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Opioid use disorder (OUD) affects more than 27 million people globally accounting for more than 300,000 deaths annually.
Protracted abstinence among individuals with OUD is rare due to a high relapse rate among those not receiving medications for
OUD. Extensive preclinical studies form the basis of the allostasis theory, which proposes long-lasting functional brain abnormalities
that persist after opioid withdrawal and contribute to relapse. Few studies have tested the allostasis theory in humans using
neuroimaging. Here, we used fMRI and an instrumental learning task to test allostasis theory predictions (ATP) of functional
abnormalities in both positive valence (PVS) and negative valence (NVS) accumbens systems in OUD patients with protracted
abstinence (n= 15), comparing them with OUD patients receiving methadone treatment (MT) (n= 33), and with healthy controls
(n= 23). As hypothesized, protracted abstinence OUD patients showed incomplete recovery of nucleus accumbens function, as
evidenced by the blunted response to aversive events (NVS) during negative reinforcement, as observed in MT patients. In contrast,
their accumbens response to rewarding events (PVS) during positive reinforcement was similar to that of controls and different
from that in MT patients whose response was blunted. Protracted abstinence OUD patients also showed improvements in
depression symptoms compared to MT patients. Residual depressive symptoms and pre-MT intravenous drug measures were
associated with worse accumbens function in protracted abstinence. These results support the ATP of long-lasting dysfunction of
NVS after withdrawal and show preliminary evidence of recovery of PVS function with protracted withdrawal. Therapeutic strategies
that target NVS may facilitate recovery.
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INTRODUCTION
Opioid use disorder (OUD) affects ~27 million people globally with
more than 300,000 deaths annually [1]. The COVID-19 pandemic,
alongside a rise in misuse of synthetic opioids, has worsened the
situation, with the US Centre for Disease Control estimating an
increase of ~50% in opioid overdoses deaths during the pandemic
in the United Sates [2]. A better understanding of the mechanisms,
which underlie the development, maintenance, and recovery from
OUD, could help improve the treatments of OUD worldwide [1].
The Research Domain Criteria (RDoC), which were developed by

the National Institute of Mental Health (NIMH), link subjective
symptoms to the relevant brain systems [3]. Central to OUD is the
positive valence system (PVS), which processes rewarding
information, and the Negative Valence System (NVS), which
processes information about aversive events (e.g., loss and pain)
[4]. We recently reported a study [5] on binge alcohol drinking that
used RDoC to test the allostasis theory [6], which proposes that
increased chronic negative reinforcement drives drug-taking and
relapse [7]. Here, we applied the same approach to investigate
OUD patients who were in protracted abstinence. Notably, the
investigation of OUD patients in protracted abstinence is crucial
because of their high relapse rates [1] and high overdoses risks [8].
However, very few studies have examined brain function in OUD

patients during protracted abstinence as such patients, because of
their rarity, are challenging to recruit. Identifying characteristics
associated with treatment success among abstinent previously
opioid-dependent individuals is currently a priority to help guide
personalized interventions for OUD.
The allostasis theory [6] proposes a balance of opponent

processes in response to natural (i.e., non-drug stimuli such as
social events) and drug-induced changes in effect [7]. As
illustrated in Fig. 1A, an initial stimulus (e.g., first exposure to
heroin) transiently increases positive mood (“a process”), then is
followed by a period of negative mood (“b process”). With
repeated drug exposure, the positive “a process” diminishes and
the “b process” is enhanced. Additionally, as shown in Fig. 1B, if
there is insufficient time for mood to return to homeostatic
baseline between episodes of drug use, baseline mood shifts
downwards; “allostasis” [6]. In drug dependence (Fig. 1B), reward
function (PVS) is blunted and the stress response (NVS)
sensitized, impacting responses to both drug and non-drug
(e.g., social) stimuli. In opioid dependence, the enhanced “b
process” mostly reflects acute drug withdrawal, which depend-
ing on the severity lasts 3–10 days in humans [9]. In preclinical
models of human addiction, protracted abstinence has also been
linked to increased brain reward thresholds and increases in
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anxiety-like behavior persisting long after acute withdrawal [10],
with negative effect particularly important in protracted absti-
nence [11]. Lower pain tolerance exacerbated by negative
emotional states has been reported in OUD individuals during
acute (24–72 h) and protracted abstinence (average 30 months)
[12]. Repeated and intermittent activation of brain reward
circuits by opioids engages ‘anti-reward’ circuits that drive
aversive negative emotional states [1]. In turn, the enhancement
of negative reinforcement (e.g., avoidance of anxiety or pain)
contributes to relapse and the persistence of OUD [13].
Previously we reported PVS blunting and abnormal NVS

