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Abstract

This thesis investigates permutation pattern classes in a language theoretic context. Specifically

we explored the regularity of sets of permutations under the rank encoding. We found that the

subsets of plus- and minus-(in)decomposable permutations of a regular pattern class under the

rank encoding are also regular languages under that encoding. Further we investigated the sets of

permutations, which in their block-decomposition have the same simple permutation, and again

we found that these sets of permutations are regular languages under the rank encoding. This

natural progression from plus- and minus-decomposable to simple decomposable permutations led

us further to the set of simple permutations under the rank encoding, which we have also shown

to be regular under the rank encoding. This regular language enables us to find the set of simple

permutations of any class, independent of whether the class is regular under the rank encoding.

Furthermore the regularity of the languages of some types of classes is discussed. Under the

rank encoding we show that in general the skew-sum of classes, separable classes and wreath classes

are not regular languages; but that the direct-sum of classes, and with some restrictions on the

cardinality of the input classes the skew-sum and wreath sum of classes in fact are regular under

this encoding.

Other encodings such as the insertion encoding and the geometric grid encoding are discussed

and in the case of the geometric grid encoding alternative and constructive ways of retrieving the

basis of a geometric grid class are suggested.

The aforementioned results of the rank encoding have been implemented, amongst other pre-

viously shown results, and tested. The program is available and accessible to everyone. We show

that the implementation for finding the block-decomposition of a permutation has cubic time com-

plexity with respect to the length of the permutation. The code for constructing the automaton

that accepts the language of all plus-indecomposable permutations of a regular class under the

rank encoding has quadratic time complexity with respect to the alphabet of the language. The

procedure to find the automaton that accepts the language of minus-decomposable permutations

has complexity O(k5) and we show that the implementation of the automaton to find the language

of simple permutations under the rank encoding has time complexity O(k52k), where k is the size

of the alphabet. Further we show benchmark testing on previous important results involving the

rank encoding on classes and their bases.
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Chapter 1

Permutation Pattern Classes

The idea of permutation pattern classes has arisen from an exercise question in Knuth’s Art of

Computer Programming Volume 1 (section 2.2.1 exercise 5) [Knu97], where Knuth was looking into

what turned to be now known as stack sorting of permutations. Later Robert Tarjan expanded the

exercise into the research of sequences being sorted by different types of data structures. In [Tar72]

he describes the data structures as graphs. Research into seeing which permutations or unsorted

sequences can be sorted by different graphs or data structures was further pursued because of that

[AMR02, B0́3, SV09]. A similar approach is to look at the permutations that are being generated

by a graph or network when a ordered sequence is given [ALT97, ALR04, Wat07]. This concept

gave rise to a natural encoding of the sets of permutations [ALT97, AAR03, ALR04, Wat07], which

turned the sets of permutations over an infinite alphabet into regular languages.

Simion and Schmidt [SS85] were amongst the first to characterise and enumerate closed sets of

permutations based on the patterns or permutations that they avoid. Further enumeration results

were of interest as the original set of permutations as determined in Knuth’s exercise, presented

to be the Catalan numbers. Amongst other constructions the enumeration of the classes of data

structures was investigated [Wes95, B0́3, Atk99]. These enumeration results and the research into

it were especially driven by a conjecture proposed by Herbert Wilf at the 1992 SIAM meeting,

which stated that every permutation pattern class which avoids one permutation pattern has an

exponential growth rate. This conjecture has been found to be true and been proven by Marcus

and Tardos in [MT04].

Amongst these enumeration results the research extended into the languages of permutation

sets and their generation through token passing networks, especially when a different proof to

Knuth’s exercise was shown in [ALT97]. At the same time an interest in being able to compute

pattern classes and finding patterns in permutations developed [BBL98, UY00, AAAH01, XHP05].

An explicit language theoretic approach was first introduced in [AAR03] which also showed that

it is possible to find the regular basis of a regular class and vice versa.

In [AA05] Albert and Atkinson stipulated that the knowledge of the set of simple permutations

in a class is vital to the understanding of the whole class. This is based on the more general

research of Schmerl and Trotter into binary relational structures [ST93], which permutations are

a special case of. In fact, simple permutations are indeed crucial building blocks when it comes

to pattern classes. As seen in [AAK03, BRV08, BHV08a, BHV08b, BRBP10, BRV10, AAB11a,

AAB+11b, Vat11, PR12, Bri12, ARV12, ASV12, AV13], simple permutations are vital for enumer-

ating specific classes, building new permutations or classes, decomposing permutations, and even
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introducing a new type of classes. This new type of classes is grid classes, where we are looking at

permutation classes consisting of permutations that have blocks of sequences order isomorphic to

subpermutations placed in different positions [Wat07, VW11a, VW11b, Bri12, AV13, Bev13].

In this thesis we will be discussing different types of encodings of permutations and the language

theoretic consequences of these encodings. Especially we will be looking at the rank encoding,

which is the natural encoding of permutations generated by token passing networks. We will

show the regularity of sets of plus- and minus-(in)decomposable permutations and σ-decomposable

permutations. Further we will prove that the set of simple permutations under the rank encoding is

regular and that we can find the set of all simple permutations in a non-regular class. Additionally

we discuss the insertion encoding and the encoding of geometric grid classes, where for the latter

we suggest constructive ways of finding the basis of a geometric grid class. Finally, for the results

involving the rank encoding, we have written implementations. This program is available for

anyone to use.

1.1 The Very Basics

First, here are several basic but important definitions before we start talking about permutation

pattern classes.

Definition 1. A word w = w1 . . . wn is a sequence of symbols wi (called letters) which lie in an

ordered set called the alphabet . An alphabet can be a finite or infinite set. A word can be empty.

The length of a word w = w1 . . . wn is denoted as |w| = n, where n is the number of letters of w.

The empty word has length 0.

Definition 2. A subsequence of a word w is a word itself and is obtained by removing some or no

letters of w and preserving the order of the remainder.

Definition 3. A factor of a word w is a consecutive subsequence of w.

Definition 4. A permutation π is a bijective function of a set onto itself.

In permutations, we will be typically using the set [n] = {1, . . . , n} , where n ∈ N and allow

for the possibility that the set can also be empty. A permutation can be represented in two-line

notation π =
(

1 2 ... n
π(1) π(2) ... π(n)

)
; in cycle notation as a sequence of cycles (x, π(x), π(π(x)), . . .) for

x ∈ [n], until the image reaches x; as a sequence π(1)π(2) . . . π(n) of the set {1, . . . , n}, which is

the same as reading the lower line of the two-line notation; or as a plot where (i, π(i)) are points

of the permutation drawn on a discrete (x, y) plane.

A permutation π = π(1) . . . π(n) can be interpreted as a word in which the letters are distinct

and taken from the alphabet {1, . . . , n}, n ∈ N. The sequence or word notation of a permutation

is the main notation that will be used.

Example. The permutation π = 465312 is in cycle notation π = (1435)(26), in two-line notation

π =
(

1 2 3 4 5 6
4 6 5 3 1 2

)
, and figure 1.1 shows the plot of π.

10
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Figure 1.1: Plot of π = 465312.

1.2 General Permutation Pattern Classes

Definitions. order isomorphism, involvement, containment

Two sequences π = π(1), . . . , π(n) and σ = σ(1), . . . , σ(n) of the same length are said to be

order isomorphic if, for all i, j, π(i) ≤ π(j) if and only if σ(i) ≤ σ(j) [Atk99]. The notion of

patterns in permutations is known as involvement or containment . We say that a permutation

σ = σ(1) . . . σ(n) is contained or involved in a permutation π = π(1) . . . π(m), where n ≤ m,

if there is a subsequence in π that is order isomorphic to σ. This is denoted by σ � π . The

containment order is a partial order on the set of all permutations [Bri10].

Example. 231 � 465312 as 231 is order isomorphic to 453, along with other subsequences.

1
1
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2

3

3

4

4

5

5

6

6

Figure 1.2: Plot of 465312 with an occurrence of 231 indicated.

Definitions. permutation pattern class, basis

A permutation pattern class is a set of permutations closed downwards under the containment

order. In other words, a set C of permutations is a pattern class if π ∈ C and σ � π implies σ ∈ C.
Unless otherwise mentioned, if we say a set is closed, we mean that it is closed downwards under

the above mentioned order. The complement set, CC , of a pattern class C is closed upwards under

the containment order, i.e. if π ∈ CC with π � σ then σ ∈ CC . The set of minimal permutations

of CC is called the basis B of C and we can describe pattern classes

C = Av(B) = {π : σ � π, for all σ ∈ B}

as the set of permutations avoiding the basis [AAR03]. The class C can be represented by its basis

as Av(B).

Example. The class of all strictly increasing permutations, C = {1, 12, 123, 1234, 12345, . . .} has

basis B = {21}. So C is Av(21).
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In [Atk99] M. D. Atkinson states the following theorems on the construction of pattern classes

based on the knowledge of other pattern classes.

Theorem 5. [Atk99] Suppose that C and D are closed sets. Then C ∩ D and C ∪ D are also closed.

Moreover, if C and D each have a finite basis then both C ∩ D and C ∪ D have a finite basis.

Theorem 6. [Atk99] Suppose that C and D are closed. Let [C,D] be the set of all permutations

which are concatenations σπ, where σ is order isomorphic to a permutation in C and π is order

isomorphic to a permutation in D. Then [C,D] is closed. Moreover, if C and D are each finitely

based then so is [C,D].

These theorems allow us to construct new classes from the basic ones that are known. Further

interest lies in the different types of classes, which are bound to permutations with the same

properties.

1.3 Separable Classes

Definitions. direct sum of permutations, skew sum of permutations

The research into constructing pattern classes from smaller or known pattern classes has been

extensive. Particularly, research in observing the enumerative properties of the constructed classes

[Wes95]. Separable classes come from the idea of the direct and skew sum of permutations, which

are the generalisation of two special cases of block-decomposition of permutations (see section 3.1).

The direct sum of permutations π and σ, with lengths m,n respectively, is defined as

(π ⊕ σ)(i) =

{
π(i) if 1 ≤ i ≤ m
σ(i−m) +m if m+ 1 ≤ i ≤ m+ n

[AAV11].

The skew sum of permutations π and σ, with lengths m,n respectively, is defined as

(π 	 σ)(i) =

{
π(i) + n if 1 ≤ i ≤ m
σ(i−m) if m+ 1 ≤ i ≤ m+ n

[AAV11].

Example. Let π = 2413 and σ = 13542 then

π ⊕ σ = 241357986

π 	 σ = 796813542.
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Figure 1.3: Plots of the direct and skew sums of 2413 and 13542.

Definitions. direct sum of pattern classes, skew sum of pattern classes, separable pattern classes

Following the definitions of the direct and skew sums of permutations, the direct and skew sums

of pattern classes are defined as follows. The direct sum of pattern classes C,D is

C ⊕ D = {ρ : ρ = π ⊕ σ, π ∈ C, σ ∈ D}.

The skew sum of pattern classes C,D is

C 	 D = {ρ : ρ = π 	 σ, π ∈ C, σ ∈ D}.

Combining the notions of direct sums and skew sums leads us to another pattern class.

Proposition 7. [AAV11] The class of separable permutations is the smallest non-empty class C
that satisfies both C ⊕ C ⊆ C and C 	 C ⊆ C.

The basis of the class containing all separable permutations is {2413, 3142} [BBL98].

1.4 Wreath Closed Classes

Definitions. interval, block

To define wreath classes we have to start at the definition of the wreath product (or inflation)

of permutations. An interval (or block see [AA05]) in a permutation σ is a factor of contiguous

values of σ.

Example. In π = 346978215, π(4)π(5)π(6) = 978 is an interval and a factor, whereas

π(1)π(2)π(3)π(4) = 3469 is just a factor.
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Figure 1.4: π = 346978215 with an interval (solid square) and a factor (dashed rectangle) indicated.

Definitions. inflation, block-decomposition, deflation of permutations

Given a permutation σ = σ(1) . . . σ(m) of length m and non-empty permutations α1, . . . , αm

the inflation of σ by α1, . . . , αm, written as σ[α1, . . . , αm], is the unique permutation obtained

by replacing each entry σ(i) by an interval that is order isomorphic to αi, where the relative

ordering of the intervals corresponds to the ordering of the entries of σ [AA05]. Conversely, a

block-decomposition or deflation [AA05] of a permutation π is any expression of π written as an

inflation π = σ[α1, . . . , αm].

Example. The inflation of σ = 24513 with α1 = 12, α2 = 1, α3 = 312, α4 = 21, α5 = 1 is

24513[12, 1, 312, 21, 1] = 346978215. In other words a possible block-decomposition of 346978215 is

24513[12, 1, 312, 21, 1].
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Figure 1.5: Plot of inflation 24513[12, 1, 312, 21, 1] = 346978215.

Definitions. inflation of classes, wreath product, wreath closed, wreath closure

We can extend the definition of inflation of permutations to classes as follows

σ[C1, . . . , Cn] = {σ[α1, . . . , αn] : αi ∈ Ci}

where |σ| = n [AA05] . This is a set of permutations, which are bound by the permutation σ in

their decomposition. Furthermore, we can say that the wreath product [AS02, Bri07, Kit11] of two

classes A and B is

A o B = {α[β1, . . . , βn] : α ∈ A, β1, . . . , βn ∈ B}.
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The wreath product is also sometimes denoted as A[B] . The following lemma is from [AS02], it

shows that we can build further permutation classes through the wreath product.

Lemma 8 ([AS02]). If A and B are closed then A o B is closed.

Now, we can define a class A to be wreath closed if A = A o A, and in [AA05] the following

proposition was shown.

Proposition 9 ([AA05]). A class is wreath closed if and only if its basis consists entirely of simple

permutations.

See chapter 3 for more information on simple permutations and the block-decomposition of

permutations.

The wreath closure 〈A〉 of a pattern class A is the smallest wreath closed set that contains A.

We can describe 〈A〉 as union of wreath products

〈A〉 =

∞⋃
n=1

An,

where A = A1 and An+1 = A o An [AA05].

Corollary 10 ([AA05]). Let A be a wreath closed class. Then

A = 〈Si(A)〉,

where Si(A) = {π : π ∈ A, π simple}.

1.5 Grid Classes

We now want to introduce a different way of representing classes. Similarly to the wreath product

we are thinking of blocks in the plot of a permutation and how we position points in those blocks.

Here we are given a grid on the plot of a permutation and we define the positioning of the points

of the permutation in those cells. The behaviour of the permutations over the grid is described

by matrices. Grid classes unify different theories concerning pattern classes of permutations of a

specific form, amongst others. For example, the skew-merged permutations [HV06, AV13], which

in the past were described as the permutations of a union of a decreasing subpermutation with

an increasing subpermutation. Now this pattern class can be more easily defined as the grid class

over the matrix

(
−1 1

1 −1

)
[HV06].

Remark 11. Please note that all matrices, in a grid class context, are indexed starting at the

bottom left corner and the order is swapped. Namely, the entry ij of a matrix is in the i-th column

from the left and j-th row from the bottom. This change in notation is due to the more natural

correspondence to the plot representation of permutations.

Example. The 3× 4-matrix M is indexed in the following way
(1, 4) (2, 4) (3, 4)

(1, 3) (2, 3) (3, 3)

(1, 2) (2, 2) (3, 2)

(1, 1) (2, 1) (3, 1)
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so M2,3 = (2, 3) denotes the entry in the second column from the left, and the third row from below.

In general, the entries of matrices of grid classes are permutation classes, usually represented

by their bases. We will be concentrating on matrices with Av(21) or Av(12) as entries. These grid

classes are called monotone grid classes.

Definitions. gridding matrix, 0/± 1 matrix, M -gridding

Let M be an m × n matrix, where the entries are either 0, 1 or −1. This matrix is called a

gridding matrix [Wat07] or a 0/±1 matrix [AAB+11b, VW11a]. An M -gridding of a permutation

π, |π| = k, is a pair of sequences, 1 = c1 ≤ · · · ≤ cm+1 = k + 1 of m + 1 distinct vertical lines

(column divisions) and 1 = r1 ≤ · · · ≤ rn+1 = k+1 of n+1 distinct horizontal lines (row divisions)

which divide the plot of a permutation into cells, such that for each i, j points of π in cell ij are

• increasing, if Mij = 1;

• decreasing, if Mij = −1 or

• there are no points of π in ij, if Mij = 0. [Vat11, VW11a]

Example. An example of a 0/± 1 matrix is

M =

(
0 −1 1

1 −1 −1

)
.

The permutation π = 259836471 has an M -gridding, with column divisions c1, c2, c3, c4 = 1, 3, 7, 10

and row divisions r1, r2, r3 = 1, 6, 10, which is shown in figure 1.6.

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Figure 1.6: An M -gridding of π = 259836471.

Definitions. M -griddable permutation, M -gridded permutation, M -griddable class, monotone

grid class, standard figure, geometric grid class

If π has an M -gridding, then π is said to be M -griddable. A permutation with such a gridding

is called an M -gridded permutation. Similarly, a permutation class C is said to be M -griddable

if every π ∈ C is M -griddable. The class consisting of all M -griddable permutations is called the

(monotone) grid class of M , and is denoted Grid(M) [Vat11, Bri12, AAB+11b].

We want to go further and define geometric grid classes, as through the nature of their definition

they have a natural encoding.
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LetM be a 0/±1 matrix. The standard figure ofM , denoted Λ, is the point set in R2 constrained

to increasing line segments from (i − 1, j − 1) to (i, j) if Mij = 1, decreasing line segments from

(i− 1, j) to (i, j − 1) if Mij = −1, and no points between (i− 1, j − 1) and (i, j) if Mij = 0. The

geometric grid class of M , denoted as Geom(M), is the set of permutations that can be drawn

on the standard figure Λ as follows: choose n points in Λ where no two points lay on a common

horizontal or vertical line, label these points from 1 to n from bottom to top, and read the labels

off from left to right [ARV12, AAB+11b]. In other words, the plot of each permutation is a subset

of Λ [Bev13].

Example. Let the 0/± 1 matrix be

M =

 1 0

−1 0

1 1

 .

The permutation π = 156324 is in Geom(M).
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Figure 1.7: Standard figure of M , with π indicated, and the plot of π with grid lines.

In [AAB+11b] it has been noted that Geom(M) ⊆ Grid(M), this is due to the fact that the

points of the permutations in a geometric grid class are fixed on the lines in the plane, whereas in

monotone grid classes the placement is more flexible.

Definitions. cell graph

The cell graph of a matrix M is a graph with set of vertices {(i, j) : Mij 6= 0}, where vertices

are adjacent if the corresponding cells of M share a row or a column.

