P the largest normal p-subgroup of G. Now

as Φ (G) = 1 we note that Φ (P ) = 1, by Lemma 2.1.2 (i), and thus P is

elementary abelian.

Claim: M = P .

Assume M 6= P then M < P . By assumption on the minimality of G,

G/M is not a counter example to Theorem 5.3.2 nor a p-group, as m 6= 0.

Therefore G/M satisfies the conclusion of Theorem 5.3.2 and so G/Φ (G) is

constructed via field multiplication. Hence G/M is of the form of Theorem

4.2.1. So G/M is either the semidirect product of a Sylow q-subgroup by

a Sylow p-subgroup or the semidirect product of a Sylow p-subgroup by a

Sylow q-subgroup. If it is the first case then G/M has a non-trivial normal

q-subgroup QM/M and a non-trivial normal p-subgroup P/M . These com-

mute as G/M = QM/M ×P/M , QM/M ∩P/M = 1 and both QM/M and

P/M are normal in G/M . Thus G/M does not have the basis property. If

the second case holds G/P has normal Sylow subgroups for both primes p

and q. This implies G/P is the direct product of these two Sylow subgroups
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and so G/P contains elements of composite order and hence does not have

the basis property. This contradicts the assumption that G has the basis

property.

Hence M = P and so P is a minimal normal subgroup of G. As Φ (G)

is trivial there exists a maximal subgroup such that P is not contained in

this maximal subgroup. This maximal subgroup is a complement for P as

it is maximal. Hence G is the semidirect product P oQ with Q = G/P =

Cqm o Cpn = 〈y〉 o 〈x〉. We can see that G will be generated minimally by

three elements {z, y, x} where z is a non-trivial element of P . If P is trivial

as an FpQ-module then z and y commute and so zy is an element of order

pqm. Hence G would be minimally generated by two elements {zy, x} and

so G would have neither property B nor the basis property.

Assume that P is a non-trivial FpQ-module. By Theorem 5.4.3 P =

W1 ⊕ · · · ⊕Wt as a direct sum of copies of Fp〈x〉 when viewed as an Fp〈x〉-

module. Take z to be a generator of W1 as an Fp〈x〉-module. Now

A := 〈z, x〉 = W1 o 〈x〉 = Cp o Cpn ,

as Fp〈x〉 = Fp ⊕ Fpx⊕ Fpx2 ⊕ · · · ⊕ Fpxp
n−1.

Claim: In A there exists an element a of order pn+1.

We begin by showing that (zx)k = zzx
−1
zx

−2 · · · zx−(k−1)
xk. Proceed by

induction on k. Clearly this holds for k = 1 and in fact holds for k = 2 as

(zx)2 = zxzx = zxzx−1xx = zzx
−1
x2, so assume that this holds for k − 1.
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Thus

(zx)k = (zx)k−1(zx),

= zzx
−1
zx

−2 · · · zx−(k−2)
xk−1(zx),

= zzx
−1
zx

−2 · · · zx−(k−2)
xk−1zx−(k−1)xk−1x,

= zzx
−1
zx

−2 · · · zx−(k−2)
zx

−(k−1)
xk.

Hence (zx)p
n

= zzx
−1
zx

−2 · · · zx−(pn−1)
xp

n
= zzx

−1
zx

−2 · · · zx−(pn−1)
. Now as

W1 is a direct summand we work additively so, W1 = Fpz + Fpzx + Fpzx
2

+

· · ·+Fpzx
pn−1

and is spanned by all such elements
{
z, zx, . . . , zx

pn−1
}

. Thus

(zx)p
n

is the sum of the basis vectors of W1 and so is non-trivial. Now W1

is normal in A with quotient A/W1
∼= Cpn . So for any element g of A then

gp
n ∈ W1 which is elementary abelian p-group and so gp

n+1
is trivial. Thus

(zx)p
n+1

is trivial and hence a = (zx) is our required element.

Now we have observed that ap
n

is a non-trivial element of P . As P is a

minimal normal subgroup, 〈apn〉G = P . Therefore

〈apn〉P 〈x,y〉 = 〈apn〉P 〈a,y〉 = 〈apn〉〈a,y〉 = P.

Thus 〈a, y〉 > P and so 〈a, y〉 > P 〈a, y〉 = G. Therefore z, x ∈ 〈a, y〉 and so

G is minimally generated by a and y. Thus G, a group of the form described

in case (ii) of Higman’s Theorem, does not have the basis property.

