
Mathematische Zeitschrift
https://doi.org/10.1007/s00209-022-02971-3 Mathematische Zeitschrift

On the Fourier dimension of (d, k)-sets and Kakeya sets
with restricted directions

Jonathan M. Fraser1 · Terence L. J. Harris2 · Nicholas G. Kroon1

Received: 28 May 2021 / Accepted: 4 January 2022
© The Author(s) 2022

Abstract
A (d, k)-set is a subset ofRd containing a k-dimensional unit ball of all possible orientations.
Using an approach of D. Oberlin we prove various Fourier dimension estimates for compact
(d, k)-sets. Our main interest is in restricted (d, k)-sets, where the set only contains unit balls
with a restricted set of possible orientations �. In this setting our estimates depend on the
Hausdorff dimension of � and can sometimes be improved if additional geometric properties
of � are assumed. We are led to consider cones and prove that the cone in Rd+1 has Fourier
dimension d − 1, which may be of interest in its own right.
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1 Kakeya sets, (d, k)-sets, and dimension theory

A Kakeya set is a subset of Rd containing a unit line segment in every direction. Besicovitch
[1] proved that there exist Kakeya sets with zero d-dimensional Lebesgue measure (for any
d ≥ 2) and it is a notorious problem in geometric measure theory and harmonic analysis
to determine if Kakeya sets can be even smaller than this, that is, can they have Hausdorff
dimension strictly less than d? The case d = 1 is trivial andwe assume throughout that d ≥ 2.
Davies proved that Kakeya sets in R

2 must have Hausdorff dimension 2 [3]. The problem
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is open for d ≥ 3 but various partial results are known. Notably, it was proved in [11] that
Kakeya sets in R3 have Hausdorff dimension at least 5/2+ ε for some small constant ε > 0
and, in the general case, it was proved in [10] that Kakeya sets have Hausdorff dimension
at least (2 − √

2)(d − 4) + 3. Further improvements in certain dimensions were achieved
recently in [9]. See [9,fig. 5] for a survey of the state of the art.

Oberlin gave a Fourier analytic proof of Davies’ result [17] which actually establishes
something stronger: a compact Kakeya set in R

2 must have Fourier dimension 2. Oberlin’s
result and proof are the starting point for our work and we use his general approach to study
variants of the Kakeya problem, especially (d, k)-sets with restricted orientations.

A (d, k)-set is a subset of Rd containing a k-dimensional unit ball of all possible orienta-
tions. As such, (d, 1)-sets are Kakeya sets. We give a more formal definition below. One can
now ask if (d, k)-sets with zero d-dimensional Lebesgue measure exist for d > k ≥ 2? In
fact, this is an open problem in general but it is conjectured that no such sets exist. Falconer
[5] proved that (d, k)-sets have positive measure whenever k > d/2. Around the same time
Marstrand [13] proved that (3, 2)-sets have positive 3-dimensional measure using a different
approach. This result has subsequently been strengthened by Bourgain [2] and Oberlin [19].
As far as we know the state of the art is that (d, k)-sets necessarily have positive Lebesgue
measure when (1 + √

2)k−1 + k > d , see [15,Chapter 24] and the survey [16].
Our main interest is in restricted (d, k)-sets, which we introduce now, and in estimates for

the Fourier dimension. The Grassmannian manifold G(d, k) consists of all k-dimensional
subspaces of Rd . This is a smooth compact manifold of dimension k(d − k), see [14]. To
formally define (d, k)-sets it is convenient to associate each subspace s ∈ G(d, k) with an
orthonormal basis {xs1, xs2, . . . , xsk } ⊆ R

d . In what follows it should be clear that the specific
choice of basis is irrelevant. Let � ⊆ G(d, k). If E ⊆ R

d is a (d, k, �)-set, then for all s ∈ �

there exists a translation ts ∈ R
d such that

ts +
k∑

i=1

ri x
s
i ∈ E

for all r = (r1, r2, . . . , rk) ∈ [0, 1]k . In particular, a (d, k)-set is a (d, k,G(d, k))-set. We
aim to bound the Fourier dimension of compact (d, k, �)-sets in terms of d, k, and geometric
properties of�. The Fourier dimension of a set is bounded above by theHausdorff dimension,
hence lower bounds for the Fourier dimension give lower bounds for Hausdorff dimension. A
related problem was considered by Oberlin [18]. This paper considers sets in Rd containing
certain families of affine hyperplanes. If the Hausdorff dimension of the family is large
enough, then it is proved in [18,Theorem 1.3] that the Lebesgue measure of the set must be
positive.

