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Abstract
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1 Introduction

Many interesting fractals, for example many self-affine carpets, have differing box-counting
and Hausdorff dimensions. A smaller value for Hausdorff dimension can result because
covering sets of widely ranging scales are permitted in the definition, whereas box-counting
dimensions essentially come from counting covering sets that are all of the same size. Inter-
mediate dimensions were introduced in [11] in 2019 to provide a continuum of dimensions
between Hausdorff and box-counting; this is achieved by restricting the families of al-
lowable covers in the definition of Hausdorff dimension by requiring that |U | ≤ |V |θ for
all sets U, V in an admissible cover, where θ ∈ [0, 1] is a parameter. When θ = 1 only
covers using sets of the same size are allowable and we recover box-counting dimension,
and when θ = 0 there are no restrictions giving Hausdorff dimension.

This article brings together what is currently known about intermediate dimensions
from a number of sources, especially [1, 3, 4, 11, 21]; in particular Banaji [1] has very re-
cently obtained many detailed results. We first consider basic properties of θ-intermediate
dimensions, notably continuity when θ ∈ (0, 1], and discuss some tools that are useful
when working with intermediate dimensions. We look at some examples to show the
sort of behaviour that occurs, before moving onto the more challenging case of Bedford-
McMullen carpets. Finally we consider a potential-theoretic characterisation of interme-
diate dimensions which turns out to be useful for studying the dimensions of projections
and other images of sets. Proofs for most of the results can be found elsewhere and are
referenced, though some are sketched to provide a feeling for the subject.

We work with subsets of Rn throughout, although much of the theory easily extends to
more general metric spaces, see [1]. To avoid problems of definition, we assume throughout
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this account that all the sets F ⊂ Rn whose dimensions are considered are non-empty
and bounded.

Whilst Hausdorff dimension dimH is usually defined via Hausdorff measure, it may
also be defined directly, see [6, Section 3.2]. For F ⊂ Rn we write |F | for the diameter
of F and say that a finite or countable collection of subsets {Ui} of Rn is a cover of F if
F ⊂

⋃
i Ui. Then the Hausdorff dimension of F is given by:

dimH F = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of F such that

∑
i |Ui|s ≤ ε

}
.

(Lower) box-counting dimension dimB may be expressed in a similar manner except that
here we require the covering sets all to be of equal diameter. For bounded F ⊂ Rn,

dimB F = inf
{
s ≥ 0 : for all ε > 0 there exists a cover {Ui} of F

such that |Ui| = |Uj| for all i, j and
∑

i |Ui|s ≤ ε
}
.

From this viewpoint, Hausdorff and box-counting dimensions may be regarded as extreme
cases of the same definition, one with no restriction on the size of covering sets, and the
other requiring them all to have equal diameters; one might regard these two definitions
as the extremes of a continuum of dimensions with increasing restrictions on the relative
sizes of covering sets. This motivates the definition of intermediate dimensions where the
coverings are restricted by requiring the diameters of the covering sets to lie in a geometric
range δ1/θ ≤ |Ui| ≤ δ where 0 ≤ θ ≤ 1 is a parameter.

Definition 1.1. Let F ⊂ Rn. For 0 ≤ θ ≤ 1 the lower θ-intermediate dimension of F is
defined by

dim θF = inf
{
s ≥ 0 : for all ε > 0 and all δ0 > 0, there exists 0 < δ ≤ δ0

and a cover {Ui} of F such that δ1/θ ≤ |Ui| ≤ δ and
∑
|Ui|s ≤ ε

}
.

Analogously the upper θ-intermediate dimension of F is defined by

dim θF = inf
{
s ≥ 0 : for all ε > 0 there exists δ0 > 0 such that for all 0 < δ ≤ δ0,

there is a cover {Ui} of F such that δ1/θ ≤ |Ui| ≤ δ and
∑
|Ui|s ≤ ε

}
.

Note that, apart from when θ = 0, these definitions are unchanged if δ1/θ ≤ |Ui| ≤ δ is
replaced by δ ≤ |Ui| ≤ δθ.

It is immediate that

dimH F = dim0F = dim0F, dimB F = dim1F and dimB F = dim1F,

where dimB is upper box-counting dimension. Furthermore, for a bounded F ⊂ Rn and
θ ∈ [0, 1],

0 ≤ dimH F ≤ dim θF ≤ dim θF ≤ dimB F ≤ n and 0 ≤ dim θF ≤ dimB F ≤ n.

As with box-counting dimensions we often have dim θF = dim θF in which case we just
write dimθF = dim θF = dim θF for the θ-intermediate dimension of F .

We remark that a continuum of dimensions of a different form, known as the Assouad
spectrum, has also been investigated recently, see [14, 15, 17]; this provides a parameterised
family of dimensions which interpolate between upper box-counting dimension and quasi-
Assouad dimension, but we do not pursue this here.
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2 Properties of intermediate dimensions

2.1 Basic properties

We start by reviewing some basic properties of intermediate dimensions of a type that
are familiar in many definitions of dimension.

1. Monotonicity. For all θ ∈ [0, 1] if E ⊂ F then dim θE ≤ dim θF and dim θE ≤
dim θF .

2. Finite stability. For all θ ∈ [0, 1] ifE,F ⊂ Rn then dim θE∪F = max{dim θE, dim θF}.
Note that, analogously with box-counting dimensions, dim θ is not finitely stable,
and neither dim θ or dim θ are countably stable (i.e. it is not in general the case that
dim θ ∪∞i=1 Fi = sup1≤i<∞ dim θFi).

3. Monotonicity in θ. For all bounded F , dim θF and dim θF are monotonically
increasing in θ ∈ [0, 1].

4. Closure. For all θ ∈ (0, 1], dim θF = dim θF and dim θF = dim θF where F is the
closure of F . (This follows since for θ ∈ (0, 1] it is enough to consider finite covers
of closed sets in the definitions of intermediate dimensions.)