5.4.3 Case (i): G/P is a cyclic q-group with q a prime not

equal to p

Let G be as in case (i) of Higman’s Theorem and so a semidirect product

of a p-subgroup P by a cyclic q-subgroup Q. Since Φ (G) = 1 we have
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that Φ (P ) = 1 and thus P is elementary abelian. If any element of Q

centralises a non-identity element of P then we would have an element not

of prime-power order, contradicting the fact that G has the basis property.

Thus every non-identity element of Q acts fixed-point freely on P . Applying

Lemma 5.3.3 we see that G is constructed via the field multiplication in some

field Fq. Thus we have shown Proposition 5.4.1 holds.

5.4.4 Concluding Theorem 5.3.2

From Proposition 5.4.1 we can see that if G is a finite group with the basis

property then G/Φ (G) is constructed via multiplication in some finite field.

If a group has the basis property it certainly has property B, thus G is of

the form described in Theorem 4.2.1. So G = P oQ where P is the unique

Sylow p-subgroup and Q is any cyclic Sylow q-subgroup of G. It remains

to show that every non-identity element y of Q acts fixed-point freely on

P . As G has the basis property it contains no elements of co-prime order.

Thus no element of Q centralises a non-identity element of P , as it would

imply there exist elements of co-prime order. Hence we conclude that no

non-identity element of Q acts fixed-point freely on P and so Theorem 5.3.2

holds.
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Chapter 6

Conclusions and Future

Work

In this chapter we summarise the main results of the thesis. Throughout we

provide a series of open questions that, if solved, would give further insight

in to the nature of the properties we have presented.

In Chapter 3 we began our work on property B. By presenting a few

examples of groups that do and do not have property B we sought to high-

light how rare groups with property B are. Following on from Burnside’s

Basis Theorem we quickly noted that all p-groups had property B. The

main example of non-p-groups with property B given was that of the class

of dihedral groups, showing that all dihedral groups of order 2pn have prop-

erty B, for p an odd prime. As a counter example we then showed that for

n > 3 all symmetric groups, Sn, do not have property B.

The first main result we presented was the following lemma which shows

that property B transfers from the group to its quotient by the Frattini
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subgroup.

Lemma 3.1.1. A group G has property B if and only if G/Φ (G) has

property B.

This lemma is useful as it aids in providing a classification of groups with

property B. For example, it allowed us to focus on constructing groups

with property B and trivial Frattini subgroup, and then look at groups

with quotient by the Frattini subgroup isomorphic to our construction. In

general subgroup and quotient inheritance is useful as it gives us greater

understanding of the structure of a group and often makes a classification

much simpler. However given examples such as Example 3.2.1, we know

that property B is not inherited by subgroups. This leads us to our first

open question.

Question 6.0.5. Under what conditions is property B inherited by sub-

groups?

Whilst this is the basis property, were we to find other conditions in

which property B is inherited by subgroups we could then use our classifica-

tion of groups with the basis property (Theorem 5.3.2) to further investigate

the basis property. For example if a group has property B and trivial Frattini

subgroup does that imply the group has the basis property?

Throughout the rest of Chapter 3 we focused on inheritance by quotients.

Lemma 3.1.1 also holds for the basis property; in fact we were able to show

that all quotients of groups with the basis property have the basis property.

However it is uncertain whether this is the case for property B, as we were

only able to prove that the quotients of groups with property B inherited
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property B under certain circumstances.

Lemma 3.2.2. If G is a group with property B and G splits over a minimal

normal subgroup M then G/M has property B.

Proposition 3.2.3. If G is a group with property B and M is an abelian

minimal normal subgroup of G then G/M has property B.

Corollary 3.2.4. If G is a soluble group with property B then any quotient

G/N also has property B.

From these three results we can see that quotients inherit property B under

a strict set of conditions leading us naturally in to a second open question.

Question 6.0.6. Is property B always inherited by quotients?

All our examples of groups with property B have been soluble implying

this question may have a positive answer. Despite not having a positive

answer to Question 6.0.6 in general the previous three results do help us

towards a classification. For example we can note that quotients of any

soluble group do inherit property B. This leads us to another open question,

which were we to solve it, would make a classification easier.

Question 6.0.7. Are all groups with property B soluble?

It should be noted that a positive answer to this question would an-

swer Question 6.0.6. Given that all non-abelian simple groups do not have

property B (Example 3.2.5) and that the symmetric groups on four or more

points also do not have property B (Proposition 3.1.5) it seems likely that

the answer to Question 6.0.7 is yes. To begin to answer this question the
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first obvious step would be to investigate whether or not all almost simple

groups have property B. Note A is an almost simple group if there exists a

non-abelian simple subgroup S of A such that S 6 A 6 Aut(S).

The large number of counter examples we have come across have led us

to the conclusion that groups with property B are rare. The final result of

Chapter 3 further emphasises this.

