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Abstract. Regularity properties of the pressure are related to phase transi-

tions. In this article we study thermodynamic formalism for systems defined
in non-compact phase spaces, our main focus being countable Markov shifts.

We produce metric compactifications of the space which allow us to prove that

the pressure is differentiable on a residual set and outside an Aronszajn null
set in the space of uniformly continuous functions. We establish a criterion,

the so called sectorially arranged property, which implies that the pressure in

the original system and in the compactification coincide. Examples showing
that the compactifications can have rich boundaries, for example a Cantor set,

are provided.

1. Introduction

Beginning with the work of Gibbs, the formalism of equilibrium statistical me-
chanics was developed to address questions and problems related to systems con-
sisting of a large number of particles. During the early 1970s, Ruelle and Sinai
among others [D, Ru, Si], realised that the underlying mathematical structure of
this formalism could be successfully applied in the dynamical systems setting. The
monograph of Bowen [Bo2] is a remarkable example of how well the formalism is
fitted to solving difficult questions in uniformly hyperbolic dynamics. The main
object of the theory is the pressure. This is a functional, related to a dynami-
cal system T ∶ X → X, defined on some subsets of the space of real continuous
functions. One of the main problems in equilibrium statistical mechanics is that
of understanding phase transitions. In the mathematical context this is related to
regularity properties of the pressure. If T is a continuous map and X a compact
space, several authors have studied this problem [IP, Ru, W3]. For example, Wal-
ters [W3] proved that for systems with upper semi-continuous entropy map the lack
of differentiability of the pressure is related to the non-uniqueness of equilibrium
measures. As Walters showed, Gateaux differentiability of the pressure is related
to the concept of a tangent functional, which in good settings coincide with equi-
librium measures. In Section 6.5 we give an example of a tangent functional which
is not an equilibrium measure.

As observed in [IP, Section 3], it follows from a result of Mazur that the pressure
is Gateaux differentiable in a residual set of the space of continuous functions,

Date: March 25, 2022.
2010 Mathematics Subject Classification. 37D35, 28D20, 46T20.
We would like to thank Natalia Jurga, Paulo Varandas and Ańıbal Velozo for many interesting
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see Proposition 2.8. For uniformly hyperbolic systems, Ruelle [Ru] proved that
when restricted to Hölder functions the pressure is differentiable at every point.
We show (see Proposition 2.11) that in the class of continuous functions, the set
at which the pressure is not differentiable is also Aronszajn null. In Section 2.6
we consider the specific case of sub-shifts of finite type. This is a fundamental
example since uniformly hyperbolic systems can be coded with them and thus
of the thermodynamic formalism for sub-shifts of finite type can be transferred
to uniformly hyperbolic systems, see [Bo2]. It also gives us a natural setting to
demonstrate when all the standard theory goes through.

If the space X is no longer assumed to be compact the situation is more com-
plicated and the theory only mildly developed. In Section 3 we describe several
approaches to define the pressure and outline the difficulties in each case. Our aim
is to describe the regularity properties of the pressure for a large class of contin-
uous functions in this non-compact setting. We will concentrate on a particular
type of system namely, countable Markov shifts (CMS). These can be thought of
as non-compact generalisations of sub-shifts of finite type, which are defined by
means of a countable directed graph. It turns out that these systems are symbolic
models for a wide range of dynamical systems. Indeed, after the work of Sarig [S3],
countable Markov partitions have been constructed for a large class of dynamical
systems. This allows for the construction of a semi-conjugacy between a relevant
part of the dynamics with a CMS. This has been achieved in the following contexts:
positive entropy C∞ diffeomorphisms in manifolds, Sinai and Bunimovich billiards
and interval maps with critical points and discontinuities, to name a few (see the
survey [L] for more details).

Mauldin and Urbański [MU] and Sarig [S1] defined pressure for certain classes
of regular continuous functions (e.g. summable variations) Σ↦ R in the context of
CMS σ ∶ Σ→ Σ. We consider a variational definition of the pressure that holds for
any continuous function. Our strategy to prove regularity results for the pressure,
similar to those that hold in the compact case, see Section 2, is to construct a
metric d which gives compact completion Σ̄ (which we then also refer to as the
compactification), and to consider uniformly continuous functions ϕ ∈ UCd(Σ).
Then to prove that the pressure on the original system coincides with that of the
compactification. In this way we can transfer the results from the compact setting
to the non-compact one. Note that such functions must be bounded, so it only
really makes sense to consider cases in which htop(σ) < ∞. Since the space of
bounded uniformly continuous functions, as well as the boundary of Σ, depend
upon the metric, finding metrics for which we can apply this strategy and for which
the set of uniformly continuous functions is as large as possible, is of interest. For
a Markov graph with vertices V we start with a metric ρ on V which then induces
a metric on Σ, see (2). If ρ is totally bounded then the induced metric on Σ has
compact completion Σ̄. We define the notion of V being sectorially arranged, which
generalises the standard conditions on ρ in this setting (type 2 in [GS]). Denote by
PΣ(⋅), PΣ̄(⋅) the pressures defined on (Σ, σ) and its completion (Σ̄, σ̄), respectively.
We obtain the following result.

Theorem 1.1. Let (Σ, σ) be a finite entropy topologically mixing CMS, ρ totally
bounded and d the corresponding metric in Σ. If V is sectorially arranged and
ϕ ∈ UCd(Σ), then

PΣ(ϕ) = PΣ̄(ϕ).
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This result readily yields a description of the regularity properties of PΣ. In-
deed, the pressure is differentiable in a residual set and outside an Aronszajn null
set of the space of uniformly continuous functions, see Corollary 4.5. We describe
the structure of the resulting compactifications, see Section 4.2. Several examples
exhibiting different boundaries are provided. In particular, we produce an example
for which the boundary is a Cantor set, see Section 6.2. We also provide examples
of metrics in Σ so that the set UCd(Σ) is large. As noted above, our final exam-
ple in Section 6.5 is a natural setting where there is a tangent functional for the
compactified system, but no equilibrium measure.

Gurevich [Gu2], Walters [W1], Zargaryan [Z] and also Gurevich and Savchenko
[GS] explored this compactification approach to define the pressure. In [Gu2, GS, Z]
c functions that depend only on finitely many coordinates were considered. In this
paper we extend those results to continuous functions and to a larger class of met-
rics. Walters [W1] studied a general case in which functions are assumed to satisfy
some forms of dynamical continuity [W1, p.149]. Other compactifications of CMS
have been considered. Fiebig and Fiebig [FF1] construct compactifications of lo-
cally compact systems that are larger than the one point compactification. This
work was continued in [F], where is it shown that non conjugated systems can
have a conjugated compactification. Schwartz [Sh] extended the notion of Martin
boundary to locally compact CMS and was able to obtain results related to the
corresponding transfer operator. He proved the existence of an eigenfunction cor-
responding to a function of summable variations. This compactification, however,
depends upon the function and therefore changes with it. Thus, this approach does
not seem well suited to obtain the differentiability results we are interested in. Also
note that our results do not assume the system to be locally compact, nor that the
function is of summable variations.

To fix notation we denote by C(X) the space of real continued functions endowed
with the supremum norm ∥ ⋅∥ and by C(X)∗ the dual space. We say that a sequence
of probability measures (µn)n on the Borel space X converges in the weak* topology
to a probability measure µ if for every f ∶X → R continuous and bounded we have
limn→∞ ∫ fdµn = ∫ fdµ.

2. Differentiability of the pressure in the compact case

In this section the dynamical systems considered are continuous maps defined on
compact spaces. We define the pressure and describe in detail its differentiability
properties, both from the topological and measure theoretic point of view: the
former is relatively well known in the field, but the latter statements are new in
this context. The particular case of sub-shifts of finite type is then given as a
standard application.