5. Lipschitz and Hölder properties. Let f : F → Rm be an α-Hölder map, i.e.
|f(x)− f(y)| ≤ c|x− y|α for α ∈ (0, 1] and c > 0. Then for all θ ∈ [0, 1],

dim θf(F ) ≤ 1

α
dim θF and dim θf(F ) ≤ 1

α
dim θF. (2.1)

(To see this, if {Ui} is a cover of F with δ ≤ |Ui| ≤ δθ consider the cover of f(F ) by
the sets {f(Ui)} if cδα ≤ |f(Ui)| and by sets Vi ⊃ f(Ui) with |Vi| = cδα otherwise.)

In particular, if f : F → f(F ) ⊂ Rm is bi-Lipschitz then dim θf(F ) = dim θF and
dim θf(F ) = dim θF , i.e. dim θ and dim θ are bi-Lipschitz invariants. For further
Lipschitz and Hölder estimates see Banaji [1, Section 4].

2.2 Continuity

A natural question is whether, for a fixed bounded set F , dim θF and dim θF vary con-
tinuously for θ ∈ [0, 1]. It turns out that this is the case except possibly at θ = 0 where
the intermediate dimensions may or may not be continuous, see the examples in Section
4. Continuity on (0, 1] follows immediately from the following inequalities which relate
dim θF , respectively dim θF , for different values of θ.

Proposition 2.1. Let F be a bounded subset of Rn and let 0 < θ < φ ≤ 1. Then

dim θF ≤ dimφF ≤
φ

θ
dim θF (2.2)

and

dim θF ≤ dimφF ≤ dim θF +
(

1− θ

φ

)
(n− dim θF ), (2.3)

with corresponding inequalities where dim θ and dimφ are replaced by dim θ and dimφ.

3



Proof. We include the proof of (2.2) to give a feel for this type of argument. The left-hand
inequality is just monotonicity of dim θF .

With 0 < θ < φ ≤ 1 let t >
φ

θ
dim θF and choose s such that dim θF < s <

θ

φ
t. Given

ε > 0, for all sufficiently small 0 < δ < 1 we may find countable or finite covers {Ui}i∈I
of F such that ∑

i∈I

|Ui|s < ε and δ ≤ |Ui| ≤ δθ for all i ∈ I. (2.4)

Let
I0 = {i ∈ I : δ ≤ |Ui| < δθ/φ} and I1 = {i ∈ I : δθ/φ ≤ |Ui| ≤ δθ}.

For each i ∈ I0 let Vi be a set with Vi ⊃ Ui and |Vi| = δθ/φ. Let 0 < s < tθ/φ ≤ n. Then
{Wi}i∈I := {Vi}i∈I0 ∪{Ui}i∈I1 is a cover of F by sets with diameters in the range [δθ/φ, δθ].
Taking sums with respect to this cover:∑

i∈I

|Wi|t =
∑
i∈I0

|Vi|t +
∑
i∈I1

|Ui|t =
∑
i∈I0

δt θ/φ +
∑
i∈I1

|Ui|t

≤
∑
i∈I0

|Ui|t θ/φ +
∑
i∈I1

|Ui|t θ/φ =
∑
i∈I

|Ui|t θ/φ ≤
∑
i∈I

|Ui|s < ε. (2.5)

Thus for all t >
φ

θ
dim θF , for all ε > 0, for all sufficiently small δ (equivalently, for all

sufficiently small δθ) there is a cover {Wi}i of F by sets with (δθ)1/φ ≤ |Wi| ≤ δθ satisfying

(2.5), so dimφF ≤
φ

θ
dim θF .

The analogue of (2.2) for dim θ follows by exactly the same argument by choosing
covers of F with δ ≤ |Ui| ≤ δθ for arbitrarily small δ.

The proof of (2.3) is given in [11]: essentially, given a cover of F by sets {Ui} with
δ ≤ |Ui| ≤ δθ one breaks up those Ui with δφ ≤ |Ui| ≤ δθ into smaller pieces to get a cover
of F by sets with diameters in the range [δ, δφ].

Note that the right hand inequality of (2.2) is stronger than that in (2.3) precisely

when
θ

φ
≤ n

dimφF
− 1, which is the case for all 0 < θ < φ ≤ 1 if dimφF ≤ 1

2
n; similarly

for lower dimensions.

Inequality (2.2) implies that
dim θF

θ
and

dim θF

θ
are monotonic decreasing in θ ∈ (0, 1];

Banaji [1, Proposition 3.9] points out that they are strictly decreasing if dimB F > 0,
respectively dimB F > 0. Thus the graphs of θ 7→ dim θF and θ 7→ dim θF (0 < θ ≤ 1)
are starshaped with respect to the origin (i.e. each half-line from the origin in the first
quadrant cuts the graphs in a single point).

The following corollary is immediate.

Corollary 2.2. The maps θ 7→ dim θF and θ 7→ dim θF are continuous for θ ∈ (0, 1].

By setting φ = 1 in Proposition 2.1 and rearranging we get useful comparisons with
box-counting dimensions.

Corollary 2.3. Let F be a bounded subset of Rn. Then

dim θF ≥ n−
(
n− dimB F

)
θ

(2.6)
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and
dim θF ≥ θ dimB F, (2.7)

with corresponding inequalities where dim θ and dimB are replaced by dim θ and dimB .

Again (2.7) gives a better lower bound than (2.6) if and only if θ ≤ n

dimB F
− 1 which

is the case for all θ ∈ (0, 1] if dimB F ≤ 1
2
n, and similarly for lower dimensions.

Intermediate dimensions may or may not be continuous when θ = 0, see Section 4.2
for examples. Indeed, determining whether a given set has intermediate dimensions that
are continuous at θ = 0, which relates to the distribution of scales of covering sets for
Hausdorff and box dimensions, is one of the key questions in this subject.