responses in methadone-treated (MT) patients with a heroin use
disorder [14]. It is unclear whether prolonged abstinence in
humans results in full or partial recovery from OUD-associated
brain changes. Building on pre-clinical studies of protracted
abstinence in animals [15], here we used functional magnetic
resonance imaging (fMRI) to test the allostasis theory hypotheses
that protracted abstinence in OUD patients results in (i) partial
recovery of nucleus accumbens and other brain function, (ii)
improvements in symptoms of depression and anxiety, and (iii)
that persisting brain functional abnormalities in protracted
abstinence patients correlate with clinical measures of negative
affect and severity of drug use history.

MATERIALS AND METHODS
Participants
The study was approved by the East of Scotland Research Ethics
Committee, reference number 06/S1401/32, and written informed consent
was obtained from all participants. Thirty-three OUD male patients
receiving MT were recruited from NHS Tayside Addiction Services. MT
patients received regular urine tests for illicit drug use and all recruited

patients had testing-confirmed abstinence of illicit drug use for six months
prior to recruitment. Fifteen abstinent OUD patients (ABS group) were
recruited from the Lothian and Edinburgh Abstinence Program (LEAP) and
Phoenix Futures Scottish Residential Service Glasgow. These patients also
received regular testing for covert drug use and had been abstinent for at
least 6 weeks (range 6 weeks to 7 months). None of the methadone-
maintained patients had previously lived in a residential abstinence unit.
As patients were either stably maintained on methadone or were stably
abstinent, no acute intoxication or withdrawal symptoms were observed.
Both MT and ABS groups had been taking between 30 and 120mg of
methadone daily and had initially presented with more than 3 years of
continuous daily illicit heroin use. The two groups were matched by
lifetime drug use and methadone doses: initial titration of methadone dose
(ITMD), current methadone treatment dose (CMTD), and/or last stable
methadone dose (LSMD). The ITMD was the methadone dose required to
abolish heroin withdrawal symptoms when initiating MT, which was
between 10 and 30mg daily identified using objective evidence of opioid
withdrawal symptoms [16], reflecting the magnitude of physical depen-
dence at the onset of MT. Twenty-three healthy age-matched males were
recruited as controls.
Diagnoses were confirmed using the Mini International Neuropsychiatric

Interview (MINI Plus, version 5.0) [17]. The MT group had an ICD10 304.01
diagnosis of Opioid type dependence, continuous, which corresponds to
the current diagnosis of OUD in DSM 5. Mood and anxiety symptoms were
assessed using the Hospital Anxiety and Depression Symptom (HADS)
rating scale [18], cigarette use with the Fagerstrom scale [19], and IQ using
the National Adult Reading Test (NART) [20]. Exclusion criteria were past or
current histories of psychotic disorder, post-traumatic stress disorder,
neurological and neurodevelopmental disorders, head injury, history of
non-fatal overdose episodes, benzodiazepine, stimulant or alcohol
dependence, and personality disorder (summary of screening and
diagnostic clinical instruments in Supplemental Table 1). Ongoing
abstinence from illicit drug use was confirmed prior to scanning using a
multidrug urine test [21]. Details of participants are summarized in Table 1
and our previous publications [14, 22–25] (summary of cohort recruitment,
treatment, and testing is provided in Supplemental Table 2). ABS patient
data has not been reported previously.