The Fourier transform of a Lebesgue integrable, complex-valued function f on Rd is the
function f̂ : Rd → C given by

f̂ (ξ) =
∫

Rd
f (x)e−2π iξ ·x dx .

Analogously, the Fourier transform of a Borel measure μ onRd is the function μ̂ : Rd → C

given by

μ̂(ξ) =
∫

Rd
e−2π iξ ·x dμ(x).

We writeM(E) to denote the set of all Borel probability measures supported on a closed
set E . Throughout we write A � B to mean there is a constant c > 0 such that A ≤ cB.
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If the implicit constant c depends on another parameter ε we write A �ε B. The Fourier
dimension of a closed set E ⊆ R

d is then

dimF E = sup{0 ≤ s ≤ d : ∃ μ ∈ M(E) such that |μ̂(ξ)| �s |ξ |−s/2}.
By relating energy to theFourier transform, it is straightforward to see that dimF E ≤ dimH E ,
see [15], where dimH denotes Hausdorff dimension.

There exist sets inRd with Fourier dimension d but zero d-dimensional Lebesguemeasure.
For example, Besicovitch sets inR2. However, if we know that the Fourier decay of ameasure
μ ∈ M(E) is “even better” than is required for full dimension, i.e. if there exists ε > 0 such
that

|μ̂(ξ)| �ε |ξ |−(d+ε)/2

then E ⊆ R
d not only has full Fourier dimension, but also positive d-dimensional Lebesgue

measure. Interestingly, there is no implication in the other direction. Indeed, there exist
compact subsets of Rd with positive Lebesgue measure but with Fourier dimension equal to
0, see [4,Example 18]. In particular, none of the Fourier dimension estimates we provide in
this paper are implied by statements about positivity of Lebesgue measure.

We metrise G(d, k) using the Hausdorff distance. The Hausdorff distance between two
non-empty compact subsets A, B of a compact metric space (X , d) is given by

dH (A, B) = max

{
sup
a∈A

inf
b∈B d(a, b), sup

b∈B
inf
a∈A

d(b, a)

}
.

The metric we use on G(d, k) is then

d(d,k)(s, t) = dH (s ∩ Sd−1, t ∩ Sd−1) (1.1)

for s, t ∈ G(d, k) and where Sd−1 is the unit sphere in R
d .

2 Results and applications

We state our main result in terms of an abstract scaling condition, which we refer to as β-
scaling. We then apply this result in two different ways to obtain less abstract corollaries.
Given ξ ∈ R

d \{0} and η > 0, let

Sξ,η = {s ∈ G(d, k) : |ξ · xsi | < η|ξ |, ∀ i = 1, . . . , k}.
Essentially, s ∈ Sξ,η if it is in an η-neighbourhood of the orthogonal complement of ξ . We
say � ⊆ G(d, k) is β-scaling for β ≥ 0 if it supports a Borel measure γ such that

γ (Sξ,η) �β ηβ

for all ξ ∈ R
d \{0} and η > 0.

Theorem 2.1 Let � ⊆ G(d, k) and assume � is β-scaling. Let E ⊆ R
d be a compact

(d, k, �)-set. Then

dimF E ≥ min{2β, d}.
Moreover, if β > d/2, then E has positive d-dimensional Lebesgue measure.
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We defer the proof of Theorem 2.1 to Sect. 3. Our first application of Theorem 2.1 is to
bound theFourier dimension of (d, k, �)-sets frombelow in terms of theHausdorff dimension
of �. The next result guarantees that � is β-scaling if its Hausdorff dimension is sufficiently
large.

Proposition 2.2 Let � ⊆ G(d, k) and suppose k(d − 1 − k) < b < dimH �. Then � is
(b − k(d − 1 − k))-scaling.

We defer the proof of Theorem 2.2 to Sect. 4. Combining Theorem 2.1 and Proposition
2.2 we immediately get the following result.

