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Abstract
We introduce a definition of thickness in R

d and obtain a lower bound for the Hausdorff
dimension of the intersection of finitely or countably many thick compact sets using a variant
of Schmidt’s game.As an applicationweprove that given any compact set inR

d with thickness
τ , there is a number N (τ ) such that the set contains a translate of all sufficiently small similar
copies of every set in R

d with at most N (τ ) elements; indeed the set of such translations has
positive Hausdorff dimension. We also prove a gap lemma and bounds relating Hausdorff
dimension and thickness.
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1 Introduction

The classical co-dimension formula states that ifC1,C2 are submanifolds ofR
d that intersect

transversally then

dim(C1 ∩ C2) = dim(C1) + dim(C2) − d (1)

provided the right hand side is non-negative, where dim denotes the dimension of the man-
ifolds. There are various versions of (1) that are applicable in other settings, in particular
for more general sets using Hausdorff dimension dimH . For example, for compact sets
C1,C2 ⊂ R

d

dimH (C1 ∩ (C2 + x)) ≤ max{0, dimH (C1 × C2) − d} (2)

for Lebesgue almost-all x ∈ R
d ; the right-hand side can be replaced by max{0, dimH (C1)+

dimH (C2)−d} if, for example, either C1 or C2 has equal Hausdorff and upper box-counting
dimension, see [17]. On the other hand, for all ε > 0,

dimH (C1 ∩ σ(C2)) ≥ max{0, dimH (C1) + dimH (C2) − d − ε} (3)

for a set of similarities σ of positive measure with respect to the natural measure on the group
of similarities σ on R

d . The similarity group may be replaced by the group of isometries if
dimH C1 > (d + 1)/2 (it is not known if this condition is necessary if d ≥ 2), see [12, 17].
The disadvantage of these results is that they are measure theoretic, and tell us nothing about
which particular similarities or isometries these inequalities are valid for.

At the other extreme, there are classesC of ‘limsup sets’ ofHausdorff dimension 0 < s < d
which are dense in R

d with the property that the intersection of any countable collection of
similar copies of sets in C still has Hausdorff dimension s, see for example [8].

It is natural to ask for specific conditions on compact sets that are ‘close enough’ to each
other that guarantee non-empty intersection, or even give a lower bound for the dimension of
their intersection. For subsets of the real line Newhouse [19] introduced a notion of thickness,
see Definition 1, which depends on the relative sizes of the complementary open intervals
of the set and showed that two Cantor-like sets, with neither contained in a gap of the other,
must intersect if the product of their thickness is greater than 1, see Theorem 2.

In this paper we propose a definition of thickness for compact subsets of R
d for all d ≥ 1.

We obtain a higher dimensional gap lemma, and show that given several compact sets in
R
d(d ≥ 1) that are not too far apart in a sense that will be made precise, if their thicknesses

are large enough then they have non-empty intersection, and we obtain a lower bound for the
Hausdorff dimension of this intersection.

We first review the definition of thickness for subsets of the real line. Recall that every
compact set C on the real line can be constructed by starting with a closed interval I ≡ I1
(the convex hull of C) and successively removing disjoint open complementary intervals
(they are the path-connected components of the complement of C). Clearly there are finitely
or countably many disjoint open complementary intervals (Gn)n , which we may assume
are ordered so that their lengths |Gn | are non-increasing; if several intervals have the same
length, we order them arbitrarily. The two unbounded path-connected components of R \ C
are not included. For each n ∈ N the interval Gn is a subset of some closed path-connected
component In of I \ (G1 ∪ · · · ∪ Gn−1). We say that such a Gn is removed from In .

Definition 1 (Thickness in R) Let C ⊂ R be compact with convex hull I , and let (Gn)n be
the ordered sequence of open intervals comprising I \C . Each Gn is removed from a closed
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Intersections of thick compact sets ofRd

interval In , leaving behind two closed intervals Ln and Rn ; the left and right intervals of
In \ Gn . The thickness of C ⊂ R is defined as

τ(C) := inf
n∈N

min{|Ln |, |Rn |}
|Gn | .

The sequence of complementary intervals (Gn)n may be finite, in which case the infimum is
taken over the finite set of indices.

The thickness of a single point is taken to be 0, and that of a non-degenerate interval to
be +∞.

If there are several complementary intervals of equal length, then the ordering of them does
not affect the value of τ(C). See [1, 11, 20, 22] for more information on Newhouse thickness
and alternative definitions.

Theorem 2 (Newhouse’sGapLemma)Given two compact setsC1,C2 ⊂ R, such that neither
set lies in a gap of the other, if τ(C1)τ (C2) > 1 then

C1 ∩ C2 
= ∅.

Theorem 2 was proved only for subsets of R and it does not guarantee positive Hausdorff
dimension of the intersection, nor does it generalise in any simple way to intersections of 3
or more sets.

Here we give a definition of thickness for compact subsets of R
d that enables us to

generalize Theorem 2 to higher dimensions, and also obtain lower bounds for the Hausdorff
dimension of the intersection of several sets. For a different definition of thickness for certain
dynamically defined subsets of the complex plane see [3].

Our setting throughout the paper is as follows. Given a compact subsetC ofR
d , we define

(Gn)
∞
n=1 to be the (at most) countably many open bounded path-connected components of

CC and E to be the unbounded open path-connected component of CC (except when d = 1
when E consists of two unbounded intervals).We call E together withGn (n ∈ N) the gaps of
C . Wemay assume that the sequence of gaps (Gn)

∞
n=1 is ordered by non-increasing diameter.

Note that we make no assumption about the connectedness or simply connectedness of C .
We write dist for the usual distance between points or non-empty subsets of R

d and diam
for the diameter of a non-empty subset of R

d .