Paradigm
Figure 2 shows the reward-gain and loss-avoidance instrumental learning
task used during fMRI. We have previously used this task in fMRI studies of
MT OUD patients [14], in binge drinkers with depression symptoms [5], and
in patients with the treatment-resistant major depressive disorder [26]. The
RDoC matrix includes ‘loss’ as an NVS construct and reward learning as a
PVS construct [27]. Therefore, as with our prior study on binge drinking [5],
brain responses to loss were considered measures of NVS and responses to
reward the PVS.
Before scanning, all participants had a brief training session on the task

on a PC, which used different stimuli than those used in the scanner. The
task has three possible outcomes: rewarding (“win’), aversive (“lose”), and
neither win nor lose (“nothing”) neutral. Volunteers were told that the aim
of the task was to maximize winning and to avoid losing points
(“vouchers”) as much as possible, and they had to learn to do this by
trial and error. “Win trials” had two possible outcomes: “You Win” or
“Nothing”. “Lose trials” had two possible outcomes: “You Lost” or
“Nothing”. One pair of fractal images were associated with each type of
outcome, and the association between a given pair of fractal images and
win or lose outcomes were randomized across participants. The probability
of win/loss fractal pairs had a fixed high probability (70%) and a fixed low
probability (30%). Each session had 90 trials with each session lasting
13min in total and 4 sessions per subject. The reward-gain and loss-
avoidance trials were presented in a pseudo-random order.

Image acquisition, pre-processing, and analyses
For each participant, functional whole-brain images were acquired using a
3 T Siemens Tim Trio scanner. A total of 37 slices were obtained per
volume, with an echo planar imaging sequence comprising a repetition
time (TR) of 2.5 s, echo time (TE) of 30 ms, flip angle 90°, the field of view
22.4 cm, matrix 64 × 64, with a voxel size of 3.5 × 3.5 × 3.5 mm.
Images were visually inspected for artifacts and pre-processed using

Statistical Parametric Mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/).
First, images were realigned and co-registered to the SPM Montreal
Neurological Institute echo-planar template. The average realigned co-
registered image for each subject was then used to spatially normalize

Fig. 1 Allostasis theory predictions for opioid dependence and
abstinence. A First episode of heroin use with positive (+) mood (“a
process”=PVS) followed by post-intoxication negative (−) mood (“b
process”=NVS). B With repeated episodic use of heroin followed by
methadone treatment, positive mood change diminishes, and the
depth of negative mood increases. The allostatic downward shift in
baseline mood is shown by the dashed line. C With abstinence
following dependence there is slow post-withdrawal partial
recovery from the allostatic change that occurred during opioid
dependence. The allostatic change is shown by the dashed line [7].
DA dopamine.
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each realigned co-registered volume and smoothed with an 8mm full
width half maximum kernel. For a random-effects analysis, data from each
subject were analyzed separately (first-level analyses) before summary
statistical “beta” images were tested at the group level (second-level
analyses). For testing NVS and PVS hypotheses, a first-level analysis was
done comparing event-related activity at the outcome time for “loss” vs.
“nothing” and “win” vs. “nothing” binary feedback events. For second-level
random-effects analyses, summary statistical images from the first-level
analyses for each subject were separately entered into second-level
analyses to test for within-group activations/deactivations (one-group
t-test) and between-group differences (ABS vs. controls; two group t-test).
Significance was defined as p < 0.05 whole-brain, Family-wise error-
corrected level, comprising a simultaneous requirement for a voxel
threshold (p < 0.05) and a minimum cluster extent (120 voxels) identified
using a commonly used Monte–Carlo method [28]. Region of interest
analyses used SPM to extract the principal eigenvariate as the summary
measure of brain response in 10mm diameter spheres.

RESULTS
Participants
HADS-A and HADS-D scores for the ABS group were 6.21 ± 3.56
and 3.00 ± 2.25 and for the control group 3.73 ± 3.83 and 1.65 ±
2.52, respectively. The ABS group was more anxious but not more

depressed compared to healthy controls (Table 1). In the MT
group the HADS-A and HADS-D scores, which were 6.00 ± 4.40 and
4.18 ± 3.38, respectively, were significantly higher than in the
control group. No subjects met ICD10 criteria for mood or anxiety
disorders.

Behavioral analyses
Using a two-group t-test there were no significant differences
between ABS and control groups for a total number of win events
(p= 0.23) or a total number of loss events (p= 0.68).