2.1. Thermodynamic formalism in compact metric spaces. Let (X,d) be a
compact metric space, T ∶ X → X a continuous map and ϕ ∈ C(X). Given ε > 0
and n ∈ N, we say that a set E ⊂X is (n, ε)−separated if, given x, y ∈ E, there exists
j ∈ {0,1, . . . , n − 1} such that d(T j(x), T j(y)) > ε. Let

Qn(T,ϕ, ε) = sup{∑
x∈E

e∑
n−1
i=0 ϕ(T

ix) ∶ E ⊂X is (n, ε) − separated} .
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Let Q(T,ϕ, ε) = lim supn→∞
1
n

logQn(T,ϕ, ε). The pressure of T is the map P ∶
C(X) → R ∪ {∞} defined by P (ϕ) = limε→0Q(T,ϕ, ε) (see [W2, Chapter 9] for
details). Denote byMT the space of T -invariant probability measures endowed with
the weak* topology. The pressure satisfies the following properties [W2, Chapter
9].

Proposition 2.1. Let T ∶ X → X be a continuous map on the compact metric
space X and ϕ ∈ C(X).

(1) If c ∈ R and ϕ ∈ C(X) then P (ϕ + c) = P (ϕ) + c.
(2) If ϕ,ψ ∈ C(X) satisfy ϕ(x) ≤ ψ(x) then P (ϕ) ≤ P (ψ).
(3) The function P is Lipschitz continuous.
(4) The function P is convex.
(5) P (ϕ) = {h(µ) + ∫ ϕ dµ ∶ µ ∈MT }, where h(µ) denotes the entropy of µ.

Remark 2.2. Proposition 2.1 item (5) shows that, if X is compact, the pressure
does not depend on the metric, as long as it generates the Borel σ−algebra of X.
See [W2, p.171] for a related discussion.

The topological entropy of T is defied as htop(T ) = P (0). A measure µ ∈MT

such that P (ϕ) = h(µ) + ∫ ϕ dµ is called equilibrium measure for ϕ.

Remark 2.3. Note that an equivalent definition of pressure can be given using
open covers instead of (n, ε)−separated sets (see [W2, Chapter 9]). Approaches
using convex analysis to define the pressure have been used in [IP, Section 2] and
[BCMV].

2.2. Gateaux differentiability and equilibrium measures. In this subsection
we consider the regularity properties of the pressure considering a weak form of
differentiability for functionals on Banach spaces.

Definition 2.4. The pressure map P ∶ C(X) → R is said to be Gateaux differen-
tiable at ϕ ∈ C(X) if for every ψ ∈ C(X) the following limit exists

lim
t→0

P (ϕ + tψ) − P (ϕ)

t
.

Definition 2.5. Let X be compact metric space, T ∶ X → X a continuous map of
finite entropy and ϕ ∈ C(X). A measure µ ∈MT is called a tangent functional to
P at ϕ if for every ψ ∈ C(X) we have that

P (ϕ + ψ) − P (ϕ) ≥ ∫ ψdµ.

Denote by tϕ(T ) the collection of tangent functionals to P at ϕ.

Note that for every ϕ ∈ C(X) the set tϕ(T ) is non empty and convex. Moreover,
if µ is an equilibrium measure for ϕ then µ ∈ tϕ(T ) (see [W2, p. 225]). The following
results obtained by Walters characterise Gateaux differentiability of the pressure in
terms of tangent functionals (see [W3, Corollary 2 and Corollary 4]).

Proposition 2.6 (Walters). Let X be compact metric space and T ∶ X → X a
continuous map of finite entropy.

(1) The pressure of T is Gateaux differentiable at ϕ ∈ C(X) if and only if there
is a unique tangent functional to P at ϕ.
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(2) The pressure of T is Gateaux differentiable at ϕ ∈ C(X) if and only if there
is a unique measure µ with the property that whenever µn ∈MT satisfies

lim
n→∞

(h(µn) + ∫ ϕdµn) = P (ϕ),

then µn → µ. In this case µ is the unique tangent functional.

The relation between tangent functionals and equilibrium measures depends on
the continuity properties of the entropy map as explained in the following result
(see [W3, Theorem 5])

Proposition 2.7 (Walters). Let X be a compact metric space, T ∶ X → X a
continuous map of finite entropy and ϕ ∈ C(X). A measure µ ∈ MT which is a
tangent functional to P at ϕ is not an equilibrium measure for ϕ if and only if the
entropy map, ν → h(ν) defined in MT , is not upper semi-continuous at µ.

In the next subsections we consider the problem of determining how large the set
at which the pressure is Gateaux differentiable is. We address this question from a
topological and a measure theoretic of point of view.

2.3. Gateaux differentiability from a topological perspective. Recall that
a subset of a topological space is a Gδ-set if it is a countable intersection of open
sets and a dense Gδ-set is called residual. In 1933, Mazur proved that: if E is a
separable Banach space and F a continuous convex function defined on a convex
open subset D of E, then the set of point where F is Gateaux differentiable is a
residual set in U (see [P, Theorem 1.20] and [IP, Section 3]). The following is a
particular case of this result.

Proposition 2.8. Let X be a compact metric space and T ∶ X → X a continuous
map of finite entropy. The set of points at which the pressure P ∶ C(X) → R is
Gateaux differentiable is a residual set in C(X).

That is, the pressure is Gateaux differentiable in a large set from the topological
point of view.

Remark 2.9. Mazur’s Theorem holds in this setting because X is compact and
hence the Banach space C(X) is separable.

2.4. Gateaux differentiable from a measure theoretic perspective. A clas-
sical result by Rademacher states that every Lipschitz map F ∶ Rn → Rm is Lebesgue
almost everywhere differentiable. At least since the early 1970s, a great deal of work
has been devoted to extend this result to Lipschitz maps between Banach spaces
with respect to the Gateaux derivate. In order to do so, a notion of null set in
Banach spaces is required. Several such notions have been proposed, for example:
cube null, Gauss null and Aronszajn null (see [BL, Section 6] and references therein
for definitions, properties and equivalences).

Let B be a separable Banach space. For each 0 ≠ a ∈ B let A(a) be the family of
Borel sets A ⊂ B which intersect each line parallel to a in a set of one-dimensional
Lebesgue measure zero. That is, for every x ∈ B we have Leb({t ∈ R ∶ x+ta ∈ A}) = 0.
If (an)n is a sequence of non zero elements in B, we denote byA((an)) the collection
of Borel sets A such that A = ⋃An, where An ∈ A(an) for every n ∈ N. The following
definition was proposed by Aronszajn, see [A] and [BL, pp.141-142].
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Definition 2.10. A Borel set A in a separable Banach space B is called Aronszajn
null if A belongs to ⋂A((an)), where the intersection is taken over all sequences
whose linear span is dense in B.

The class of Aronszajn null sets is closed under countable unions, hereditary class
of Borel subsets of B, which does not contain open sets. Moreover, if B is finite
dimensional then it coincides with the family of Borel sets of zero Lebesgue measure.
Note that Csörnyei [C, Theorem 1] proved that in every separable Banach space the
class of Aronszajn null sets, Gauss null sets and cube null sets coincide. Aronszajn
[A, Main Theorem] (see also [BL, Theorem 6.42]) extended Rademacher’s Theorem
to separable Banach spaces replacing the notion of zero Lebesgue measure with that
of Aronszajn null. Since the pressure is a Lipschitz map from a separable Banach
space to the real numbers, this result describes its differentiability properties from
a measure theoretic point of view.

Proposition 2.11. Let X be compact metric space and T ∶ X → X a continuous
map of finite entropy and U ⊂ C(X) be an open set. The set of points at which the
pressure P ∶ U → R is not Gateaux differentiable is Aronszajn null.

2.5. Fréchet derivative. In this subsection we show that the stronger notion of
Fréchet derivative is too strong for our purposes.