Definition 3 (Thickness in R
d ) We define the thickness of C to be

τ(C) := inf
n∈N

dist(Gn,
⋃

1≤i≤n−1 Gi ∪ E)

diam(Gn)
,

provided that E is not the only path-connected component of C .
When the only complementary path-connected component is E , we define

τ(C) :=
⎧
⎨

⎩

+∞ if C◦ 
= ∅

0 if C◦ = ∅
(4)

We say C is thick if τ(C) > 0.

If the sequence of complementary intervals (Gn)n is finite then the infimum is taken over
the finite set of indices. Moreover, thickness is well-defined in the sense that if two gaps
have the same diameter, interchanging their positions in the ordering does not change the
definition of thickness.

Note that τ ∈ [0,+∞]. Also, τ is invariant under homothetic maps, and agrees with the
usual definition of thickness in the real line (recall Definition 1).
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Observation 4 IfC ⊂ R
d is a thick compact set, then either there are finitelymanygaps (Gn)n

or limn→∞ diamGn = 0. To see this we can assume that E is not the only complementary
path-connected component. If diamGn ≥ c > 0 for infinitely many n, taking points xn ∈ Gn

with dist(xn, xi ) ≥ cτ(C) for 1 ≤ i < n contradicts the sequential compactness of EC .

In Sect. 2, we obtain a higher dimensional gap lemma, Theorem 10. The gap lemma
does not generalize in any simple way to intersections of three or more sets, so we need to
use other methods to study such intersections. To achieve this we obtain lower bounds for
the Hausdorff dimension of the intersection of several thick compact sets in terms of their
thicknessess, which is easy to estimate in many cases.

Ourmain theorem, Theorem 6whichwill follow fromTheorem 18which relates thickness
to ‘winning sets’.

The following constants appear in many of our results:

Definition 5 In R
d (d ≥ 1), let

K1 := 2d(24
√
d)d log(16

√
d)

1 − 1
2d

and K2 :=
(

(24
√
d)d(1 + 4d2)

1 − 1
2d

)2

. (5)

We now state our main theoremwhich will follow from applying Theorem 18 on ‘winning
sets’ to thickness. We write Ei for the unbounded open path-connected component of CC

i
(the union of two unbounded intervals when d = 1).

Theorem 6 (Intersection of compact sets in R
d ) Let (Ci )i be a family of countably many

compact sets in R
d , where Ci has thickness τi > 0, such that:

(i) supi diam(Ci ) < +∞,
(ii) there is a ball B such that B∩Ei = ∅ for every i , where Ei is the unbounded component

of CC
i ,

(iii) there exists c ∈ (0, d) such that

∑

i

τ−c
i ≤ 1

K2
βc(1 − βd−c)

where

β := min
{1

4
,

diam(B)

supi diam(Ci )

}
.

Then

dimH

(
B ∩

⋂

i

Ci

)
≥ d − K1

(∑
i τ

−c
i

)d/c

βd | log(β)| > 0.

Note that condition (iii) comes from Theorem 18 and is needed both to obtain the lower
bound for the dimension of the intersection and to ensure that this bound is positive.

The significance of Theorem 6 is that a condition on thicknesses can give a lower bound
for the dimension of intersection of a finite or countable collection of sets in R

d so ensure
that the intersection is non-empty. In practice, the thicknesses needed are rather large as a
consequence of the large constants K1 and K2.

A very active research area involves finding conditions on a set that guarantees the set
contains homothetic copies of a given finite set of points, called a pattern in this context. It
will follow from Theorem 6 that a set contains homothetic copies of any given pattern in R

d
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Intersections of thick compact sets ofRd

provided it is sufficiently thick. Patterns and intersections are related: the set C contains a
homothetic copy of A := {a1, . . . , an} if and only if there exists λ 
= 0 such that

⋂
1≤i≤n(C−

λai ) 
= ∅.
A consequence of the Lebesgue density theorem is that any set E ⊂ R

d of positive
Lebesgue measure contains a homothetic copy of every finite set at all sufficiently small
scales, so it is natural to seek conditions on sets of zero Lebesgue measure form which this
remains true. Perhaps the most natural notion of size to consider is Hausdorff dimension but
there are constructions (see for example [6, 13, 14, 16, 18, 21]) which indicate that Hausdorff
dimension cannot, in itself, detect the presence or absence of patterns in sets of Lebesgue
measure zero, even in the most basic case of points in arithmetic progressions.

Łaba and Pramanik [15] showed that if, in addition to having large Hausdorff dimension,
a subset of R supports a probability measure with appropriate Fourier decay, then it contains
arithmetic progressions of length 3. The hypotheses were relaxed and the family of patterns
covered greatly enlarged in subsequent papers [5, 9, 10]. This work uses harmonic analysis,
and such methods do not work easily for longer arithmetic progressions. Moreover, the
hypotheses may be difficult to check, and are not even known to hold for natural classes of
fractals such as central self-similar Cantor sets.

Yavicoli [22] showed thatNewhouse thickness, Definition 1, allows the detection of homo-
thetic and more general copies of patterns inside fractal sets in the real line. Newhouse
thickness is easy to compute or estimate for many classical fractal sets such as self-similar
sets or sets defined in terms of continued fraction coefficients. Our notion of thickness in
higher dimensions, Definition 3, enables such results to be extended to R

d .

Theorem 7 Let C ⊂ R
d be a compact set with thickness τ := τ(C), such that EC contains

a ball B. Then C contains a homothetic copy of every set A with at most

N (τ ) :=
⌊

βd | log(β)|
eK2

τ d

log(τ )

⌋

(6)

elements, where

β := min
{1

4
,
15 diam(B)

16 diam(C)

}
.

and K2 is as in (5).
Moreover, for all λ ∈ (

0, diam(B)
16 diam(A)

)
, there exists a set X of positive Hausdorff dimension

(depending on A, B, C and λ) such that

x + λA ⊆ C for all x ∈ X .