Banaji [1] introduced a generalisation of intermediate dimensions by replacing the
condition δ1/θ ≤ |Ui| ≤ δ in Definition 1.1 by Φ(δ) ≤ |Ui| ≤ δ, where Φ : (0, Y ) → R is
monotonic and satisfies limδ↘0 Φ(δ)/δ = 0 for some Y > 0, to obtain families of dimensions

dimΦF and dim
Φ
F ; clearly when Φ(x) = x1/θ we recover dim θF and dim θF . He provides

an extensive analysis of these Φ-intermediate dimensions. In particular they interpolate
all the way between Hausdorff and box-dimensions, that is there exist such functions Φs

for s ∈ [dimH F, dimB F ] that are increasing with s with respect to a natural ordering and

are such that dim
Φ
F = s and dim

Φ
F = min{s, dimB F}, see [1, Theorem 6.1].

3 Some tools for intermediate dimension

As with other notions of dimension, there are some basic techniques that are useful for
studying intermediate dimensions and calculating them in specific cases.

3.1 A mass distribution principle

The mass distribution principle is frequently used for finding lower bounds for Hausdorff
dimension by considering local behaviour of measures supported on the set, see [6, Prin-
ciple 4.2]. Here are the natural analogues for dim θ and dim θ which are proved using an
easy modification of the standard proof for Hausdorff dimensions.

Proposition 3.1. [11, Proposition 2.2] Let F be a Borel subset of Rn and let 0 ≤ θ ≤ 1
and s ≥ 0. Suppose that there are numbers a, c > 0 such that for arbitrarily small δ > 0
we can find a Borel measure µδ supported on F such that µδ(F ) ≥ a, and with

µδ(U) ≤ c|U |s for all Borel sets U ⊂ Rn with δ ≤ |U | ≤ δθ. (3.8)

Then dim θF ≥ s. Alternatively, if measures µδ with the above properties can be found for
all sufficiently small δ, then dim θF ≥ s.

Note that in Proposition 3.1 a different measure µδ is used for each δ, but it is essential
that they all assign mass at least a > 0 to F . In practice µδ is often a finite sum of point
masses.

5



3.2 A Frostman type lemma

Frostman’s lemma is another powerful tool in fractal geometry which is a sort of dual to
Proposition 3.1. We state here a version for intermediate dimensions. As usual B(x, r)
denotes the closed ball of centre x and radius r.

Proposition 3.2. [11, Proposition 2.3] Let F be a compact subset of Rn, let 0 < θ ≤ 1,
and let 0 < s < dim θF . Then there exists c > 0 such that for all δ ∈ (0, 1) there is a
Borel probability measure µδ supported on F such that for all x ∈ Rn and δ1/θ ≤ r ≤ δ,

µδ(B(x, r)) ≤ crs. (3.9)

Fraser has pointed out a nice alternative proof of (2.2) using the Frostman’s lemma
and the mass distribution principle. Briefly, let 0 < θ < φ ≤ 1. if s < dimφF , Proposition
3.2 gives probability measures µδ on F (which we may take to be compact) such that
µδ(B(x, r)) ≤ crs for δ1/φ ≤ r ≤ δ. If δ1/θ ≤ r ≤ δ1/φ then

µδ(B(x, r)) ≤ µδ(B(x, δ1/φ)) ≤ c δs/φ ≤ c rsθ/φ,

so µδ(B(x, r)) ≤ c rsθ/φ for all δ1/θ ≤ r ≤ δ. Using Proposition 3.1 dim θF ≥ sφ/θ. This
is true for all s < dimφF so dim θF ≥ θ

φ
dimφF .

3.3 Relationship with Assouad dimension

Assouad dimension has been studied intensively in recent years, see the books [15, 26]
and paper [13]. Although Assouad dimension does not a priori seem closely related to
intermediate dimensions, it turns out that information about the Assouad dimension of
a set can refine estimates of intermediate dimensions and under certain conditions imply
discontinuity at θ = 0.

The Assouad dimension of F ⊂ Rn is defined by

dimA F = inf
{
s ≥ 0 : there exists C > 0 such that Nr(F ∩B(x,R)) ≤ C

(R
r

)s
for all x ∈ F and all 0 < r < R

}
,

where Nr(A) denotes the smallest number of sets of diameter at most r that can cover a
set A. In general dimBF ≤ dimBF ≤ dimA F ≤ n, but equality of these three dimensions
often occurs, even if the Hausdorff dimension and box-counting dimension differ, for
example if the box-counting dimension is equal to the ambient spatial dimension.

The following proposition due to Banaji, which extends an earlier estimate in [11,
Proposition 2.4], gives lower bounds for intermediate dimensions in terms of Assouad and
box dimensions. This lower bound is sharp, taking F to be the Fp of Section 4.1, and can
be particular useful near θ = 1 where the estimate approaches the box dimension.

Proposition 3.3. [1, Proposition 3.10] For a bounded set F ⊂ Rn and θ ∈ (0, 1],

dim θF ≥
θ dimAF dimBF

dimA F − (1− θ)dimBF
,

with a similar inequality for upper dimensions. In particular, if dimBF = dimA F (which
is always the case if dimBF = n), then dim θF = dimθF = dimBF = dimA F for all
θ ∈ (0, 1].
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One consequence of Proposition 3.3 is that if dimH F < dimBF = dimA F , then the
intermediate dimensions dim θF and dim θF are constant on (0, 1] and discontinuous at
θ = 0. This will help us analyse examples that exhibit a range of behaviours in Section
4.2.

Banaji also shows [1, Proposition 3.8] that (2.2), (2.3) and (2.6) may be strengthened
by incorporating the Assouad dimension of F into the right-hand estimates.

3.4 Product formulae

It is natural to relate dimensions of products of sets to those of the sets themselves. The
following product formulae for intermediate dimensions are of interest in their own right
and are also useful in constructing examples.

Proposition 3.4. [11, Proposition 2.5] Let E ⊂ Rn and F ⊂ Rm be bounded and let
θ ∈ [0, 1]. Then

dim θE + dim θF ≤ dim θ(E × F ) ≤ dimθ(E × F ) ≤ dimθE + dimBF. (3.10)

Sketch proof. The cases θ = 0, 1 are well-known, see [6, Chapter 7]. For other θ the left
hand inequality follows by using Proposition 3.2 to put measures on E and F satisfying
inequalities of the form (3.9) and then applying Proposition 3.1 to the product of these
two measures.