Definition 2.12. Let X be compact metric space, T ∶X →X a continuous map of
finite entropy and ϕ ∈ C(X). The pressure P ∶ C(X) → R is Fréchet differentiable
at ϕ if there exists Γ ∈ C(X)∗ such that

lim
ψ→0

∣P (ϕ + ψ) − P (ϕ) − Γ(ψ)∣

∥ψ∥
= 0.

If P is Fréchet differentiable then it is Gateaux differentiable and in that case
Γ(ψ) = ∫ ψ dµϕ, where µϕ is the unique tangent functional at ϕ. A version of the
reverse implication with stronger assumptions was obtained by Israel and Phelps
(see [IP, p.144]).

Proposition 2.13. If P is Gateaux differentiable on an open set then it is Fréchet
differentiable.

The following result was proved by Walters in [W3, Theorem 6 (vi)] (see also
[IP] and [DvE, Proposition 1]), it shows that the Fréchet derivative is not a well
suited notion of derivative for dynamical systems having many invariant measures.

Lemma 2.14. If P is Fréchet differentiable at ϕ then it is affine on a neighbourhood
of ϕ.

This follows from another characterisation of Fréchet differentiability [W3, The-
orem 6 (v)] namely, the pressure is Fréchet differentiable at ϕ if and only if there
exists a unique equilibrium measure µϕ and

P (ϕ) > sup{h(µ) + ∫ ϕdµ ∶ µ ∈MT , ergodic and µ ≠ µϕ} .

That is, there is no sequence of ergodic measures (µn) in MT different from µϕ
such that

lim
n→∞

(h(µn) + ∫ ϕdµn) = P (ϕ).
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In particular, if the set of ergodic measures is entropy dense then the pressure is not
Fréchet differentiable at any point. See [PS, Theorem 2.1] for precise definitions
and weak conditions which implies entropy denseness of ergodic measures.

2.6. Sub-shifts of finite type. We conclude this section considering the partic-
ular, but important, case in which (Σ, σ) is a sub-shift of finite type defined on a
finite alphabet. That is, let N ⩾ 2 and A = (ai,j)i,j a N ×N matrix with entries in
{0,1}. The symbolic space is defined by

Σ = {x = (x0, x1, . . .) ∶ xi ∈ {1, . . . ,N} and axi,xi+1 = 1 for each i ∈ N0} .

It is a compact space with the topology inherited from the product topology. The
function d(x, y) defined by 1 if x0 ≠ y0; equal to 2−k if xi = yi for i ∈ {0, . . . , k}
and xk+1 ≠ yk+1; and 0 of x = y, is a metric on Σ, and thus induces the ‘cylinder

topology’ (see Section 4 for more information). The dynamics is the left shift
σ ∶ Σ → Σ, i.e., σ(x0, x1, . . .) = (x1, x2, . . .). We will assume that this system is
topologically mixing, which means that for each i, j ∈ {1, . . . ,N} there is a finite
collection i = x0, x1, . . . , x` = j such that Axk,xk+1 = 1 for k = 0, . . . , ` − 1. In this
setting the entropy map is upper semi-continuous [W2, Theorem 8.2]. We have
the following results, that are consequences of the more general statements of the
previous sections.

Proposition 2.15. Let (Σ, σ) be a topologically mixing sub-shift of finite type de-
fined on a finite alphabet and P ∶ C(Σ)→ R the pressure.

(1) The pressure P is Gateaux differentiable in a Gδ-set.
(2) The pressure P is Gateaux differentiable outside an Aronszajn null set.
(3) The pressure P is Gateaux differentiable at ϕ if and only if there exists a

unique equilibrium measure µϕ for ϕ.
(4) The pressure P is not Gateaux differentiable in a dense set.
(5) The pressure P is not Fréchet differentiable at any point.

Proof. The first statement is Proposition 2.8, while the second is Proposition 2.11.
The third follows from the fact that the entropy map is upper semi-continuous and
Proposition 2.7. The fact that the pressure in nowhere Fréchet differentiable was
proved Walters in [W3, Corollary 9]. Finally, the fourth statement follows from the
the fifth together with Proposition 2.13. �

3. Thermodynamic formalism on non-compact spaces

While thermodynamic formalism is well developed for continuous maps defined
on compact metric spaces, the situation is far less satisfactory if the compactness
assumption is dropped. Indeed, if T ∶ X → X is a continuous map and X a
non-compact metric space even the definition of pressure is a subtle matter. For
example, the definition given in Section 2.1 based on the notion of (n, ε)-separated
sets depends upon the metric. That is, two different metrics generating the same
topology can yield different values of the pressure. Explicit examples of this can
be found in [W2, Remark (15) p.171] or [HK, p.254]. If the notion of pressure is to
satisfy the variational principle, P (ϕ) = sup{h(µ) + ∫ ϕ dµ ∶ µ ∈MT } (Proposition
2.1 item (5)), then its value can only depend on the Borel structure on X and not
on the metric. Indeed, both the entropy of an invariant measure, the continuous
functions and their integrals only depend on the Borel structure.
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Other approaches, also based on the definition of pressure for a compact metric
space, have been suggested (see, for example, [GS]). The interior pressure of T at
the continuous function ϕ is defined by

P int(ϕ) = sup{PΛ(ϕ) ∶ ∅ ≠ Λ ⊂X compact and T − invariant} ,

where PΛ(ϕ) denotes the pressure of ϕ restricted to the set Λ. We assume that
sup∅ = −∞. This definition may work well for dynamical systems having a con-
siderable number of compact invariant subsets. However, for systems lacking such
sets the interior pressure may not satisfy the variational principle. The following
example has been suggested several times (see see [HK, GS]). Let T ∶ X̂ → X̂
be a minimal system of positive entropy defined over the compact metric space
X̂. Let X be X̂ minus an orbit. Then, T ∶ X → X is a continuous map defined
over the non-compact metric space X that has no T−invariant compact subsets.
In particular, P int(0) < sup{h(µ) ∶ µ ∈MT } = htop(T ). Examples of this type can
be constructed in manifolds of any dimension (see [BCL, Re]). Another drawback
of the interior pressure is that, since the space of continuous functions C(X) may
not be separable, we cannot directly apply the results of the previous sections to
describe its differentiable properties.

A different approach is to suppose that the set X can be continuously embedded

in a compact metric space (X̂, d̂) and that the continuous function ϕ ∶ X → R can

be continuously extended to X̂ (we also denote by ϕ the extension). In this case
the exterior pressure is defined by

(1) P ext(ϕ) = inf {P(X̂,d̂)(ϕ) ∶ (X̂, d̂)} ,

where the infimum is taken over all possible embeddings (X̂, d̂). One drawback
of this approach is that the functions ϕ need to be bounded, so for systems with
infinite topological entropy the pressure will always be infinite.

Walters [W1, Theorem 8] exploited this idea to extend the Ruelle Perron Frobe-
nius theorem to some dynamical systems defined on non-compact spaces. With this
approach he was able to study interval maps with countably many branches (the so
called f -maps) and a class of countable Markov shifts. He constructed equilibrium
measures for a large class of function. Moreover, he constructed functions with two
equilibrium measures, recovering results by Hofbauer [H].

Bowen [Bo1] gave a definition of entropy for a system defined on a non-compact
set that is contained in a compact metric space. Pesin and Pitskel’ [PP] further
developed this approached and proposed a definition of pressure in the same setting.
Examples with interesting properties can be constructed in this context.

Example 3.1. We begin with an example of dynamical system defined in non-
closed set for which its entropy is positive and strictly smaller than that of its
compactification. Let T ∶ X → X be a continuous map defined on a metric space
X and µ a T−invariant probability measure. A point x ∈ X is generic for µ if the
sequence of empirical measures

δx,n ∶=
1

n

n−1

∑
i=0

δT ix

converges in the weak* topology to µ. Denote by G(µ) the set of generic points for
µ. Bowen [Bo1, Theorem 3] showed that if µ is ergodic then h(T ∣G(µ)) = h(µ). Let
σ ∶ Σ → Σ be the full-shift on two symbols and µ a Gibbs measure different from
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the (unique) measure of maximal entropy. Then, the system σ ∶ G(µ) → G(µ) has
topological entropy h(µ) < log 2 and it is topologically transitive. Since the measure
µ gives positive mass to any open set in Σ we have that the closure of G(µ) is Σ.
That is, its completion with respect to any metric compatible with the cylinder
topology has entropy strictly larger than the original system. In particular, the
boundary supports the (1/2,1/2)-Bernoulli measure.