Corollary 2.3 Let� ⊆ G(d, k) and E ⊆ R
d be a compact (d, k, �)-set. If 2(dimH �−k(d−

1 − k)) ≤ d, then

dimF E ≥ 2(dimH � − k(d − 1 − k)).

Otherwise, if 2(dimH � − k(d − 1 − k)) > d, then dimF E = d and E has positive d-
dimensional Lebesgue measure.

The special case of Corollary 2.3 when d = 2 > 1 = k was proved in [17]. The final
conclusion of Corollary 2.3 giving conditions guaranteeing positive measure can be deduced
from [18,Theorem 1.3], but our Fourier dimension estimates are new to the best of our
knowledge. Corollary 2.3 is sharp in the sense that for arbitrary d > k there exist (d, k, �)-
sets E with dimH � = k(d − 1 − k) and dimF E = 0. Such sets can be constructed by
choosing V ∈ G(d, d − 1) and then � to be all k-dimensional subspaces of Rd which lie
in V . With this choice of � in place, V ∩ B(0, 1) is a compact (d, k, �)-set and has Fourier
dimension 0 since any subset of a hyperplane always has Fourier dimension 0.

Specialising to (d, k)-sets, we recover Falconer’s result for k > d/2 and obtain new
Fourier dimension bounds.

Corollary 2.4 Let E ⊆ R
d be a compact (d, k)-set. If k ≤ d/2, then

dimF E ≥ 2k.

Otherwise, if k > d/2, then dimF E = d and E has positive d-dimensional Lebesgue
measure.

To motivate these results, briefly consider compact (3, 2)-sets which are known to have
positive 3-dimensional Lebesgue measure. Corollary 2.3 provides a strengthening of this
result by giving the same conclusion with only the requirement that the set of orientations
has Hausdorff dimension> 3/2. Recall that the dimension of the set of available orientations
is 2. However, a further improvement is possible using [18,Theorem 1.3]. From this result it
may be shown that the conclusion of positivemeasure can be reachedwith a set of orientations
of dimensions > 1. Moreover, this is sharp since if dimH � = 1, then (3, 2, �)-sets can have
zero 3-dimensional Lebesgue measure. For example, consider the product of a Besicovitch
set E ′ ∈ R

2 (that is, a Kakeya set with zero 2-dimensional measure) with a unit line segment.
By disintegration of 3-dimensional Lebesgue measure we see that E = E ′ × [0, 1] is a
null set and, moreover, is a (3, 2, �) with dimH � = 1. Higher dimensional versions of this
construction are also possible but left to the reader.

Next we point out that Theorem 2.1 often gives an improvement over Corollary 2.3 if there
is additional geometric information known about �. There are many examples possible here
and so we just highlight some of our favourites. Generally, better estimates will be possible
for sets � which stay sufficiently far away from hyperplanes.
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Let d ≥ 3 and identify G(d, 1) and Sd−1 in the natural way. We say a set � ⊆ G(d, 1) is
a non-degenerate sphere if it is a (d − 2)-dimensional sphere with diameter strictly less than
2, that is, it is not the intersection of Sd−1 with a hyperplane.

Proposition 2.5 Let� ⊆ G(d, 1) be a non-degenerate sphere. If d = 3, then� is 1/2-scaling.
If d ≥ 4, then � is 1-scaling.

We defer the proof of Proposition 2.5 to Sect. 5. As a consequence, we get the following
result in the setting of restricted Kakeya sets. This is a strict improvement over Corollary 2.3
which does not give any non-trivial lower bounds in this setting.

Corollary 2.6 Let E ⊆ R
d be a compact set containingaunit line segment in anon-degenerate

sphere of directions. If d = 3, then

dimF E ≥ 1.

If d ≥ 4, then

dimF E ≥ 2.

Corollary 2.6 is sharp for d = 3, 4. This can be seen by following result about cones,
which may be of interest in its own right.

Theorem 2.7 For d ≥ 1, the cone

Cd =
{
(ξ1, . . . , ξd , ξd+1) ∈ R

d+1 : |(ξ1, . . . , ξd)| = |ξd+1|
}

in R
d+1 has Fourier dimension d − 1.