The middle inequality is trivial. For the right hand inequality let s > dimθE and
d > dimBF . We can find a cover of E by sets {Ui} with δ1/θ ≤ |Ui| ≤ δ for all i and
with

∑
i |Ui|s ≤ ε. Then, for each i, we find a cover {Ui,j}j of F by at most |Ui|−d sets

with diameters |Ui,j| = |Ui| for all j. Thus E × F ⊂
⋃
i

⋃
j

(
Ui × Ui,j

)
where δ1/θ ≤

|Ui × Ui,j| ≤
√

2δ for all i, j. A simple estimate gives
∑

i

∑
j |Ui × Ui,j|s+d ≤ 2(s+d)/2ε,

leading to the right hand inequality. 2

Banaji [1, Theorem 5.5] extends such product inequalities to Φ-intermediate dimen-
sions.

4 Some examples

The following basic examples in R or R2 serve to give a feel for intermediate dimensions
and indicate some possible behaviours of dim θ and dimθ as θ varies.

4.1 Convergent sequences

The pth power sequence for p > 0 is given by

Fp =
{

0,
1

1p
,

1

2p
,

1

3p
, . . .

}
. (4.1)

Since Fp is countable dimH Fp = 0 and a standard exercise shows that dimBFp = 1/(p+1),
see [6, Chapter 2]. We obtain the intermediate dimensions of Fp.

Proposition 4.1. [11, Proposition 3.1] For p > 0 and 0 ≤ θ ≤ 1,

dim θFp = dimθFp =
θ

p+ θ
. (4.2)
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Sketch proof. This is clearly valid when θ = 0. Otherwise, to bound dimθFp from above,
let 0 < δ < 1 and let M = dδ−(s+θ(1−s))/(p+1)e. Take a covering U of Fp consisting of the
M intervals B(k−p, δ/2) of length δ for 1 ≤ k ≤M together with dM−p/δθe ≤M−p/δθ+1
intervals of length δθ that cover the left hand interval [0,M−p]. Then∑

U∈U

|U |s ≤ Mδs + δθs
( 1

Mpδθ
+ 1
)

(4.3)

≤ 2δ(θ(s−1)+sp)/(p+1) + δs + δθs → 0

as δ → 0 if s(θ + p) > θ. Thus dimθFp ≤ θ/(p+ θ). [Note that M was chosen essentially
to minimise the expression (4.3) for given δ.]

For the lower bound we put a suitable measure on Fp and apply Proposition 3.1. Let
s = θ/(p + θ) and 0 < δ < 1 and, as with the upper bound, let M = dδ−(s+θ(1−s))/(p+1)e.
Define µδ as the sum of point masses on the points 1/kp (1 ≤ k <∞) with

µδ

({ 1

kp

})
=

{
δs if 1 ≤ k ≤M
0 if M + 1 ≤ k <∞ . (4.4)

Then
µδ(Fp) = Mδs ≥ δ−(s+θ(1−s))/(p+1)δs = 1

by the choice of s. To check (3.8), note that the gap between any two points of Fp
carrying mass is at least p/Mp+1. A set U such that δ ≤ |U | ≤ δθ, intersects at most
1 + |U |/(p/Mp+1) = 1 + |U |Mp+1/p of the points of Fp which have mass δs. Hence

µδ(U) ≤ δs +
1

p
|U |δsδ−(s+θ(1−s)) ≤

(
1 +

1

p

)
|U |s,

Proposition 3.1 gives dim θFp ≥ s = θ/(p+ θ). 2

Here is a generalisation of Proposition 4.1 to sequences with ‘decreasing gaps’. Let
a ∈ R and let f : [a,∞) → (0, 1] be continuously differentiable with f ′(x) negative and
increasing and f(x)→ 0 as x→∞. Considering integer values, the mean value theorem
gives that f(n)−f(n+1) is decreasing, so the sequence {f(n)}n is a ‘decreasing sequence
with decreasing gaps’.

Proposition 4.2. With f as above, let

F =
{

0, f(1), f(2), . . .
}
.

Suppose that
xf ′(x)

f(x)
→ −p as x→∞, where 0 ≤ p ≤ ∞. Then for all 0 < θ ≤ 1,

dim θF = dimθF =
θ

p+ θ
,

taking this expression to be 0 when p =∞.
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Figure 1: Graphs of dim θF for the three examples in Section 4.2

This may be proved in a similar way to Proposition 4.1 using that xf ′(x)/f(x) is close
to, rather than equal to, −p when x is large.

For example, taking f(x) = 1/ log(x+ 1), the sequence

Flog =
{

0,
1

log 2
,

1

log 3
,

1

log 4
, . . .

}
(4.5)

has dim θFlog = 1 if θ ∈ (0, 1] and dim 0Flog = 0, so there is a discontinuity at 0. On the
other hand, with f(x) = e−x,

Fexp =
{

0, e−1, e−2, e−3, . . .
}

has dim θFexp = 0 for all θ ∈ [0, 1].

4.2 Simple examples illustrating different behaviours

Using the examples above together with tools from Section 3 we can build up simple
examples of sets exhibiting various behaviours as θ ranges over [0, 1], shown in Figure 1.

Example 1: Continuous at 0, part constant, then strictly increasing. Let F = F1 ∪ E
where F1 is as in (4.1) and let E ⊂ R be any compact set with dimH E = dimBE = 1/4
(for example a suitable self-similar set). Then

dim θF = max
{ θ

1 + θ
, 1/4

}
(θ ∈ [0, 1]).

This follows using (4.2) and the finite stability of upper intermediate dimensions.

Example 2: Discontinuous at 0, part constant, then strictly increasing. Let F = F1 ∪ E
where this time E ⊂ R is any closed countable set with dimBE = dimA E = 1/4. Using
Proposition 3.3 and finite stability of upper intermediate dimensions,

dim θF = max
{ θ

1 + θ
, 1/4

}
(θ ∈ (0, 1].