Example 3.2. The following are examples of systems not satisfying the variational
principle. Let σ ∶ Σ→ Σ be the full-shift on two symbols and g ∶ Σ→ R a continuous
function. The irregular set for the Birkhoff averages of g is defined by

B(g) ∶= {x ∈ Σ ∶ lim
n→∞

1

n

n−1

∑
i=0

g(σix) does not exist} .

The set B(g) is invariant but, in general, not compact. It does not support any
σ−invariant measure. Barreira and Schmeling [BS, Theorem 2.1] showed that if g
is not cohomologous to a constant then h(σ∣B(g)) = htop(σ) = log 2. Moreover, the
set B(g) is dense in Σ. Therefore, the system σ ∶ B(g) → B(g) does not satisfy
the variational principle. Actually, even a smaller set has the same property. The
following example appears in [Pe, Proposition A.2.1]. Let

Z ∶= {x ∈ Σ ∶ x ∉ G(µ) for any µ ∈Mσ} .

The system σ ∶ Z → Z has entropy equal to log 2 and

0 = sup{h(µ) ∶ µ ∈M(σ∣Z)} < h(σ∣Z) = log 2.

We note that Thompson [T] proposed a definition of pressure in the same setting
as [Bo1, PP] with a suitable variational principle. In general this notion is larger
than the definition of Pesin and Pitskel.

A problem with the definitions of Bowen and Pesin and Pitskel (and also with
that of Thompson) is that we need a compact reference space and there are plenty
of natural examples for which such a space is not available.

Finally, we consider yet another definition of pressure in the case that T ∶X →X
is a continuous map defined on a non-compact space. The variational pressure of
the continuous function ϕ ∶X → R is defined by

Pvar(ϕ) = sup{h(µ) + ∫ ϕ dµ ∶ µ ∈MT such that ∫ ϕ dµ > −∞} .

Proposition 3.3. The variational pressure satisfies the following properties

(1) If c ∈ R and ϕ ∈ C(X) then Pvar(ϕ + c) = Pvar(ϕ) + c.
(2) If ϕ,ψ ∈ C(X) satisfy ϕ(x) ≤ ψ(x) then Pvar(ϕ) ≤ Pvar(ψ).
(3) If ϕ,ψ ∈ C(X) satisfy P (ϕ) <∞, P (ψ) <∞ and ∥ϕ−ψ∥ <∞ then ∣Pvar(ϕ)−

Pvar(ψ)∣ ≤ ∥ϕ − ψ∥.
(4) The function Pvar is convex.
(5) If X is a compact metric space then P (ϕ) = Pvar(ϕ).

Proof. The first two claims are direct from the definition. For the third, by the
first two properties we have

Pvar(ψ) − ∥ϕ − ψ∥ = Pvar (Pvar(ψ) − ∥ϕ − ψ∥) ≤ Pvar(ϕ) ≤

Pvar (Pvar(ψ) + ∥ϕ − ψ∥) = Pvar(ψ) + ∥ϕ − ψ∥.

That is ∣Pvar(ϕ) − Pvar(ψ)∣ ≤ ∥ϕ − ψ∥.
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Given µ ∈MT the map ϕ↦ (h(µ) + ∫ ϕ dµ) is affine. Therefore, Pvar is convex
being the supremum of affine, hence convex, maps (see [Ro, Theorem 5.5]). The
last claim is Proposition 2.1(5). �

Remark 3.4. If T ∶ X → X is a continuous map and ϕ ∶ X → R a continuous
function then P int(ϕ) ≤ Pvar(ϕ) ≤ P

ext(ϕ). All the inequalities can be strict, (see
[HK, Theorem 1.8] and the above discussion).

In the next sections we will be interested in the case in which the variational
and the exterior pressure coincide. More precisely, we will construct metrics d in
X such that the corresponding completion X̂ is compact and for every uniformly
continuous function ϕ ∶ X → R we have Pvar(ϕ) = P(X̂,d)(ϕ). Denote by UCd(X)

the space of bounded uniformly continuous functions on X with respect to the
metric d.

Theorem 3.5. Let T ∶X →X be a finite entropy map defined on the non-compact
topological space X. Suppose X that is densely embedded in a compact metric space
(X̂, d) so that for every ϕ ∈ UCd(X),

Pvar(ϕ) = P(X̂,d)(ϕ).

If U ⊂ UCd(X) is an open set then

(1) the pressure Pvar ∶ U → R is Gateaux differentiable in a Gδ subset of U ;
(2) the set of points at which the pressure Pvar ∶ U → R is not Gateaux differ-

entiable is an Aronszajn null set.

The proof of this result is an immediate consequence of Proposition 2.8 and
Proposition 2.11.

4. Countable Markov shifts: preliminaries and results

In this section we consider the particular case in which the dynamical system
defined over a non-compact space is a countable Markov shift (CMS) (Σ, σ). Let
A = (ai,j)i,j be an N ×N transition matrix with entries in {0,1} and let

Σ = {x = (x0, x1, . . .) ∈ NN0 ∶ axn,xn+1 = 1} .

Thus the system is defined by a directed graph structure on N. When we want to
emphasise that N is being used just as a countable set of vertices, we may denote
it by V . On the other hand, often it will be useful to use the implicit indexing
of these vertices which N brings. Let σ ∶ Σ → Σ be the left shift, we will always
assume that (Σ, σ) is topologically mixing (the definition is the same as the one we
gave in Section 2.6). We consider Σ endowed with the topology generated by the
cylinder sets {Z ∶ Z ∈ Zn for some n ∈ N} where the n-cylinder Z ∈ Zn containing
x ∈ Σ is of the form Z = {(y0, y1, . . .) ∈ Σ ∶ yi = xi for i = 0, . . . n − 1}. In general, Σ
is a non-compact space. Moreover, it is locally compact if and only if the row sum
of the transition matrix A is always finite. For CMS we will adopt the variational
definition of pressure. Let ϕ ∶ Σ→ R be a continuous function, the pressure of σ at
ϕ is defined by

PΣ(ϕ) ∶= Pvar(ϕ) = sup{h(µ) + ∫ ϕ dµ ∶ µ ∈Mσ such that ∫ ϕ dµ > −∞} .

We include the subscript Σ to emphasise the space in which the dynamics is defined.
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Remark 4.1. In a series of articles starting in 1999, Sarig developed a theory of
thermodynamic formalism for general topologically mixing CMS. Similar results, for
a narrower class of systems, were obtained earlier by Mauldin and Urbański [MU].
Both, Sarig and Mauldin-Urbański considered regular continuous functions. Indeed,
for functions of summable variations (see [S2, p.556] for precise statements) Sarig
defined a notion of pressure, the so-called Gurevich pressure. This notion satisfies
the variational principle and is well suited for the use of all the transfer operator
machinery. In particular, he proved that if ϕ ∶ Σ → R is of summable variations
then P int(ϕ) = Pvar(ϕ), see [S1, Theorem 2] and [S2, p.557]. This identity, for
ϕ = 0, was obtained earlier by Gurevich [Gu1]. We stress that we do not assume
the summable variation condition on the function ϕ in the definition of PΣ(ϕ).

Remark 4.2. Recall that the entropy of (Σ, σ) is defined by htop(σ) = PΣ(0). If
there exists N ∈ N such that (Σ, σ) has infinitely many periodic orbits of period N
then htop(σ) =∞. This directly follows from the definition of Gurevich entropy, see
[Gu1, Gu2, S1].