Theorem 12 ([AAB+11b]). If the cell graph of M is a forest then Geom(M) = Grid(M).

Example. Let

M =

(
1 0 −1

−1 1 0

)
then its cell graph is
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2, 1

3, 2

Figure 1.8: Example of the cell graph of a matrix.

Example. Here is an example of a matrix M and a permutation π such that π ∈ Grid(M) but

π /∈ Geom(M). Let

M =

(
1 −1

−1 1

)
and π = 1324.

The cell graph of M is

1, 1

1, 2

2, 1

2, 2

Figure 1.9: Cell graph of M .

and the geometric gridding of π is
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Figure 1.10: Plots of π = 1324.

The plot of π reveals that even though an M -gridding can be found for π it is not possible to

find a geometrical gridding of π over M because if the points 1 and 4 are set on line segments in

Λ, then moving the points 2 and 3 is not possible without moving 1 and 4 off their line segments.

Thus

1324 ∈ Grid(M) but 1324 /∈ Geom(M).

Theorem 13 ([AAB+11b]). Every geometrically griddable class is finitely based.

Proposition 14 ([AAB+11b]). The union of a finite number of geometrically griddable classes is

geometrically griddable.

We can see again that having an understanding of smaller geometric grid classes allows us to

construct larger classes.
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Chapter 2

Encodings

Most research in permutation pattern classes was and still is interested in classifying and enumer-

ating pattern classes. The cross-over from permutation pattern classes to formal languages came

naturally and as there is more knowledge and computing power within languages. Overall the

research into pattern classes is benefiting from this alternative representation.

In this chapter we will present three different encodings, namely the rank encoding, the insertion

encoding and the encoding of geometric grid classes. Many permutation pattern classes lead to

regular languages under the rank encoding [AAR03], which is a form of Lehmer code [Leh60]. Under

the insertion encoding many pattern classes are either regular [Vat12] or context-free languages

[ALR05]. All geometric grid classes have been found to be regular under their encoding [AAB+11b].

Having regular and context-free languages makes pattern classes highly computable through their

representation as regular expressions and automata. For more details on the theory of languages

and automata see [HMU06]. We will not restate basic facts about languages and automata.

2.1 The Rank Encoding of Permutations

Definitions. rank encoding, rank

The rank encoding of a permutation π = π(1)π(2) . . . π(n) is the sequence ER(π) = p1p2 . . . pn,

where for all i ∈ {1, . . . , n},

pi =
∣∣∣{j : j ∈ {i, . . . , n}, π(j) ≤ π(i)

}∣∣∣
is the rank of π(i), amongst the entries of π that have not occurred yet while reading the per-

mutation π from left to right. [AAR03]. We denote the rank encoding of a permutation π as

ER(π).

Example. Let π = 541963728 then ER(π) = 541632211. A step by step calculation is shown
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below.
Permutation Encoding Unused values

541963728 ∅ 123456789

41963728 5 12346789

1963728 54 1236789

963728 541 236789

63728 5416 23678

3728 54163 2378

728 541632 278

28 5416322 28

8 54163221 8

∅ 541632211 ∅

Reversely, the sequence ER(σ) = 314341221 represents the rank encoding of σ = 316582794.

Encoding Permutation Unused values

314341221 ∅ 123456789

14341221 3 12456789

4341221 31 2456789

341221 316 245789

41221 3165 24789

1221 31658 2479

221 316582 479

21 3165827 49

1 31658279 4

∅ 316582794 ∅

Definitions. inversion

The rank encoding is a natural encoding of the permutations sorted by networks and stacks,

as introduced in [ALT97]. Another way of thinking of the rank encoding is as the language of

inversions. An inversion in a sequence s1 . . . sn is a subsequence sisj , i < j, which is order

isomorphic to 21. The rank encoding of a permutation π, |π| = n is the sequence of the numbers

of inversions (plus 1) that involves π(i) of every factor of the form π(i) . . . π(n), i ∈ {1, . . . , n} of

the permutation.

It is important to note for the characterisation of the language of rank encoded permutations

that not every sequence in {1, . . . , n}n represents a permutation, as there are nn sequences in

{1, . . . , n}n and only n! permutations of length n. For example the sequence 334644211 is the rank

encoding of the permutation 346978215, whereas the sequence 234664311 cannot be decoded into a

permutation as the second 6 in the encoding decodes to 10 but the decoded word will be of length

9. Additionally, we can see that the rank encoding is unique to every permutation and vice versa.
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2.2 Classes, Token Passing Networks and the Rank Encod-

ing

The abstract theory of token passing networks is essential to different aspects of computer science in

real world situations. For example, a token passing network can represent a distributed computing

network and the data communication within it or parallel computers and the bits and bytes flowing

along the architecture. Feeding networks with numbered tokens and analysing the patterns of the

output, has implications for the resequencing problem of packet-switching networks. Furthermore,

the understanding of the outputs of token passing networks could lead to the improved apprehension

of real world applications. The problem of sorting permutations using a stack, as specified by Knuth

in [Knu97] can also be represented as an infinite token passing network.

Definitions. token passing network (TPN)

Formally, a token passing network is a finite directed graph with a designated input node and

a designated output node. The input node has no incoming edges from other nodes whereas the

output node has no outgoing edges to other nodes. The input node generates a sequence of tokens,

labelled 1, 2, 3, . . ., and the output node collects the tokens in the order they arrive. These tokens

are passed on to the nodes within the graph, where each node, apart from the input and output

nodes, can hold at most one token at any time. The edges do not hold tokens but are there to

pass them on.

The following must hold if a token t moves from a node x to a node y;

• There is an edge from x to y;

• x is the input node, and the tokens 1, . . . , t− 1 have been moved, or x is any other node but

not the output node;

• lastly, either y is the output node or y is not the input node and currently is not occupied

by a token [ALT97].

Example. The TPN described in Knuth’s exercise in [Knu97] is based on an infinite stack. Fig-

ure 2.1 represents such a TPN with a finite stack of size 3.

12

3

4

5

6

Figure 2.1: Single size 3 stack TPN.
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A token passing network outputs permutations of the input sequence 1, . . . , n. The set of

permutations output by a token passing network is closed under the containment order (or single

point deletion) [ALR04].

Example. The class of the TPN in figure 2.1 is Av(312).

The rank encoding of the permutations output by TPNs is a natural encoding. The rank of

each token is the number of tokens still in the TPN (plus 1) which have smaller value than the

currently output token. This is the reason for the name of this encoding. In general we know that

the maximal rank of the language cannot exceed the number of internal (not including the input

and output node) nodes of the network [ALR04].

Theorem 15. [ALT97] The rank encoded class of output permutations of a TPN is regular.

The non-minimal and non-deterministic automaton accepting the rank encoded language of a

pattern class that is output by a TPN is built by letting each state of the automaton represent a

possible configuration of tokens in the network [ALT97].

Example. Let the token passing network be the single stack of size 3 as in figure 2.1. The network

can be saturated with 4 tokens, so our maximal rank will be 4. The language of all words representing

permutations created by the single stack of size 3, over the alphabet Σ = {1, 2, 3, 4} is accepted by the

minimal automaton below, the originally constructed non-deterministic automaton has 32 states.
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3

4

1,2,3,4

Figure 2.2: Minimal automaton accepting the rank encoded permutations from the TPN in fig-
ure 2.1.

The regular expression has the form((
(44∗3|3) (44∗3|3)

∗
2|2
) (

(44∗3|3) (44∗3|3)
∗

2|2
)∗

1|1
)∗
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with the shortest words being

Encoding Permutation

1 1

11 12

21 21

111 123

121 132

211 213

221 231

321 321

1111 1234
...

...

Definitions. Ωk, regular class

In [AAR03] it was shown that the set of rank encoded permutations with highest rank k,

denoted as ER(Ωk), is regular. If we have a pattern class that is a subset of Ωk and a regular

language under the rank encoding, we will call that pattern class a regular class. Further, in that

same paper the following theorem was proven.

Theorem 16. [AAR03] A closed subset of Ωk is regular if and only if its basis is regular.

The proof and the construction of the regular language of the basis is set around the theory

of transducers, which translate one language to another using given rules. In this case the rules

are based around point deletion in permutations and the effect point deletion has on the rank

encoding.

Definitions. finite state transducer

A finite state transducer is a type of finite automaton with output strings. Thus it is a sextuple

(Σ,Γ, S, δ, s1, A), where Σ is the input alphabet, Γ is the output alphabet, S is the finite set of

states, δ is the transition function S × (Σ× Γ)→ S, s1 ∈ S is the start state and A ⊆ S is the set

of accept states.

Example. Below is an example of a transducer that takes words over the alphabet {1, 2} and

returns words over the same alphabet.

1start 2

2|1
1|2

2|2
1|1

2|2
1|1

Figure 2.3: Example of a transducer.

This transducer takes a word, changes the letters until an unspecified index, from which on the

letters are the same as in the input word. Applying the transducer to w = 121212 can return any

word of the set {121212, 221212, 211212, 212212, 212112, 212122, 212121}.
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First let us look at the construction of the language of the basis from the class. Let C be a

regular class under the rank encoding with the language ER(C). We want to find the basis B of C
which is the minimal set of permutations not in the class. In [AAR03] it is shown that the language

ER(B) of B can be found using the equation

ER(B) = (ER(C))C ∩ ((ER(C))CDt)C ,

where D is a transducer that deletes an arbitrary letter in a rank encoded permutation, and returns

a word that represents the permutation that had the point removed that corresponds to the removed

letter. Further, Dt is the transpose of the transducer D, which means that the transducer Dt will

add a letter to the word, because the transpose of a transducer has the input and output alphabets

interchanged, as well as the letters on the transitions.

Example. Let k = 3 then the one point deletion transducer D has input alphabet {1, 2, 3}, output

alphabet {ε, 1, 2, 3} and the following form.

4start

21 3

2|1
3|2

1|1

3|2

1|1
2|2

1|1
2|2
3|3

1|ε 2|ε
3|ε

1|1
2|2
3|3

Figure 2.4: One point deletion transducer over the alphabets Σ = {1, 2, 3}, Γ = {ε, 1, 2, 3}.

So if the permutation π = 243516 with the encoding ER(π) = 232211 has the point π(3) = 3

point deleted, then the output permutation is π′ = 23415 with the encoding ER(π′) = 22211.

The one point deletion transducer does exactly that, but without knowing what the underlying

permutation is. So it takes the word w = 232211 and returns a set of words, which are all valid

rank encodings with a letter less than the starting word and w′ = 22211 is amongst them.

Just to re-iterate, to transpose a transducer Dt means to change the letters on the transitions,

so the output letter is turned to the input letter and vice versa.

Example. Figure 2.4 shows the deletion transducer over the input alphabet {1, 2, 3}, whereas the

following figure shows its transpose.
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4start

21 3

1|2
2|3

1|1

2|3

1|1
2|2

1|1
2|2
3|3

ε|1 ε|2
ε|3

1|1
2|2
3|3

Figure 2.5: Transpose of the one point deletion transducer, which is now a transducer over the
input alphabet {ε, 1, 2, 3} and output alphabet {1, 2, 3}.

This means that the transducer now adds a letter to a rank encoded word, and thus a point

to the corresponding permutation. Take w = 22211 and add a letter to get w′ = 232211. The

corresponding permutations are ER(π) = w = 23415 and ER(π′) = w′ = 243516.

Secondly, it has been shown in [AAR03] that it is also possible to move from knowing the

language of the basis to the language of the class under the rank encoding. This is done by using

an involvement transducer H that removes any number of letters from the input word while still

returning a valid rank encoded word which corresponds to the permutation with the same set of

points removed.

ER(C) = (ER(B)Ht)C ∩ ER(Ωk).

Example. The involvement transducer for k = 3 has the following form.

4start 3

2 1 3|2
2|1

3|ε
1|1

1|ε
2|ε

1|ε
3|2
2|ε

3|ε

1|1
2|2

2|1

1|1

1|ε
2|ε
3|1
3|ε

1|ε

2|ε

1|1
2|2
3|3
3|ε

Figure 2.6: Diagram of involvement transducer H for k = 3.

Example. Let us take the TPN as represented in figure 2.7. The language of the permutation
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class C of that TPN is regular under the rank encoding. So is the language of the basis B, where

the basis is infinite.

1

2

3

4

5

6

Figure 2.7: A TPN with infinite but regular basis.

The language of the class is

ER(C) =
(
(22∗3|3) (12∗3|3)

∗ (
12∗1|2

(
(33∗1|33∗2|2) (33∗1|2)

∗
1|1
))
|22∗1|1

)∗
and the language of the basis is

ER(B) = 31(31)∗321|322321.

The shortest words of these languages are

Class

Encoding Permutation

1 1

11 12

21 21

111 123

211 213

121 132
...

...

Basis

Encoding Permutation

322321 324651

3231321 3251764

323131321 325174986
...

...

The two figures below show the automata accepting these languages.
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1,2
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1 2

3

1,2,3

Figure 2.8: Deterministic automaton accepting the language of the class.
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Figure 2.9: Non-deterministic automaton accepting the language of the basis.

It is interesting to see that the automaton of the basis, although larger is less complicated than

the automaton of the language. This is similar in the regular expressions of these languages.

2.3 Insertion Encoding of Permutations

Definitions. insertion encoding, configuration, slot

For completeness we mention a generalisation of the rank encoding. The idea of the insertion

encoding is to keep track of how a permutation is built by adding the next highest element into

a configuration of the permutation containing slots [Eld04]. A configuration is the state of a

permutation after adding a maximal element. It is represented as a sequence of numbers and slots,

denoted by . The manner of the insertion is recorded and builds the insertion encoded word.

There are four different ways of inserting a new element x into a slot:

→ x is represented by m, for middle,

→ x is represented by l, for left,

→ x is represented by r, for right,

→ x is represented by f, for fill.

Each of these insertion operations carries a subscript that indicates on which slot in the current

configuration it operates [ALR05, SV09]. The alphabet of the insertion encoding will be those

operations with their subscripts and the words over that alphabet will be the instructions how to

construct the corresponding permutation. We denote the insertion encoding of a permutation π

as EI(π).

Example. The permutation π = 316582794 is insertion encoded as EI(π) = m1m2f1r2m1f1l2f1f1.

Configuration Encoding

1 m1

1 2 m1m2

31 2 m1m2f1

31 2 4 m1m2f1r2

31 5 2 4 m1m2f1r2m1

3165 2 4 m1m2f1r2m1f1

3165 27 4 m1m2f1r2m1f1l2

3165827 4 m1m2f1r2m1f1l2f1

316582794 m1m2f1r2m1f1l2f1f1
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Conversely, m1r2m2m1f4f3f2f1 is decoded to the permutation 84716352.

Encoding Configuration

m1r2m2m1f4f3f2f1

r2m2m1f4f3f2f1 1

m2m1f4f3f2f1 1 2

m1f4f3f2f1 1 3 2

f4f3f2f1 4 1 3 2

f3f2f1 4 1 352

f2f1 4 16352

f1 4716352

84716352

The language of a set of permutations under the insertion encoding will be regular if we limit

the subscript of the letters to at most k. In other words, we are limiting the depth of the filling of

the open slots in each configuration [Vat12].

A set of permutations is context-free under the insertion encoding if we let the push-down

automaton accepting the language be such that each transition of the automaton must correspond

to some single letter of the insertion encoding and the number of symbols in the stack is equivalent

to the number of slots available after the prefix of the word has been interpreted [ALR05].

2.4 Regular Insertion Encoded Pattern Classes

Let us observe that it is possible to get a regular language of permutations under the insertion

encoding, by limiting the number of slots available at any configuration of the permutation. We

will denote this insertion encoding by EIR .

Definitions. slot bounded permutation

For each positive integer k the set SB(k) of permutations for which the insertion encoding never

includes more than k slots is called the set of k slot bounded permutations [ALR05].

Proposition 17. [ALR05] For each positive integer k the set SB(k) is a pattern class. Its basis

consists of the (k+ 1)!k! permutations of length 2k+ 1 of the form babab . . . bab where the positions

marked with b are occupied by the numbers {k + 1, k + 2, . . . , 2k + 1} while those marked by a are

occupied be the numbers {1, 2, . . . , k}.

Theorem 18. [ALR05] Let C be a pattern class that is a subclass of SB(k) for some k. The

following are equivalent:

• The language EIR(C) is regular.

• There is a regular language EIR(B) defining a subset of B ⊆ SB(k) such that C = Av(B) ∩
SB(k).

In fact B can, but need not, be chosen to consist of those elements of the basis of C which belong

to SB(k), and there is an effective procedure for passing from the language of B to that of C and

vice versa.

28



Encoding permutations with this version of the insertion encoding is more inefficient than using

the rank encoding and does not lead to different or improved results. Thus, so far the rank encoding

has been commonly used instead, when wanting to look at permutation pattern classes with regular

languages.

2.5 Context Free Insertion Encoded Pattern Classes

To reach context free pattern classes with the insertion encoding, the subscripts on the slot oper-

ations will stay limited but we will allow for counting slots from the right additionally to counting

from the left side. The counting direction will be distinguished through the negative sign in the

index. We will denote this context free insertion encoding by EICF .

Definitions. insertion bounded class

Let k be a positive integer. The set IB(k) consists of all those permutations whose insertion

encodings can be written using only operations whose subscripts come from {±1,±2, . . . ,±k}. We

call this the insertion bounded class of depth k. [ALR05]

Example. The permutation π = 2413657 can be encoded as EICF (π) = m1l1l−1f1m−1f1f1.

Configuration Encoding

1 m1

2 1 m1l1

2 13 m1l1l−1

2413 m1l1l−1f1

2413 5 m1l1l−1f1m−1

241365 m1l1l−1f1m−1f1

2413657 m1l1l−1f1m−1f1f1

So π ∈ IB(1).

Proposition 19. [ALR05] Each set EICF (IB(k)) is a context free pattern class. Its basis consists

of the set of permutations of the form:

c1a1c2a2 . . . ckak(2k + 1)ak+1ck+1 . . . a2kc2k

where {a1, . . . , a2k} = {1, . . . , 2k} and {c1, . . . , c2k} = {2k + 2, 2k + 3, . . . , 4k + 1}.

Theorem 20. [ALR05] Any context free class is a subclass of IB(k) for some k.