We also discuss the relationship between Hausdorff dimension and thickness of a set. It
is shown in [20,p.77] that for C ⊂ R,

dimH (C) ≥ log 2

log(2 + 1/τ(C))
, (7)

and in Sect. 6 we obtain analogous lower bounds for C ⊂ R
d .

2 A gap Lemma in R
d

In this section we extend Theorem 2, Newhouse’s gap lemma on R, to R
d for d ≥ 2. We first

study a particular case when the gaps are either linked or do not intersect; in this setting we
can use an analogous argument to Newhouse’s proof.
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Fig. 1 An example of gaps G1 and G2 which intersect but are not linked and which might be parts of the
complements of compact sets C1 and C2 which satisfy the hypotheses of Theorem 10 but not of Proposition
9

We denote the boundary of U ⊂ R
d by ∂U .

Definition 8 We say thatU ⊆ R
d and V ⊆ R

d are linked gaps ifU ∩ V 
= ∅, (∂U ) \ V 
= ∅
and (∂V ) \U 
= ∅.

We say that C1 and C2 are linked compact sets in R
d if for every pair of gaps G1 and G2

of C1 and C2 respectively we have that either their intersection is empty or they are linked
gaps.

Wefirst obtain the conclusionwhenC1 andC2 are linked compact sets and then inTheorem
10 we reduce to this case the weaker condition that neither C1 or C2 is contained in any gap
of the other. Figure 1 illustrates how gaps may satisfy the hypotheses of Theorem 10 but not
of Proposition 9.

Proposition 9 Let C1 and C2 be linked compact sets in R
d , with τ(C1)τ (C2) > 1, then

C1 ∩ C2 
= ∅.
Proof By definition of τ ,

τ1 := τ(C1) := inf
m

dist
(
G1

m,
⋃

1≤i≤m−1 G
1
i ∪ E1

)

diam(G1
m)

and

τ2 := τ(C2) := inf
n

dist
(
G2

n,
⋃

1≤i≤n−1 G
2
i ∪ E2

)

diam(G2
n)

where C1 and C2 have gaps G1
n and G

2
n and external path-connected components E1 and E1

respectively.
We assume that C1 ∩ C2 = ∅ and will obtain a contradiction. Then,

C1 ⊆ CC
2 =

⋃

i

G2
i ∪ E2 and C2 ⊆ CC

1 =
⋃

i

G1
i ∪ E1.

We will construct inductively a sequence (Ui , Vi )i∈N of pairs of linked bounded gaps that
occur in the construction of C1 and C2 respectively, such that either diamUi → 0 or
diam Vi → 0 (or both).

To start the induction:We will define (U1, V1) linked bounded gaps.
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Intersections of thick compact sets ofRd

Since E1 and E2 are linked gaps, there is x1 ∈ ∂E1 \ E2 ⊆ C1 \ E2 ⊆ CC
2 \ E2, so there

is a bounded gap V1 := G2
n1 of C2 such that x1 ∈ G2

n1 . Since E1 and V1 intersect and C1

and C2 are linked compact sets, E1 and V1 are linked gaps. Hence, there is x2 ∈ ∂V1 \ E1 ⊆
C2 \ E1 ⊆ CC

1 \ E1, so there is a bounded gap U1 := G1
m1

of C1 such that x2 ∈ G1
m1
. Since

U1 and V1 are gaps that intersect, and C1 and C2 are linked compact sets, U1 and V1 are
linked.

Inductive step: Given that we have defined a pair of linked gaps (Uk, Vk) of C1 and C2

defined, we now define (Uk+1, Vk+1).
Since (Uk, Vk) is a pair of linked gaps, there is ak ∈ ∂Uk \ Vk . Since ak ∈ ∂Uk , we have

ak ∈ C1, hence by assumption ak /∈ C2, so there is a gap G2
nk of C2 such that ak ∈ G2

nk . Note
that (Uk,G2

nk ) are linked because they intersect and C1 and C2 are linked.
In the same way, since (Uk, Vk) is a pair of linked gaps there is bk ∈ ∂Vk \ Uk . Since

bk ∈ ∂Vk , then bk ∈ C2, hence bk /∈ C1, so there is G1
mk

a gap of C1 such that bk ∈ G1
mk

Again (G1
mk

, Vk) are linked.
We will show that we can choose (Uk+1, Vk+1) to be either (Uk,G2

nk ) or (G1
mk

, Vk) in
such a way the diameters of either Uk or Vk tends to 0.

We observe that for a fixed pair n,m ∈ N the following two inequalities cannot hold
simultaneously:

• dist(G1
m,
⋃

1≤i≤m−1 G
1
i ∪ E1) ≤ diam(G2

n)

• dist(G2
n,
⋃

1≤i≤n−1 G
2
i ∪ E2) ≤ diam(G1

m).

For if both hold, then by definition of thickness,

diam(G2
n) ≥ τ1 diam(G1

m) and diam(G1
m) ≥ τ2 diam(G2

n).

Using the hypothesis that τ1τ2 > 1,

diam(G1
m) ≥ τ2 diam(G2

n) ≥ τ1τ2 diam(G1
m) > diam(G1

m),

which is a contradiction.
The gaps Uk and Vk can be identified as Uk := G1

m and Vk := G2
n for some n,m ∈ N.

In the case dist(G1
m,
⋃

1≤i≤m−1 G
1
i ∪ E1) > diam(G2

n), we also know that (Uk, Vk) are
linked, so Vk does not intersect E1 or G1

i for every 1 ≤ i ≤ m − 1. Also bk ∈ ∂Vk \ Uk ⊆
(
⋃

1≤i≤m−1 G
1
i ∪ E1)

C ∩CC
1 . Then bk belong to a bounded gap G1

mk
with mk > m, and we

take (Uk+1, Vk+1) := (G1
mk

, Vk).
In the case dist(G1

m,
⋃

1≤i≤m−1 G
1
i ∪ E1) ≤ diam(G2

n), by the previous observation we
have dist(G2

n,
⋃

1≤i≤n−1 G
2
i ∪E2) > diam(G1

m). Analogously to the previous case ak belong
to a bounded gap G2

nk with nk > n, and we take (Uk+1, Vk+1) := (Uk,G2
nk ).