4.1. Metrics, compactifications and differentiability of the pressure. In
Theorem 3.5 a strategy to extend the results on differentiability of the pressure
obtained in the compact setting to dynamical systems defined on non-compact
spaces, is proposed. We now discuss its implementation in the context of CMS,
(Σ, σ). The idea is to consider a metric d on Σ, generating the cylinder topology,
such that its completion Σ̄ is compact. The main property we require from the
completion is that if ϕ ∈ UCd then PΣ(ϕ) = PΣ̄(ϕ). Note that, abusing notation,
we denote the (unique) extension of ϕ to the completion of X also by ϕ.

We first consider a class of metrics in Σ, maintaining the notation used in [GS, Z].
This will be of the form: for θ ∈ (0,1) and x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ Σ,

(2) d(x, y) = dρ,θ(x, y) = ∑
n⩾0

θnρ(xn, yn)

with ρ ∶ V × V → [0,1] a metric on V . In this setup, dρ,θ generates the cylinder
topology and σ is uniformly continuous. In particular σ extends to the completion
of Σ, which we denote by Σ̄ρ, and (Σ̄ρ, σ) is a continuous dynamical system. We
denote by d̄ the metric on Σ̄ρ. It will be important for us that this process yields
a compact space.

We say ρ is of vanishing type if

lim
n→∞

sup
i,j⩾n

ρ(xi, xj) = 0,

and non-vanishing type if not (observe that this condition is independent of the
choice of enumeration of the vertices). In [GS], vanishing type metrics were referred
to as type 2 metrics, with type 1 metrics defined by infi≠j ρ(xi, xj) > 0. We will not
be interested in type 1 metrics here since in the CMS setting they are not totally
bounded and so the completion of Σ in such a metric is not compact. Henceforth
we assume that ρ is of vanishing type.

To ensure compactness of the completion it is sufficient that ρ be totally bounded,
see below. Given ρ on V , we will always assume d is given by (2).

Remark 4.3. The following observations will be important.

(1) If ρ is totally bounded then the induced metric d on Σ as in (2) is totally
bounded. This can be seen by supposing ε > 0 and finding a finite cover of
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V by V1, . . . , Vk of diameter less than ε. Let n ∈ N have θn < ε. Then the in-
duced cylinders [Vi1 , . . . , Vin]∩Σ for Vij ∈ {V1, . . . , Vk} cover Σ. These have

cardinality at most kn. Therefore total boundedness of ρ implies (Σ̄ρ, d̄ρ,θ)
is compact.

(2) Any metric of vanishing type is totally bounded. A simple example of a
non-vanishing type metric which is not totally bounded is: for a, b ∈ N let
ρ(a, b) = 0 if a = b and ρ(a, b) = 1 if a ≠ b. Given d as in (2), the completion
Σ̄ρ is not compact.

(3) If ρ is totally bounded then ϕ ∶ Σ → R is uniformly continuous in d if and
only if it extends to a function ϕ̄ ∶ Σ̄ρ,θ → R which is continuous in d̄.

Let Nρ denote the completion of N with respect to ρ and BNρ = Nρ ∖ N. We
denote the boundary of Σ by BΣ = BΣρ. Sometimes it will be more convenient to
emphasise that N is the set of vertices for our shift and denote these by V , using
the notation for boundaries as above.

This metric compactification approach to study CMS began with the work of
Gurevich in 1970 [Gu2] and Walters in 1978 [W1, Section 3.3]. It was further
developed by Zargaryan [Z], who considered ρ(a, b) = ∣ 1

a
− 1
b
∣ if a, b ∈ N and a ≠ b

and ρ(a, a) = 0, thus ρ is totally bounded. The main result in [Z] is that for
the corresponding metric d in Σ and ϕ ∶ Σ → R uniformly continuous, we have
PΣ̄(ϕ) = P int(ϕ). As pointed out by Gurevich and Savchenko [GS, §1], the precise
form of the metric is not important for this result, so long as it is of vanishing type.
The completion with respect to such a metric can be understood as a particular
shift on the one point compactification of the alphabet (usefully thought of as
{. . . , 1

3
, 1

2
,1}): namely N̄ρ = N ∪ {∞}. As we will show later, (Σ̄, σ) is often not

Markov (see Sections 6.2 and 6.3), and the transitions to and from BΣ depend on
the structure of Σ not the specific type of ρ (see Section 4.2).

For many systems, particularly locally compact ones, metrics dρ,θ with ρ of
vanishing type are very natural, indeed the one point compactification of Σ coincides
with Σ̄. However, there are many cases where ρ being non-vanishing, which enriches
the boundary BΣ and enlarges UCd(Σ), is natural. The following result always
holds for these metrics.

Lemma 4.4. If ϕ ∈ UCdθ,ρ(Σ) then P int(ϕ) = Pvar(ϕ).

Proof. This follows from the equivalent result for potentials of summable variation
in [S1, Theorem 2] (in the vanishing case we could use [GS, Theorem 1.5]). As
in the proof of Proposition 3.3, if ϕ,ψ ∶ Σ → R are continuous then ∥ϕ − ψ∥ ⩽ ε
implies ∣P int(ϕ) − P int(ψ)∣, ∣Pvar(ϕ) − Pvar(ψ)∣ < ε, so it is sufficient to show that
potentials of summable variation are dense in UCdθ,ρ(Σ). Recall that the n-th
variation of ϕ ∶ Σ→ R is Vn(ϕ) ∶= supZ∈Zn supx,y∈Z ∣ϕ(x) − ϕ(y)∣, and the potential

has summable variations if ∑n⩾1 Vn(ϕ) <∞.
Suppose ϕ ∈ UCdθ,ρ(Σ) and let ε > 0. By uniform continuity there exists δ > 0

such that d(x, y) < δ implies ∣ϕ(x)−ϕ(y)∣ < ε. Choose n ∈ N0 such that θn/(1−θ) < δ

and observe that from (2), any Z ∈ Zn has diam Z < δ. So we can pick an arbitrary
point xZ ∈ Z and define, for x ∈ Z, the function ϕ̃ ∶ Σ → R by ϕ̃(x) = ϕ(xZ).
Then ϕ̃ is of summable variations (indeed it is locally constant) and ∥ϕ− ϕ̃∥ < ε, as
required. �

We next focus on a particular kind of metric structure, where the vertices V = N
can be ‘sectorially arranged’ with respect to ρ, see Section 5 for a definition. The
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main result here is Theorem 1.1. We will show that vanishing type metrics are
sectorially arranged and hence, since there are also non-vanishing examples which
are sectorially arranged, this theorem is a generalisation of [Z].

Functions ϕ ∈ UCd(Σ) extend to continuous functions on Σ̄ and are therefore
bounded. Since we are interested in pressure, it therefore only makes sense in this
context to look at systems with finite topological entropy. We are able to state the
following, which is a corollary of Proposition 3.5 and Theorem 1.1.

Corollary 4.5. Let (Σ, σ) be a finite entropy CMS, ρ be totally bounded and d the
corresponding metric in Σ. If V is sectorially arranged and U ⊂ UCd(Σ) is an open
set then

(1) the pressure PΣ ∶ U → R is Gateaux differentiable in a Gδ set of U ;
(2) the set of points at which the pressure PΣ ∶ U → R is not Gateaux differen-

tiable is an Aronszajn null set.

The properties established in the following definition trivially imply the conclu-
sion of Theorem 1.1 and Corollary 4.5.

Definition 4.6. Let (Σ, σ) be a finite entropy CMS. We say that it is interior rich
for a totally bounded ρ if for any µ ∈MBΣρ , ϕ ∈ C(Σ̄,R) and ε > 0 there is µ′ ∈MΣ

such that

h(µ′) > h(µ) − ε and ∫ ϕ dµ′ > ∫ ϕ dµ − ε.