2.6 Geometric Grid Class Encoding

Definitions. refinement

Before we can talk about the encoding of geometric grid classes, we have to introduce a couple

of definitions on the 0,±1 matrices. Let M be a 0,±1 matrix of size m × n. As mentioned in

section 1.5 we are indexing matrices in a Cartesian coordinate fashion. The refinement M×q is the
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mq×nq matrix obtained by replacing every 0 entry of M by a q× q zero submatrix, every 1 entry

of M by a q × q submatrix of the form

0 0 · · · 1
...

... . .
. ...

0 1 · · · 0

1 0 · · · 0

and every −1 entry of M is replaced by a q × q submatrix of the form

−1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

.

Example. The refinement M×2 of M =

(
1 0 −1

−1 1 0

)
is

M×2 =


0 1 0 0 −1 0

1 0 0 0 0 −1

−1 0 0 1 0 0

0 −1 1 0 0 0

 .

Definitions. partial multiplication matrix (PMM), column and row signs

The matrix M is a partial multiplication matrix (PMM) if it has column and row signs

c1, . . . , cm, r1, . . . , rn ∈ {1,−1} such that Mij = cirj or Mij = 0. In [AAB+11b] it is shown

that for every 0,±1 matrix M , its refinement M×2 is a PMM. Furthermore there it is also proven

that every geometric grid class is a geometric grid class of a PMM. We can thus assume that from

now on our matrix M is a PMM, if it is not we can replace M with its refinement M×2.

Example. The matrix M =

(
1 0 −1

−1 1 0

)
has column and row signs c1 = r2 = −1, c2 = c3 =

r1 = 1.

Definitions. cell alphabet

We can now introduce the language of geometrically griddable permutations. Let M be a m×n
PMM with column and row signs c1, . . . , cm, r1, . . . , rn. The cell alphabet of M is Σ = {aij : Mij 6=
0}. Any word in Σ∗ describes a permutation that is geometrically griddable by M by following

the rules below of how to construct permutations from these words. Each letter of Σ describes the

cell that the point is placed into, the order we place these points into the cells is defined by the

column and row signs and is described in table 2.1 [VW11a].
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ci rj Order of insertion

1 1 left to right and bottom to top ↗
1 -1 left to right and top to bottom ↘

-1 1 right to left and bottom to top ↖
-1 -1 right to left and top to bottom ↙

Table 2.1: Procedure of adding points into cells based on the column and row signs.

Example. Take M =

(
1 0 −1

−1 1 0

)
with column and row signs c1 = r2 = −1, c2 = c3 = r1 = 1

and w = a12a21a21a32a11a12a11a12 over the cell alphabet of M . Then the permutation that is

encoded by w and is geometrically griddable by M is π = 54638127.

w1

w2

w3

w4

w5

w6

w7

w8

8

1
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Figure 2.10: Gridded figure and plot of EG(M)(π) = w = a12a21a21a32a11a12a11a12, where π =
54638127.

We will denote this encoding by EG(M)(π). It is worth noting that the whole language Σ∗

over the cell alphabet Σ, is the regular language of the geometric grid class of M . But there

are multiple encoded words that correspond to the same permutation. This non-uniqueness is

discussed in detail in section 5.
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Chapter 3

Languages of Sets of Permutations

and Classes

In this chapter we will be concentrating on the rank encoding solely. So when we talk about the

encoding, we mean the rank encoding and that the language is regular under the rank encod-

ing. Further, unless otherwise stated in this chapter we will be denoting the rank encoding of a

permutation π as E(π).

We will be looking at the languages constructed by plus- and minus-(in)decomposable permuta-

tions, σ-decomposable permutations, and as there are equivalent definitions for classes, we will be

also investigating the languages of the direct and skew sum of classes and the wreath product of

classes. Further we will be proving that the language of simple permutations is regular under the

rank encoding and that we can find the set of simple permutations in a non-regular class. First we

will recall some definitions and vital results.

3.1 Introduction

As mentioned before, we denote the set of permutations with maximum rank k ∈ N as Ωk. In

[AAR03] Albert, Atkinson and Ruškuc determined that E(Ωk) is a regular language.

Definitions. interval, block

Furthermore we re-introduce the concept of block-decomposition of permutations. An interval

(or block see [AA05]) in a permutation σ is a factor of contiguous values of σ such that their indices

are consecutive.

Example. In the permutation π = 346978215, π(4)π(5)π(6) = 978 is an interval, whereas

π(1)π(2)π(3)π(4) = 3469 is not.

Definitions. simple permutation

It is easy to see that every permutation of length n has intervals of length 0, 1 and n, at least.

The permutations of length n that only contain intervals of length 0, 1 and n are said to be simple

[Bri10].

Example. The permutation π = 346978215 is not simple as we have seen in the example above

that it contains an interval, on the other hand σ = 526184937 is simple as there are no intervals
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of length strictly greater than 1, except the whole of σ. Figure 3.1 shows π and σ, with non-trivial

intervals indicated.
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Figure 3.1: Plots of 346978215 and 526184937, with all non-trivial intervals indicated.

Definitions. inflation, block-decomposition, deflation, σ-decomposable

Recall that, given a permutation σ of length m and non-empty permutations α1, . . . , αm, the

inflation of σ by α1, . . . , αm, written as σ[α1, . . . , αm], is the permutation obtained by replacing

each entry σ(i) by an interval that is order isomorphic to αi, where the relative ordering of the

intervals corresponds to the ordering of the entries of σ [AA05]. Conversely a block-decomposition

or deflation [AA05] of π is any expression of π as an inflation π = σ[α1, . . . , αm]. We say that

a permutation π is σ-decomposable if π = σ[α1, . . . , αn]. For notation, we will say that πi =

π(x) . . . π(y) is the contiguous subsequence of π = σ[α1, . . . , αn] corresponding to the block αi.

Additionally, we will use the same notation for the blocks πi of π in its plot. In the rank encoding

of π, E(π), we will identify the subword corresponding to πi = π(x) . . . π(y) as E(π)[x, . . . , y].

Example. The inflation of σ = 25413 with α1 = 12, α2 = 1, α3 = 12, α4 = 321, α5 = 1 is

25413[12, 1, 12, 321, 1] = 459783216 and alternatively a possible block-decomposition of 459783216

is 25413[12, 1, 12, 321, 1]. This inflation and decomposition are shown in figure 3.2.
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Figure 3.2: Plot of inflation 25413[12, 1, 12, 321, 1] = 459783216.

This decomposition is not unique for π. However, Albert and Atkinson proved:

Proposition 21 ([AA05]). Let π be a permutation of finite length greater than 1. There is a unique

simple finite permutation σ, with |σ| > 1, and a sequence α1, . . . , αn of non-empty permutations
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such that

π = σ[α1, . . . , αn].

If σ 6= 12, 21 then α1, . . . , αn are also uniquely determined by π. If σ = 12 or 21, then α1, α2 are

unique so long as we require that α1 is plus-indecomposable or minus-indecomposable, respectively.

Example. Utilising the above proposition, the unique block-decomposition of 459783216 with a

simple permutation is given by 2413[12, 312, 321, 1] as shown in figure 3.3.
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Figure 3.3: Plot of unique block-decomposition of 459783216 = 2413[12, 312, 321, 1] as defined by
Proposition 21, where 2413 is simple.

Definitions. ε, L(n), x+ L, L|n1

Lastly, let us introduce some language theoretic notation that will be used. We write ε for the

empty word. If L is any language then L(n) is the set of words of L up to length n ∈ N, and as

the set is finite, it is regular.

Furthermore, if L ⊆ {l1, . . . , ln}∗ is any language, then we define x+L, x ∈ N, to be a language

over the alphabet {l1 + x, . . . , ln + x : l1, . . . , ln ∈ L}, x+ L ⊆ {l1 + x, . . . , ln + x}∗.
We observe that this new language is still regular if L is regular and say that the language L

is shifted upwards by x.

Lemma 22. If L is a regular language then so is x+ L.

Proof. Let A (L) be the automaton accepting the regular language L. We can construct the auto-

maton A (x+L) by replacing the letters l1, . . . , ln in the transitions of A (L) with the corresponding

letters l1 + x, . . . , ln + x. Clearly the resulting automaton accepts the language x+ L.

Let us say that the union of all possible shifts up to n of a regular language L, is

L|n1 =

n⋃
i=1

i+ L

which is a regular language as regularity is preserved under a finite number of unions.

3.2 Plus-Decomposable and Plus-Indecomposable Permuta-

tions

Definitions. plus-decomposable, direct sum of permutations, plus-indecomposable
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One of the special cases in proposition 21 is the block-decomposition with σ = 12. A permuta-

tion π is said to be plus-decomposable (or is a direct sum of α1 and α2) if it can be written in the

block-decomposition as

π = 12[α1, α2].

Conversely, we call a permutation plus-indecomposable if it has no plus-decomposition [AA05].

In general, α1 and α2 are not unique, but if we require α1 to be plus-indecomposable, both α1

and α2 are unique to π.

Example. The permutation 21436875 is plus-decomposable. A possible decomposition is 21436875 =

12[2143, 2431], but that is not unique, as 2143 is plus-decomposable. Thus, the plus-decomposition

of 21436875 with unique α1 and α2 is 21[21, 214653].
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Figure 3.4: Two plus-decompositions of 21436875, the right one being the decomposition with α1

plus-indecomposable.

The following lemma is a characterisation of plus-decomposable permutations, to outline the

form these permutations have. It additionally facilitates the characterisation of plus-indecomposable

permutations.

Lemma 23. Let π = π(1) . . . π(n) be a permutation, then the following are equivalent:

1. π = 12[α1, α2] is plus-decomposable with |α1| = ` and |α2| = n− ` for ` ∈ N \ {0}, ` < n.

2. E(π) = E(π)[1, . . . , `, ` + 1, . . . , n] = E(π)[1, . . . , `]E(π)[` + 1, . . . , n] = E(α1)E(α2), ` ∈
N \ {0}, ` < n.

3. π = ητ , where η = π(1) . . . π(`) is a permutation of {1, . . . , `} and τ is a permutation of

{`+ 1, . . . , n}, ` ∈ N \ {0}, ` < n.

Proof. First we will show that point 1 implies point 3. So let π = 12[α1, α2] be plus-decomposable

with |α1| = ` and |α2| = n−` for ` ∈ N\{0}, ` < n. Then by the definition of block-decompositions

of permutations, π consists of the concatenation of two intervals A1 and A2, where A1 is a con-

tiguous sequence order isomorphic to α1 and A2 is a contiguous sequence order isomorphic to

α2. Further, the relative ordering of A1 and A2 corresponds to the permutation 12. Thus A1 is

a sequence over {1, . . . , `} order isomorphic to α1 and A2 is a sequence over {` + 1, . . . , n} order

isomorphic to α2. In other words, A1 = η is a permutation of length ` and A2 = τ is a permutation

of {`+ 1, . . . , n}, and π = A1A2 = ητ .
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Next, let us show that point 3 implies point 2. Let π = ητ , where η = π(1) . . . π(`) is a

permutation of {1, . . . , `} and τ is a permutation of {`+ 1, . . . , n}. Then the encoding of π is

E(π) = E(ητ) = E(η)E(τ).

This is because η is a permutation, hence a closed interval and thus has a valid rank encoding, which

is concatenated with the encoding of τ , as the rank encoding of two order isomorphic sequences is

the same.

Finally, we will prove that point 2 implies 1. Let E(π) = E(π)[1, . . . , `, ` + 1, . . . , n] =

E(π)[1, . . . , `]E(π)[` + 1, . . . , n] = E(α1)E(α2). Then π consists of the concatenation of two

contiguous sequences, a1 a sequence of {1, . . . , `} order isomorphic to α1 and a2 a sequence of

{` + 1, . . . , n} order isomorphic to α2. We can see that every letter in a1 is less than any let-

ter in a2. Thus giving us the relative ordering of a1 and a2 corresponding to 12. Thus π has a

block-decomposition of the form π = 12[α1, α2], with |α1| = ` and |α2| = n− `.

To prove that the set of plus-decomposable permutations and the set of plus-indecomposable

permutations of a regular pattern class C are regular under the rank encoding, we will first prove

that the subset of plus-indecomposable permutations of a regular pattern class C form a regular lan-

guage under the rank encoding. Then it will follow that the complement set of plus-decomposable

rank encoded permutations is also regular, since the family of regular languages are closed under

complement. The proof considers the automaton that accepts the regular class C and modifies it

to accept only plus-indecomposable rank encoded permutations.

Theorem 24. Let C be a regular class. Then IP (C), the set of all plus-indecomposable permutations

of C, is also regular under the rank encoding.

Proof. Conversely to the characterisation in lemma 23, the rank encoding E(π) of a plus-

-indecomposable permutation π of length n never contains an initial segment of the form

E(π)[1 . . . `] = E(p), where ` < n and p is a permutation of length `.

We will utilise this description to construct the automaton accepting the language of the set of

plus-indecomposable permutations under the rank encoding.

The automaton accepting E(IP (C)) is based on the unique minimal automaton of E(C). Let

that automaton be

A =
(
Σ, S, δ, s1, A

)
,

where Σ is the alphabet, S the set of states, s1 the start state, A the set of accept states and

δ :S × Σ→ S the transition function.

We will construct the automaton accepting only the plus-indecomposable rank encoded per-

mutations as follows

IP =
(
Σ, S ∪ {x, y}, δ′, x, A ∪ {x}

)
,

where x and y are new states and δ′ : (S ∪ {x, y}) × Σ → S ∪ {x, y} is a new transition function

defined as:

δ′(y, α) = y δ′(x, α) = δ(s1, α)

δ′(sa, α) = y δ′(s, α) = δ(s, α)

for all α ∈ Σ; s ∈ S \A; sa ∈ A.

36



In IP the new states x, y are the new start state and sink state, respectively. A sink state is a

state q, where q is not the start state and q /∈ A, and the transition δ from q for any letter α ∈ Σ

is δ(q, α) = q. We are introducing a new start state, to avoid the resulting language being empty,

in case the original start state s1 is an accept state.

Let us now show that the new automaton IP indeed only accepts the rank encodings corres-

ponding to plus-indecomposable permutations from the automaton A of the regular class C. Let

w be a word accepted by A . If we end up in an accept state of A before reading the entire word,

so there is an initial segment in w that is a rank encoding of a permutation in C, then the new

transition function δ′ will send us to the sink state y and the word w will not be accepted by IP .

On the other hand if w is a word accepted by A and by IP , we end up in an accept state only

when the entire word w is read. The first case is only possible for plus-decomposable permutations,

as shown in lemma 23.

The automaton IP only accepts the words corresponding to plus-indecomposable permutations

of C under the rank encoding. Thus the language E(IP (C)) is regular, which concludes the proof

of Theorem 24.

Corollary 25. Let C be a regular class. Then DP (C), the set of all plus-decomposable permutations

of C, is also regular under the rank encoding.

Proof. Let IP (C) ⊆ C be the set of all plus-indecomposable permutations in C.
As DP (C) and IP (C) are complementary in C we have

DP (C) = C\IP (C)⇒ E(DP (C)) = E(C) ∩ E(IP (C))C .

As regular languages are closed under intersection and complement, E(DP (C)) is regular.

In summary we have shown that the subsets of plus-decomposable and plus-indecomposable

permutations of a regular class are also regular languages under the rank encoding. Next let us

see whether the same is true for minus-(in)decomposable permutations.

3.3 Minus-Decomposable and Minus-Indecomposable Per-

mutations

Definitions. minus-decomposable, skew sum of permutations, minus-indecomposable

The other special case in proposition 21 is the block-decomposition with σ = 21. We say that

a permutation π is minus-decomposable (or is a skew sum of α1 and α2) if it can be written in the

block-decomposition as

π = 21[α1, α2].

Conversely we say that a permutation is minus-indecomposable if it has no minus-decomposition.

The decomposition of a minus-decomposable permutation is unique, if α1 is assumed to be minus-

indecomposable.

Example. The permutation 86735241 is minus-decomposable as for example 21[312, 35241], but

the unique decomposition of 86735241, where the first subpermutation is minus-indecomposable, is

21[1, 6735241].
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Figure 3.5: Two minus-decompositions of 86735241, the right plot showing the unique decompos-
ition with the first interval being minus-indecomposable.

In a regular pattern class it is simpler to deal with the language that describes the rank encoding

of minus-decomposable permutations rather than the minus-indecomposable permutations

Theorem 26. Let C be a regular class. Then DM (C), the set of all minus-decomposable permuta-

tions of C, is also regular under the rank encoding.

Proof. Let E(C) be the regular language of C under the rank encoding where the alphabet of E(C)
is {1, . . . , k}, k ∈ N and let E(DM (C)) be the rank encoded language of DM (C).

Let π ∈ DM (C) be arbitrary with π = 21[α1, α2], where |π| = n and |α2| = d < k. We know that

d < k as otherwise the rank of the elements in π corresponding to α1 will exceed k, contradicting

that DM (C) ⊆ C ⊆ Ωk.

Then from Figure 3.6 we see that

E(π) = E
(
π(1) . . . π(n− d) π(n− d+ 1) . . . π(n)

)
= p1 . . . pn−d pn−d+1 . . . pn,

where pi > d for i ≤ n− d and pi ≤ d for i > n− d.

d letters

d *

*

Figure 3.6: Plot of a minus-decomposable permutation, where 1 ≤ d < k.

In other words, for any π ∈ C, to decide whether π ∈ DM (C), it suffices to check whether there

is an integer d < k, such that E(π) consists of n− d integers that are greater than d followed by d

integers that are smaller or equal to d. This leads to the following languages:

Ld =
{
{d+ 1, . . . , k}+{1, . . . , d}d

}
=
{
{d+ 1, . . . , k}{d+ 1, . . . , k}∗{1, . . . , d}d

}
,

where Ld is a superset of sequences that are of similar form to the words in E(DM (C)), with

d ∈ {1, . . . , k − 1} fixed.
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Next, we will merge all possibilities of Ld,

L =

k−1⋃
d=1

Ld,

L contains all words representing k-bounded minus-decomposable permutations. Clearly L is

regular.

Then from the above we can find that

E(DM (C)) = L ∩ E(C),

which is a regular language, as by assumption C is a regular class with the language E(C) and

L is regular by construction. Thus the language E(DM (C)) of minus-decomposable rank encoded

permutations of a regular class is regular.

Corollary 27. Let C be a regular class. Then IM (C), the set of all minus-indecomposable per-

mutations of C, is also regular under the rank encoding.

Proof. Similar to the proof of Corollary 25 we obtain the above result by complementation.