Note that the intermediate dimensions are exactly as in Example 1 except when θ = 0
and a discontinuity occurs.
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Example 3: Discontinuous at 0, smooth and strictly increasing. Consider the countable
set

F = F1 × Flog ⊂ R2.

Then dim0F = dimH F = 0 and

dim θF =
θ

1 + θ
+ 1 (θ ∈ (0, 1]),

noting that dim θFlog = dimBFlog = dimA Flog = 1 for θ ∈ (0, 1] using (4.5) and Proposi-
tions 3.3 and 3.4.

4.3 Circles, spheres and spirals

Infinite sequences of concentric circles and spheres with radii tending to 0 might be thought
of as higher dimensional analogues of the sets Fp defined in (4.1). A countable union of
concentric circles will have Hausdorff dimension 1, but the box and intermediate dimen-
sions may be greater as a result of the accumulation of circles at the centre. For p > 0
define the family of circles

Cp =
{
x ∈ R2 : |x| ∈ Fp

}
.

Tan [27] showed, using the mass distribution principle and the Frostman lemma, Propo-
sition 3.2, that

dim θCp = dimθCp =

{
2p+2θ(1−p)
2p+θ(1−p) if 0 < p ≤ 1

1 if 1 ≤ p

with analogous formulae for concentric spheres in Rn and also for families of circles or
spheres with radii given by other monotonic sequences converging to 0. He also considers
families of points evenly distributed across such sequences of circles or spheres for which
the intermediate dimension may be discontinuous at 0.

Closely related to circles are spirals. For 0 < p ≤ q define

Sp,q =

{(
1

tp
sin πt,

1

tq
cos πt

)
: t ≥ 1

}
⊂ R2.

Then Sp,q is a spiral winding into the origin, if p = q it is a circular polynomial spiral,
otherwise it is an elliptical polynomial spiral. Burrell, Falconer and Fraser [5] calculated
that

dim θSp,q = dimθSp,q =

{
p+q+2θ(1−p)
p+q+θ(1−p) if 0 < p ≤ 1

1 if 1 ≤ p
.

Not unexpectedly, when p = q these circular polynomial spirals have the same intermedi-
ate dimensions as the concentric circles Cp.

Another variant is the ‘topologist’s sine curve’ given, for p > 0 by

Tp =

{(
1

tp
, sin πt

)
: t ≥ 1

}
⊂ R2,

that is the graph of the function f : (0, 1] → R given by f(x) = sin(πx−1/p). Tan [27]
used related methods show that

dim θTp = dimθTp =
p+ 2θ

p+ θ
,

as well as finding the intermediate dimensions of various generalisations of this curve.
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Figure 2: A 2× 3 and a 3× 5 Bedford-McMullen carpet

5 Bedford-McMullen carpets

Self affine carpets are a well-studied class of fractals where the Hausdorff and box-counting
dimensions generally differ; this is a consequence of the alignment of the component
rectangles in the iterated construction. The dimensions of planar self-affine carpets were
first investigated by Bedford [2] and McMullen [24] independently, see also [25], and
these carpets have been widely studied and generalised, see [7, 16] and references therein.
Finding the intermediate dimensions of these carpets gives information about the range
of scales of covering sets needed to realise their Hausdorff and box-counting dimensions.
Deriving exact formulae seems a major challenge, but some lower and upper bounds
have been obtained, in particular enough to demonstrate continuity of the intermediate
dimensions at θ = 0 and that they attain a strict minimum when θ = 0.

Bedford-McMullen carpets are attractors of iterated function systems of a set of affine
contractions, all translates of each other which preserve horizontal and vertical directions.
More precisely, for integers n > m ≥ 2, an m×n-carpet is defined in the following way. Let
I = {0, . . . ,m− 1} and J = {0, . . . , n− 1} and let D ⊂ I × J be a digit set with at least
two elements. For each (p, q) ∈ D we define the affine contraction S(p,q) : [0, 1]2 → [0, 1]2

by

S(p,q) (x, y) =

(
x+ p

m
,
y + q

n

)
.

Then
{
S(p,q)

}
(p,q)∈D is an iterated function system so there exists a unique non-empty

compact set F ⊂ [0, 1]2 satisfying

F =
⋃

(p,q)∈D

S(p,q)(F )

called a Bedford-McMullen self-affine carpet, see Figure 2 for examples. The carpet can
also be thought of as the set constructed using a ‘template’ consisting of the selected
rectangles

{
S(p,q)([0, 1]2)

}
(p,q)∈D by repeatedly substituting affine copies of the template

in each of the selected rectangles.
Bedford [2] and McMullen [24] showed that the box-counting dimension of F exists
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with

dimBF =
logM

logm
+

logN − logM

log n
(5.6)

where N is the total number of selected rectangles and M is the number of p such that
there is a q with (p, q) ∈ D, that is the number of columns of the template containing at
least one rectangle. They also showed that

dimH F =
log
(∑m

p=1 N
lognm
p

)
logm

, (5.7)

where Np (1 ≤ p ≤ m) is the number of q such that (p, q) ∈ D, that is the number of
rectangles in the pth column of the template. The Hausdorff and box-counting dimensions
of F are equal if and only if the number of selected rectangles in every non-empty column
is constant.

Virtually all work on these carpets depends on dividing the iterated rectangles into
‘approximate squares’. The box-counting dimension result (5.6) is then a straightfor-
ward counting argument. The Hausdorff dimension (5.6) argument is more involved;
McMullen’s approach defined a Bernoulli-type measure µ on F via the iterated rectangles
and obtained an upper bound for the local upper density of µ that is valid everywhere and
a lower bound valid µ-almost everywhere. These ideas have been adapted and extended
for estimating intermediate dimensions, but with the considerable complication that one
seeks good density estimates that are valid over a restricted range of scales, but even
getting close estimates for the intermediate dimensions seems a considerable challenge.