In fact, we will show that sectorially arranged examples are interior rich (see
Remark 5.4), but will also give examples showing that the latter class is larger than
the former (see Section 6.3).

4.2. Preliminary structure. In this subsection we give some idea of the structure
of BΣ which does not depend strongly on the form of ρ. It will be more convenient
to write N rather than V for our vertices. We first show that BΣ inherits some
structure from Σ.

Lemma 4.7. We can write points in BΣ as sequences (x0, x1, . . .) where xi ∈ N ∪
BNρ.

Proof. Suppose x ∈ BΣ and that (yk)k, (zk)
k are Cauchy sequences in Σ converging

to x. Suppose that I, a bounded subset of N0, and ε > 0 are such that for all large
k, d(yki , BNρ) > ε whenever i ∈ I. Then the same must be true of the zki for large

k. Hence x can be represented at indices I by the corresponding entry yki . On the
other hand, if I ′, a bounded subset of N0, is such that d(yki , BNρ) → 0 as k → ∞

for i ∈ I ′ then the same must be true for (zki )k, and the corresponding entries for x
can be taken in BNρ. �

We write i → j for i, j ∈ Nρ if there is a sequence x = (x0, x1, . . .) ∈ Σ̄ with
x0 = i and x1 = j. Given two sets of vertices A and B we write A → B if there are
i ∈ A, j ∈ B such that i → j. We say that a set of vertices is connected if for each
two vertices in the set there is a directed path between them (this may only be in
one direction). If ρ is of vanishing type then BNρ is a single point which we denote
by {∞}, but in general BNρ may not even be countable. The following lemma deals
with a similar setting to [GS, Proposition 5.1]. Observe that nothing is assumed
on the metric ρ.

Lemma 4.8. Let (Σ, σ) be a finite entropy topologically mixing CMS.
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(1) There is no element of the form (x0, x1, . . .) ∈ Σ̄ with xn = i ∈ N, the points
xn+1, . . . , xn+m ∈ BNρ and xn+m+1 = j ∈ N.

(2) BΣ̄→ BΣ̄ is always allowed.
(3) Any ergodic measure µ on (Σ̄, σ̄) for which µ(Σ) < 1 has µ(BΣ) = 1.

Proof. Suppose that in fact there is such a point (x0, x1, . . .) ∈ Σ̄ with xn = i ∈ N,
xn+1, . . . , xn+m ∈ BN and xn+m+1 = j ∈ N. Then there must exist a Cauchy sequence
(yk)k in Σ, with ykn = i and ykn+m+1 = j, which converges to x. Since, by topological
mixing there is a path of length ` ∈ N from j to i, this and the Markov property
imply that there must be infinitely many periodic points of period m + 1 + ` in [i],
which contradicts the finite entropy assumption (see Remark 4.2).

For the second part, suppose that BΣ→ BΣ is not allowed. Then there must exist
N ∈ N such that whenever n,n′ > N then n → n′ is forbidden. By the pigeonhole
principle there must exist i, j ⩽ N such that i has infinitely many outgoing arrows
and j has infinitely many incoming arrows. Then as in the first part we can find
infinitely many periodic points of a finite period, contradicting the finite entropy
assumption.

For the third part, note that it follows from the previous parts that

BΣ = {x = (x0, x1, . . .) ∈ Σ̄ ∶ ∃k ∈ N0 s.t. xk+n ∈ BNρ for all k ⩾ 0} .

Therefore, if an ergodic σ̄-invariant probability measure µ is such that µ(BΣ) > 0
then µ(BΣ) = 1. �

We provide examples exhibiting the allowed structure established in Lemma 4.8.
It suffices to consider any vanishing type metric and to recall that for these metrics
we can write BNρ = {∞}. We construct examples where: n→∞ for some n ∈ N; no
n ∈ N with n → ∞; ∞ → n for some n ∈ N; and no n ∈ N with ∞ → n. Note that
in these three examples htop(σ) = log 2 and moreover we can join them together to
obtain mixed behaviour.

Example 4.9 (Renewal Shift: 1 → ∞ and ∞ ↛ n). For the renewal shift, the
transition matrix A = (ai,j) has a1,j = 1 for all j ∈ N, ai,i−1 = 1 for all i ⩾ 2 and
ai,j = 0 otherwise. Here we can define a Cauchy sequence ((1, n, n − 1, . . .))n, i.e.,
we specify the first two terms of the nth term in sequence as 1 and n, the next n−1
terms are then determined and the remainder can be chosen abitrarily. So in the
completion we must have 1 → ∞. Observe that there is no finite symbol n which
can be reached from a large n′ in one step, so ∞↛ n.

Example 4.10 (Backwards Renewal Shift: n ↛ ∞ and ∞ → n). In this case the
transition matrix A = (ai,j) has ai,1 = 1 for all i ∈ N, ai,i+1 = 1 for all i ∈ N and
ai,j = 0 otherwise. In this case we can define a Cauchy sequence ((n,1, . . .))n, so
∞ → 1 is allowed. On the other hand there is no finite symbol n which can reach
larger and larger symbols in one step, so n↛∞.

Example 4.11 (One-sided random walk: n↛∞ and ∞↛ n). Here the transition
matrix A = (ai,j) has a1,j = 1 for j = 1,2 and ai,i±1 = 1 for all i ⩾ 2. Clearly the
only way we can go from a symbol to a large symbol is if the first symbol is also
large, so ultimately we cannot have n→∞ for n ∈ N. Similarly if an initial symbol
is large then the next symbol must also be large, so ∞ → n for some n ∈ N is not
allowed.
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5. Sectors

In this section, given a metric ρ on the space of vertices we define the notion of
sectorially arranged. We prove that it implies that the (variational) pressure PΣ

coincides with the pressure on the compactification induced by the metric. This,
as we already pointed out, yields a good description of the regularity properties of
the pressure.

Definition 5.1. We say that the vertex set V = N is sectorially arranged, with

respect to the metric ρ in V , if there are sequences Nk →∞, δ̂k → 0 and

V = {1, . . . ,Nk} ∪
pk

⊔
i=1

V ik

for pk ∈ N∪{∞}, where each sector V ik is infinite and connected with diam V ik < δ̂k;

for a given k, V ik are not connected to each other; and for k ⩾ 2, V ik ⊂ V
i′
k−1.

Remark 5.2. From Definition 5.1 we have:

(1) Note that each V ik may have non-empty intersection with {1, . . . ,Nk}.

(2) If we have nested sequence of sectors V i11 ⊂ V i22 ⊂ ⋯ then ⋂k V
ik
k is a single

point in BV .
(3) Conversely, for v∞ ∈ BV and k ∈ N there exists at least one i = i(k, v∞) such

that v∞ ∈ BV ik .

Lemma 5.3. If V is sectorially arranged and v∞, v
′
∞ ∈ BV then v∞ → v′∞ if and

only if v∞ = v′∞.

Proof. Suppose that v∞ ∈ BV . Then for any k,n ∈ N there is a point x ∈ Σ with

n of its first symbols in V
i(k,v∞)
k . But this also means that σx ∈ Σ has n − 1 of its

first symbols in V
i(k,v∞)
k . So both x and σx are close to v∞, which implies that

v∞ → v∞ is an allowed transition. In particular (v∞, v∞, . . .) ∈ BΣ.
Now suppose that v∞ → v′∞ is allowed for v∞, v

′
∞ ∈ BV . This means that there

must be a sequence (xn)n such that xn0 → v∞ and xn1 → v′∞ in ρ. Since V is
sectorially arranged, for all large n the vertices xn0 and xn1 must lie in the same
sector. Hence they must accumulate on the same point, which implies v∞ = v′∞. �

Note that in this proof, the fact that v∞ can be the limit of more than one
nested sequence of sectors means that it is possible for the sequence (xn)n to jump
between different nested sectors, but this does not change the result.