Let DM (C) ⊆ C be the regular set containing the minus-decomposable permutations. Then

IM (C) ∪ DM (C) = C ⇒ E(IM (C)) ∪ E(DM (C)) = E(C)

⇒ E(IM (C)) = E(DM (C))C ∩ E(C),

where E(IM (C)) is the language of minus-indecomposable rank encoded permutations, and it is

regular as E(DM (C)) and E(C) are regular.

In conclusion, we have shown that the subset of minus-decomposable and minus-indecomposable

permutations of a regular class are regular languages under the rank encoding. It is interesting to

see that the result is the same as for plus-(in)decomposability but the approach to constructing

the languages is different. Having shown the regularity of what is in effect the direct sum and skew

sum of permutations, we will now investigate the languages of the direct and skew sums of classes.

3.4 Regularity of the Direct Sum and Skew Sum of Classes

Definitions. direct sum of classes, skew sum of classes

Let us start with recalling the definitions of the direct sum of two pattern classes C and D,

C ⊕ D = {ρ : ρ = π ⊕ τ, π ∈ C, τ ∈ D} = {ρ : ρ = 12[π, τ ], π ∈ C, τ ∈ D}

and the skew sum of two pattern classes,

C 	 D = {ρ : ρ = π 	 τ, π ∈ C, τ ∈ D} = {ρ : ρ = 21[π, τ ], π ∈ C, τ ∈ D}.

Compared to the previous sections we do not assume the uniqueness of the plus- and minus-

decompositions of ρ ∈ C ⊕ D or ρ ∈ C 	 D, as we are taking any permutation of C in the decom-

position of ρ.

First let us talk about the skew sum of classes and their behaviour under the rank encoding.
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Theorem 28. Let C and D be two regular classes under the rank encoding. Then the skew sum

E = C 	 D is a regular class under the rank encoding if and only if D is finite.

Proof. Let E(C) ⊆ E(Ωk) and E(D) ⊆ E(Ωl) for some k, l ∈ N, be regular classes under the rank

encoding and D is infinite.

Assume that E(E) = E(C 	D) is also regular. Let ρ ∈ E , such that ρ = π	 τ = 21[π, τ ], where

π ∈ C and τ ∈ D.

So any permutation ρ ∈ E has the form as shown in the figure below.

π

τ

Figure 3.7: Plot of ρ ∈ C 	 D.

Clearly encoding of ρ is

E(ρ) = (|τ |+ E(π))E(τ).

As the language of the subwords corresponding to the permutations of C is shifted by the length

of the permutations of D, the alphabet of E is infinite, as D is infinite. Thus E(E) is not regular,

which contradicts our assumption.

Now let us assume that E(C) ⊆ E(Ωk) and E(D) ⊆ E(Ωl) for some k, l ∈ N, are regular classes

under the rank encoding and D is finite.

Then ρ ∈ E = C 	 D has the form ρ = 21[π, τ ] where π ∈ C and τ ∈ D. The encoding of any

ρ ∈ E is E(ρ) = (|τ |+E(π))E(π) and as D is finite, the alphabet of E(E) is finite and the language

is

E(E) =

max(|τ |,τ∈D)⋃
i=min(|τ |,τ∈D)

(i+ E(C))E(D)[i].

The language E(D)[i] consists of all words of E(D) of exactly length i, this is a finite language and

thus regular. The union is a finite union of regular languages, so E(E) is a regular language.

On the other hand, we have the direct sum of any regular pattern classes which is a regular

language.

Theorem 29. Let C and D be two regular classes under the rank encoding. Then the direct sum

E = C ⊕ D is a regular class under the rank encoding.

Proof. Let E(C) ⊆ E(Ωk) and E(D) ⊆ E(Ωl) for some k, l ∈ N, be regular classes under the rank

encoding. Further let E = C ⊕D, then any permutation ρ ∈ E is ρ = π⊕ τ = 12[π, τ ], where π ∈ C
and τ ∈ D. So E(ρ) = E(π ⊕ τ) = E(12[π, τ ]).

In lemma 23 we note that any plus-decomposition α = 12[β1, β2] in its rank encoding has the

following form E(α) = E(β1)E(β2).

So for any ρ ∈ E we have E(ρ) = E(π)E(τ) where π ∈ C and τ ∈ D. Thus the whole language

of the class E is

E(E) = E(C)E(D),
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which is regular as E(C) and E(D) are regular languages and regularity is preserved under concat-

enation.

Overall we have shown that the skew sum of two regular classes is only regular if the class in

the second summand is finite, whereas we have managed to show that for any two regular classes

the direct sum of them is always regular.

A short note on separable classes. It is not always possible to find a regular language of a

separable class under the rank encoding, unless the class is finite, as the generating function of

separable classes has been found to be non-rational (proposition 1.4 of [AAV11]) but the generating

function of regular languages is algebraic [CS59].

3.5 Decomposition by a Specific Simple Permutation

In this section we will only consider plus- and minus-indecomposable (pmi) permutations. We have

shown that the sets of permutations with the properties of the two special cases of proposition 21

are regular languages under the rank encoding. We are now interested to see whether the set of

permutations that are uniquely decomposable by a simple permutation is also a regular language

under the rank encoding. In fact the set of permutations which in their unique block-decomposition

have the same simple permutation is a regular language under the rank encoding. For that we will

first look at the permutations of Ωk that are decomposable by 2413 and then we will prove the

case for any fixed simple permutation σ.

Theorem 30. Let E(Ωk) be the regular language of the rank encoded permutations with rank

at most k. Then D2413 ⊆ Ωk the set of permutations in Ωk having the block-decomposition

2413[α1, α2, α3, α4] with α1, α2, α3, α4 non-empty is also regular under the rank encoding.

Proof. Let E(Ωk) with k ∈ N and E(D2413) be the set of rank encoded permutations of D2413.

Let π ∈ D2413 then π = 2413[α1, α2, α3, α4], where |π| = n, |α1| = a, |α2| = b, |α3| = c and

|α4| = d.

a

b

c

d
π1

π2

π3

π4

Figure 3.8: Plot of π, with the lengths of the intervals indicated.

We can see that E(π) will end as follows

E(π) = E(π)[1, . . . , n− c− d] E(α3) E(α4).
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This is due to the fact that the relative position of α3 with respect to 2413 is in the lowest interval,

so there is nothing to the right and below the interval π3. Similarly for π4. Further notice that

n− c− d = a+ b.

The first part of E(π), which corresponds to π1, is E(π)[1, . . . , a] = c + E(α1) as all points of

π3 lie below and to the right of all points of π1.

Similarly the next part of E(π), which corresponds to π2, is E(π)[a+1, . . . , a+b] = (c+d)+E(α2)

as all points in π2 lie above and to the left of π3 and π4.

Thus

E(π) =
(
c+ E(α1)

) (
(c+ d) + E(α2)

)
E(α3) E(α4).

Note that as D2413 ⊆ Ωk and α1, α2, α3, α4 are non-empty, we have a maximal rank and we

can let the language be the following:

Lc,d =
(
(c+ E(Ωk−c)) \ {ε}

) ((
(c+ d) + E(Ωk−(c+d))

)
\ {ε}

)
(E(Ωk)(c) \ {ε}) (E(Ωk)(d) \ {ε}),

where 1 ≤ c ≤ k − 2, 1 ≤ d ≤ k − 2 and 2 ≤ c + d ≤ k − 1, as the values of the part of E(π)

representing α2 must be strictly larger than c + d and less than k. Recall that E(Ωk)(c) is the

language of words of E(Ωk) up to and including length c.

By concatenation and lemma 22, Lc,d is regular.

Now we want to build a language allowing for all possible lengths of permutations α3, α4,

L =

k−2⋃
c=1

k−1−c⋃
d=1

Lc,d,

which is regular, as regularity is preserved under finite union. As L is an abstraction of the words

corresponding to 2413-decomposable permutations

E(D2413) ⊆ L ∩ E(Ωk)

is also regular as L and E(Ωk) are regular and regularity is preserved under intersection.

Now it is enough to prove that E(D2413) ⊇ L ∩ E(Ωk). Let w ∈ L ∩ E(Ωk), there exists

π ∈ Ωk such that w = E(π).

Then there exist some non-zero c and d such that E(π) ∈ Lc,d. So E(π) has the form E(π) =

w1w2w3w4 where,

w1 ∈ (c+ E(Ωk−c)) \ {ε}

w2 ∈
(
(c+ d) + E(Ωk−(c+d))

)
\ {ε}

w3 ∈ E(Ωk)(c) \ {ε}

w4 ∈ E(Ωk)(d) \ {ε}.
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From this decomposition we know that there exist some permutations α1, . . . , α4 such that

w1 = c+ E(α1)

w2 = (c+ d) + E(α2)

w3 = E(α3)

w4 = E(α4),

|α3| = c, |α4| = d.

Since α1, . . . , α4 are subpermutations of π, α1, . . . , α4 ∈ Ωk.

Let τ = 2413[α1, . . . , α4]. Then clearly τ ∈ D2413. Furthermore, E(τ) = w1w2w3w4 = E(π)

thus by the definition of the rank encoding τ = π and so π ∈ D2413. Which implies that

E(D2413) = L ∩ E(Ωk).

Let us now look at the general case where the language of rank encoded permutations is the

inflation over the same simple permutation σ, in other words permutations with the same simple

permutation σ in their block-decomposition.

Definitions. maximal interval

For the simple σ in the decomposition of a pmi permutation π = σ[α1, . . . , αn] to be found, we

will have to find the maximal proper intervals of length < |π| in the permutation π that is being

decomposed. An interval in a permutation is said to be maximal if it is maximal under the partial

order of set inclusion.

Lemma 31. The maximal proper intervals in a pmi permutation are all disjoint.

Proof. Let π be a pmi permutation, and α, β be maximal proper intervals such that α ∩ β 6= ∅.
Then if α ∪ β 6= π, by definition of maximal intervals there is a maximal interval γ = α ∪ β,

γ 6= π and α, β are not maximal.

If α∪β = π then π is plus- or minus-decomposable with the permutations in the decomposition

being α \ β and β. We can see that α \ β and α ∩ β are an interval itself, as both α and β are

intervals, so there cannot be any points in the plot of π that lie directly above, below, to the left

or right of α or β, see figure 3.9.

α

β α

β

Figure 3.9: Possible positioning of maximal intervals α, β in π with α ∩ β 6= ∅, α ∪ β = π.

We can see from those figures that π will not be pmi, which is a contradiction with our as-

sumption.
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Theorem 32. If π = σ[α1, . . . , αn] is a pmi permutation, then in its unique block-decomposition

with σ simple, the αi are all order isomorphic to the maximal proper intervals of π.

Proof. Let π = σ[α1, . . . , αn], with σ simple and αi, for some 1 ≤ i < n corresponding to an

interval ai that is not maximal in π. So ai ( bi, where bi is maximal. Any aj which meets bi is

contained in it, by lemma 31. So bi is a union of consecutive aj ’s.

Thus there are p, q with p ≤ i ≤ q , p ≤ q − 1,

bi =

q⋃
j=p

aj .

So σ(p) . . . σ(q) forms an interval in σ. This contradicts with the assumption that σ is simple.

Thus, in a pmi permutation π = σ[α1, . . . , αn] the αi are order isomorphic to maximal proper

intervals in π.

Theorem 33. Let E(Ωk) be the regular language of the rank encoded permutations with rank at

most k. Let |σ| > 2 be a simple permutation, then the set Dσ ⊆ Ωk of σ-decomposable permutations

of Ωk is also regular under the rank encoding.

Proof. We know each block-decomposition with a specific simple permutation has a certain struc-

ture in its plot. We will be looking at recreating this structure in the language of all k rank

encoded σ decomposable permutations. At the same time we will show the steps of the proof on

an example, namely when σ = 25314 and α1, α2, α3, α4 and α5 non-empty.

Let |σ| = n and π = σ[α1, . . . , αn] ∈ Dσ ⊆ Ωk, with arbitrary αi non-empty. For notation

purposes let

ξi =
∑
j>i

σ(j)<σ(i)

|αi|.

For σ = 25314 we have

ξ1 = |α4|, ξ2 = |α3|+ |α4|+ |α5|, ξ3 = |α4|, ξ4 = ξ5 = 0.

In π we can see that for any i ∈ {1, . . . , n} and every letter in E(π)[x, . . . , y], which is the subword

of E(π) corresponding to πi = π(x) . . . π(y), is strictly greater than ξi, as the ranks of the points

in πi are greater than the number of points to the right and below of πi, in the plot of π.

Furthermore, for any value σ(i) that is not a left-to-right maximum in σ, |αi| < k because

there exists an j < i such that σ(j) > σ(i). So for any z ∈ {u, . . . , v}, where πj = π(u) . . . π(v),

E(π)[z] > |αi| but E(π)[z] ≤ k.

Recall πi = π(x)π(x + 1) . . . π(y) to be the interval of π corresponding to the block of αi at

position σ(i) of the σ-decomposition of π. We divide the i of {1, . . . , n} with respect to the indexing

of σ into the following sets.

Max The set of i, where σ(i) is a left-to-right maximum.

Min The set of i, where σ(i) is a right-to-left minimum.

R The set of i, where σ(i) is neither a left-to-right maximum nor a right-to-left minimum.

Note that Max ∩Min = ∅ because σ is simple and |σ| ≥ 3, as otherwise σ is plus-decomposable.

So for σ = 25314 the above sets are Max = {1, 2}, Min = {4, 5}, R = {3}.

44



When i ∈ Max the subword of E(π) corresponding to the size unrestricted interval πi will be

contained in the languages

ξi + E(Ωk−ξi).

When i ∈Min the subword of E(π) corresponding to the size restricted interval πi will be contained

in the languages

E(Ωk)(y−x+1).

When i ∈ R the subword of E(π) corresponding to the size restricted interval πi will be contained

in the languages

(ξi + E(Ωk−ξi))
(y−x+1).

Let Maxc = Min∪R be the set of indices that correspond to the σ(i) that are not left-to-right

maxima. Additionally define the sequence Mc = 〈|πi| : i ∈ Maxc〉. In our example that means

that Maxc = {3, 4, 5} and the sequence is Mc = 〈|α3|, |α4|, |α5|〉
We can now construct a regular language LMc which consists of a concatenation of the above

regular languages based on the types of indices occurring in σ and is bound to a specific sequence

Mc. So for our example σ we have the language, for a specific sequence Mc = 〈|α3|, |α4|, |α5|〉

LMc = (ξ1 + E(Ωk−ξ1))(ξ2 + E(Ωk−ξ2))(ξ3 + E(Ωk)(|α3|))(E(Ωk)(|α4|))(E(Ωk)(|α5|))

Next the regular language L is the finite union over all sequences Mc,

L =
⋃
Mc

LMc .

For our specific σ = 25314 we have

L =
⋃
|α3|

⋃
|α4|

⋃
|α5|

LMc .

We have shown that the general regular language L contains the language E(Dσ),

E(Dσ) ⊆ L ∩ E(Ωk).

We now need to show that there are no other rank encoded permutations within that language.

So we are going to prove that E(Dσ) ⊇ L ∩ E(Ωk). Let w ∈ L ∩ E(Ωk).

We know that for a specific sequence Mc, w ∈ LMc . This means that w consists of factors

w = w1 . . . wn where

wi ∈ ηi + E(Ωk−ηi) when i ∈Max

wj ∈ E(Ωk)(yj−xj+1) when j ∈Min

wh ∈ ηh + E(Ωk−ηh)(yh−xh+1) when h ∈ R,

where if wi = w(x) . . . w(y) and wj = w(z) . . . w(v) then

ηi =
∑

v>z>y
σ(j)<σ(i)

v − z + 1.
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From this decomposition we know that there exists some α1, . . . , αn such that

wi = ηi + E(αi) when i ∈Max

wj = E(αj) when j ∈Min

wh = ηh + E(αh) when h ∈ R,

|αj | = yj − xj + 1, |αh| = yh − xh + 1, for wj = w(xj) . . . w(yj) and w(h) = w(xh) . . . w(yh).

Since α1, . . . , αn are subpermutations of permutations in Ωk, α1, . . . , αn ∈ Ωk. Let τ =

σ[α1, . . . , αn], then clearly τ ∈ Dσ and E(τ) = w as ξi = ηi.

Thus

E(Dσ) = L ∩ E(Ωk),

and E(Dσ) is regular.

In conclusion, we have managed to show that the sets of σ-decomposable permutations of a

regular class are also a regular language under the rank encoding. It is of interest to see whether

this result for permutations can be extended onto the inflation of classes.

3.6 Regularity of the Inflation of Classes

Definitions. inflation of classes

Let us recall the definitions of the inflation of classes over permutations, while proving or

disproving the existence of a regular language of the classes with these properties under the rank

encoding. The inflation of classes Ci over a simple permutation σ of length n is the class D,

D = σ[C1, . . . , Cn] = {σ[γ1, . . . , γn] : γi ∈ Ci}.

Lemma 34. Let σ be any simple permutation of length n, σ[C1, . . . , Cn] = D be an inflation of σ

by the regular classes Ci ⊆ Ωk. Then E(D) is a regular language under the rank encoding if and

only if Cj is finite when σ(j) is not a left-to-right maximum.

We will be using a similar way to construct the language as in the proof of theorem 33.

Proof. Let D = σ[C1, . . . , Cn], with the Ci being regular classes and the Cj for σ(j) not a left-to-right

maximum being finite classes.

Then the languages E(Ci) when σ(i) is a left-to-right maximum are at most shifted by the

sum of the lengths of the longest permutations of the classes Cj , j > i and σ(j) < σ(i). Further

we split the set of indices of σ that are not left-to-right maxima into two sets, Min = {i :

σ(i) is right-to-left minimum} and R = {i : σ(i) is not a left-to-right maximum and i /∈ Min}.
Then the languages E(Ci), i ∈ R are also being at most shifted by the sum of the lengths of the

longest permutations of the classes Cj , if j > i and σ(j) < σ(i). Lastly the languages E(Ci) when

i ∈Min remain the same.

We now can concatenate these languages according to their position in the decomposition. As

all the languages are regular and regularity is preserved under concatenation the language

D = σ[C1, . . . , Cn]
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is regular.

Now let us assume that not all Cj of D = σ[C1, . . . , Cn], where σ(j) is not a left-to-right

maximum, are finite.

Then the languages that correspond to the Ci, σ(i) is a left-to-right maximum, will be shifted

by the lengths of the permutations of Cj . But as Cj is infinite, the alphabet of that shifted language

is also going to be infinite. Thus the language will not be regular and so E(D) is not regular if not

all Cj of D = σ[C1, . . . , Cn] where σ(j) is not a left-to-right maximum, are finite.