We defer the proof of Theorem 2.7 to Sect. 6.
It is perhaps noteworthy that in the case d ≥ 4 in the above, we get the same lower bound

for the Fourier dimension as that for genuine Kakeya sets, where lines in every direction are
present, not just in a non-degenerate sphere of directions, see Corollary 2.4. Moreover, the
non-degeneracy condition is necessary in the above, since a hyperplane contains a unit line
segment in a (d − 2)-dimensional sphere of directions, but has Fourier dimension 0.

We note that Corollary 2.6 gives non-trivial lower bounds for the Hausdorff dimension of
restricted Kakeya sets E in the case d ≥ 4. However, these bounds can be improved in all
dimensions by noting that the orthogonal projection of such E onto the hyperplane orthogonal
to the subspace spanned by the centre of� is a genuineKakeya set living in ambient dimension
d − 1. Then, since Hausdorff dimension cannot increase under projection, one can bound
dimH E from below by applying the state of the art estimates for the Kakeya problem. We
observe that Fourier dimension can (rather easily) increase under projection, and so such a
reduction is not possible for Fourier dimension.

3 Proof of Theorem 2.1

Write C∞
c (R) for the space of infinitely differentiable functions with compact support. Let

φ ∈ C∞
c (R) be non-negative with support spt φ ⊆ [0, 1] and such that

∫ 1
0 φ(x) dx = 1.

Observe that the Fourier transform of φ is bounded above by 1 since

|φ̂(ξ)| ≤
∣∣∣∣
∫ 1

0
φ(x)e−2π iξ x dx

∣∣∣∣ ≤
∫ 1

0
φ(x)

∣∣∣e−2π iξ x
∣∣∣ dx = 1.
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Moreover, φ is an element of the Schwartz space S(R), and so |φ̂(ξ)| decays rapidly as
|ξ | → ∞, see [15,Chapter 3]. The following proof broadly follows Oberlin [17,Proposition
2], see also the exposition [15,Theorem 11.3]. Our main new idea is that, when considering
balls inRd instead of lines inR2, one needs more understanding of the geometry of �, which
is achieved via β-scaling. Moreover, we use a natural extension of Oberlin’s argument to
higher dimensions which requires multiple uses of the Schwartz function φ.

Proof (Proof of Theorem 2.1) Let γ be the Borel measure supported on E coming from the
definition of β-scaling. Assume for now that the map s → ts coming from the definition of E
is measurable. We address the issue of measurability at the end of the proof using a standard
discretisation approach. Since s → ts is measurable we can use the Riesz representation
theorem, see [20,2.14 Theorem], to define a measure μ ∈ M(E) by

∫

E
f dμ =

∫

G(d,k)

∫

[0,1]k
f

(
ts +

k∑

i=1

ri x
s
i

)
φ(r1) · · · φ(rk) dr dγ (s) (3.1)

for continuous functions f on Rd .
Let ξ ∈ R

d with |ξ | > 1. The Fourier transform of μ at ξ ∈ R
d is given by

μ̂(ξ) =
∫

G(d,k)

∫

[0,1]k
e
−2π i

(
ts+∑k

i=1 ri x
s
i

)
·ξ

φ(r1) · · · φ(rk) dr dγ (s).

First we integrate out the translations by

∫

[0,1]k
e
−2π i

(
ts+∑k

i=1 ri x
s
i

)
·ξ

φ(r1) · · · φ(rk) dr = e−2π i ts ·ξ
k∏

i=1

∫ 1

0
e−2π iri xsi ·ξ φ(ri ) dri .

Therefore
∣∣∣∣∣e

−2π i ts ·ξ
k∏

i=1

∫ 1

0
e−2π iri xsi ·ξ φ(ri ) dri

∣∣∣∣∣ =
k∏

i=1

|φ̂(ξ · xsi )|,

and

|μ̂(ξ)| ≤
∫

G(d,k)

k∏

i=1

|φ̂(ξ · xsi )| dγ (s).