Proof of Theorem 1.1. Note that by [W2, Corollary 9.10.1] the pressure of ϕ with
respect to (Σ̄, σ̄) can be computed as

PΣ̄(ϕ) = sup{h(ν) + ∫ ϕ dν ∶ ν ∈MΣ̄ and ergodic} .

Therefore, we can restrict our attention to ergodic measures. The main idea here is
that since by Lemma 5.3 there is no entropy on the boundary, andMΣ̄ =MΣ⊔MBΣ,
it is sufficient to approximate the integrals ∫ ϕ dµ for µ ∈MBΣ by integrals ∫ ϕ dν
for ν ∈ MΣ. The measures ν will be equidistributions on periodic cycles which
approximate the fixed points at the boundary.

For each k ∈ N, topological mixing implies that there is a Mk ∈ N such that
any two vertices in {1, . . . ,Nk} can be connected in less than Mk steps. Therefore,
given v∞ ∈ BV , for any k ∈ N and n ∈ N we can find a periodic point z which spends
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n of its iterates in V
i(k,v∞)
k and at most Mk + 2 of its iterates in {1, . . . ,Nk}. So

if ε > 0 and δ̂k is chosen so that d(x, y) < δk implies ∣ϕ(x) − ϕ(y)∣ < ε, this means

∣ϕ(σjx) − ϕ(σjy)∣ < ε for n terms j. That is, for measure µz the equidistribution
on the orbit of z,

∣∫ ϕ dµz − ϕ(xv)∣ < ε +
Mk + 2

n
∥ϕ∥∞

where xv is the point (v∞, v∞, . . .). Thus, we can approximate any measure µ
supported on BΣ. �

Remark 5.4. It follows from the proof that, in this setting, V being sectorially
arranged implies interior richness.

Remark 5.5. The idea that a good understanding of the behaviour of countable
Markov shifts at infinity can shed light on the dynamical properties of the system
has been recently fomalised in [ITV]. The measure theoretic entropy at infinity of
(Σ, σ) can be defined by

h∞ ∶= sup
(µn)n→0

lim sup
n→∞

hµn(σ),

where (µn)n → 0 means that the sequence (µn)n converges on cylinders to the zero
measure (this means for any cylinder C, µn(C)→ 0 as n→∞). This quantity mea-
sures the complexity at infinity of the system and yields a great deal of information
of it. Existence of equilibrium measures as well as phase transitions can be deduced
from a good understanding of this quantity. Using Propositions 2.6 and 2.7, the fact
that in the sectorially arranged setting, there is no entropy on the boundary also
leads to the following immediate conclusion: the entropy map of the compactified
system is upper semicontinuous if and only if h∞ = 0. This can also be deduced
from [ITV, Theorem 1.1].

The following result proves that the examples studied by Zargaryan [Z] are all
sectorially arranged.

Lemma 5.6. Let (Σ, σ) be a finite entropy CMS and ρ a metric of vanishing type
on V , then the set of vertices is sectorially arranged.

Proof. We will use throughout the fact that diam {n,n + 1, . . .}→ 0 in a vanishing
type metric so our sectors are always shrinking. Let N ∈ N. Then {N +1,N +2, . . .}
can be split into at most countably many disjoint sectors (i.e. connected components
of V ). Let V 1

1 , V
2
1 , . . . be the infinite sectors and choose N1 large enough to cover

all the finite sectors, so that

V = {1, . . . ,N1} ∪
p1

⊔
i=1

V i1 .

Given N ′ > N1 we repeat this procedure obtaining V = {1, . . . ,N2} ∪⊔
p2
i=1 V

i
2 . Sup-

pose that V i2 ∩⊔
p1
j=1 V

j
1 = ∅. Then there are infinitely many vertices outside ⊔

p1
j=1 V

j
1 ,

a contradiction, so V i2 ∩ V
ji
1 ≠ ∅ for some ji. The disjointness of {V j1 } implies that

in fact this ji must be unique with this property, so these sets are nested, as re-
quired. �

We conclude this section with the following conjecture.



DIFFERENTIABILITY OF THE PRESSURE IN NON-COMPACT SPACES 17

Conjecture 5.7. Let (Σ, σ) be a finite entropy CMS, ρ totally bounded and d the
corresponding metric in Σ. Then PΣ(ϕ) = PΣ̄(ϕ) for all ϕ ∈ C(Σ̄,R) .

A related question regarding the entropy of locally compact CMS and some
of its metric compactifications was posed by Fiebig and Fiebig in [FF1]. They ask
whether there are natural metrics for which the compactification has entropy larger
than the original system. We conjecture that this never happens for the class of
metrics we consider.

6. Examples

If we endow (Σ, σ) with the a metric dρ,θ with ρ of vanishing type, then any
function ϕ ∈ UCdρ,θ(Σ) must converge to a unique value on BΣ. For some systems
this is a strong restriction. In this section, we allow ρ to be non-vanishing, which
can enrich BΣ and expand UCdρ,θ(Σ), and where we still satisfy the conclusions of
Corollary 4.5.

6.1. Multiple infinities. We next give a simple sectorially arranged example
where we can take a metric dθ,ρ with ρ of non-vanishing type to enlarge UCd(Σ),
but still retain the vanishing type theory.

Example 6.1 (Double renewal Shift: two infinities). We expand the renewal shift,
where, for notational convenience we replace the alphabet N with Z. Define the
Z × Z transition matrix A = (ai,j) by a0,j = 1 for all j ∈ Z, ai,i−1 = 1 for all i ⩾ 1,
ai,i+1 = 1 for all i ⩽ −1, and ai,j = 0 otherwise. Define the metric dρ,θ as in (2) with
ρ ∶ Z ×Z→ [0,1] a metric given, for a, b ∈ Z, by

ρ(a, b) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if a = b,

1 if ab ⩽ 0 and a ≠ b,

∣ 1
a
− 1
b
∣ if ab > 0 and a ≠ b.

If we restrict to Z+ or Z− then ρ is actually of vanishing type and our system is
just the renewal shift. Thus we see that Σ̄ is obtained in this case by adding ‘two
infinities’ to the alphabet: BZρ = {−∞,+∞}. Clearly this is sectorially arranged.
So, in contrast to the vanishing type case, ϕ ∈ UCdρ,θ(Σ) can take different values
at −∞ and +∞.

Clearly we can adapt this example to have n ∈ N ‘infinities’ BΣ = {∞1, . . . ,∞n}
in the alphabet corresponding to the compactification. Moreover, we can set this
up so that to have countable number of ‘infinities’: {∞1,∞2, . . .}. To keep total
boundedness, we need these to converge to some limit symbol ∞∞.

6.2. A complex boundary. To see that there can be complicated topology on
the boundary of a dynamical system, we will define a CMS with a boundary which
is a Cantor set. This can be obtained from the full shift on three symbols with
a full shift on two symbols removed ([IT, Section 6]), which one can alternatively
think of as the Young tower built over the first return map to a 1-cylinder. Note,
however, that as in Lemma 5.3, the dynamics on this boundary are trivial.

To fix notation let σ̂ ∶ {1,3}N0 → {1,3}N0 be the usual shift map on this
space, though we actually use the standard extension of this to finite words σ̂ ∶
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⋃n⩾1{1,3}n → {ε} ∪⋃n⩾1{1,3}n where ε is the empty word. We use standard con-
catenation notation here, where in particular for any word w, εw = w = wε. Now in
our example, the alphabet is

Σ ∶= {< w2 >∶ w ∈ {ε} ∪ ⋃
n⩾1

{1,3}n}

with transitions 2 →< w2 > allowed for any w ∈ {ε} ∪ ⋃n⩾1{1,3}n and otherwise
< w2 >→< w′2 > allowed only if w′ = σ̂w. The shift σ ∶ Σ→ Σ is the usual left-shift.
The renewal-like structure here means that each point x ∈ Σ must be of the form

(3) x = (< w12 >,< σ̂w12 >, . . . ,< σn1w12 >,< w22 >,< σ̂w22 >, . . .)

where wi ∈ ⋃n⩾1{1,3}n and ni is ∣wi∣ the length of wi.
It may be convenient for the reader to view this system as a dynamical system

on the dyadic tree, where the action of the dynamics is to send the root everywhere
and then each other vertex is sent only to the adjacent vertex which is one step
closer to the root (see Figure 1).

x2

x1 x3

V 1 V 2 V 3 V 4

Figure 1. An example of sectors with a complex boundary with
a renewal-like structure: the vertices are dots, the arrows given the
Markov structure. The diagram continues downwards with infin-
itely many vertices and arrows in the same pattern. The arrows
going from the base vertex are in grey so as not to obscure the
structure too much. We pick out particular nodes x1, x2, x3 to
show how the metric works in the text.