The best upper bounds known at the time of writing are:

dimθF ≤ dimH F +

(
2 log(logm n) log a

log n

)
1

− log θ

(
0 < θ < 1

4
(lognm)2

)
, (5.8)

proved in [11]. The −1/ log θ term makes this a very poor upper bound as θ increases
away from 0, but at least it implies that dimθF and dimθF are continuous at θ = 0 and
so are continuous on [0, 1]. An upper bound for θ that is better except close to 0 was
given in [21]:

dimθF ≤ dimBF −
∆0(θ)

log n
(1− θ) < dimBF (lognm ≤ θ < 1), (5.9)

where ∆0(θ) is the solution an equation involving a large deviation rate term which can
be found numerically in particular cases. This upper bound is strictly increasing near 1
and by monotonicity also gives a constant upper bound if 0 < θ < lognm.

A reasonable lower bound that is linear in θ is

dimθF ≥ dimH F + θ
log |D| −H(µ)

log n
(0 ≤ θ ≤ 1), (5.10)

where H(µ) is the entropy of McMullen’s measure µ; this was essentially proved in [11],
but see [21] for a note on the constant. In particular this implies that there is a strict
minimum for the intermediate dimensions at θ = 0. An alternative lower bound depending
on optimising a certain function was given by [21]:

dimθF ≥ sup
t>0

ψ(t, θ) (0 ≤ θ ≤ 1) (5.11)

12



Here ψ(t, θ) depends on entropies of linear interpolants of probability measures of the form
θtp̃ + (1− θt)p̂ and θtq̃ + (1− θt)q̂ where p̃, q̃ and p̂, q̂ are measures that occur naturally
in the calculations for, respectively, the box-counting and Hausdorff dimensions of the
carpets. Of course, the lower bounds given by Corollary 2.3 for a general F in terms of
box-counting dimensions also apply here. In particular, Banaji’s general lower bound [1,
Proposition 3.10] in terms of the box and Assouad dimensions of F gives the best-known
lower bound for θ close to 1 for some, though not all, Bedford-McMullen carpets.

Many questions on the intermediate dimensions of these carpets remain, most notably
finding the exact forms of dimθF and dimθF . Towards that we would at least conjecture
that the lower and upper intermediate dimensions are equal and strictly monotonic.

6 Potential-theoretic formulation

The potential-theoretic approach for estimating Hausdorff dimensions goes back to Kauf-
man [20]. More recently box-counting dimensions have been defined in terms of energies
and potentials with respect to suitable kernels and these have been used to obtain results
on the box-counting dimensions of projections of sets in terms of ‘dimension profiles’, see
[8, 9]. In particular the box-counting dimension of the projection of a Borel set F ⊂ Rn

onto m-dimensional subspaces is constant for almost all subspaces (with respect to the
natural invariant measure) generalising the long-standing results of Marstrand [22] and
Mattila [23] for Hausdorff dimensions.

As with Hausdorff and box-counting dimensions, it turns out that θ-intermediate di-
mensions can be characterised in terms of capacities with respect to certain kernels, and
this can be extremely useful as will be seen in Section 7. Let θ ∈ (0, 1] and 0 < m ≤ n
(m is often an integer, though it need not be so). For 0 ≤ s ≤ m and 0 < r < 1, define
the kernels

φs,mr,θ (x) =


1 0 ≤ |x| < r(
r
|x|

)s
r ≤ |x| < rθ

rθ(m−s)+s

|x|m rθ ≤ |x|
(x ∈ Rn). (6.12)

If s = m this reduces to

φm,mr,θ (x) =

{
1 0 ≤ |x| < r(
r
|x|

)m
r ≤ |x|

(x ∈ Rn), (6.13)

which are the kernels φmr (x) used in the context of box-counting dimensions [8, 9]. Note
that φs,mr,θ (x) is continuous in x and monotonically decreasing in |x|. Let M(F ) denote
the set of Borel probability measures supported on a compact F ⊂ Rn. The energy of
µ ∈M(F ) with respect to φs,mr,θ is∫ ∫

φs,mr,θ (x− y) dµ(x)dµ(y) (6.14)

and the potential of µ at x ∈ Rn is∫
φs,mr,θ (x− y) dµ(y). (6.15)
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The capacity Cs,m
r,θ (F ) of F is the reciprocal of the minimum energy achieved by probability

measures on F , that is

Cs,m
r,θ (F ) =

(
inf

µ∈M(E)

∫ ∫
φs,mr,θ (x− y) dµ(x)dµ(y)

)−1

. (6.16)

Since φs,mr,θ (x) is continuous in x and strictly positive and F is compact, Cs,m
r,θ (F ) is positive

and finite. For general bounded sets we take the capacity of a set to be that of its closure.

The existence of energy minimising measures and the relationship between the minimal
energy and the corresponding potentials is standard in classical potential theory, see [8,
Lemma 2.1] and [4] in this setting. In particular, there exists an equilibrium measure
µ ∈ M(E) for which the energy (6.14) attains a minimum value, say γ. Moreover,
the potential (6.15) of this equilibrium measure is at least γ for all x ∈ F (otherwise
perturbing µ by a point mass where the potential is less than γ reduces the energy) with
equality for µ-almost all x ∈ F . These properties turn out to be key in expressing these
dimensions in terms of capacities.

Let F ⊂ Rn be compact, m ∈ (0, n], θ ∈ (0, 1] and r ∈ (0, 1). It may be shown that

logCs,m
r,θ (F )

− log r
− s (6.17)

is continuous in s and decreases monotonically from positive when s = 0 to negative or
0 when s = m. Thus there is a unique s for which (6.17) equals 0. Moreover, the rate
of decrease of (6.17) is bounded away from 0 and from −∞ uniformly for r ∈ (0, 1).
This means we can pass to the limit as r → 0 and for each m ∈ (0, n] define the lower
θ-intermediate dimension profile of F ⊂ Rn as

dimm
θ F = the unique s ∈ [0,m] such that lim inf

r→0

logCs,m
r,θ (F )

− log r
= s (6.18)

and the upper θ-intermediate dimension profile as

dim
m

θ F = the unique s ∈ [0,m] such that lim sup
r→0

logCs,m
r,θ (F )

− log r
= s. (6.19)

Since the kernels φt,mr,θ (x) are decreasing in m the intermediate dimension profiles (6.18)
and (6.19) are increasing in m.