Theorem 3.3.1. The group G×H has property B if and only if G×H is

a p-group.

This result places a great restriction on the structure of a group with prop-

erty B leading us to consider how a class of groups with property B may

look.

Following on from this, in Chapter 4 we sought to construct a class of

groups with property B. The inspiration for this was the work of Scapellato

and Verardi [10] whose classification of matroid groups closely matched the

only class of groups we had found that all had property B, namely the

dihedral groups of order 2pn. Identifying the form of these dihedral groups

as Cpn o C2, where the cyclic 2-group acts by inversion, we were able to

generalise to construct a class of groups with property B, shown in the

following theorem.

Theorem 4.1.4. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm. Define G

to be the semidirect product V oφH where H acts on V by multiplication in

Fpn. Then:

(i) G has property B,
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(ii) d(G) = k + 1 where V is a direct sum of k irreducible FpH-modules,

(iii) Φ (G) is trivial.

Our result that quotients by the Frattini subgroup inherit property B gave

us a next natural step. Given that a group G has property B if and only

if G/Φ (G) also has property B, then if G/Φ (G) was isomorphic to a group

of the form described in Theorem 4.1.4 we would know that G must have

property B. Thus we could construct a much larger class of groups with

property B.

Theorem 4.2.1. Let V be the additive group of the field Fpn of pn elements

and H the subgroup of the multiplicative group F?pn of order qm. Let G be

any group such that G/Φ (G) is isomorphic to the semidirect product V oφH

where H acts on V via the multiplication in Fpn. Then:

(i) G has a unique Sylow p-subgroup P ,

(ii) G is the semidirect product of P by Q for any Sylow q-subgroup Q. All

Sylow q-subgroups of G are cyclic,

(iii) Φ (G) = Φ (P ) × 〈xqm〉 where 〈xqm〉 is the subgroup of index qm in

Q = 〈x〉. In fact xq
m

lies in the centre of G.

All examples of groups with property B provided in this thesis are of this

form, with Theorem 4.2.1 being a generalisation of Theorem 4.1.4. In fact

further analysis in GAP using a simple brute force algorithm has shown

that for order less than 500 if a group has property B it is of this form. Due

to computational limitations any further examination would require a more
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targeted approach, focusing on group shape as well as order. This leads us

in to our next open question.

Question 6.0.8. If G is a group with property B and trivial Frattini sub-

group, is it of the form described in Theorem 4.1.4?

A first step to answering this question may be to proceed by induction on

the group order of a soluble group G with trivial Frattini subgroup. Assume

that if any group with property B is of order less than G then it is either

a q-group (for some prime q) of the form in Theorem 4.1.4 if its Frattini

subgroup is trivial, or of the form of Theorem 4.2.1 otherwise. If M is a

minimal normal subgroup of G then as G is soluble M would be elementary

abelian. We would continue by considering several cases on the structure of

M and G/M which would have property B by Corollary 3.2.4. Thus, for p

and q distinct primes, we would have the following cases.

(i) M is an elementary abelian q-group and G/M is a q-group,

(ii) M is an elementary abelian q-group and G/M is a p-group,

(iii) M is an elementary abelian q-group andG/M is the semidirect product

of a p-group by a cyclic q-group (p,q distinct primes),

(iv) M is an elementary abelian q-group andG/M is the semidirect product

of a q-group by a cyclic p-group (p,q distinct primes),

(v) M is an elementary abelian r-group andG/M is the semidirect product

of a q-group by a cyclic p-group (p,q and r distinct primes).

Note that case (i) implies that G is a q-group and thus has property B. This

fits in with any expected classification theorem of groups with property B.
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We have made some progress in these cases.

Lemma 6.0.9 (Progress in Case (ii)). Suppose G is a soluble group with

property B and Φ (G) = 1 and assume that such a group of order less than

G is either a q-group (for some prime q), of the form in Theorem 4.1.4 if

its Frattini subgroup is trivial, or of the form of Theorem 4.2.1 otherwise.

If G = M oφ P is the semidirect product of an elementary abelian q-group

M by a cyclic p-group P then kerφ is trivial.