We split the above integral into two pieces which are then bounded separately. Let η > 0
and recall the sets

Sξ,η = {s ∈ G(d, k) : |ξ · xsi | < η|ξ |, ∀ i = 1, . . . , k}
used to define β-scaling. Notice that if s /∈ Sξ,η then there is some j ∈ {1, . . . , k} such that
|ξ · xsj | ≥ η|ξ |. We then use the fact that φ̂ is bounded above by 1 and rapidly decreasing to
conclude that, for any N > 1, there exists a constant CN such that

|φ̂(ξ · xsj )| ≤ CN

|ξ · xsj |N
.
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We then have
∫

G(d,k)\Sξ,η

k∏

i=1

|φ̂(ξ · xsi )| dγ (s) ≤
∫

G(d,k)\Sξ,η

|φ̂(ξ · xsj )| dγ (s)

≤
∫

G(d,k)\Sξ,η

CN

|ξ · xsj |N
dγ (s)

�N (η|ξ |)−N .

On the other hand, we have the simple estimate

∫

Sξ,η

k∏

i=1

|φ̂(ξ · xsi )| dγ (s) ≤
∫

Sξ,η

dγ (s) = γ (Sξ,η) � ηβ

where the final inequality is the only place where we use the β-scaling property. This gives

|μ̂(ξ)| ≤
∫

G(d,k)

k∏

i=1

|φ̂(ξ · xsi )| dγ (s) �N ηβ + (η|ξ |)−N .

Now let 0 < α < 1 and set η = |ξ |−α . Then, setting N = αβ
1−α

yields

|μ̂(ξ)| �α |ξ |−αβ.

This proves dimF E ≥ min{2αβ, d} and letting α → 1 gives dimF E ≥ min{2β, d} as
required. Moreover, if β > d/2, E has positive d-dimensional Lebesgue measure.

It remains to address themeasurability issuementioned earlier. If s → ts is notmeasurable
then we discretise μ as follows. Let {z1, z2, . . . , zm} be a maximal (1/n)-separated set of
points in � and define a measure γn by

γn = Cγ,n

m∑

i=1

γ
(
B

(
zi , 1/n

))
δzi

where Cγ,n is a normalisation constant chosen such that γn(G(d, k)) = γ (G(d, k)) and δzi
is a Dirac mass at zi . Then we may define measures μn by replacing γ with γn in (3.1).
The argument given above shows that |μ̂n(ξ)| �α |ξ |−αβ for n sufficiently large. Moreover,
(μn)n converges weakly to a measure μ ∈ M(E), and the proof above goes through with
this measure. ��

4 Proof of Proposition 2.2

For 0 < b < dimH �, Frostman’s lemma, see [14,8.17. Theorem], guarantees the existence
of a compactly supported measure γ ∈ M(�) such that,

γ (B(s, r)) �b r
b (4.1)

for all s ∈ G(d, k) and r > 0. Straight from the definition of Sξ,η, there exists a constant
C ≥ 1 such that Sξ,η ⊆ Tξ,η where

Tξ,η := {s ∈ G(d, k) : d(d,k)(s, t) < Cη for some t ∈ G(d, k) contained in ξ⊥}
where d(d,k) is the metric defined in (1.1).
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LetGξ denote the set of k-dimensional subspaces of ξ⊥ and note thatGξ is aGrassmannian
manifold isomorphic to G(d − 1, k). From the definition of the metric d(d,k), we have for
t, t ′ ∈ Gξ that d(d,k)(t, t ′) = d(d−1,k)(t, t ′), i.e. it is safe to use the metric d(d,k) on Gξ .

Let

{B(ti , η) ∩ Gξ : ti ∈ Gξ , 1 ≤ i ≤ Nη}
be a minimal covering of Gξ by η-balls noting that

Nη � η−k(d−1−k) (4.2)

where the exponent k(d − 1 − k) comes from the dimension of Gξ . For s ∈ Tξ,η there
exists t ∈ Gξ with d(d,k)(s, t) < Cη and ti , the centre of a ball in the covering, such that
d(d,k)(t, ti ) < η. Therefore

Tξ,η ⊆
Nη⋃

i=1

B(ti , (C + 1)η) (4.3)

allowing us to relate coverings of Gξ to coverings of Tξ,η. Using (4.1), (4.2) and (4.3) we get

γ (Sξ,η) ≤ γ (Tξ,η) ≤
Nη∑

i=1

γ (B(ti , (C + 1)η)) �b η−k(d−1−k)ηb = ηb−k(d−1−k)

completing the proof.