Since one or other of these cases occurs infinitely many times, we get a sequence (Uk, Vk)
of linked gaps ofC1 andC2, where at least one of the diameter sequences tends to 0. Assume,
by symmetry, that diam(Uk) → 0. Take xk ∈ ∂Uk ⊆ C1, and yk ∈ Uk ∩ ∂Vk ⊆ C2. Then,

dist(xk, yk) ≤ diam(Uk) → 0.

Since (xk)k ⊆ C1 there exists (xk j ) j a subsequence (xk j ) j convergent to x ∈ C1. Since
(yk j ) j ⊆ C2, we also get (yk j ) j → x ∈ C2. So x ∈ C1 ∩ C2 contradicting the assumption
that C1 ∩ C2 = ∅. ��

We can now relax the hypotheses of Proposition 9.

Theorem 10 (Gap Lemma in R
d ) Let C1 and C2 be compact sets in R

d such that neither of
them is contained in a gap of the other and τ(C1)τ (C2) > 1. Then C1 ∩ C2 
= ∅.
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Proof We write τ1 := τ(C1) and τ2 := τ(C2). By hypothesis, C1 and C2 are thick compact
sets.

We will show that if the theorem is not trivially true then there are sets C̃1 and C̃2 with
thicknesses τ̃1 ≥ τ1 and τ̃2 ≥ τ2 that satisfy the conditions of Proposition 9 such that
C̃1 ∩ C̃2 = C1 ∩ C2, from which the theorem follows immediately. We do this using a
sequence of steps to modify the sets so that we can assume that the sets satisfy such stronger
conditions.

Note that in these steps G1 will always be a gap of C1 and G2 will be a gap of C2; such
gaps may be unbounded unless stated otherwise.

(0) We may assume that there is at least one bounded gap in the construction of C1,
and similarly for C2. Otherwise C1 = EC

1 . But by hypothesis C2 is not contained in
E1, so C1 ∩ C2 
= ∅ and the theorem is trivially true.

(1) Wemayassume that ∂G1∩∂G2 = ∅ for all gapsG1 andG2 of C1 andC2 respectively.
Otherwise there exist gaps G1 and G2 of C1 and C2 such that ∂G1 ∩ ∂G2 
= ∅, so
C1 ∩ C2 
= ∅ and the theorem is trivially true.

(2) Wemay assume that ∂E1 � E2 and ∂E2 � E1. Otherwise ∂E1 ⊆ E2 (or vice-versa).
Since C1 and C2 are compact, there exists a closed ball BR(x) such that C1 ∪ C2 ⊆
BR(x). We define r := R/(2τ2 + 1) ∈ (0, R), x̃ ∈ R

d such that dist(x, x̃) > 2R
and C̃2 := C2 ∪ BR(x̃) \ Br (x̃). Thus the external path-connected component of C̃2 is
Ẽ2 = E2 \ BR(x̃), and there is a new gap G2 := Br (x̃) that was not in the construction
of C2. Then τ2 = τ̃2 by definition of r .
We take r̃ ∈ (0, r) and define C̃1 := C1 ∪ Br̃ (x̃). Then the external path-connected
component of C̃1 is Ẽ1 := E1 \ Br̃ (x̃) and τ̃1 = τ1.
By construction C̃1 and C̃2 are compact sets, with the same thicknesses as C1 and C2,
such that C̃1 ∩ C̃2 = C1 ∩ C2, and ∂ Ẽ1 � Ẽ2 and ∂ Ẽ2 � Ẽ1.

(3) We may assume that no bounded gap of C1 is contained in a gap of C2, and vice-
versa. If there are bounded gaps G1

i of C1 contained in bounded gaps G2
j of C2, we

set

C̃1 := C1 ∪
⋃

j

⋃

G1
i ⊆G2

j

G1
i ;

thus C̃1 is obtained fromC1 by ‘filling in’ the gaps that are contained in a gap ofC2. Then
C̃1 is compact with τ̃1 ≥ τ1 and C̃1 ∩C2 = C1 ∩C2 and no gaps of C̃1 are contained in
gaps of C2.
Nowwe can apply the same argument toC2 and C̃1 (filling in certain gaps ofC2) to obtain
a set C̃2. Hence, C̃1 and C̃2 are compact sets such that τ̃1τ̃2 > 1 and C̃1 ∩ C̃2 = C1 ∩C2.

(4) We may assume that there are no bounded gaps G1 of C1 such that ∂G1 ⊆ G2

and G1
� G2 for any gap G2 of C2, and vice-versa. If this is not the case, we can

inductively replace each gap G2 of C2 by G̃2 := G2 ∪⋃
∂G1

j⊆G2 G1
j (since ∂G1 ⊆ G2

this is intuitively G2 with some holes filled in). Then diam(G2) = diam(G̃2), possibly
infinity. Note that a priori in this new sequence of gaps we could have gaps contained
in another gap, but that can be easily fixed by removing (in order of the sequence) the
gaps that are contained in a previous gap. In this way we obtained a compact set C̃2 that
satisfies τ̃2 ≥ τ2 and C1 ∩ C2 = C1 ∩ C̃2.
In a symmetric manner, we may repeat this procedure with C1 and C̃2 to obtain C̃1 and
C̃2 with τ̃1 ≥ τ1 and τ̃2 ≥ τ2 and C1 ∩ C2 = C̃1 ∩ C̃2, and such that all gaps satisfy
condition (4). (There may remain gaps of C̃1 fully contained in gaps of C̃2 or vive-versa,
and these may be removed by Step (3).)
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(5) Wemay assume that ∂G1
� G2 for every bounded gap G1 of C1 and every gap G2

of C2, and vice-versa. This combines Steps 3 and 4.
(6) Wemay assume that ∂G1

� G2 and ∂G2
� G1 for all gapsG1 of C1 and all gapsG2

of C2. This means that we can assume that C1 and C2 satisfy the hypothesis of Theorem
9.
We consider in turn the cases when G1 and G2 are unbounded and bounded gaps.