Proof. Let K = kerφ and assume that K 6= 1. Clearly K < P otherwise G

would equal M×P and G could not have property B by Theorem 3.3.1. Also

note that M is not a maximal subgroup of G as M < MK < MP = G. Let

H be any maximal subgroup of G. Then H is not contained in the unique

Sylow q-subgroup of G and so p divides the order of H and H contains an

element h of order p. Thus 〈h〉g 6 P for some element g ∈ G. This implies

that 〈h〉g is the unique subgroup of order p in P as P is cyclic. Therefore

〈h〉g must be contained in K as K is a non-trivial subgroup of P , and thus

〈h〉 6 Kg−1
= K. Thus 〈h〉 is the unique subgroup of order p inK. NoteK is

normal in G as, by definition, it commutes with M and is normal in P . This

implies that every maximal subgroup of G contains the unique subgroup

of K of order p and thus the intersection of these maximal subgroups is

non-trivial. However this contradicts the assumption that Φ (G) = 1, and

so kerφ is trivial.

Theorem 6.0.10 (Progress in Case (iii)). Suppose G is a soluble group with

property B and Φ (G) = 1 and assume that such a group of order less than

G is either a q-group (for some prime q), of the form in Theorem 4.1.4 if
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its Frattini subgroup is trivial, or of the form of Theorem 4.2.1 otherwise. If

G = M oφH is a semidirect product with M an elementary abelian q-group

and H ∼= P oQ where P is a p-group and Q a cyclic q-group, then kerφ is

trivial.

Proof. Let K = kerφ and assume that K 6= 1. Note that H = PQ and since

H = G/M and G is soluble Corollary 3.2.4 tells us that H has property

B. Now P/Φ (P ) is an elementary abelian p-group and so is a direct sum

V1 ⊕ · · · ⊕ Vk as an FpQ-module.

Claim: P ∩K is trivial.

Suppose P ∩K is non-trivial and suppose y1 ∈ (P ∩K)\Φ (P ). As P/Φ (P )

is an elementary abelian p-group it has the structure of a vector space over

Fp and so we can extend y1 to form a basis

{y1Φ (P ) , y2Φ (P ) , . . . , ykΦ (P )} ,

for P/Φ (P ). Then P = 〈y1, y2, . . . , yk,Φ (P )〉 which is just 〈y1, y2, . . . , yk〉,

as Φ (P ) is the set of non-generators of P . Note that {y1, y2, . . . , yk} is a

minimal generating set for P as {y1Φ (P ) , y2Φ (P ) , . . . , ykΦ (P )} is a basis

for P/Φ (P ). Now y1 lies in P ∩ K and so commutes with M . Thus we

can pick any non-identity element z of M and a generator x for Q. Then

{x, y1, y2, . . . , yk, z} is a minimal generating set for G as removing x or z

would fail to generate Q and M respectively, and removing a yi would fail

to generate P as they form a minimal generating set for P . Thus we have

a minimal generating set of size k + 2 for G. However as y1 and M , in

particular z ∈ M , commute we can replace y1 and z in the generating

set by y1z. Thus {x, y2, . . . , yk, y1z} is a minimal generating set for G of
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size k + 1 contradicting the assumption that G has property B. Therefore

P ∩K 6 Φ (P ).

Since P and K are both normal in H we can deduce that P ∩K is also

normal in H. In fact as φ is the homomorphism from H → Aut(M) then

P ∩K is normal in G. Recall that our inductive hypothesis states that as

G/(P ∩K) is of order less than G it is either a group of prime-power order

or a semidirect product of the form specified in Theorem 4.2.1. Now we

can note that as P ∩ K is contained in the Frattini subgroup of P , both

p and q must divide the order of G/(P ∩ K). Hence G/(P ∩ K) is not a

group of prime-power order so we can assume that G/(P ∩K) is of the form

specified in Theorem 4.2.1. Thus G/(P ∩K) has a normal Sylow subgroup

of prime-power order. Now if G/(P ∩K) has a normal Sylow q-subgroup so

does G/M(P ∩K). Note that M(P ∩K) is normal in G and M(P ∩K), so

M(P ∩ K) corresponds to a normal subgroup of G/M = H. This normal

subgroup of G/M is,

M(P ∩K) ∩H = (P ∩K)(M ∩H), (by Dedekind’s Modular Law)

= P ∩K,

and thus

G

M(P ∩K)
∼=

H

P ∩K
.

But H/(P ∩K) has a normal p-subgroup, namely P/(P ∩K). Thus H/(P ∩

K) has a normal Sylow p-subgroup and a normal Sylow q-subgroup which

commute and so we have elements of composite order. But H/(P ∩K) has

property B by Corollary 3.2.4 and so we get a contradiction.

If G/(P ∩K) has a normal Sylow p-subgroup then it would be P/(P ∩
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K). From the Correspondence Theorem we can conclude that P must be

normal in G. Now [M,P ] 6 M ∩ P = 1 as M is normal in G. Thus

M and P commute which gives us commuting generators of co-prime order,

contradicting the assumption that G has property B. Hence P ∩K is trivial.