5 Proof of Proposition 2.5

Let γ be the normalised spherical measure on�. Let ξ ∈ R
d \{0} and η > 0.Wemay assume

that η is much smaller than the diameter of �. Estimating γ (Sξ,η) immediately reduces to
estimating the γ -volume of the intersection of the sphere � with the η-neighbourhood of
a plane of the same dimension. This in turn reduces to understanding the intersection of
spheres and planes. There are two types of such intersection: tangential and non-tangential.
We need a parameter r to make this distinction more quantitative. In the non-tangential case,
the intersection of a (d − 2)-dimensional sphere and a plane of the same dimension is itself
a sphere of dimension (d − 3). (In the case d = 3 we think of a 0-dimensional sphere as two
distinct points with centre given by the midpoint.) Let r > 0 be the minimal distance from
the centre of the intersection to the original sphere �. The case r = 0 is then the tangential
case. If r ≤ 3η, then Sξ,η is contained in a ball of radius � √

η, where the square root comes
from the basic geometry of a sphere. Therefore

γ (Sξ,η) � √
η

(d−2) = ηd/2−1.

On the other hand, if r > 3η, then Sξ,η is contained in an η/
√
r -thickening of a sphere of

dimension (d − 3) and diameter �
√
r . This can be covered by

�
(√

r

η

)d−3
η/

√
r

η
= η3−d rd/2−2

many η-balls each of γ measure � ηd−2. Therefore,

γ (Sξ,η) � η rd/2−2 � ηmin{1,d/2−1}.

Therefore, � is min{1, d/2 − 1}-scaling, proving the claim.
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6 Proof of Theorem 2.7

The case d = 1 is trivial, so assume that d ≥ 2. The lower bound dimF Cd ≥ d − 1 follows
(for example) by using (6.5) below and considering the measure defined by

f →
∫

R

ψ(r)
∫

Sd−1
f (r x, r) dσ(x) dr ,

for any non-negative Borel function f , where σ is the rotation invariant Borel probability
measure on Sd−1, and ψ is a bump function on [1, 2] with ∫

ψ = 1.
Suppose for a contradiction that dimF Cd > d − 1. Then there exists α > d − 1 and a

Borel probability measure μ on Cd , such that

|μ̂(ξ)| � |ξ |−α/2 ∀ξ ∈ R
d+1. (6.1)

By symmetry, and by replacing μ with f μ for an appropriate bump function f (see
[4,Lemma 1]), it may be assumed that for some ε > 0,

sptμ ⊆ {(ξ, |ξ |) ∈ R
d × R : ε ≤ |ξ | ≤ 1/ε}. (6.2)

Let ν be the Borel probability measure on Cd defined by
∫

f dν =
∫

Rd×R

∫

Sd−1
f (|x |w, z) dσ(w) dμ(x, z), (6.3)

for any non-negative Borel function f . Then

ν̂(ξ) =
∫

Rd×R

∫

Sd−1
e−2π i〈ξ,(|x |w,z)〉 dσ(w) dμ(x, z)

=
∫

Rd×R

∫

O(d)

e−2π i〈ξ,(Ux,z)〉 dλ(U ) dμ(x, z)

=
∫

O(d)

μ̂(U∗(ξ1, . . . , ξd), ξd+1) dλ(U ),

where λ is the Haar probability measure on O(d). Hence ν satisfies

|̂ν(ξ)| + ∣∣̂̃ν(ξ)
∣∣ � |ξ |−α/2 ∀ξ ∈ R

d+1, (6.4)

where ν̃ is the pushforward of ν under (x1, . . . , xd , xd+1) → (x1, . . . , xd ,−xd+1). Let
π : Rd+1 → R be the map (x1, . . . , xd , xd+1) → xd+1. Since sptμ ⊆ Cd , and by (6.2), the
formula (6.3) can also be written as

∫
f dν =

∫

R

∫

Sd−1
f (zw, z) dσ(w) dπ#μ(z).

Hence another expression for ν̂ is

ν̂(ξ) =
∫

e−2π i zξd+1 σ̂ (z(ξ1, . . . , ξd)) dπ#μ(z).