• Case G1 = E1 and G2 = E2: was proved in Step 2.
• Case G1 bounded and G2 = E2: By Step 5 we have that ∂G1

� E2. To check that
∂E2 � G1, note that if ∂E2 ⊆ G1 with G1 a bounded gap of C1, then C2 ⊆ G1,
contradicting the gap containment hypothesis of this Theorem.

• Case G2 bounded and G1 = E1: as in the previous case.
• Case G1 and G2 bounded: was proved in Step 5.

Thus we can replace C1 and C2 by a pair of sets with the same intersection and at least the
same thicknesses which satisfy the hypotheses of Proposition 9, and applying it completes
this proof. ��

3 Thickness and winning sets

Schmidt’s gameand its variants are a powerful tool for investigating properties of intersections
of sequences of sets, see [2] for a survey. We will define a game and prove that every set
with positive thickness can be seen as a winning set with certain parameters for the game.
We will show that game has good properties, for example monotonicity in its parameters,
invariance under similarities, and that the intersection of winning sets is again a winning
set with different parameters. Theorem 18, proved in the Appendix, gives a lower bound for
the Hausdorff dimension of winning sets for this game and this leads to Theorem 6 on the
dimension of intersections.

Definition of the Game

We define a game in R
d similar to the potential game from [4] but adapted to our purposes:

Definition 11 Given α, β, ρ > 0 and c ≥ 0, Alice and Bob play the (α, β, c, ρ)-game in R
d

under the following rules:

• For each m ∈ N0 Bob plays first, and then Alice plays.
• On the m-th turn, Bob plays a closed ball Bm := B[xm, ρm], satisfying ρ0 ≥ ρ, and

ρm ≥ βρm−1 and Bm ⊆ Bm−1 for every m ∈ N.
• On the m-th turn Alice responds by choosing and erasing a finite or countably infinite

collectionAm of open sets. Alice’s collection must satisfy
∑

i (diam Ai,m)c ≤ (αρm)c if
c > 0, or diam A1,m ≤ αρm if c = 0 (in the case c = 0 Alice can erase just one set).

• limm→∞ ρm = 0 (Note that this is a non-local rule for Bob. One can define the game
without this rule, adding that Alice wins if limm→∞ ρm 
= 0. But to make the definitions
simpler we added this condition as a rule for Bob.)

Alice is allowed not to erase any set, or equivalently to pass her turn.
There exists a single point x∞ = ⋂

m∈N0
Bm called the outcome of the game. We say a set

S ⊂ R
d is an (α, β, c, ρ)-winning set, or just a winning set when the game is clear, if Alice

has a strategy guaranteeing that if x∞ /∈ ⋃
m∈N0

⋃
i Ai,m , then x∞ ∈ S.
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Note that the conditions B0 ⊇ B1 ⊇ · · · and limm→∞ ρm = 0 imply β < 1.

Good properties of the game

Proposition 12 (Countable intersection property) Let J be a countable index set, and for each
j ∈ J let S j be an (α j , β, c, ρ)-winning set, where c > 0. Then, the set S := ⋂

j∈J S j is
(α, β, c, ρ)-winning where αc = ∑

j∈J αc
j (assuming that the series converges).

To see this, it is enough to consider the following strategy for Alice: in the turn k she plays
the union over j of all the strategies of turn k.

Proposition 13 (Monotonicity) If S is (α, β, c, ρ)-winning and α̃ ≥ α, β̃ ≥ β, c̃ ≥ c and
ρ̃ ≥ ρ, then S is (α̃, β̃, c̃, ρ̃)-winning.

This holds because
(∑

i

αc̃
i

)1/c̃ ≤
(∑

i

αc
i

)1/c
when c ≤ c̃,

soAlice can answer in the (α̃, β̃, c̃, ρ̃)-gameusingher strategy to answer from the (α, β, c, ρ)-
game.

Proposition 14 (Invariance under similarities) Let f : R
d → R

d be a similarity satisfying

dist( f (x), f (y)) = λdist(x, y) for all x, y ∈ R
d .

Then a set S is (α, β, c, ρ)-winning if and only if the set f (S) is (α, β, c, λρ)-winning.

This holds by “translating” the strategies being played through f .

Remark 15 (Relationship with the potential game in [4]) LetP be the set of singletons in R
d .

Since every set A is contained in a ball of radius diam(A), if S ⊆ R
d is an (α, β, c, ρ)-winning

set, then it is an (α, β, c, ρ,P)-potential winning set in the game defined in [4].

Relationship between thickness and winning sets

We now establish the key property that relates winning sets to thickness.

Proposition 16 Let C ⊂ R
d be compact with unbounded complement E and write S :=

C ∪ E. If τ := τ(C) > 0, then S is
( 1

τβ
, β, 0, β diam(C)

2

)
-winning for every β ∈ (0, 1).

Proof Wefirst describe a strategy forAlice.Given amove B byBob, howdoesAlice respond?
If there exists n ∈ N such that B intersects Gn and diam(B) < dist(Gn,

⋃
1≤i≤n−1 Gi ∪ E),

then B ∩Gn 
= ∅ and B ∩Gk = ∅ for all 1 ≤ k < n and B ∩ E = ∅. Alice erases Gn if it is
a legal move, otherwise Alice does not erase anything.