So K is a q-group. Applying Sylow’s Theorem K 6 Qg so Kg−1
6 Q.

Thus K 6 Q since K is normal in G as by definition it commutes with M

and is normal in H. As K is non-trivial, by induction G/K = M o (H/K)

has a normal Sylow subgroup with the other cyclic. If this is a normal

Sylow q-subgroup then Q/K is normal in H/K and by the Correspondence

Theorem Q is normal in H, contradicting the fact that H has property B as

Q would now commute with P . Thus G/K has a normal Sylow p-subgroup

and a cyclic Sylow q-subgroup M o Q/K. Since M is elementary abelian

then Q/K is trivial and so Q = K. Thus Q is normal in H giving the same

contradiction as before, and K = kerφ is trivial.

Therefore we have shown that M is a faithful FqH-module. This actually

links in with Section 5.4.2 where we showed that a group G with normal

subgroup P and G/P = Cqm oCpn where qm = kpn+1, with no elements of

composite order does not have the basis property. Generalising this result

would be the main element of solving Case (iii).

Our final results chapter saw us switch focus to look at the basis property.

As we have already mentioned, work by Jones [7] has already provided a solid

foundation in describing the structure of groups with the basis property.

Lemma 5.2.1. If G is a group with the basis property then G consists of

elements of prime-power order.
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Lemma 5.2.2. If G is a group with the basis property then G is soluble.

Corollary 5.2.3. If G is a group with the basis property then any homo-

morphic image of G has the basis property.

Using this as a first step and linking in with the citations in Jones’ paper

we saw that Higman’s 1956 paper [5] would be a useful basis, as it provided

a classification of all finite soluble groups where every element is of prime-

power order. As a result we were able to provide a classification of all groups

with the basis property.

Theorem 5.3.2. Let G be a finite group. Then G has the basis property

if and only if either:

(i) G is a p-group, or

(ii) G = P oQ where P is a p-group, Q a non-trivial cyclic q-group, and

every non-identity element of Q acts fixed-point freely on P .

Being able to classify all groups with the basis property brings up the obvious

question of what other algebraic structures have the basis property and for

that matter property B. If we were to consider looking at infinite groups

then obviously we would be restricted to looking at finitely generated groups.

We can note immediately the following example.

Example 6.0.11. The infinite cyclic group, isomorphic to the integers un-

der addition does not have property B.

Proof. Clearly d(Z) = 1 as Z has a minimal generating set {1}. We can

also note that for two co-prime integers p and q, {p, q} is also a minimal
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generating set for Z. This follows from the identity ap + bq = gcd(p, q).

Thus Z does not have property B.

If we were to look at other algebraic structures with the basis property a

starting place would be two papers [6] and [7] by Jones. As mentioned in the

Introduction, Jones’ work on inverse semigroups provides the following clas-

sification for inverse semigroups with the strong basis property. Recall that

if a semigroup has the strong basis property it also has the basis property

but not vice versa.

Theorem 6.0.12. [7, Theorem 4.8] An inverse semigroup has the strong

basis property if and only if:

(i) it is completely semisimple,

(ii) each non-isolated maximal subgroup is a primary Ñ -group,

(iii) each isolated maximal subgroup has the strong basis property.

Note that a maximal subgroup of an inverse semigroup is isolated if it

constitutes a whole D class, otherwise it is non-isolated. A group G is an

Ñ -group if for any subgroups H and K of G, H is maximal in K implies H

is normal in K. Jones also provides a classification for Brandt semigroups

with the basis property.

Theorem 6.0.13. [7, Theorem 6.1] Let S be a Brandt semigroup with max-

imal (non-zero) subgroup G. Then S has the basis property if and only if G

does.

However Jones only mentions property B (called the generating property

in [7]) in reference to groups. In our work constructing examples of groups
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with property B gave us the motivation to look at classifying groups with the

basis property. Perhaps one starting point would be to construct examples

of monoids and semigroups with property B before going on to look at the

basis property for all semigroups, not just inverse semigroups. The following

Lemma provides a class of semigroups with property B.

Lemma 6.0.14. Let S = 〈x | xa = xb〉 be a monogenic semigroup with a

and b not equal to 1. Then S has property B.

Proof. Let S be a monogenic semigroup with has presentation S = 〈x | xa =

xb〉, with a and b integers such that a > b > 1. By definition S is generated

by a single element, x, so take A to be any generating set of size greater

than 1. Now A must contain x in order to generate x as no other power of

x is equal to x and thus S has property B.

However not all finite monogenic semigroups have property B. For ex-

ample the cyclic groups of composite order are also monogenic semigroups

and by Lemma 3.1.2 do not have property B.
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