Negative valence system
During loss events controls deactivated the nucleus accumbens
(−12,10,−10) t= 3.81 and (12,8,−12) t= 3.71 and the caudate
(−20,4,26) t= 4.57 and (22,4,24) t= 5.23 (Fig. 3A). ABS patients
exhibited significantly less deactivation than controls in nucleus
accumbens (12,8,−6) t= 3.00 and (−12,10,−4) t= 2.50 (Fig. 3B)
and left insula (−32,14,−14) t= 3.58 (Fig. S1A, see Supplemental
Table 3). Previously we reported significant failure of accumbens
deactivation in MT OUD patients compared to controls [14] similar
to ABS patients (Fig. 3C, D). Accumbens activation in ABS patients
correlated positively with HADS-D ratings (Fig. 3E, F), such patients
with more symptoms of depression had more activations, so were
less like controls who strongly deactivated the accumbens and
had minimal depressive symptoms. During loss events the ABS
but not the control group strongly activated the anterior
midcingulate cortex (aMCC)/dorsomedial prefrontal cortex
(dmPFC) (−4,30,30) t= 7.42 (Fig. 4A). In ABS patients, years of
intravenous (IV) drug use correlated with aMCC loss event
activation (Fig. 4B, C). In summary, ABS patients showed blunted
accumbens deactivation to loss event compared to controls
similar to MT patients and an aMCC correlation with IV drug use.

Positive valence system
During win events controls strongly activated the accumbens
(−16,10,−10) t= 7.02; (16,10,−12) t= 6.94 (see Supplemental
Table 4 and Supplemental Fig. 2A) and other regions including the
amygdala-hippocampal complex (−30,−10,−22) t= 6.90; (20,−10,
−22) t= 4.53) and posterior cingulate (4,−46,38) t= 4.73. Win
event accumbens activations in ABS patients did not differ from
controls (Fig. S2B) whereas it was significantly reduced in the MT
group (−13,12,−12) t= 3.11 [14]. In ABS patients, accumbens win
event activations correlated negatively with total days of

Fig. 2 Behavioral paradigm. A Reward-gain (positive valence
system) and B loss-avoidance (negative valence system) instru-
mental learning task.

Table 1. Demographic and clinical characteristics.

MT ABS HC Significance*

N 33 15 23

Age1 33.9 (4.2) 37 (3.7) 30.8 (7.0) ns

HADS-A 6.0 (4.4) 6.2 3.56 3.73 (3.8) MT > HC p= 0.04
ABS > HC p= 0.05

HADS-D 4.2 (3.4) 3.0 (2.3) 1.65 (2.5) MT > HC p= 0.002
ABS > HC ns (p= 0.1)

ITMD2 50 (19.0) 49.2 (40.3)

SMD2 74.7 (18.8) 79 (36.0) – ns

Age1st injecting opioids1 16.1 (3.5) 14.1 (3.6) – ns

Yrs of opioid use 9.1 (19.6) 3.8 (11.2) – ns

Age injecting opiods1 18.1 (8.0) 22.3 (7.0) – ns

Fagerström tot score 3.8 (1.9) 8.1 (13.0) – ns

Duration abstinence (days) – Between 6 and 7 months – –

Values are mean (SD). ABS abstinent group, HADS-A HADS Anxiety, HADS-D HADS Depression, HC healthy control group, ITMD initial methadone titration dose,
MTmethadone-treated group, N total number, NART National Adult Reading Test, ns not significant, SMD stable methadone dose, 1= yrs=years; 2= (mg/day); *
p-values calculated for abstinent vs. control groups only, mg milligrams.
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methadone exposure, such that longer pre-abstinence exposure
to methadone was associated with more blunting of accumbens
activation (Fig. S2C, D). In summary, ABS patients showed
accumbens win event activation similar to controls and unlike
MT patients in whom reward activation was blunted.

DISCUSSION
Long-term abstinence is the desired goal for many OUD patients
who have been stabilized on MT but one that is rarely achieved

due to a very high relapse rate [1]. In the UK only 6–9% of OUD
patients who had used heroin were abstinent at 33 months follow
up with many of them having accessed residential rehabilitation
programs [29], which is where we recruited the ABS patients for
this study. Moreover, relapse following abstinence is associated
with high overdose risks due to the loss of opioid tolerance [30].
This risk has been further exacerbated in the United States and
Canada where potent synthetic opioids such as fentanyl have taken
over the illicit drug market and been linked with high mortality
rates [31]. As such, opioid detoxification as a strategy for the

Fig. 3 Negative valence system: brain responses to the feedback of unsuccessful loss-avoidance. A Deactivation of the nucleus accumbens
in the control group and B significantly less bilateral nucleus accumbens deactivation in the abstinent group compared to controls. Previously
we also reported significantly less accumbens deactivation in opioid-dependent patients receiving MT [14]. Region of interest centered at the
maximally significant accumbens voxels in (B) illustrates accumbens deactivation in the three groups (C, D). Accumbens deactivation
correlated significantly with increased HADS-D depression scores in the abstinent group (E) also illustrated using a region of interest (F)
centered at the maximally significant accumbens voxel in (E). All brain regions significant at p < 0.05 whole-brain corrected.
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treatment of OUD is currently not recommended [2]. On the other
hand, identifying characteristics associated with treatment success
among abstinent previously opioid-dependent individuals could
help guide personalized interventions for the treatment of OUDs.