To show that this strategy is winning, suppose that x∞ /∈ ⋃
m Am . We want to show that

x∞ ∈ S. Otherwise x∞ /∈ S so there exists n such that x∞ ∈ Gn . We will show that Alice
erasesGn at some stage of the game. By definition x∞ ∈ Bm for allm ∈ N0, and we assumed
x∞ ∈ Gn , so x∞ ∈ Bm∩Gn for allm ∈ N0. Since τ > 0, then dist(Gn,

⋃
1≤i≤n−1 Gi ∪E) >

0. Also limm→∞ diam(Bm) = 0, so taking mn ∈ N0 to be the smallest integer such that
dist(Gn,

⋃
1≤i≤n−1 Gi ∪ E) > diam(Bmn ), we know that Bmn ∩Gn 
= ∅ and Bmn ∩Gk = ∅

for all 1 ≤ k < n. If mn = 0, then

diam(B0) = 2ρ0 ≥ 2ρ = β diam(C) ≥ βdist
(
Gn,

⋃

1≤i≤n−1

Gi ∪ E
)
.

123



Intersections of thick compact sets ofRd

If mn > 0, then

diam(Bmn ) ≥ β diam(Bmn−1) ≥ βdist
(
Gn,

⋃

1≤i≤n−1

Gi ∪ E
)
.

So diam(Bmn ) ≥ βdist
(
Gn,

⋃
1≤i≤n−1 Gi

⋃
E
)
. Hence,

diam(Gn) ≤ 1

τ
dist

(
Gn,

⋃

1≤i≤n−1

Gi ∪ E
)

≤ 1

τβ
diam(Bmn ).

This means that it is legal for Alice to erase Gn in the mn-th turn, and her strategy specifies
that she does so. Finally, if mi = m j then the first gap intersecting Bmi = Bm j is G j and
also Gi , so i = j ; thus the elements of {mn : n ∈ N} are all different. ��
Observation 17 Let C be a compact set in R

d and τ := τ(C) > 0. Then, by Proposition 16
and monotonicity, S := C ∪ E is a

( 1
τβ

, β, c, β
2 diam(C)

)
-winning set for all β ∈ (0, 1) and

all c ≥ 0.

4 A lower bound for the dimension of intersections of thick compact
sets in R

d

Whilst the gap lemma, Theorem 10, concerns the intersection of just two sets, it is of interest
to obtain conditions that ensure that finitely many, or even countably many compact subsets
of R

d have non-empty intersection. Using the game introduced in Definition 11 we not only
obtain conditions involving thickness that ensure that such collection of sets in has non-empty
intersection, but also get a lower bound for the Hausdorff dimension of this intersection, as
stated in Theorem 6.

To achieve this we use the following technical theorem that gives a lower bound for the
dimension of winning sets, based on [4,Theorem 5.5] and [22,Theorem 4] and proved in the
Appendix A. The parameters of a winning set provide a measure of its size and we translate
this in terms of thickness which is a single number that is easy to compute and work with.

Theorem 18 Let S ⊆ R
d be an (α, β, c, ρ)-winning set with c < d and β ≤ 1

4 . Then for
every ball B0 of radius larger than ρ,

dimH (S ∩ B0) ≥ d − K1
αd

| log(β)| > 0 if αc ≤ 1

K2
(1 − βd−c),

where K1 and K2 are as in (5).

We now prove Theorem 6 by combining Theorem 18 with the fact that sets of positive
thickness can be regarded as winning sets.

Proof of Theorem 6 By Observation 17, for each i

Si := Ei ∪ Ci is a

(
1

τiβ
, β, c,

β

2
diam(Ci )

)

-winning set

for all β ∈ (0, 1) and all c ≥ 0.We fix c ∈ (0, d) and β ∈ (0, 1
4 ] from the hypothesis (iii). We

define ρ := β
2 supi diam(Ci ) which is a finite number by hypothesis (i). By monotonicity,

Proposition 13, Si a
( 1

τiβ
, β, c, ρ

)
-winning set. Hence, by Proposition 12,

S :=
⋂

i

Si is a (α, β, c, ρ)-winning set,

123



K. Falconer, A. Yavicoli

where

α :=
(∑

i

(τiβ)−c
)1/c = 1

β

(∑

i

τ−c
i

)1/c
. (8)

By hypothesis (ii) there exists a ball B such that B ∩ Ei = ∅ for all i and we take r to be
the radius of B. By definition of ρ and β, we have r ≥ ρ. By hypothesis (iii) and equation
(8) we have αc ≤ 1

K2
(1 − βd−c), hence we can apply Theorem 18 to get

dimH (S ∩ B) ≥ d − K1
αd

| log(β)| > 0,

and we know by definition of α that d − K1
αd

| log(β)| = d − K1

(∑
i τ−c

i

)d/c

βd | log(β)| .
Since B does not intersect any Ei ,

Si ∩ B ⊆ Si ∩ EC
i ∩ B = Ci ∩ B for every i,

so S ∩ B ⊆ B ∩⋂
i Ci . The conclusion follows. ��

5 Application: patterns in thick compact sets of R
d

In this section we deduce Theorem 7 on the existence of small copies of pattens in sufficiently
thick sets from Theorem 6 and illustrate this in the case of Sierpiński carpets.

Proof of Theorem 7 We write B0 := 1
8 B for the ball with the same centre as B but with

radius 1
8 rad(B). Given a finite set A and λ ∈ (

0, diam(B)
16 diam(A)

)
we seek translates of λA :=

{b1, · · · , bn} with bi ∈ R
d where we can assume b1 = 0. As diam(λA) <

diam(B)
16 then

λA ⊆ B(0, diam(B)
16 ).

We define Ci := C − bi which is a compact set with thickness τ for every 1 ≤ i ≤ n. By
hypothesis there is a ball B ⊆ EC , so there is a ball B̃ ⊆ ⋂

1≤i≤n(B − bi ) ⊆ ⋂
1≤i≤n E

C
i of

diameter diam(B)(1 − 1
16 ) = 15

16 diam(B).