The reason for introducing (6.18) and (6.19) is that they not only permit an equivalent
definition of θ-intermediate dimensions but also give the intermediate dimensions of the
images of sets under certain mappings, as we will see in Section 7. The following theorem
states the equivalence between intermediate dimensions when defined by sums of powers
of diameters as in Definition 1.1 and using this capacity formulation.

Theorem 6.1. Let F ⊂ Rn be bounded and θ ∈ (0, 1]. Then

dim θF = dimn
θF

and
dim θF = dim

n

θF.
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The proof of these identities involve relating the potentials to s-power sums of diam-
eters of covering balls of F with diameters in the required range, using a decomposition
into annuli to relate this to the kernels, see [4, Section 4].

We defined the intermediate dimension profiles dimm
θ F and dim

m

θ F for F ⊂ Rn but
Theorem 6.1 refers just to the case when m = n. The significance of these dimension
profiles when 0 < m < n will become clear in the next section.

7 Projections and other images

The relationship between the dimensions of a set F ⊂ Rn and its orthogonal projections
πV (F ) onto subspaces V ∈ G(n,m), where G(n,m) is the Grassmannian of m-dimensional
subspaces of Rn and πV : Rn → V denotes orthogonal projection, goes back to the
foundational work on Hausdorff dimension by Marstrand [22] for G(2, 1) and Mattila [23]
for general G(n,m). They showed that for a Borel set F ⊂ Rn

dimH πV (F ) = min{dimH F,m} (7.20)

for almost all m-dimensional subspaces V with respect to the natural invariant probability
measure γn,m on G(n,m), where dimH denotes Hausdorff dimension. Later Kaufman [20]
gave a potential-theoretic proof of these results. See, for example, [10] for a survey of
the many generalisations, specialisations and consequences of these projection results.
In particular, there are theorems that guarantee that the lower and upper box-counting
dimensions and the packing dimensions of the projections πV (F ) are constant for almost
all V ∈ G(n,m), see [8, 9, 12, 18]. This constant value is not the direct analogue of (7.20)
but rather it is given by a dimension profile of F .

Thus a natural question is whether there is a Marstrand-Mattila-type theorem for
intermediate dimensions, and it turns out that this is the case with the θ-intermediate
dimension profiles dimm

θ F and dim
m

θ F defined in (6.18) and (6.19) providing the almost
sure values for orthogonal projections from Rn onto m-dimensional subspaces. Intuitively,
we think of dimm

θ F and dim
m

θ F as the intermediate dimensions of F when regarded from
an m-dimensional viewpoint.

Theorem 7.1. Let F ⊂ Rn be bounded. Then, for all V ∈ G(n,m)

dim θπV F ≤ dimm
θ F and dim θπV F ≤ dim

m

θ F (7.21)

for all θ ∈ (0, 1]. Moreover, for γn,m-almost all V ∈ G(n,m),

dim θπV F = dimm
θ F and dim θπV F = dim

m

θ F (7.22)

for all θ ∈ (0, 1].

The upper bounds in (7.21) utilise the fact that orthogonal projection does not increase
distances, so does not increase the values taken by the kernels, that is

φs,mr,θ (πV x− πV y) ≥ φs,mr,θ (x− y) (x, y ∈ Rn).

By comparing the energy of the equilibrium measure on F with its projections onto
each πV F it follows that Cs,m

r,θ (πV F ) ≥ Cs,m
r,θ (F ) and using (6.18) or (6.19) gives the

θ-intermediate dimensions of πV F as a subset of the m-dimensional space V .
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The almost sure lower bounds in (7.22) essentially depend on the relationship between
the kernels and on Rn and on their averages over V ∈ G(n,m). More specifically, for
m ∈ {1, . . . , n− 1} and 0 ≤ s < m there is a constant a > 0, depending only on n,m and
s, such that for all x ∈ Rn, θ ∈ (0, 1) and 0 < r < 1

2
,∫

φs,mr,θ (πV x− πV y)dγn,m(V ) ≤ a φs,mr,θ (x− y) log
r

|x− y|
.

Using this for a sequence r = 2−k with a Borel-Cantelli argument gives (7.22). Full details
may be found in [4, Section 5].

Theorem 7.1 has various consequences, firstly concerning continuity at θ = 0.

Corollary 7.2. Let F ⊂ Rn be such that dim θF is continuous at θ = 0. Then dim θπV F
is continuous at θ = 0 for almost all V . A similar result holds for the upper intermediate
dimensions.

Proof. If dimH F ≥ m then for almost all V , dimH πV (F ) = m = dim θπV F for all θ ∈ [0, 1]
by (7.20). Otherwise, for almost all V and all θ ∈ [0, 1],

dimH F = dimH πV F ≤ dim θπV F ≤ dimm
θ F ≤ dim θF → dimH F

as θ → 0, where we have used (7.20) and (7.21).

For example, taking F ⊂ R2 to be an m×n Bedford-McMullen carpet (see Section 5),
it follows from (5.8) and Corollary (7.2) that the intermediate dimensions of projections
of F onto almost all lines are continuous at 0. In fact more is true: if logm/ log n /∈ Q
then dim θπV F and dim θπV F are continuous at 0 for projections onto all lines V , see [4,
Corollaries 6.1 and 6.2] for more details.

The following surprising corollary shows that continuity of intermediate dimensions of
a set at 0 is enough to imply a relationship between the Hausdorff dimension of a set and
the box-counting dimensions of its projections.

Corollary 7.3. Let F ⊂ Rn be a bounded set such that dim θF is continuous at θ = 0.
Then

dimB πV F = m

for almost all V ∈ G(n,m) if and only if

dimH F ≥ m.

A similar result holds on replacing lower by upper dimensions.