So we have shown that the inflation of regular classes over a fixed permutation σ is regular if

the classes Ci corresponding to the σ(i) which are non-left-to-right maximum elements in σ are

finite.

3.7 Language of Simple Permutations

As seen in [AA05], knowing the set of simple permutations is highly useful for wreath closed

classes. This is only one application of simple permutations in classes as we will show in the

following sections.

Definitions. gap sizes

We have to introduce a few more concepts before being able to prove our next theorem, which

looks at the language of simple permutations under the rank encoding. Given a finite subset A ⊂ N,

the gap sizes of A, gs(A), are defined as follows. Let

{1, . . . ,max(A)} \A = {b1, . . . , e1} ∪ . . . ∪ {by, . . . ey},

where bi ≤ ei < bi+1− 1 for i ∈ {1, . . . , y}, then gs(A) is the sequence 〈e1− b1 + 1, . . . , ey− by + 1〉,
for y ∈ N. For example, gs({1, 4, 6}) = 〈2, 1〉. We apply this notion to prefixes of permutations by

considering them as sets of values.

Example. In figure 3.10 we look at the prefix 45 of a permutation, at that point we have the gap

sizes 〈3〉. When then a new maximal element 8 is added, the gap sizes are 〈3, 2〉. Further when 1

is added the gaps sizes change to 〈2, 2〉.
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1 2 3

Figure 3.10: Plots of parts 45, 458 and 4581 with the gaps indicated.

We use
∑
gs(A) in the natural way to denote the sum of the sequence gs(A).
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Observe that for a permutation with maximal rank k, the sum
∑
gs(π(1) . . . π(y)) ≤ k − 1 for

any prefix of π. If the sum is > k−1 then the maximal element of the prefix π(1) . . . π(y) has rank

> k, in the encoding of π.

Furthermore we will use the notation gs′(w) where w = E(π)[1, . . . , y], y ≤ |π|. Clearly,

gs′(w) = gs(π(1) . . . π(y)).

Definitions. gap automaton

Based on gap sizes we can now introduce the gap automaton construct, G(k,A) = (Σ, S, δ, s1, A).

The alphabet of G(k,A) is Σ = {1, . . . , k}, k ∈ N, the set of states S is the set of all possible gap

sizes for rank k, so all possible gap sizes that sum up to at most k− 1, a transition function δ, the

start state s1 being the empty gap size, and the set of accept states A will vary to give different

automata for different applications. We define the transition function as the following pseudo-code

algorithm. This algorithm takes any gap sizes of a prefix w of a permutation and finds the next

gap sizes when a letter r is appended to w.

Algorithm 1 Calculate the next gap sizes/state of the gap automaton G(k,A).

Input: A state in form of gap sizes gs′(w) = 〈g1, . . . , gx〉 and a letter r

1: if r ≤
∑
gs′(w) then

2: Find the least i ∈ {1, . . . , x} such that r ≤ g1 + · · ·+ gi

3: if r = g1 + · · ·+ gi then

4: h← gs′(w)

5: hi ← gi − 1

6: else . r < g1 + · · ·+ gi

7: h← gs′(w)

8: Insert new element r − (g1 + · · ·+ gi−1)− 1 to h at position i

9: hi+1 ← gi − hi−1 − 1

10: end if

11: else

12: h← gs′(w)

13: hx+1 ← r −
∑
gs′(w)− 1

14: end if

15: if 0 ∈ h and |h| > 1 then

16: Remove all 0’s from h

17: end if

return Gap sizes h = gs′(wr)

It is easy to see that the language accepted by the automaton G(k, {〈∅〉, 〈0〉}) is equal to E(Ωk),

k ∈ N.

Example. The gap automaton G(3, ∅) is depicted in figure 3.11.
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〈∅〉start

〈0〉

〈1〉

〈2〉

〈1, 1〉

1
2

3

1

2

3

1

2

3

1,2
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Figure 3.11: Gap automaton with k = 3.

Theorem 35. The set of all non-simple permutations NSk of Ωk is regular under the rank en-

coding.

Proof. Let π be a non-simple permutation of length n. Then π will contain at least one non-trivial

interval. Let I = π(r)π(r+ 1) . . . π(r+ s), 1 ≤ r < r+ s ≤ n, s < n− 1, be such an interval with r

minimal.

In general the plot of π will be as in figure 3.12

A

∅

B

∅

I

∅

D

∅

C

Figure 3.12: Plot of position of interval I in a non-simple permutation.

where

A ={(x, y) : π(x) = y, x < r, y < min(I)}

B ={(x, y) : π(x) = y, x < r, y > max(I)}

C ={(x, y) : π(x) = y, x > r + s, y > max(I)}

D ={(x, y) : π(x) = y, x > r + s, y < min(I)} .
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We will introduce the following abbreviations:

L1 =

k−1⋃
l=1

Pl

k−1⋃
m=l

(m+ E(Ω̂k−m))Σ∗

L2 =

k−1⋃
j=1

(j + E(Ω̂k−j))Σ
∗

L3 =

k−1⋃
a=2

k−1−a⋃
b=0

Qa,b

a−2⋃
i=0

(((b+ i) + E(Ω̂k−(b+i))))
(a−i)Σ∗

L4 =E(Ωk \ {ε})E(Ωk \ {ε})Σ∗

where

Σ is the alphabet {1, . . . , k}, k ∈ N, k ≥ 3.

Pl is the language of prefixes of k rank encoded permutations, where
∑
gs′(w) = l. From fig-

ure 3.10 we can see that P3 would contain E(45) = 44, P5 would contain E(458) = 446 and

P4 would contain E(4581) = 4461.

Qi,j is the language of prefixes of k rank encoded permutations, where in gs′(w) = 〈g1, . . . , gn〉
there is a gap gx, 1 ≤ x ≤ n, of size i and sum of the gaps g1, . . . gx−1 equals to j. From

figure 3.10 for example E(45) = 44 lies in Q3,0, E(458) = 446 will lie in Q3,0 and Q2,3, and

E(4581) = 4461 will lie in Q2,0 and Q2,2.

i+ E(Ωk−i) is the language of E(Ωk−i), i ∈ N, with the alphabet shifted upwards by i.

E(Ωk)(i) is the sublanguage of E(Ωk) containing the words of length ≤ i, i ∈ N.

E(Ω̂k) is the sublanguage of E(Ωk) containing the words of length > 1.

Before showing that the encoding of any non-simple permutation will be found in one of the

above languages, we will prove that each is a regular language.

It is clear that Σ∗, i+ E(Ωk−i), E(Ωk)(i), E(Ω̂k) and E(Ωk \ {ε}) are regular languages.

Both Pl and Qa,b are recognised by gap automaton G(k,A), A for Pl contains the states where

the sum of the gap sizes gs′(w),
∑
gs′(w) = l. The set of final states A of Qa,b contains the states

with gap sizes gs′(w) = 〈g1, . . . , gn〉 which contain a gap gx = a and the sum
∑x−1
i=1 gi = b.

Clearly G(k,A) is a well-defined and finite automaton, and with the final states the automata

of Pl and Qa,b define regular languages which are easily checked to be non-empty.

L1,L2,L3 and L4 are all concatenations and finite unions of regular languages. Thus all four

languages are regular.

Now we will show that the encodings of E(π) for π non-simple lie in these languages. We will

look at what languages E(π) lies in depending on the positioning of the interval I.

As the interval I is non-trivial, not all A,B,C,D can be empty simultaneously.

If B = ∅ and A,D 6= ∅ then E(π) ∈ L1, as the points and gaps of A corresponding to the

prefix of E(π) lie in Pl, l ≤ |D|, which is then followed by the part of E(π) that is the interval

E(I) which lies in m+ E(Ω̂k−m) and the points of C and D lie in Σ∗.
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Pl

∅

∅

∅

m + E(Ω̂k−m)

∅

Σ∗

∅

Σ∗

m points

Figure 3.13: Plot of permutations represented by rank encodings in L1.

If A,B = ∅ and D 6= ∅ then E(π) ∈ L2, because there are no points preceding the interval

which lies in j+E(Ω̂k−j) for j = |D|, which is the shifted language of E(Ωk) and there are j points

in D.

∅

∅

∅

∅

j + E(Ω̂k−j)

∅

Σ∗

∅

Σ∗

j points

Figure 3.14: Plot of permutations represented by rank encodings in L2.

If B 6= ∅ then E(π) ∈ L3, as the rank encoded points of A ∪B will be in Qa,b for a = |I|+ i,

b = |D| − i, and if there are no points in A then b = 0 otherwise the points of A lie also in Qa,b,

the part of the word representing the interval will be ((b+ i) + E(Ω̂k−(b+i)))
(a−i), and the points

of C and D lie in Σ∗.
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Qa,b

∅

Qa,b

∅

((b + i) + E(Ω̂k−(b+i)))
(a−i)

∅

Σ∗

∅

Σ∗

a− i points

b+ i points

Figure 3.15: Plot of permutations represented by rank encodings in L3.

Finally if B,D = ∅ then because r is minimal A must also be empty and so E(π) ∈ L4, because

E(I) lies in the first E(Ωk \{ε}) and the points of C lie in E(Ωk \{ε})Σ∗. Incidentally L4 includes

the rank encodings of plus-decomposable permutations.

∅

∅

∅

∅

E(Ωk \ {ε})

∅

∅

∅

E(Ωk \ {ε})Σ∗

Figure 3.16: Plot of permutations represented by rank encodings in L4.

All the above cases of the placement of the interval I have shown that the union of all four

languages L1,L2,L3 and L4 does indeed include all rank encoded non-simple permutations, so

E(NSk) ⊆ (L1 ∪L2 ∪L3 ∪L4) ∩ EΩk
.

We also have to prove that this language excludes all words corresponding to simple permuta-

tions under the rank encoding. Let π be simple and assume E(π) ∈ E(NSk).

• If E(π) ∈ L1, then m + E(Ω̂k−m) will represent a subword of E(π) that corresponds to a

non-trivial interval in π, as E(Ω̂k) contains words of length > 1. Further, as m+E(Ω̂k−m) is

a shifted language of valid rank encodings, we will have no points in the plot of E(π) strictly

to the right of the parts of π corresponding to the words in m + E(Ω̂k−m) as this part is a

non-trivial interval.
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• If E(π) ∈ L2, then j + E(Ω̂k−j) will represent a subword of E(π) that corresponds to a

non-trivial interval in π.

• If E(π) ∈ L3, then ((b + i) + E(Ω̂k−(b+i)))
(a−i) will represent a subword of E(π) that

corresponds to a non-trivial interval in π.

• Finally if E(π) ∈ L4 then either E(Ωk\{ε}) will represent a subword of E(π) that corresponds

to a non-trivial interval in π.

We have a contradiction, so E(π) /∈ E(NSk). Thus E(NSk) is the language of all rank encoded

non-simple permutations of Ωk.

So we have proven that indeed the set of non-simple permutations NSk of Ωk is a regular

language under the rank encoding.

Corollary 36. The set of simple permutations Sk of Ωk is regular under the rank encoding.

Proof. Let NSk be the set of all non-simple permutations of Ωk. As described and proved above

E(NSk) is regular. Then the set of simple permutations Sk is

Sk = Ωk \ NSk.

Thus, the language of simple permutations of Ωk under the rank encoding is

E(Sk) = E(Ωk \ NSk) = E(Ωk) ∩ E(NSk)C .

As regularity is preserved under intersection and complement, E(Sk), the set of all simple

permutations of Ωk, is regular.

Definitions. exceptional permutation

In [PR12] Pierrot and Rossin discuss the chains of simple permutations that are created through

one or two point deletions of elements. If a point is removed from most simple permutations the

result will be another simple permutation. But there is a type of simple permutations that requires

that two points are removed to result in a simple permutation. These permutations are called

exceptional permutations [AA05, Bri10, PR12]. A simple permutation is exceptional if it is one of

the following types

1. 246 . . . (2n)135 . . . (2n− 1)

2. (2n− 1)(2n− 3) . . . 31(2n)(2n− 2) . . . 42

3. (n+ 1)1(n+ 2)2(n+ 3)3 . . . (2n)n

4. n(2n)(n− 1)(2n− 1)(n− 2)(2n− 2) . . . 1(n+ 1),

where n ∈ N.

Example. There are four exceptional permutations of length 8

24681357

75318642

51627384

48372615
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and their plots are shown in figure 3.17.

Figure 3.17: Plots of the four different types of exceptional permutations of length 8.

Lemma 37. The set of exceptional permutations of Ωk is finite.

Proof. We will show that for each type of exceptional permutation there are finitely many per-

mutations in Ωk using their language under the rank encoding.

The exceptional permutations of type (1) have the form

246 . . . (2n)135 . . . (2n− 1).

For small n the encoding of exceptional permutations of type (1) is

n = 1⇒π = 21⇒ E(π) = 21

n = 2⇒π = 2413⇒ E(π) = 2311

n = 3⇒π = 246135⇒ E(π) = 234111

n = 4⇒π = 24681357⇒ E(π) = 23451111

and for any n the encoding is

π = 24 . . . (2n)13 . . . (2n− 1)⇒ E(π) = 234 . . . (n+ 1)111 . . . 1.

The exceptional permutations of type (2) have the form

(2n− 1)(2n− 3) . . . 31(2n)(2n− 2) . . . 42.
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For small n the encoding of exceptional permutations of type (2) is

n = 1⇒π = 12⇒ E(π) = 11

n = 2⇒π = 3142⇒ E(π) = 3121

n = 3⇒π = 531642⇒ E(π) = 531321

n = 4⇒π = 75318642⇒ E(π) = 75314321

and for any n the encoding is

π = (2n−1)(2n−3) . . . 1(2n)(2n−2) . . . 2⇒ E(π) = (2n−1)(2n−3)(2n−5) . . . 1n(n−1)(n−2) . . . 1.

The exceptional permutations of type (3) have the form

(n+ 1)1(n+ 2)2(n+ 3)3 . . . (2n)n.

For small n the encoding of exceptional permutations of type (3) is

n = 1⇒π = 21⇒ E(π) = 21

n = 2⇒π = 3142⇒ E(π) = 3121

n = 3⇒π = 415263⇒ E(π) = 413121

n = 4⇒π = 51627384⇒ E(π) = 51413121

and for any n the encoding is

π = (n+ 1)1(n+ 2)2 . . . (2n)n⇒ E(π) = (n+ 1)1n1(n− 1)1 . . . 21.

Lastly the exceptional permutations of type (4) have the form

n(2n)(n− 1)(2n− 1)(n− 2)(2n− 2) . . . 1(n+ 1).

For small n the encoding of exceptional permutations of type (4) is

n = 1⇒π = 12⇒ E(π) = 11

n = 2⇒π = 2413⇒ E(π) = 2311

n = 3⇒π = 362514⇒ E(π) = 352311

n = 4⇒π = 48372615⇒ E(π) = 47352311

and for any n the encoding is

π = n(2n)(n− 1)(2n− 1) . . . 1(n+ 1)⇒ E(π) = n(2n− 1)(n− 1)(2n− 3)(n− 2) . . . 11.

If we limit these languages to be over the alphabet {1, . . . , k}, then n ≤ k. Thus the number

of exceptional permutations in Ωk is finite.

Corollary 38. The language of exceptional permutations of Ωk under the rank encoding is regular.

In conclusion, we have found that the set of rank encoded simple permutations with rank at
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most k is a regular language. Similarly the set of non-simple permutations with rank at most k is

regular under the rank encoding. Additionally, the set of exceptional permutations, which are also

simple, is in fact finite if we limit the permutations to a maximal rank k and so this finite set of

rank encoded permutations is also a regular language.

Overall, we can now find the set of simple permutations within a regular class. But that still

does not answer the question whether we can find all simple permutations of any class. Being

able to do so would, amongst other results, simplify working with wreath closed classes as shown

in corollary 45. We will see in the next section also why making a distinction between simple

non-exceptional and simple exceptional permutations is necessary and useful.

3.8 Language of Simple Permutations of Non-Regular Pat-

tern Classes

We are now going to look at classes C that do not have a regular language under the rank encoding.

Our goal for this section is to find the set of simple permutations of C. In this section we will denote

Ek(C) to be the language of all permutations of the class C that are rank encoded with highest

rank k. So the corresponding set of permutations Ck to Ek(C) is a subset of C, if C * Ωk. Further

we will denote the set of all simple permutations that have rank at most k as Sk. As before, Si(C)
is the set of all simple permutations of the class C . Note that Si(Ek(C)) = Ek(C) ∩ Ek(Sk).

In [PR12] Pierrot and Rossin discuss the chains of simple permutations that are created through

one or two point deletions of elements. These chains are based on the work of Schmerl and Trotter

[ST93] and their results are narrowed down to simple permutations.

In a simple non-exceptional permutation π there is a subpermutation σ that is also simple,

where |π| − 1 = |σ|. Further, if π is exceptional there is an exceptional permutation σ of the same

type such that σ � π and |π| − 2 = |σ|.
Using this notion, which can be extended to chains of simple permutations, we are going to find

the finite set of simple permutations in a pattern class that is not regular under the rank encoding.

Remark 39. The two point deletion on any type of exceptional permutation π means that the

maximal letter of the rank encoded word corresponding to the contained exceptional permutation

σ is smaller than the maximal letter of the rank encoded word corresponding to the original

permutation.

Example. Let us have a look at the exceptional permutations and their encodings of length 8 and

the resulting permutations and encodings of the two point deletion.

π = 24681357⇒ π′ = 246135

E(π) = 23451111⇒ E(π′) = 234111

π = 75318642⇒ π′ = 531642

E(π) = 75314321⇒ E(π′) = 531321
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π = 51627385⇒ π′ = 415263

E(π) = 51413121⇒ E(π′) = 413121

π = 48372615⇒ π′ = 362514

E(π) = 48352311⇒ E(π′) = 352311

The following plots show the effect of the two-point deletion on each type of exceptional per-

mutation. We can observe that the rank of the resulting exceptional permutation is lower, as we

are removing the maximal points.

Figure 3.18: Plots of the four different types of exceptional permutations with the grey points
indicating two-point deletion.

Theorem 40. Let C be a permutation class. Let Si(C) be the set of all simple permutations of C.

If Si(Ek(C)) = Si(Ek+1(C)) = Si(Ek+2(C)) then Si(Ek(C)) is the set of words corresponding to

Si(C).

Proof. The assumption Si(Ek(C)) = Si(Ek+1(C)) = Si(Ek+2(C)) says that there are no simple

permutations of rank k + 1 or k + 2 in C.
Take π ∈ Si(C), π /∈ Si(Ek(C)) to have minimal rank l > k. So by the assumption l ≥ k + 3.