We define the metric ρ by

(4) ρ(< w2 >,< w′2 >) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if w = w′,
1

1+min{i∶w∣w∣−i≠w′
∣w′ ∣−i}

otherwise.

(Note that here if ∣w∣ ≠ ∣w′∣ then we make up the difference by appending the
appropriate number of εs to the front of the shorter word.) Clearly ρ is totally
bounded. Note that the boundary can be viewed as the space of paths in the
dyadic tree, or as {1,3}N0 . The tree structure and the corresponding metric make
it easy to see that this is sectorially arranged, see Figure 1. In that figure, the
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nodes x1 = 0102, x2 = 012, x3 = 1112. Thus ρ(x1, x2) =
1

1+0
= 1, ρ(x1, x3) =

1
1+0

=

1, ρ(x2, x3) =
1

1+1
= 1

2
. For the examples of sectors there, V 1 has all vertices of the

form . . .002, V 2 has all vertices of the form . . .102, V 3 has all vertices of the form
. . .012, and V 4 has all vertices of the form . . .112.

The metric we choose here is different to the one we would inherit on {1,3}N0 from
the usual metric on {1,2,3}N0 . This primarily due to the fact that we ‘count back-

wards’, i.e. in (4) we take min{i ∶ w∣w∣−i ≠ w
′
∣w′∣−i}, but to get back to the usual met-

ric (totally changing the structure here) we would replace this with min{i ∶ wi ≠ w
′
i}.

Remark 6.2. These methods can be extended to, for example, start with a shift of
finite type Σ and replace the root vertex [2] with F = {v1, v2, . . .}. Then the boundary
corresponds to ΣF , a subshift with forbidden words (added to the forbidden words
for Σ). The dynamics, however, just fixes every point.

6.3. Not sectorially arranged, but no new entropy. In these examples we
create a complicated boundary via a particular representation of the renewal shift,
but as we will see this does not lead to more entropy. Let S ∶ [0,∞)→ [0,1]×[−1,0]
be a continuous curve which can be written as a countable union {Sk}k∈N, where
each Sk ∶ [k, k + 1] → [0,1] × [−1,0] is a straight line, parametrised with con-
stant speed. Denote by Projx the projection on the x coordinate. We assume
that Projx(Sk(k)) = 0,Projx(Sk(k + 1)) = 1, if k is even and Projx(Sk(k)) =
1,Projx(Sk(k + 1)) = 0 if k is odd. In both cases assume the y coordinate of Sk
increases, and moreover assume that S accumulates on [0,1]×{0}. This is a zig-zag
pattern accumulating on a line. Thinking of V as the vertices of the renewal shift
and the metric ρ as coming from the placement of V through S, in the Euclidean
metric on [0,1] × [−1,0], we can create various examples. The first simple, non-
trivial, example is to put the vertex 2k at Sk(k) and 2k+1 at Sk(k+1). The arrows
will go either from 0 to all vertices, or ‘downhill’, as in the standard renewal shift
model (see Figure 2). Then BV = BVρ consists of two points x∞,1, x∞,2, and it can
be seen from the construction that aside from the usual renewal shift transitions,
x∞,1 → x∞,2, x∞,2 → x∞,1 and 0→ x∞,1, 0→ x∞,2 are allowed.

x∞,1 x∞,2

0

2

4

6

1

3

5

7

Figure 2. Zero entropy example with a renewal structure which
is not sectorially arranged. The boundary is given here also.
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We can also create a system with three boundary points x∞,1, x∞,2, x∞,3 which
can each transition to all the others. If the dynamics on the boundary were Markov
then this would have positive entropy, but in fact the dynamics turn out to be highly
deterministic. We do this by choosing a pattern of finite zig-zags, here on 4 curves,
and repeating it periodically so that it accumulates periodically on [0,1]×{0}. One
can think of x∞,1 = 0, x∞,2 = 1/2 and x∞,3 = 1. On the first two curves we connect
the point projecting to 0 with the point projecting to 1 and vice versa. In the next
two, we connect the point projecting to 0 with the point projecting to 1/2 with
the point projecting to 1 and vice versa. (Note that since this is renewal shift, we
‘connect backwards’.) With this pattern established, in the limit we obtain the
boundary we claimed. However the dynamics on the boundary is periodic, one
representative given by (x∞,1, x∞,2, x∞,3, x∞,2, x∞,1, x∞,3).

This type of example can be made to include arbitrarily many points on the
boundary, but still with periodic behaviour.

6.4. The boundary being the circle. In Section 6.3 we constructed a metric ρ
in V from the Euclidean metric in the plane. This is a rather flexible technique
that allows for the construction of systems with different types of boundaries. As
an example, we construct a CMS having the unit circle as boundary. Let p(n) be a
strictly increasing sequence of positive integers with p(1) = 1. The graph defining
the CMS is composed of p(n) loops of length n based at the vertex v, for every
n ∈ N. Consider the set of vertices

V = {v} ∪
∞
⋃
n=2

p(n)
⋃
k=1

{bnk(1), . . . , bnk(n − 1)} .

The non zero entries of the transition matrix A = (ai,j) are exactly av,v and
av,bnk(1), abnk(i),bnk(i+1), abnk(n−1),v, for all n, k ≥ 1. This class of systems is usu-
ally called loop systems and have been studied by several authors, see for example
[Rue, Example 29] and [S2, Section 5]. We will consider an increasing sequence of
circles and on each of them equidistribute the vertices of a single loop. Let (rn)n
be a strictly increasing sequence of positive real numbers converging to 1. Consider
a sequence of circles of radii rn each of which is centred at (0,0). Place the vertex
{v} at (0,0) and equidistribute the vertices of each loop {bnk(1), . . . , bnk(n − 1)} in
a circle, starting from that of radii r1 following the numeration of V . Let ρ be the
metric on the vertices induced by the Euclidean metric. The boundary BV is S1

and the dynamics extends to it, fixing each point.

6.5. Positive entropy interior rich example. The examples in the previous
subsection, as well as for example the renewal shift, are interior rich, but have zero
entropy at the boundary. The following example is not sectorially arranged, but is
interior rich with positive entropy on the boundary.

We define the one-sided birth and death chain on N with an unusual boundary.
That is, for a, b ∈ N, if a > 1 then a → b if b ∈ {a − 1, a, a + 1}; and if a = 1, a → b if
b ∈ {1,2}. Now define

ρ(a, b) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if a + b is odd,

∣ 1
a
− 1
b
∣ if a + b is even.

Therefore, BNρ = {∞o,∞e} where all transitions between these elements are
allowed, so htop(BΣρ) = log 2. However, the dynamics on the boundary, and hence
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the measures, are completely mirrored in Σ arbitrarily close to the boundary since
the full shift on {n,n + 1} is a subset of Σ. Thus this example is interior rich. It
is also easy to see that this cannot be sectorially arranged. One can show that
htop(Σ) = log 3. Finally, recalling Proposition 2.6, we observe that for the potential
ϕ ≡ 0, the measure of maximal entropy on BΣρ is a tangent functional, but since it
has entropy strictly less than htop(Σ), it is not an equilibrium measure.
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