Studies on protracted abstinence in animals with a history of
dependence have emphasized blunted reward responses and
increases in anxiety-like behavior persisting long after acute
withdrawal, similar to but not as severe as during the dependent
state [10]. Previously, we reported blunted PVS reward-linked
accumbens activation and NVS loss-linked failure of accumbens
deactivation in OUD patients receiving MT [14]. Here we recruited
OUD patients previously treated with methadone who were stably
abstinent for at least 6 weeks to test whether there was
normalization of brain function and reductions in symptoms of
depression and anxiety. Consistent with our hypotheses, we found
accumbens reward-linked activation (PVS) was not blunted in ABS
patients compared to controls, unlike MT patients [14]; ABS
patients also reported fewer depressive symptoms than MT
patients. However, ABS patients’ accumbens loss-linked deactiva-
tions (NVS) were blunted compared to controls, similar to MT
patients [14]. Additionally, ABS patients, like MT patients, had
significantly higher anxiety symptoms than controls. Our data
showing partial recovery of nucleus accumbens function and
reduction in depressive symptoms with protracted abstinence is
consistent with predictions from the allostasis theory [6, 10, 32].
Here, we used fMRI to assess striatal function during stable

abstinence in OUD. Previously with positron emission tomogra-
phy (PET), we had consistently reported reduced striatal
dopamine D2/D3 receptor availability in a variety of drug users
compared to controls including individuals with heroin use
disorder, alcohol dependency and cocaine and methampheta-
mine use disorders [33, 34]. A dopamine transporter (DAT) ligand
PET study was used to measure pre-synaptic dopamine terminal
function and reported reduced binding in MT OUD patients,
which correlated with symptoms of anxiety and reduced striatal
DAT binding, in protracted abstinence (6 months) OUD patients
[35]. Similar reductions in DAT binding have been reported in a
variety of other drug addictions [36]. Our instrumental fMRI task is
a modified version of the Pessiglione task in which brain activity
reflects, in part, dopamine function [37]. Blunted reward gain
(PVS) accumbens activation in MT patients (but not ABS patients)
measured using fMRI, which we use as an indirect measure of
striatal dopamine function [14], might therefore be accounted for
by blunted dopamine release [35]. This suggests MT maintains a
state of decreased reward sensitivity in OUD patients whereas
protracted abstinence might facilitate recovery of reward
sensitivity and reduce depression. However, the directionality of
the association cannot be discerned in our study for it is also
possible that OUD patients who had less PVS disruption were
those who were able to maintain abstinence. Thus, longitudinal
studies of protracted abstinent patients are needed to establish
whether reward sensitivity recovers, or to determine whether
recovery of PVS function might serve as a potential biomarker of
when OUD patients may be able to discontinue medication for
OUD. For such studies and in general, a strategy to reduce the risk
of overdoses in OUD patients who seek detoxification from
methadone or buprenorphine is to consider treatment with the
opioid receptor antagonist naltrexone (extended-release Naltrex-
one or Vivitrol) [38].
Two parallel routes through the basal ganglia, the direct and

indirect pathways, have long been recognized [39]. Preclinical
studies have shown that positive reinforcement is linked to
accumbens dopamine D1 receptor activation of the direct
pathway; negative reinforcement to deactivation of accumbens
D2 receptors in the indirect pathway [40]. Here we found
abnormally blunted accumbens deactivation during negative
reinforcement (loss avoidance) in ABS patients similar to our
previous findings in MT OUD patients [14], which could reflect
reduced striatal D2 receptor availability [33, 34] and be
associated with increased vulnerability to relapse [41]. However,
studies that concomitantly measure fMRI and PET are required
to test this hypothesis and the link between abnormal