There are two cases to consider.

If π is exceptional, then the exceptional permutation σ that results from the two point deletion

on π will have rank k < rank(σ) < l. But l, the rank of π ∈ Si(C), was minimal > k.

If π is not exceptional, then we can build a chain of simple permutations through point dele-

tion. This chain will contain either an exceptional permutation π′ with rank(π′) = l or a simple

permutation σ with rank(σ) = l− 1. For π′ see the argument above on exceptional permutations.

With σ not exceptional we are contradicting the assumption that l > k is the minimal rank, where

we have simple permutations that are not in Si(Ek(C)) but in the class C.
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Thus, if Si(Ek(C)) = Si(Ek+1(C)) = Si(Ek+2(C)) then we have found the whole set of simple

permutations of the class C and this set is regular by corollary 36.

Remark 41. We can weaken the assumption of the above theorem to Si(Ek(C)) = Si(Ek+1(C)) ⊇
Ex(Ek+2(C)), where Ex(En(C)) n > k, is the set of rank encoded exceptional permutations of C.

We have shown that for any pattern class we can find the set of all simple permutations, by

finding a sufficiently large rank k, which is the maximal rank of all simple permutations of this

class, and results in the regular language of all simple permutations of the class.

3.9 Regularity of Wreath Closed Classes

Definitions. wreath product

The wreath product of two classes A and B is defined as

A o B = A[B] = {α[β1, . . . , βn] : α ∈ A, βi ∈ B}.

Lemma 42. Let A and B be regular classes under the rank encoding. Then A o B is regular under

the rank encoding if and only if B is finite or A ⊆ Av(21).

Proof. Let A and B be regular classes and assume A o B is also regular under the rank encoding.

If B is infinite and 21 ∈ A, then let C = 21[B,B] ⊆ A o B. This language will have the following

form

E(C) = E(B)|∞1 E(B)

as B is infinite, the shift of the first E(B) is unbounded, thus we have unbounded rank and so

E(C) is not regular. Recall that L|ji is the union of shifts of a language L by shifts between i and

j inclusive.

If B is infinite and A = Av(21) then

E(A o B) = E(B)∗,

which is a regular language, as E(A) = 1∗ and so the wreath product is a concatenation of

permutations of B.

If B is infinite andA ⊂ Av(21) then asA is finite and consists of strictly increasing permutations

up to length say n, the language of the wreath product is a concatenation of n copies of E(B).

Now let us assume that A ⊆ Ωk is a regular class and B is finite. Further, let l = max(|β|, β ∈ B)

and π = α[β1, . . . , βn] ∈ A o B.

We will construct a transducer T such that

E(A)T = (E(A)T1)T2 = E(A o B)

by constructing two smaller transducers.

The states of the first transducer consist of the pairs of gap sizes of α and π. The transitions

of this transducer keep track of the ranks read in α and according to each rank and its position

outputs all possible placements of blocks of different sizes in π. The output alphabet consists of a

pair of letters (η, x) where η will then in the second transducer be translated to be the shift of the

language of all possible blocks of length x.
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So, the transducer T1 has

input alphabet {1, . . . , k}

output alphabet {(η, x) : η ∈ {1, . . . , k(l − 1)}, x ∈ {1, . . . , l}}

states {(gs′α(w), gs′π(v)) : gs′α(w) gap sizes of prefix of α ∈ A, gs′π(v) gap sizes of π ∈ A o B}

start state s1 = (〈∅〉, 〈∅〉)

accept states A = {(〈∅〉, 〈∅〉), (〈0〉, 〈0〉)}

The non-deterministic transition function for a given state and input is computed by algorithm 2.

This algorithm follows the idea of constructing the transitions of the gap automaton G(k,A) as

shown in algorithm 1.

Algorithm 2 Calculate the set of transitions of T1 from state (gs′α(w), gs′π(v)) with rank r.

Input: A state in form of gap sizes (gs′α(w), gs′π(v)) gs′α(w) = 〈g1, . . . , gx〉, gs′π(v) = 〈e1, . . . , ex〉
and a letter r.

1: ∆← ∅
2: if r ≤

∑
gs′α(w) then . The new block/rank goes into a gap

3: Find the least i ∈ {1, . . . , x} such that r ≤ g1 + · · ·+ gi

4: for t ∈ {1, . . . ,min(l, ei)} do . Possible sizes of blocks

5: if r = g1 + · · ·+ gi then . New block at the top of the gap

. (η, t) will be the output symbol and (h, f) the gap sizes of the destination state

6: h← gs′α(w)

7: hi ← gi − 1

8: if (hi = 0 and t 6= ei) or t > ei − hi then

9: Fail

10: else

11: f ← gs′π(v)

12: fi ← ei − t
13: η ← f1 + · · ·+ fi−1

14: if 0 ∈ h and |h| > 1 then

15: Remove all 0’s from h and from f

16: end if

17: ∆← ∆ ∪ {(η, t), (h, f)}
18: end if

19: else . r < g1 + · · ·+ gi

20: h← gs′α(w)

21: Insert new element r − (g1 + · · ·+ gi−1)− 1 into h at position i

22: hi+1 ← gi − hi−1 − 1

23: if hi = 0 and t ≤ ei − hi+1 then

24: f ← gs′π(v)

25: Insert 0 to f at position i

26: fi+1 ← ei − t
27: η ← f1 + · · ·+ fi−1
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28: if 0 ∈ h and |h| > 1 then

29: Remove all 0’s from h and from f

30: end if

31: ∆← ∆ ∪ {(η, t), (h, f)}
32: else if hi 6= 0 and t ≤ ei − (hi + hi+1) then

33: for j ∈ {hi, . . . , ei − t− hi} do . Possible sizes of the gap hi in π

34: f ← gs′π(v)

35: Insert j to f at position i

36: fi+1 ← ei − t− j
37: η ← f1 + f2 + · · ·+ fi

38: ∆← ∆ ∪ {(η, t), (h, f)}
39: end for

40: else

41: Fail

42: end if

43: end if

44: end for

45: else . New maximal rank/block

46: h← gs′α(w)

47: hx+1 ← r −
∑
gs′α(w)− 1

48: if hx+1 = 0 then

49: f ← gs′π(v)

50: fx+1 ← 0

51: η ←
∑
f

52: if 0 ∈ h and |h| > 1 then

53: Remove all 0’s from h and from f

54: end if

55: for t ∈ {1, . . . , l} do

56: ∆← ∆ ∪ {(η, t), (h, f)}
57: end for

58: else

59: for j ∈ {hx+1, . . . , l} do

60: f ← gs′π(v)

61: fx+1 ← j

62: η ←
∑
f

63: for t ∈ {1, . . . , l} do

64: ∆← ∆ ∪ {(η, t), (h, f)}
65: end for

66: end for

67: end if

68: end if

return ∆ the set of transitions

The second transducer T2 has input alphabet {(η, x) : η ∈ {1, . . . , k(l − 1)}, x ∈ {1, . . . , l}}
and output alphabet {1, . . . , kl}. For each letter (η, x) we non-deterministically output the whole
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language of the set of rank encoded and shifted words η + E(B)(x) of permutations of length x

of B. Clearly, as E(A) ⊆ Ωk is a regular language and the transducers T1 and T2 are finite state

transducers, the output language is also regular.

Now we want to show that the output language is indeed E(AoB). Let π = α[β1, . . . , βn] ∈ AoB,

with E(π) = w = w1 . . . wn, where the wi = ηi + E(βi) are factors and |βi| = xi ∈ N. Then (α)T1

is included in the sequence (ηi, xi) and ((α)T1)T2 includes a concatenation of ηi +E(B)(xi) which

clearly contains π.

Now we want to show that the language (E(A)T1)T2 excludes rank encoded permutations that

are not in A o B. Let π /∈ A o B be such a permutation with E(π) = w ∈ (E(A)T1)T2. Then w

consists of factors w1 . . . wn, where one of the possible sequences of factors lies in (ηi, xi) ∈ (w)T t2 ,

so the wi correspond to ηi+E(βi) where |βi| = xi, βi ∈ B, and the sequence (ηi, xi) ∈ (E(A))T1. It

is now easy to check that in fact w = E(α[β1, . . . , βn]) for α ∈ A and βi ∈ B. So π = α[β1, . . . , βn]

which contradicts our assumption.

Thus we have found that the language of the wreath product of the regular class A and the

finite class B is

E(A o B) = (E(A)T1)T2 ⊆ E(Ωkl)

and regular.

Definitions. wreath closed class, wreath closure

A class A is said to be wreath closed if A = A o A and the wreath closure of a class A is

〈A〉 =

∞⋃
n=1

An,

whereA = A1, An = AoAn−1. The wreath closure is the smallest wreath closed set of permutations

that contains A.

Lemma 43. The wreath closure of a regular class A containing the permutation 21 is not regular.

Proof. Let A = {21}, then the wreath closure of A is the class of descending permutations. As A is

finite, it is a regular language under the rank encoding. But the class of all descending permutations

is not regular under the rank encoding as the language is over an infinite alphabet.

Corollary 44. A wreath closed class A is regular under the rank encoding if and only if A is finite

or consists of ascending permutations.

Let us summarise our findings, the wreath product of two regular classes is a regular language

under the rank encoding if and only if the second class is finite or 21 is not a permutation of

the first class. Next we have shown that the wreath closure of a class is not a regular language

under the rank encoding if the class contains 21. Finally, through all theses proofs we came to the

conclusion that a class is wreath closed and regular if and only if the class is finite or the class

avoids 21.

So we have not been able to use regular languages to characterise wreath closed classes. But

below is a corollary from [AA05] which uses the wreath closure of the set of simple permutations

of a class to represent the wreath closed class.

61



Corollary 45 ([AA05]). Let A be a wreath closed class. Then

A = 〈Si(A)〉,

where Si(A) is the set of simple permutations of A.

As we know that we can find the set of simple permutations of a class, we can utilise that

mechanism to check whether a given class is wreath closed.
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Chapter 4

Implementations

We have created implementations of previously published, but unanalysed and new algorithms

within the GAP [GAP15] language. The collection of these algorithms can be found in the PatternClass

package [ALH12]. This package works on GAP 4.6.4 and higher.

All algorithms in the following sections are experimentally investigated for their time complex-

ity. We will first concentrate on algorithms of some of the work presented in the previous sections,

before showing testing of implementations of a couple important functions of the PatternClass

package [ALH12].

The PatternClass can be found under the URL in [ALH12] and is also attached as an electronic

appendix to this thesis.

4.1 New Algorithms

Permutations will be stored in these implementations as arrays with unique entries. Similar treat-

ment will be given to words. Regular languages will be represented as automata, which recognise

the language. Automata will be represented similarly to before as the quintuple (Σ, S, δ, s1, A),

where Σ is the alphabet (set of letters), S the set of states, δ the transition function S × Σ → S,

s1 ∈ S the start state and A ⊆ S the set of final states. The transition function δ will be repres-

ented as a matrix of sets where the rows are labelled with the letters of the alphabet, the columns

are labelled with states and the entries δas = δ(s, a) ⊆ S for a ∈ Σ, s ∈ S.

Remark 46. For practical reasons we will represent the transition matrix of deterministic automata

as sets of singletons.

Example. The following automaton is an example of a non-deterministic automaton.
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aa

b

Figure 4.1: Example of a non-deterministic automaton

The alphabet is Σ = {a, b}, the set of states S = {1, 2, 3}, the start state is 1, the set of accept

states is {2} and the transition function

δ =

( 1 2 3

a {2, 3} {3} {2}
b ∅ {1, 2} {3}

)
.

Another example, this time of a deterministic automaton, is the gap automaton for k = 3, as

shown in figure 3.11. There the alphabet is Σ = {1, 2, 3}, the set of states S = {〈∅〉, 〈0〉, 〈1〉, 〈2〉, 〈1, 1〉},
the start state is 〈∅〉, the set of accept states A = ∅ and the transition function is

δ =


〈∅〉 〈0〉 〈1〉 〈2〉 〈1, 1〉

1 {〈0〉} {〈0〉} {〈0〉} {〈1〉} {〈1〉}
2 {〈1〉} {〈1〉} {〈1〉} {〈1〉} {〈1〉}
3 {〈2〉} {〈2〉} {〈1, 1〉} {〈2〉} {〈1, 1〉}

.
Any algorithms working on constructing automata will be, through the way the automata are

defined, spending the least time writing the transition matrix. Thus most of our complexities

will be corresponding to the sizes of the transition matrices of the output automata. Further we

are utilising the several library functions provided from the GAP packages Automata [DLM11] and

PatternClass, which are standard automaton operations.

UnionAutomata Returns the automaton recognising the union of the languages which are ac-

cepted by the input automata. The complexity of the function is linear with respect to the

size of the transition function of the output automaton. The algorithm is based on the basic

proof of the closure of the union of regular languages [Sip96].

IntersectionAutomata Returns the automaton recognising the language of the intersection of

the languages accepted by the input automata. The complexity is linear to the size of

the transition function of the output automaton. This is because the output automaton is

generated by running through both input automata in parallel, for more details see [HMU06].

ReversedAutomaton The returned automaton accepts the reversed language of the input auto-

maton. The complexity of the function is linear with respect to the transition function of

the output automaton, which is generated by algorithm 3, with complexity O(n2k) for non-

deterministic automata and O(nk) for deterministic automata, where n = |S| and k = |Σ|.
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A proof of the regularity of the reversed language, based on regular expressions can be found

in [HMU06].

Algorithm 3 Generate the reversed transition function δ′ of a given automaton.

Input: Automaton (Σ, S, δ, s1, A)

1: δ′ ← |Σ| × |S| matrix of ∅
2: for a ∈ Σ do

3: for s ∈ S do

4: for s′ ∈ δa,s do

5: Add {s} to δ′a,s′

6: end for

7: end for

8: end for

return δ′

ProductOfLanguages The output automaton accepts the language consisting of the concaten-

ation of the languages of the input automata. As the automaton is generated by adding

epsilon transitions from the accept states of the first input automaton to the start state of

the following automaton, complexity of the algorithm is linear with respect to the size of the

transition function of the output automaton. A more detailed description of the algorithm

can be found in the proof of the closure of regular languages under concatenation in [Sip96].

All CPU times were obtained on a machine with thirty two 2.3 GHz AMD OpteronTMProcessor

6376 with hyperthreading while running on just one of them and 512GB RAM. The experiments

were run with GAP 4.6.4 and version 1.12358 of PatternClass [ALH12].

4.1.1 Block-Decomposition

In this section we will again only consider plus- and minus-indecomposable (pmi) permutations.

The algorithm presented will find the unique block-decomposition σ[α1, . . . , αm] = π, correspond-

ing to any pmi permutation. This algorithm conforms with the theory in section 3.5.

There are two more library functions used in the algorithms below. First, IsInterval(s), which

takes a sequence s and checks whether its values are contiguous. This function is based on the

idea of finding common intervals between two permutations as described in [UY00]. As pointed

out in [BCdMR08] the more complicated algorithms presented in [UY00], when applied to random

permutations of moderate size, can be slower than the basic O(n2) algorithm. IsInterval uses the

basic algorithm from [UY00], with complexity O(n2), to compare the sequence s to the identity

permutation of the same length. As we are not trying to find all common intervals, IsInterval

utilises the comparison part of the algorithm once on the whole sequence s. This modification

results in IsInterval having complexity O(n).

Secondly the function Sortex (s), which takes in an sequence s of comparable elements and finds

the permutation π such that sπ is sorted. The sequence s may be a sequence of numbers or of

sequences, which we compare lexicographically. It is worth noting that any sorting algorithm can

easily be extended to an algorithm for Sortex with the same complexity.

In algorithm 4 we calculate all maximal intervals of a permutation π. Every time we enter the

outer loop we know that at the end of line 5 we have already found maximal intervals containing
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the point 1 up to i − 1. We now search backwards for the end point of the maximal interval

containing i. Overall the runtime of algorithm 4 is O(n3).

Algorithm 4 Find all maximal intervals in π.

Input: Permutation π

1: i← 1

2: a← [ ]

3: l← |π|
4: while i ≤ l do

5: j ← l

6: while j ≥ i do

7: if IsInterval(π(i) . . . π(j)) and (i 6= 1 or j 6= l) then

8: Add π(i) . . . π(j) to a

9: break

10: else

11: j ← j − 1

12: end if

13: end while

14: i← j + 1

15: end while

return a

Algorithm 5 takes the unrefined sequence of intervals that is output in algorithm 4 and by using

the Sortex function, calculates the permutation that corresponds to the placement of the disjoint

intervals in p.

Algorithm 5 Find the permutation corresponding to the sequence of sequences.

Input: Sequence a of maximal intervals

1: simp←Sortex(a)

return simp

Lastly algorithm 6 takes the unrefined intervals individually from the output sequence of al-

gorithm 4 and finds the order isomorphic permutation corresponding to that interval, which is the

permutation that sorts the interval.

Algorithm 6 Turn a duplicate-free sequence into its order isomorphic permutation.

Input: Duplicate free sequence α

1: α←Sortex(α)

return α

The overall computation of the unique block-decomposition σ[α1, . . . , αm] of π requires one

execution of algorithm 4, one of algorithm 5 and at most n executions of algorithm 6.

In summary the algorithm we have found to compute the block-decomposition of permutations

has complexity O(n3). This is because algorithm 4 has complexity O(n3) and both algorithm 5

and 6 have complexity O(n log(n)), where n = |π|.
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Our testing of the block-decomposition algorithm in PatternClass with the lengths of random

permutations ranging between 100 and 7289 is consistent with the complexity of the algorithm

being O(n3).
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Figure 4.2: Plot with logarithmic axes of the test results for calculating the block-decomposition
of a permutation.

The function y = exp(−10.9349)x3.0925 represents the best log-linear fit to the results, which is

consistent with the time complexity of O(n3).

4.1.2 Plus-Indecomposable Language

We will now describe the algorithm to build the automaton accepting the words corresponding to

the plus-indecomposable permutations under the rank encoding. The approach we take is similar

to the proof in section 3.2.

As a quick summary, the proof and algorithm to find the language of all plus-indecomposable

permutations of ER(Ωk) is based on the idea that a plus-indecomposable permutation π cannot

be composed of a concatenation of two words representing valid rank encoded permutations. We

can construct the automaton that rejects such concatenated words.

Remark 47. The algorithm below uses the automaton accepting the language ER(Ωk) as the testing

was done for this language. We can use IntersectionAutomaton to find IP (C) for any regular C or

in fact we can adapt the construction below to output this automaton directly.