We take β := min{ 14 , diam(B̃)
diam(C)

}, α := 1/τβ and c := d − 1/ log(τβ). Then αc = eαd and
d − c = 1/ log(τβ).

By Theorem 6, if

nαc ≤ 1

K2
(1 − βd−c) or equivalently n ≤ 1

K2
α−c(1 − βd−c), (9)

then dimH (B̃ ∩⋂
1≤i≤n Ci ) > 0.

By definition of α, β and c, and using that f (τ ) := log(τ )(1−β1/ log(τβ)) is a decreasing
function with limτ→∞ f (τ ) = | log(β)|,

1

K2
α−c(1 − βd−c) = 1

eK2
(τβ)d(1 − β1/ log(τβ))

= 1

eK2

τ d

log(τ )
βd log(τ )(1 − β1/ log(τβ))

≥ 1

eK2
βd | log(β)| τ d

log(τ )
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Setting

N (τ ) :=
⌊

βd | log(β)|
eK2

τ d

log(τ )

⌋

it follows from if (9) that if n ≤ N (τ ) then dimH(B̃ ∩ ⋂
1≤i≤n Ci ) > 0. If x ∈ X := B̃ ∩⋂

1≤i≤n Ci , then x+bi ∈ Ci+bi = C for every 1 ≤ i ≤ n, soC ⊇ x+{b1, · · · , bn} = x+λA
as required. ��

Sierpiński carpets and sponges

Sierpiński carpets and sponges provide examples of sets for which thickness is easily found
and which satisfy Theorem 7 .

Let n1, · · · , nd ∈ N≥3 be odd natural numbers. Let

D = {
i := (i1, . . . , id) : 1 ≤ ik ≤ nk, with (i1, . . . , id) 
= ( 1

2 (n1 + 1), . . . , 1
2 (nd + 1)

)}
.

The family of affine maps
{
fi : R

d → R
d : i ∈ D

}
,

where

fi(x1, . . . , xd) =
( x1 + i1 − 1

n1
, . . . ,

xd + id − 1

nd

)
,

forms an iterated function system, which defines a unique non-empty compact set C ⊂ R
d

such that C = ⋃
i∈D fi(C), see [7,Chapter 9]. Then C is a self-affine Sierpiński sponge

(carpet if d = 2) which can also be realised iteratively by repeatedly substituting the coor-
dinate parallelepipeds obtained by dividing the unit cube [0, 1]d into n1 × · · · × nd smaller
parallelepipeds, with the central one removed, into themselves. In other words

C =
∞⋂

k=0

⋃

i1,...,ik∈D
fi1 ◦ · · · ◦ fik ([0, 1]d).

Wewill find the thickness ofC . Each parallelepiped at the kth step of the iterative construc-
tion has side-lengths 1/nki (1 ≤ i ≤ d). Thus the central parallelepipeds that are removed
and which form gaps at the kth step have diameter

diamk :=
√
√
√
√

∑

1≤k≤d

1

n2ki
.

Theminimal distance of a gap removed at the kth step from the previous gaps and the external
complementary component E is

distk := min
1≤i≤d

1

nki

ni − 1

2
.

Hence, the thickness of C is

τ := τ(C) = inf
k∈N

distk
diamk

= inf
k∈N

min1≤i≤d
1
nki

ni−1
2

√∑
1≤k≤d

1
n2ki

.
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Thus, with β := min{ 14 , 15
16

√
d
}, Theorem 7 gives that C contains homothetic copies of

every pattern with at most N (τ ) points where N (τ ) is given by (6).
For example, the self-similar Sierpiński carpet Cn in R

2, taking n1 = n2 = n above, has
thickness τ = (n − 1)

/
2
√
2, so there is a homothetic copy in Cn of every configuration of

up to N (τ ) points. Because K2 is large, n needs to be large to guarantee even that similar
copies of all triangles can be found in Cn . On the other hand, for Cn to contain copies of all
k-point configurations, n = O((k log k)1/2) which does not increase too rapidly for large k.

6 Thickness and Hausdorff dimension

In this section we obtain two different lower bounds for the Hausdorff dimension of sets in
R
d in terms of their thickness.
Firstly, Theorem 6 yields a lower bound by taking a single set C .

Corollary 19 Let C be a compact set in R
d with positive thickness τ (so diam(C) < +∞

and there is a ball B such that B ∩ E = ∅). If there exists c ∈ (0, d) such that τ−c ≤
1
K2

βc(1 − βd−c) for β := min{ 14 , diam(B)
diam(C)

} then

dimH (C) ≥ dimH (B ∩ C) ≥ d − K1
τ−d

βd | log(β)| > 0.

Secondly, we can get a lower bound in the case of convex sets with convex gaps by
considering 1-dimensional sections.

Proposition 20 Let C0 be a proper compact convex set in R
d where d ≥ 2, and let C =

C0 \ ⋃∞
k=1 Gk, where {Gk}k are open convex gaps ordered by decreasing diameters. Then

τ(C ∩ L) ≥ τ(C) for every straight line L that properly intersects C0.

Proof Let L be a straight line that properly intersects C0. Let {Ii }∞i=1 be the (countable or
finite) set of open intervals Ii := Gk(i) ∩ L in L ordered so that |Ii | ≤ |I j | if i ≥ j , where
| | denotes the length of an interval. Let 1 ≤ i ≤ j − 1. There are two cases:

(a) if k(i) < k( j) then

dist(Ii , I j ) ≥ dist(Gk(i),Gk( j)) ≥ τ(C) diam(Gk( j)) ≥ τ(C)|I j |;
(b) if k( j) < k(i) then

dist(Ii , I j ) ≥ dist(Gk(i),Gk( j)) ≥ τ(C) diam(Gk(i)) ≥ τ(C)|Ii | ≥ τ(C)|I j |.
In both cases dist(Ii , I j ) ≥ |I j | for all 1 ≤ i ≤ j − 1 so τ(C ∩ L) ≥ τ(C) from the
definition of thickness.