Fig. 4 Negative valence system: brain responses to feedback to
unsuccessful loss avoidance in abstinent patients. A The anterior
mid-cingulate cortex activated in abstinent patients during unsuccess-
ful loss avoidance, B this activation in patients positively correlated
with years of intravenous (IV) drug use, also illustrated C with a region
of interest centered on the maximally significant voxel in (B). All brain
regions significant at p < 0.05 whole-brain corrected.
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accumbens deactivation and depression symptoms is unclear.
Notably, though, we found anterior insula activation with loss
events in abstinent patients and there is preclinical evidence
that the insula may drive hyperkatifeia via the amygdala in
alcohol dependence [42].
Using the same fMRI task in binge drinkers, we reported aMCC/

dmPFC activation during loss events, which correlated with years
of alcohol use [5]. In the present study, we also report loss event
aMCC/dmPFC activation that correlated with years of pre-
abstinence IV heroin use, and striatal deactivation in ABS OUD
patients. Interestingly, the aMCC/dmPFC is strongly implicated in
negative affect, cognitive control, and experience of pain [43, 44]
(part of the NVS) and heightened evoked pain responses might be
compensatory responses during an aversive state [45]. Therapeu-
tic lesions in the aMCC (anterior cingulotomy) have been used to
treat OUD [46] and alcohol dependence [47]. Connectivity studies
of this region are indicated.
Hyperkatifeia, which is defined as a negative emotional state that

includes increased anxiety and stress vulnerability, depressive
symptoms, the elevation of reward thresholds, and lower pain
thresholds is associated with OUD [9]. This aversive experience is
represented by an enhancement of the “b process” and a
downward shift in baseline mood (Fig. 1B) [9]. In our study, we
also found that the anterior insula, which is involved with
interoception [48] activated with loss events in ABS patients. This
suggests that enhanced awareness of the aversive effects of loss
might contribute to hyperkatifeia. Indeed insular activation
correlated positively with the initial titration dose of methadone
(Fig. S1), which we had previously reported predicted whether an
MT OUD patient achieved abstinence [22]. Further, the somatic
marker theory of addiction proposed that the insula is involved in
drug withdrawal/deprivation [49] and insula stroke eliminated
cigarette craving [49]. The anterior insula is strongly interconnected
with the aMCC/dmPFC with these locations tending to co-activate
with aversive events [50]. Thus, the results from our present study
suggest that OUD may have long-term effects on insula stress
responses that persist even after protracted abstinence.
Limitations of this study include a small sample size, which

reflects the difficulties in recruiting OUD patients who have been
able to successfully discontinue MT, due to the high relapse rate
associated with MT discontinuation. Other limitations are that we
only recruited males and thus these findings may not generalize
to ABS and MT female populations. We used a cross-sectional
design so we cannot disentangle pre-drug use vulnerability factors
from the effects of OUD, although our results are consistent with
predictions from pre-clinical animal studies, which do not have
this limitation. Notably, we cannot rule out the possibility that
individuals who are less able to deactivate nucleus accumbens
with negative reinforcers (e.g., loss of money) are more vulnerable
to drug use and subsequent OUD. Nor can we rule out
the possibility that recovery of PVS accumbens activation might
have allowed OUD patients to successfully discontinue metha-
done treatment. Also, our ABS OUD patients have been abstinent
for a period that ranged between six weeks to seven months so it
is unclear if longer abstinence might have led to the recovery of
NVS processes. Future larger studies on protracted abstinence
patients using a longitudinal design are indicated.
In summary, consistent with allostasis theory predictions from

preclinical and human brain imaging studies, we found evidence
for abnormal striatal brain responses in protracted abstinence
OUD patients. Our findings show preliminary evidence of
recovery of the PVS in OUD patients whereas this was not the
case in OUD patients on MT. Abstinence in individuals with OUD
presents serious risks of fatal overdose on relapse, due to the
rapid loss of tolerance that occurs during even brief periods of
abstinence. This risk is particularly acute in countries where
fentanyl is readily available: e.g., drug deaths have recently
exceeded 100,000/year in the USA being further exacerbated by

the COVID-19 pandemic [51, 52]. Our findings also highlight the
importance of the NVS as a target for new OUD treatments (e.g.,
partial MOR1 agonism, k-type opioid receptor antagonism, and α-
2A adrenergic receptor agonism) [53, 54].

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author, upon reasonable request.
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