67



Algorithm 7 Build the automaton accepting the rank encodings of plus-indecomposable permuta-
tions up to rank k.

Input: k ∈ N
1: Construct automaton (Σ, S, δ, s1, A) accepting ER(Ωk)

2: S′ ← S t {x, y}
3: A′ ← A t {x}
4: Initialise δ′ as |Σ| × |S′| matrix of ∅
5: for a ∈ Σ do

6: for s ∈ S do

7: δ′a,s ← δa,s

8: end for

9: δ′a,x ← δa,s1

10: for s ∈ A do

11: δ′a,s ← {y}
12: end for

13: end for

return Automaton (Σ, S′, δ′, x, A′)

This algorithm copies the transition matrix of the original automaton and adds the two new

states as well as changes a few transitions during the copying process. Overall the complexity is

linear in the size of the transition function of the output automaton. As the transition function is

a matrix the complexity is O(k2), as the deterministic automaton of ER(Ωk), has an alphabet of

size k and k states.
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Figure 4.3: Plot with logarithmic axes of the test results for constructing the automaton accepting
the language of rank encoded plus-indecomposable permutations up to rank k.
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The function y = exp(−7.9245)x1.9478 represents the best log-linear fit to the result, which

makes the implemented function in PatternClass consistent with the time complexity of O(k2).

4.1.3 Minus-Decomposable Language

Following the proof in section 3.3, the language of rank encoded minus-decomposable permutations

up to rank k is ER(DM ) = L ∩ ER(Ωk), where

L =

k−1⋃
d=1

Ld and Ld =
{
{d+ 1, . . . , k}+{1, . . . , d}d

}
.

In algorithm 8 the procedure LdkAut represents the language Ld in reverse, where the procedure

LAut represents the union of Ld over d < k, thus constructs the automaton accepting the reverse

of the language L . As we are working on permutations with rank encodings up to rank k, the

alphabet of all automata below is of size k.

Algorithm 8 Build the automaton accepting the language ER(DM ) of minus-decomposable rank
encoded permutations.

1: procedure LdkAut(d, k ∈ N)

2: Σ← {1, . . . , k}
3: S ← {1, . . . , d+ 3}
4: Initialise δ as a |Σ| × |S| matrix of ∅
5: for a← 1, d do

6: for s← S do

7: if s ≤ d then

8: δa,s ← {s+ 1}
9: else

10: δa,s ← {d+ 3}
11: end if

12: end for

13: end for

14: for a← d+ 1, k do

15: for s← S do

16: if s ≤ d or s = d+ 3 then

17: δa,s ← {d+ 3}
18: else

19: δa,s ← {d+ 2}
20: end if

21: end for

22: end for

return Automaton (Σ, S, δ, 1, {d+ 2})
23: end procedure
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24: procedure LAut(k ∈ N)

25: A ← LdkAut(1, k)

26: for i← 2, k − 1 do

27: B ← LdkAut(i, k)

28: A ← UnionAutomata(A,B)

29: end for

return Automaton A
30: end procedure

31: A ← LAut(k)

32: A ← ReversedAutomaton(A)

33: B ← Automaton accepting ER(Ωk)

34: A ← IntersectionAutomaton(A,B)

return Automaton A

The automaton constructed by LdkAut has d+ 3 states and δa,s for any letter a and any state

s is a set of size 1. Thus the number of transitions is k(d+ 3). So overall the complexity of LdkAut

is O(k(d + 3)). The output automaton of LAut has an alphabet of size k and k2 states, due to

the repeated union of the automata of LdkAut. As all entries of the transition matrix of LdkAut

are singleton sets, the transitions of the automaton constructed by LAut are also sets of size 1. So

the automaton has k3 transitions. Thus the complexity of LAut is O(k3), this complexity is not

exceeded by the k − 1 calls of UnionAutomata.

Finally the output automaton of LAut is reversed and then intersected with the automaton

accepting the language ER(Ωk), which has an alphabet of size k, k states and k2 transitions, as

it is a deterministic automaton. The intersection of these two automata is a non-deterministic

automaton with k letters, k3 states and k5 transitions. So the overall complexity of algorithm 8

lies in the construction of this intersection, which has complexity O(k5).
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Figure 4.4: Plot with logarithmic axes of the test results of the construction of the automata
accepting the rank encodings of minus-decomposable permutations up to rank k.

The function y = exp(−10.2102)x5.2264 represents the best log-linear fit to the results, which is

consistent with the time complexity of O(k5).

4.1.4 Non-Simple Language

As described in section 3.7 the language of all simple permutations of Ωk under the rank encoding

is:

ER(NSk) =ER(Ωk) ∩

k−1⋃
l=1

Pl

k−1⋃
m=l

m+ ER(Ω̂k−m) ∪
k−1⋃
j=1

j + ER(Ω̂k−j)∪

∪
k−1⋃
a=2

k−1−a⋃
b=0

Qa,b

a−2⋃
i=0

((b+ i) + ER(Ω̂k−(b+i)))
(a−i) ∪ ER(Ωk \ {ε})ER(Ωk \ {ε})

)
Σ∗,

(4.1)

where

Σ is the alphabet {1, . . . , k}, k ∈ N, k ≥ 3.

Pl is the language of prefixes of rank encoded permutations, where
∑
gs′(w) = l.

Qi,j is the language of prefixes of rank encoded permutations, where in gs′(w) there is a gap gx

of size i and sum of the gaps g1, . . . gx−1 equals to j.

i+ ER(Ωk−i) is the language of ER(Ωk−i), i ∈ N, with the alphabet shifted upwards by i.

ER(Ωk)(i) is the sublanguage of ER(Ωk) containing the words of length ≤ i, i ∈ N.
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ER(Ω̂k) is the sublanguage of ER(Ωk) containing the words of length > 1.

Towards the end of algorithm 9 we can find the automaton of the above language being con-

structed. The loop starting at line 75 corresponds to
⋃k−1
l=1 Pl

⋃k−1
m=lm + ER(Ω̂k−m), the loop

starting at line 80 corresponds to
⋃k−1
j=1 j +ER(Ω̂k−j) and the nested loops starting at line 85 cor-

respond to
⋃k−1
a=2

⋃k−1−a
b=0 Qa,b

⋃a−2
i=0 ((b + i) + ER(Ω̂k−(b+i)))

(a−i). Finally line 97, the automaton

accepting rank encoded plus-decomposable permutations corresponds to ER(Ωk\{ε})ER(Ωk\{ε}).

Algorithm 9 Build the automaton accepting the language of non-simple rank encoded permuta-
tions up to rank k.

1: procedure NextGap(gs′(w) = 〈g1, . . . , gn〉, r ∈ N)

. This procedure is algorithm 1 in section 3.7.

2: end procedure

3: procedure GapAut(k)

. GapAut returns the gap automaton G(k, ∅) for any k ∈ N as described in section 3.7.

4: Σ← {1, . . . , k}
5: S ← {〈∅〉}
6: δ ← (∅)
7: i← 1

8: while i ≤ |S| do

9: tmp← (∅)
10: for r ← 1, k do

11: s← NextGap(si, r)

12: if s /∈ S then

13: Add s to S

14: end if

15: Add {s} to tmp

16: end for

17: Add tmp as a column to δ

18: i← i+ 1

19: end while

return Automaton (Σ, S, δ, s1, ∅)
20: end procedure

21: procedure SumAut(sum ∈ N,A)

. A = (Σ, S, δ, s1, ∅), is the gap automaton G for k ∈ N
22: A′ ← {∅}
23: for s ∈ S do

24: if
∑
s = sum then

25: Add s to A′

26: end if

27: end for

return Automaton (Σ, S, δ, s1, A
′)

28: end procedure
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29: procedure GapSumAut(gx, sum ∈ N,A)

. A = (Σ, S, δ, s1, ∅), is the gap automaton G for k ∈ N
30: A′ ← {∅}
31: for s = 〈g1, . . . , gn〉 ∈ S do

32: if gx ∈ s then

33: tmp← {all positions of occurrences of gx in s}
34: for i ∈ tmp do

35: if i = 1 and sum = 0 then

36: Add s to A′

37: else if sum =
∑i−1
a=1 ga then

38: Add s to A′

39: end if

40: end for

41: end if

42: end for

return Automaton (Σ, S, δ, s1, A
′)

43: end procedure

44: procedure LengthBoundAut(min,max ∈ N,A)

. A is an automaton with (Σ, S, δ, s1, A)

45: S′ ← {1, . . . ,max+ 2}
46: Initialise δ′ as |Σ| × |S′| matrix of ∅
47: for a ∈ Σ do

48: Let the a-th row of δ′ be of the form ({2}, {3}, . . . , {max+ 1}, {max+ 2}, {max+ 2})
49: end for

50: B ← (Σ, S′, δ′, 1, {min+ 1, . . . ,max+ 1})
return IntersectionAutomaton(A,B)

51: end procedure

52: procedure ZeroOneAutomaton(k ∈ N)

53: Σ← {1, . . . , k}
54: S ← {0, 1, 2}
55: s1 ← 0

56: A← {2}

57: δ ←
( 0 1 2

Σ∗ {1} {2} {2}
)

return Automaton (Σ, S, δ, s1, A)

58: end procedure
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59: procedure ShiftAut(x, k ∈ N)

60: A ← automaton accepting ER(Ωk−x)

61: B ← ZeroOneAutomaton(k − x)

62: C ← IntersectionAutomaton(A,B) . C = (Σ, S, δ, s1, A)

63: Initialise δ′ as k × |S| matrix of ∅
64: for a ∈ 1, k do

65: for s ∈ S do

66: if a > x then

67: δ′as ← δa−x,s

68: end if

69: end for

70: end for

return Automaton ({1, . . . , k}, S, δ, s1, A)

71: end procedure

72: Initialise A,B to be automata accepting the empty language

73: G ← GapAut(k)

74: for i← k − 1, 1 do

75: A ← UnionAutomata(A,ShiftAut(i, k))

76: C ← ProductOfLanguages(SumAut(i, k,G),A)

77: B ← UnionAutomata(B, C)
78: end for

79: for i← 1, k − 1 do

80: A ← ShiftAut(i, k)

81: B ← UnionAutomata(B,A)

82: end for

83: Initialise C to be the automaton accepting the empty language

84: for a← 2, k − 1 do

85: for b← 0, k − a− 1 do

86: A ← GapSumAut(a, b, k,G)

87: for i← 0, a− 2 do

88: D ← ShiftAut(b+ i, k)

89: D ← LengthBoundAut(2, a− i, k,D)

90: E ← ProductOfLanguages(A,D)

91: C ← UnionAutomata(C, E)

92: end for

93: end for

94: end for

95: C ← ProductOfLanguages(C, {1, . . . , k}∗)
96: A ← Automaton of PlusDecomposableAut(k)

97: D ← UnionAutomata(C,A)

98: E ← UnionAutomata(D,B)

99: B ← automaton accepting ER(Ωk)

return The automaton returned by IntersectionAutomaton(E ,B).
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The procedure NextGap is algorithm 1 as shown in section 3.7. It takes gap sizes gs′(w) =

〈g1, . . . , gn〉 and a letter r ∈ N and calculates the next gap sizes for the word wr. The complexity

of this procedure is linear to the length of the gap sizes gs′(w). So the complexity is O(k).

The procedure GapAut builds the gap automaton construct. Each state of this automaton is

described by gap sizes and the transitions are determined by NextGap. The set of gap sizes for k

is equivalent to the set of compositions of k − 1, thus the set of states is of size 2k−1 + 1. As we

are working over an alphabet of size k, the overall size of the transition matrix of the automaton

output by GapAut is k(2k−1 + 1), thus the complexity of GapAut is O(k2k).

Next the procedure SumAut takes the automaton output by GapAut, or any automaton with

the states represented as gap sizes and determines the set of accept states, by finding the gap sizes

gs′(w) = 〈g1, . . . , gn〉 such that
∑
gs′(w) =

∑n
i=1 gi = sum. For that each state has to be checked.

As the input automaton is the gap automaton construct from section 3.7 and returned by GapAut

the number of states is 2k−1 + 1, thus the complexity of SumAut is O(2k), whereas the output

automaton is the same as the input automaton except for the set of accept states. The language

accepted by SumAut is Pl, for l = sum, from equation (4.1).

Similarly for GapSumAut we are looking at the input automaton, which has its states described

as gap sizes. Each state is checked to see whether it contains a gap size gx and whether the

preceding gap sizes sum to sum, if so this state is added to the set of accept states. Thus the

time complexity of GapSumAut is O(2k), when the input automaton is the gap automaton and

the output automaton is the same except for the set of accept states. The language accepted by

this output automaton is Qi,j from equation (4.1).

LengthBoundAut constructs an automaton, which accepts words of lengths between and inclus-

ive min and max, from the input automaton. The implementation constructs an automaton that

accepts all words over the alphabet of the input automaton between the lengths min and max

and then intersects the resulting automaton with the input. The intersection is the most time

costly function of this procedure. The input automaton has an alphabet of size |Σ| = k, |S| states

and k|S| transitions. The constructed automaton has k letters, max + 2 states and k(max + 2)

transition. So the output automaton consists of k letters, |S|(max+ 2) states and k2|S|(max+ 2)

transitions. Thus the complexity of LengthBoundAut is O(k2max).

The procedure ZeroOneAutomaton is an auxiliary procedure that creates an automaton over

the alphabet Σ = {1, . . . , k} that accepts the language of all words over Σ of length > 1. The

constructed automaton has 3 states and 3k transitions, hence the complexity of the procedure is

O(k).

The automaton constructed by the procedure ShiftAut accepts the language i+ER(Ω̂k−x) from

equation (4.1). The output automaton is based on the automaton accepting ER(Ωk−x). First the

words of length ≤ 1 are excluded before the transition matrix is shifted to k letters and the first

x − 1 rows are empty transitions. The automaton resulting from the intersection of ER(Ωk−x)

with the automaton output by ZeroOneAutomaton has k−x letters, 3(k−x) states and 3(k−x)3

transitions. As we are passing through all the transitions to shift them to a k × 3(k − x) matrix,

each transition has to be accessed. So the complexity of ShiftAut is O(k4).

Constructing the automaton in the loop starting at line 75 will have complexity O(k22k) and

the loop starting at line 80 increases the complexity to O(k32k). Further the nested loops starting

at line 85 increase the complexity of the algorithm to O(k42k).

Finally the union of the automata resulting from the above loops with the automaton accepting

rank encoded plus-decomposable permutations and the intersection with the automaton accepting
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the language ER(Ωk) results in an algorithm with time complexity O(k52k).
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Figure 4.5: Plot of test results for constructing the language of non-simple permutation over rank
k which is the same as the size of the alphabet of the automaton against time.

The function y = exp(−5.72492)x4.25562x represents the best fit to the results, which is faster

than the calculated time complexity of O(k52k). This is due to the fact that we are using some

heuristics to replace the large non-deterministic automaton by a smaller equivalent automaton,

which still accepts the same language. These reductions are not indicated in the pseudo-algorithms,

but are happening in the implementation. In particular the reductions are done on lines 78, 82, 92

and 99, after the union of the two automata on those lines.

4.2 Analysis of Known Algorithms

The PatternClass package started of as an aid to work with known classes under the rank encoding

and their languages. The original approach taken is through token passing networks and their

natural properties to create permutation pattern classes which are regular under the rank encoding,

as described in section 2.2. One can create the language of the class by inputting the TPN that

describes said class, or more directly the language of the class or the basis. In [AAR03] it is

extensively discussed on how to calculate the language of the basis directly from the language of

the class or vice versa.

As previously shown the construction of the language of the basis ER(B) from the class C is

based on the equation

ER(B) = (ER(C))C ∩ ((ER(C))CDt)C , (4.2)

where D is a transducer that deletes an arbitrary letter in a rank encoded permutation, and
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returns a word that represents the permutation that had the point removed that corresponds to

the removed letter [AAR03].

It has been shown in [AAR03] that it is also possible to move from knowing the language of the

basis to the language of the class under the rank encoding. By using an involvement transducer

H that removes any number of letters from the input word.

ER(C) = (ER(B)Ht)C ∩ ER(Ωk). (4.3)

We test the implementation of both equations (4.2) and (4.3) against 4 different types of

languages over a range of ranks. Three of the languages are based on types of TPNs and the last

language is ER(Ωk).

The first set of tests are done over the languages constructed by a TPN that contains a finite

buffer and a finite stack. An example TPN is shown in figure 4.6a. The second type of TPN consists

of two finite stacks in sequence, see figure 4.6b, and the third type is two stacks in sequence, the

first has finite size, whereas the second is infinite, but we limit the number of tokens at any time in

the network, which gives us the finite alphabet and a maximal rank, see figure 4.6c for an example.
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(a) TPN with a buffer of size 3
and a stack of size 4.
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(b) TPN with two finite stacks
in sequence.
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(c) TPN with a finite stack fol-
lowed by an infinite stack.

For the testing of the functions BasisAutomaton and ClassAutomaton on the languages of the

classes we do the following. First we apply and time the function BasisAutomaton which computes

the language of the basis of the class as shown in equation (4.2). Then we apply ClassAutomaton

to the resulting languages and measure the time it takes to compute the languages of the classes

from the bases using equation (4.3). Finally for an additional test, which resulted from curiosity,

we used the same method as above on the language of Ωk. So first applied BasisAutomaton and

then to the result ClassAutomaton and timed each function. But we also applied ClassAutomaton

directly to the language of Ωk, which results in the final class being the empty class.

For each type of TPN we used different sizes of data structures within the graphs and averaged

the time taken for each rank of the resulting languages of the class.
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Figure 4.7: Plot of run time of BasisAutomaton when applied to languages of different types of
TPNs and Ωk.

We can see that the function BasisAutomaton is taking exponential time corresponding to the

rank of the input language, also with each change to the structures of the TPN the time increases

as the underlying languages and automata get larger and more complicated.
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Figure 4.8: Plot of run time of ClassAutomaton when applied to languages of the bases of different
types of TPNs and the basis of Ωk.

We have similar results for ClassAutomaton. It seems that at rank 6 the time taken to construct

the language of the class created by the TPNs consisting of two finite stacks is faster. This is due

to the fact that for more complicated TPNs of this type with rank 6 the construction of the

final automaton involves steps in which automata are determinised, and this has the effect that

these automata have an extremely large number of states. This lead to the memory space being

used up and we could not calculate the final automaton, but seeing the trends within the other

constructions, we can predict with some certainty that the average time for TPNs of that form

with rank 6 is longer.
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Figure 4.9: Plot of run time of BasisAutomaton and ClassAutomaton when applied to ER(Ωk).