Proof. The ‘if’ direction is clear even without the continuity assumption, since if dimH F ≥
m, then

m ≥ dimB πV F ≥ dimH πV F ≥ m

for all V using (7.20).
On the other hand, suppose that dimB πV F = m for almost all V . The final statement

of Proposition 3.3 gives that dim θπV F = m for all θ ∈ (0, 1] for almost all V . As dim θF
is assumed continuous at θ = 0, Corollary 7.2 implies that dim θπV F is continuous at 0
for almost all V and so dimH F = dimH πV F = dim0πV F = m for almost all V , using
(7.20).

16



An striking example of this is given by products of the sequence sets Fp of (4.1) for
p > 0. By Proposition 4.1 dimBFp = θ/(θ + p) so by Proposition 3.4

dimθ(Fp × Fp) =
2θ

θ + p
(θ ∈ [0, 1]),

which is continuous at θ = 0. Since dimH (Fp × Fp) = 0, Corollary 7.3 implies that

dimB πV (Fp × Fp) < 1

for almost all V . This is particularly striking when p is close to 0, since dimB(Fp×Fp) =
2/(1 + p) is close to 2 but still the box-counting dimensions of its projections never reach
1. In fact, a calculation not unlike that in Proposition 4.1 shows that for all projections
onto lines V , apart from the horizontal and vertical projections,

dimB πV (Fp × Fp) = 1−
(

p

p+ 1

)2

.

Analogous ideas using dimension profiles can be be used to find dimensions of images
of a given set F under other parameterised families of mappings. These include images
under certain stochastic processes (which are parameterised by points in the probability
space). For example, let Bα : R → Rm be index-α fractional Brownian motion where
0 < α < 1, see for example [6, Section 16.3]. The following theorem generalises the result
of Kahane [20] on the Hausdorff dimension of fractional Brownian images and that of
Xiao [28] for box-counting and packing dimensions of fractional Brownian images.

Theorem 7.4. Let F ⊂ Rn be compact. Then, almost surely, for all 0 ≤ θ ≤ 1,

dim θBα(F ) =
1

α
dimmα

θ F and dim θBα(F ) =
1

α
dimmα

θ F. (7.23)

The proof of this is along the same lines as for projections, see [3] for details. The
upper bound uses that for all ε > 0 fractional Brownian motion satisfies an almost sure
Hölder condition |Bα(x) − Bα(y)| ≤ M |x − y|1/2−ε for x, y ∈ F , where M is a random
constant. The almost sure lower bound uses that

E
(
φsmr,θ (Bα(x)−Bα(y))

)
≤ c φsmr,θ (x− y)

where c depends only on m and s.
We can get an explicit form of the intermediate dimensions of these Brownian images

taking F = Fp of (4.1).

Proposition 7.5. For index-α Brownian motion Bα : R → R, almost surely, for all
0 ≤ θ ≤ 1 and p > 0,

dim θBα(Fp) = dim θBα(Fp) =
θ

pα + θ
. (7.24)

In particular (7.24) is less than the upper bound θ/α(p+ θ) that comes from directly
applying the almost sure Hölder condition (2.1) for Bα to the intermediate dimensions of
Fp.
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8 Open problems

Finally here are a few open questions relating to intermediate dimensions. A general
problem is to find the possible forms of intermediate dimension functions. At the very
least they are constrained by the inequalities of Proposition 2.1.

Question 8.1. Characterise the possible functions θ 7→ dim θF and θ 7→ dim θF that may
be realised by some set F ⊂ R or F ⊂ Rn.

It may be easier to answer more specific questions about the form of the dimension
functions. I am not aware of any counter-example to the following suggestion.

Question 8.2. Is it true that if dim θF , respectively dim θF , is constant for θ ∈ [a, b]
where 0 < a < b ≤ 1 then it must be constant for θ ∈ (0, b]?

Similarly, the following question suggested by Banaji seems open.

Question 8.3. Can dim θF or dim θF be convex functions of θ, or even (non-constant)
linear functions?

As far as I know, in all cases where explicit values have been found, the intermediate
dimensions equal upper bounds obtained using coverings by sets of just the two diameters
δ1/θ and δ (or constant multiples thereof). It seems unlikely that this is enough for every
set, indeed Kolossváry [21, Section 5] suggests that three or more diameters of covering
sets may be needed to get close upper bounds for the intermediate dimensions of Bedford-
McMullen carpets.

Question 8.4. Are there (preferably fairly simple) examples of sets F for which the inter-
mediate dimensions dim θFor dim θF cannot be approximated from above using coverings
by sets just of two diameters? Are there even sets where the number of different scales of
covering sets needed to get arbitrary close approximations to the intermediate dimensions
is unbounded?

Coming to more particular examples, the Bedford-McMullen carpets are a class of sets
where current knowledge of the intermediate dimensions is limited.

Question 8.5. Find the exact form of the intermediate dimensions dim θF and dim θF
for the Bedford McMullen carpets F discussed in Section 5, or at least improve the existing
bounds.

Getting exact formulae for these dimensions is likely to be challenging, but better
bounds, in particular the asymptotic form near θ = 0 and θ = 1, would be of interest. It
would also be useful to know more about the behaviour of the intermediate dimensions
of these carpets as functions of θ.

Question 8.6. Are the intermediate dimensions dim θF and dim θF of Bedford McMullen
carpets F equal? Are they strictly increasing in θ? Are they differentiable, or even ana-
lytic, as functions of θ or can they exhibit phase transitions?
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[11] K. J. Falconer, J. M. Fraser and T. Kempton. Intermediate dimensions, Math.
Zeit., 296(2020), 813-830.

[12] K. J. Falconer and J. D. Howroyd. Packing dimensions of projections and di-
mension profiles, Math. Proc. Cambridge Philos. Soc. 121(1997), 269–286.

[13] J. M. Fraser. Assouad type dimensions and homogeneity of fractals, Trans. Amer.
Math. Soc, 366(2014), 6687–6733.

19



[14] J. M. Fraser. Interpolating between dimensions. In: Fractal Geometry and
Stochastics VI, U. Freiberg, B. Hambly, M. Hinz and S. Winter (eds), Progress
in Probability, 76., Birkhäuser, 2021.
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