Let ωd−1 be the surface area of Sd−1. The asymptotic formula (see [8, Appendix B])

σ̂ (ξ) = 2

ωd−1
|ξ |−(d−1)/2 cos

(
2π |ξ | − π(d − 1)

4

)
+ O

(
|ξ |−(d+1)/2

)
, (6.5)
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gives, by taking ξd+1 = |(ξ1, . . . , ξd)|,
e
iπ(d−1)

4 ν̂(ξ, |ξ |) + e
−iπ(d−1)

4 ̂̃ν(ξ, |ξ |)
= 4

ωd−1
|ξ |−(d−1)/2

∫
z−(d−1)/2 cos2

(
2π |ξ |z − π(d − 1)

4

)
dπ#μ(z)

+O
(
|ξ |−(d+1)/2

)
.

Comparing (6.4) to the above will give a contradiction, by the following identity:

lim
r→∞

∫
cos2 (r z + t) dπ#μ(z) = 1/2 ∀t ∈ R. (6.6)

It remains to prove (6.6). Since d ≥ 2 and α/2 > (d − 1)/2 ≥ 1/2, condition (6.1) gives
π#μ ∈ L2(R) (see e.g. [15,Theorem 3.3]). Hence π#μ ∈ L1(R) with ‖π#μ‖1 = 1, and (6.6)
then follows by approximating π#μ in L1 with a finite linear combination of characteristic
functions of disjoint intervals.

7 Further work and some questions

The simplicity of Oberlin’s argument in [17] makes it very appealing to try to adapt it to
a range of different problems, such as the ones we consider here. Another problem is the
following dual to the Kakeya problem, motivated by work of Wolff [21]. Suppose E ⊆ R

d

contains a sphere of every radius r ∈ (0, 1). Wolff [21] proved that E necessarily has
Hausdorff dimension d . This result was proved by Kolasa andWolff for d ≥ 3 [12], which is
much easier than the d = 2 case. Here there is a trivial lower bound of d − 1 for the Fourier
dimension, since a single sphere inRd has Fourier dimension d−1, see [15,Equation (3.42)].
For Kakeya sets there is no non-trivial bound since line segments have Fourier dimension 0
for d ≥ 2. Despite non-trivial estimates existing for the Fourier dimension of Kakeya sets,
we are unaware of any improvement over the trivial lower bound for the dual problem and
pose this as a question.

Question 7.1 If E ⊆ R
d contains a sphere of every radius r ∈ (0, 1), then is it true that

dimF E = d?

For E as in Question 7.1, for every r ∈ (0, 1) there is a centre xr such that

xr + rθ ∈ E

for all θ ∈ Sd−1. One can try to adapt Oberlin’s argument by defining a measure μ on E as
in (3.1) by, for example,

∫

E
f dμ =

∫ 1

0

∫

Sd−1
f (xr + rθ) φ(r) dσ d−1θ dr

where σ d−1 is the spherical measure on Sd−1. Using Fubini’s theorem the Fourier transform
of μ at ξ ∈ R

d is then

μ̂(ξ) =
∫

Sd−1

∫ 1

0
e−2π i(xr+rθ)·ξ φ(r) dr dσ d−1θ.

The problem now comes that the centre xr depends on r (not on θ for example) and so cannot
be integrated out to reduce the problem to studying the Fourier transform of φ. Alternatively,
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one could try to associate the Schwartz function φ with the parameter θ , but this leads to a
very awkward integral.

Another very intriguing problem is, of course, the Fourier analytic formulation of the
Kakeya problem.

Question 7.2 If E ⊆ R
d contains a unit line segment in every direction, then is it true that

dimF E = d?

We are not aware of any improvements over dimF E ≥ 2 for Kakeya sets E . This estimate
follows from Corollary 2.4. Oberlin only gives this result for d = 2 and the improvement we
obtain requires the additional geometric argument used in proving Proposition 2.2. We have
some doubts about a positive answer to Question 7.2 in general.

The measures μ we use in this paper do not take into account the specific placement of
the lines (or k-dimensional balls); indeed, when bounding the Fourier transform of μ the
dependency on the translation ts is simply removed by making a trivial estimate. It would be
interesting to try to modify the measure to account for translations, but we do not know how
to do this in an effective way.
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