It is interesting to see that finding the language of the class Av(Ωk) takes little longer than

finding the language of Ωk knowing the basis is empty. This is most likely due to the fact that the

involvement transducer will create a non-deterministic automaton with a high number of states

and which when determinised will be even larger.

A similar observation can be made when comparing the runtimes of ClassAutomaton to BasisAuto-

maton. This has to do with the fact that the deletion transducer of rank k has fewer states than

the involvement transducer of rank k. Thus the application of the former transducer to languages

will result in a smaller automaton than the latter.

4.3 Conclusions

We have shown that the main proofs of regular languages of sets of permutations of regular classes

can be implemented and that the code conforms with the complexities of the algorithms. In

particular we have shown that the time complexity to find the block-decomposition of a permutation

of length n is O(n3). The construction of the automaton accepting rank encoded words of the plus-

indecomposable permutations of a regular class with maximal rank k has complexity O(k2). The
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time complexity to construct the language of the rank encoded minus-decomposable permutations

of a regular class with maximal rank k is O(k5). Finally, the construction of the regular language

of simple permutations under the rank encoding with maximal rank k has complexity O(k52k).

Furthermore we have shown some testing of the essential functions that calculate the rank

encoded language of the basis of a regular class knowing the language of the class and vice versa.

The above functions are the core functions of the PatternClass package. There are more

functions, amongst which there are functions which construct the non-deterministic automaton

representing the rank encoded regular languages of permutations generated by any token passing

network; functions for the rank encoding of a permutation and the rank decoding of a word; func-

tions for checking whether a permutations is simple, plus- or minus-decomposable or whether a

sequence is an interval; a function that constructs the language of the direct sum of two regular

classes and for any k a function that calculates the language of exceptional permutations. Addi-

tionally there are also functions that calculate the set of simple permutations resulting from the

point deletion on simple permutations, these functions are useful when looking at the chains of

simple permutations.
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Chapter 5

Grid Class Encoding

This chapter is dedicated to the work on finding the basis of a geometric grid class through the

language of the encoding of geometric grid classes using the cell alphabet which is introduced in

section 2.6.

We would like to make the reader aware that this chapter is an attempt at finding a constructive

way to find the language of the basis, while starting with the language of the geometric grid class.

In [AAB+11b] it is shown that every geometric grid class is finitely based and so the language of

the basis under the geometric grid class encoding is regular. To show that the partial well order

property of the classes is utilised as well as Higman’s Theorem. This method is not constructive

as Higman’s Theorem does not have a constructive proof yet.

Our aim is to find a constructive and implementable way to be able to go back and forth between

a class and its basis, through their languages, similarly as it is done with the rank encoding in

[AAR03]. Further the two attempts below partially follow the proof in [AAB+11b].

Definitions. finite state transducer, offset matrix, offset cells/entries, one point extension, normal

language, standard language

Here we introduce two attempts at alternative proofs that are more constructive and which

should allow for an implementation. For both, the notion of transducers is relevant. As a quick

reminder a finite state transducer is a type of finite automaton with output strings. Thus it is a

sextuple (Σ,Γ, S, δ, s1, A), where Σ is the input alphabet, Γ is the output alphabet, S is the finite

set of states, δ is the transition function S × (Σ× Γ)→ S, s1 ∈ S is the start state and A ⊆ S is

the set of accept states.

Let C be a geometric grid class over a partial multiplication matrix M . We can extend M to

its offset matrix M+1 by extending the entries Mij of M by 5 × 5 submatrices (Mij)
+1 of M+1,

as follows. If Mij = 0, then the submatrix (Mij)
+1 is,

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0
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if Mij = 1 then we extend it to the following (Mij)
+1

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

and if Mij = −1, then (Mij)
+1 is

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 −1.

We call the cells/entries in M+1 that are above indicated by bold 1’s offset cells/entries. Let

π ∈ C with |π| = n, then π̂ /∈ C, |π̂| = n + 1 is an one point extension of π if π̂ contains an offset

point p that lies in an offset cell and if p is removed from π̂ the resulting permutation π ∈ C. We

will denote C+1 to be the set of permutations that contains the permutations of C with an offset

point.

Further we will be using the multi-valued encoding, EG(π), introduced in [AAB+11b]. So

EG(π) is the encoding over the alphabet Σ = {aij : Mij 6= 0}, with respect to the row and column

signs of the partial multiplication matrix M . An encoding of a permutation is normal if it is

lexicographically least with respect to the trace monoid (see section 7 of [AAB+11b]). So every

gridding with respect to M of that permutation has a unique normal encoding. We denote this

encoding by EG, which is still multi-valued per permutation. An encoding of a permutation is

standard if it is lexicographically least amongst all normal encoding of the same permutation, so

we are choosing the word with the “lexicographically least” gridding of each permutation. We will

denote this encoding by ĖG. In [AAB+11b] Albert et al. have shown that both languages EG(C)
and ĖG(C) are regular languages.

Our first approach gives us a language that contains the basis elements, but we have additional

permutations that are not in the basis or the class in this language.

Proposition 48. Let C be a geometric grid class of M . The set of geometric grid encoded basis

elements of C with respect to the matrix M+1 is included in

EM
+1

G (X ) = ĖM
+1

(C+1) \ Ė+1
G (C).

Before proving the above proposition, we have a working example to introduce notation.

Example. Let C = Av(21), so C is griddable by the matrix M = (1). M has row and column signs

r1 = c1 = 1 and the cell alphabet with respect to M is Σ = {a11}.
The multi-valued language of the class C under the grid encoding with respect to M is EG(C) =

a∗11. We normalise the language to avoid having words containing the same letters in different order

representing the same permutation, we will still have multiple words representing a permutation.

The normal language of EG(C) is EG(C) = a∗11. Let us now extend this language to the language
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over the offset matrix M+1 of M ,

M+1 =


0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

 .

M+1 has row and column signs ri = ci = 1 for i ∈ {1, . . . , 5} and the cell alphabet is Σ+1 =

{a11, a24, a33, a42, a55}. We are now extending EG(C) to a language over the alphabet and gridding

of M+1 while still respecting the gridding and lexicographical order of M . The resulting language

E+1(C) contains the normal pre-images of EG(C) with respect to M+1,

E+1(C) = (a11|a24|a55)∗|(a11|a33|a55)∗|(a11|a42|a55)∗.

Next we will find the language of one-point extended permutations of C under the grid encoding. We

will use the language E+1(C). We know that the one point extensions of the permutations griddable

by a matrix contain a point lying out with the line segment in the cells. Thus the language will be

E+1(C+1) = (a11|a24|a55)∗(a33|a42)|(a11|a33|a55)∗(a24|a42)|(a11|a42|a55)∗(a24|a33).

Let us standardise this language,

ĖM
+1

(C+1) = Ė+1
G (C+1) = a∗11|(a∗11a24a33a

∗
55)

and the standard language of C with respect to M+1 is

ĖM
+1

G (C) = a∗11.

Now the language containing the basis amongst other permutations not in the class is

EM
+1

G (X ) = ĖM
+1

(C+1) \ Ė+1
G (C) = a∗11a24a33a

∗
55.

This is a regular language as it is represented by a regular expression, but further all the languages

above are regular.

As we can see in the above example, we have found an infinite regular language that contains

the basis element, in the example π = 21, EM
+1

G (π) = a24a33. Currently we have not found a way

to extract the basis elements from this language without having prior knowledge of the basis or

the permutations that correspond to the words in the language.

Proof of proposition 48. Below is a general idea of the proof setup, as seen in the example.
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EG(C)

EG(C)

All pre-images of EG(C) with respect to M+1, E+1(C)

ĖM+1

(C) = Ė+1
G (C) E+1(C+1)

Ė+1(C+1) = ĖM
+1

G (C+1)

EM
+1

G (X )

normalise(1)

extend(2)

standardise (3) one point extension(4)

difference

(6)

standardise(5)

Let C be a geometrically griddable class over the matrix M and the set of non-uniquely encoded

permutations of C with respect to M be EG(C).
Step (1) normalises the language EG(C) to EG(C) by using the idea of trace monoids as described

in [AAB+11b] in the proof of proposition 7.2. So each word in EG(C) is the lexicographically least

word of each gridding of the permutations in C and EG(C) is regular.

Step (2) expands the language EG(C) from over the cell alphabet with respect to M to all

possible encodings over M+1 while still considering the grid lines of M . This is done with a finite

state transducer that takes the alphabet of M and each letter aij is translated to the letters of

the corresponding submatrix of M+1 while still considering the order of how the points are added,

which is dictated by the row and column signs. This means that the encoded words in E+1(C) are

all ways of encoding the permutations in C over M+1 while still being lexicographically least with

respect to the griddings over M and E+1(C) is regular.

Step (3) standardises the words of E+1(C) by using the idea of marking letters in the words

that represent the same permutation when they witness the fact that they are indicating a shift

in the grid lines. Out of those multiple words per permutation we choose the word representing

the permutation with the gridding that has the grid lines as far to the right and as high as

possible. For more explanation see section 8 of [AAB+11b]. We now have a unique word with a

gridding per permutation in the class C over the matrix M+1, thus the resulting regular language

Ė+1(C) = ĖM
+1

G (C).
In Step (4) we add the offset points to the permutations that are represented by the words in

E+1(C). In the encoding we are adding a letter that represents an offset point. This procedure

is done with a transducer, which for each word returns a set of words each word containing one

offset point. The resulting language E+1(C+1) will include words that represent permutations in C
as well as permutations not in C, which are the one point extensions of the permutations in C.

Step (5) standardises all words in E+1(C+1) using the same method as described in Step (3).

Similarly as in Step (3) we now have a unique word per permutation with a chosen gridding

Ė+1(C+1) = ĖM
+1

G (C+1).

Finally we take the two languages resulting from Step (3) and (5) ĖM
+1

G (C) and ĖM
+1

G (C+1)
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respectively, and take the difference. As ĖM
+1

G (C+1) contains the words representing one point

extensions as well as permutations of C, we are now excluding the words representing permutations

of C, the resulting set will contain the encoded words of the basis of C. This language is regular as

all the above languages are regular and regularity is preserved under set difference.

Remark 49. The resulting language EM
+1

G (X ) contains amongst other words the grid encoded

permutations of the basis of C. If a way of determining which words are indeed the words of the

basis, without decoding, is found the above proof will be a constructive and implementable way to

find the basis of a geometric grid class.

Remark 50. As there are only a finite number of offset points, there are only a finite number of

choices for the one point extensions of the permutations in C, thus the basis of C is finite, as stated

in [AAB+11b].

This might aid us in the search for the basis elements in the language EM
+1

G (X ). As the

language most likely will be always infinite.

Remark 51. We are unable to easily obtain a language over M+1 which represents all griddings

of C.

Now for a different way of attempting to get the language of the basis of a geometric grid class.

We follow the idea of using the encodings of permutations not in the class C. These permutations

have an additional point, which prevents them from being in C. The overall process to finding

the basis using these types of permutations is similar to what was done with the rank encoding in

[AAR03].

Conjecture 52. Let M,N be two 0,±1 matrices, with Geom(M) = C, Geom(N) = D. Then

E
M×N
G (C ∩ D), the language of normal encodings of permutations in C ∩ D, is regular.

Assuming this conjecture holds we can then find the language of the basis under the geometric

grid encoding.

Proposition 53. Let C be a geometric grid class of M . The set of geometric grid encoded basis

elements of C with respect to the matrix M+1 is

EM
+1

G (B) = (ECDT )
C
\ EM

+1

G (C).

Proof. Again we start with a diagram showing the flow of the proof.
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EG(C)

EM×M
+1

G (C ∩Geom(M+1)) = EM×M
+1

G (C)

E = {v : (w, v) ∈ EM×M
+1

G (C)}

EC

ECDT = N

NC

NC \ EC = EM
+1

G (B)

Ė+1
G (B)

extend(1)

choose language(2)

complement(3)

one point extend(4)

complement(5)

normalise
set difference

standardise(7)

normalise
set difference

Step (1) applies conjecture 52 to our class C ⊆ Geom(M), and as M+1 is the extension matrix

of M , C ⊂ Geom(M). So Geom(M+1 ∩ C) = C. Thus, using conjecture 52

EM×M
+1

G (C ∩Geom(M+1)) = EM×M
+1

G (C)

is a regular multi-valued language. In step (2) we choose the words over M+1 that correspond

to permutations in C. The language E is still regular, as all the words that we have chosen are

words of the form (ε, w) ∈ EM×M
+1

G (C) which is a regular language, because this subset of words

is accepted by the automaton of EM×M
+1

G (C).
Step (3) takes the complement of E . Regularity of languages is preserved under complementa-

tion.

In step (4) we add a letter to each word in our given language EC by applying the transducer

shown in figure 5.1. The alphabet that we are working on is ΣM
+1

and the output language is still

regular.

start

a|a

ε|a

a|a

Figure 5.1: One point addition transducer, where a ∈ Σ is any letter and Σ is any alphabet.
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Step (5) takes the complement of the language again. At this point we have the multi-valued

geometric grid encoding of permutations that are not in our original class C.
Because we are still in the multi-valued encoding, let us normalise both languages EC and

NC . We have now the language of all permutations not in the class C but griddable by M+1 and

all permutations that are not in C by one point and griddable by M+1. To find the language of

the basis we take the set difference in step (6). This will return the regular language of multi-

valued encodings of permutations of the basis of C over M+1. Thus in step (7) we standardise the

language, to get the regular single-valued language of geometric grid encodings of permutations of

the basis of C.

We can see that the two proposed concepts use a similar approach to the language of the basis

through the extended matrix M+1. This idea stems from the proof used in [AAB+11b]. The

first approach attempts to avoid the use of Higman’s Theorem at the end by using transducers

to find the language containing the basis. What we need is a mechanism to eliminate all other

permutations from the final language. This mechanism should be in place either within the current

construct or after the language containing the basis has been found. The former thought brought

on the idea of the second approach to finding the language of the basis. Unfortunately, this concept

is dependent on the conjecture of finding a regular language in the intersection of languages of two

classes over different matrices. So far, a counter example to conjecture 52 has not been found,

using manual checking on small examples of pmm matrices. If a counter example exists, there is

little chance that it will be contained in a high dimensional matrix as the small examples should

cover all possibilities of encodings and positioning of points in the permutations and griddings.
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Chapter 6

Conclusion

This thesis has shown a variety of language theoretic applications to permutations and permutation

pattern classes, specifically, when looking at the rank encoding and the regular languages of it.

We have seen that under this encoding the set of plus- and minus-(in)decomposable permutations

in a regular class form a regular language and that the respective languages need a different

approach even though the properties have the same origin and are similar. It was possible from

there to find in a regular class the regular language of all encoded permutations in which the

block-decomposition has the same simple permutation. This further opened the work into the

language of simple permutations, for which a regular language was also found. With this language

it is possible to find the whole set of simple permutations within a class that is not regular under

the rank encoding. This result has high impact on the research of permutation pattern classes

as simple permutations are regarded as building blocks for the understanding of pattern classes.

For example, proposition 9 and corollary 10 use the set of simple permutations in a type of class

that we have found not to be regular except for finite cases. Being able to find the set of simple

permutations within a class easily, allows in these cases it to be simpler to find the properties of

the class.

It was also shown that for a spectrum of different class types, such as separable classes, a

regular language under the rank encoding cannot be found. Further research in the realm of the

rank encoding is to find other sets of permutations with a property and to show whether these

sets are regular under the rank encoding. Having an implementation of the rank encoding and

the regular languages of sets of permutations as well as pattern classes under the rank encoding,

gives access to compute specific examples, which could be of use to prove or disprove new research

within the field. Giving access to a program that does these calculations and language theoretic

constructions allows for extensive testing of current theories and further development of ideas.

Further other encodings of permutations were discussed. The insertion encoding, which can

be implemented in two slightly different manners. One yields regular classes, which have similar

properties to those regular classes under the rank encoding. The implementation of the regular

encoding is more time consuming and its applications can get complex due to the way the encoding

is defined. The focus in this thesis was not on the context-free insertion encoding as there is not

much research within that field, nor many applications. It seems like the context-free aspect of the

insertion encoding does not yield any more properties about specific sets of permutations, due to

the encoding being non-unique to the permutations and similarly to the regular insertion encoding

is time consuming in its implementation.
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The geometric grid class encoding has left some open questions. In the process of attempting

to find a constructive way to calculate the language of the encoded basis of a geometric grid class

difficulties were found in the definition of the language which in the language theoretic context

seems simple, but the underlying consequences for the permutations are convoluted. If a construct-

ive method can be found for the process of finding the language of the basis, an implementation

of this encoding would help the research of permutation pattern classes, due to the similarities

of grid classes and wreath classes and the extensive cross-overs between grid classes and other

combinatorial and algebraic fields.
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Index of Definitions

0± 1 matrix, 16
L|n1 , 34
L(n), 34
σ-decomposable, 33
ε, 34
x+ L, 34

alphabet, 10

basis, 11
block, 13, 32
block-decomposition, 14, 33

cell alphabet, 30
cell graph, 17
class of separable permutations, 13
column and row signs, 30
configuration, 27
containment, 11

deflation, 14, 33
direct sum of pattern classes, 13, 39
direct sum of permutations, 12, 35

exceptional permutations, 53

factor, 10
finite state transducer, 23, 82

gap automaton, 48
gap sizes, 47
geometric grid class, 17
gridding matrix, 16

inflation, 14, 33, 46
insertion bounded class, 29
insertion encoding, 27
interval, 13, 32
inversion, 20
involvement, 11

letter, 10

M -griddable class, 16

M -griddable permutation, 16
M -gridded permutation, 16
M -gridding, 16
maximal interval, 43
minus-decomposable, 37
minus-indecomposable, 37
monotone grid class of M , 16

normal language, 83

offset cells/entries, 83
offset matrix, 82
offset point, 83
one point extension, 83
order isomorphism, 11

partial multiplication matrix (PMM), 30
permutation, 10
permutation pattern class, 11
plus-decomposable, 35
plus-indecomposable, 35

rank, 19
rank encoding, 19, 20
refinement, 29
regular class, 23

simple permutation, 32
skew sum of pattern classes, 13, 39
skew sum of permutations, 12, 37
slot, 27
slot bounded permutation, 28
standard figure, 17
standard language, 83
subsequence, 10

token passing network, 21

word, 10
wreath closed, 15, 61
wreath closure, 15, 61
wreath product, 14, 58
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