��
We can now obtain a lower bound for the Hausdorff dimension for these sets in terms of

thickness using the bound (7) for sets in R.

Proposition 21 Let C0 ⊆ R
d be a proper compact convex set, and let C = C0 \ ⋃∞

i=1 Gi

where {Gi }i are open convex gaps. Then

dimH (C) ≥ d − 1 + log 2

log(2 + 1/τ(C))
(10)

where τ(C) is the thickness of C.
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Proof Let L be a straight line that properly intersectsC0. Combining the relationship between
thickness and Hausdorff dimension for subsets of R stated in (7) with Proposition 20,

dimH (C ∩ L) ≥ log 2

log(2 + 1/τ(C ∩ L))
≥ log 2

log(2 + 1/τ(C))
.

This is true for all lines L in a given direction that properly intersectC0, so by a standard result
relating the Hausdorff dimension of a set to the Hausdorff dimensions of parallel sections,
see for example, [7,Corollary 7.10], inequality (10) follows. ��
Observation 22 Whend = 1Proposition 21 is better thanCorollary 19. For d ≥ 2, Corollary
19 gives a better bound than Proposition 21 when τ is large but when τ is small Proposition
21 is better.
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7 Proof of Theorem 18

The proof of Theorem 18 is based on [4,Theorem 5.5] and [22,Theorem 4] and adapted to
our particular setting.

Proof We can assume without loss of generality that the radius of B0 is ρ. We let x0 be the
center of B0,

ρn := βnρ radii of balls, and

En := ρn

2
Z
d + x0 centers of balls of the family

En :=
{
B(

ρn

2
z + x0, ρn) : z ∈ Z

d
}

.

We will take Bob’s move of the nth turn from En .
We also define

Dn := 3ρnZ
d + x0 ⊂ En,

Dn := {B(3ρnz + x0, ρn) : z ∈ Z
d} ⊂ En .

Note that the elements of Dn are disjoint (moreover they are at distance ρn).
We fix γ ∈ (0, 1), a small number to be determined later (independent of α, β, c and ρ).

Let N := � γ d

αd �.

123

http://creativecommons.org/licenses/by/4.0/


K. Falconer, A. Yavicoli

We define the function πn : En+1 → En , B �→ πn(B) in the following way:

• When n 
= j N for all j : we define πn(B) as the element of En that contains B such that
B is as centered as possible inside that element.

• When n = j N for some j : If there exists B ′ ∈ D j N containing B, we defineπn(B) := B ′
(it is well defined because in that case there is only one element belonging to D j N ). If
not, we define the function as before.

Intuitively the function πn carries the elements of level n + 1 to its ancestor of level n.
We use the following notation: for m < n and B ∈ En , πm(B) := πm ◦ πm+1 ◦ · · · ◦

πn−1(B) ∈ Em . This is to say, we carry B to its ancestor of level m via the functions π . If
Bob plays B ∈ En in the turn n, we consider that in the previous turns m ∈ {0, · · · , n − 1}
Bob has played πm(B). Then, we have the following inclusions of movements from the turn
n to the turn 0:

B ⊂ πn−1(B) ⊂ · · · ⊂ π0(B).

We defined the function in this way to guarantee that Bob’s moves are legal. Alice responds
under her winning strategy. If in the turn n Bob plays B ∈ En , we define A(B) as Alice’s
answer (each A ∈ A(B) is a countable collection of sets A := {Ai,n}i , and a legal movement
as an answer for B, i.e.:

∑
i diam(Ai,n)

c ≤ (αρn)
c). Let

A∗
m(B) := {A ∈ A(πm(B)) : B ∩ A 
= ∅}

be Alice’s answer (this is a list of sets) to the ancestor of B of level m < n.
Given any ball B, we denote by 1

2 B the ball with the same center as B and the half of the
radius.

Note that as β ≤ 1
4 , if B ∈ D j N and B ′ ∈ E j N+1 satisfy B ′ ∩ 1

2 B 
= ∅, then B ′ ⊂ B, so
π j N (B ′) = B. It follows that

if n > j N , B ′ ⊂ 1

2
B with B ′ ∈ En and B ∈ D j N , then π j N (B ′) = B. (11)

This is true because if we look at the ancestor of B ′ of level j N + 1, since πn chooses the
element belonging to En that contains B such that B is as centered as possible, that element
must intersect 1

2 B.

We define for every B ∈ D j

φ j (B) :=
∑

n< j

∑

A∈A∗
n(B)

diam(Ai,n)
c.

This is a measure of all of Alice’s answers to the ancestors of B. Note that φ0(B) = 0.
Let

D′
j := {B ∈ D j : φ j (B) ≤ (γρ j )

c}.
We define

D j (B) := {B ′ ∈ D j : B ′ ⊂ 1
2 B}.

Some useful bounds.
We denote by rad(B) the radius of the ball B.
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Observation 23 If B ∈ D′
j N , we have that rad(

1
2B) = 1

2fi
jNæ, and rad(B′) = fi(j+1)Næ for

every B ′ ∈ D( j+1)N . We can cover 1
2 B with enlarged balls from D( j+1)N (B) (with radii

4ρ( j+1)N
√
d). This gives us a lower bound for #D( j+1)N (B):

Ld( 12 B) ≤ #D( j+1)N (B)Ld(B4ρ( j+1)N
√
d),

so

β−Nd 1

2d4d
√
d
d

≤ #D( j+1)N (B).

Proposition 24 If αc ≤ 1
K2

(1 − βd−c) where K2 := max{γ −2d , 2γ −d log(γ −d)}, we have
that

#(D( j+1)N (B) ∩ D′
( j+1)N ) ≥ β−Nd

(
1

2d4d
√
d
d

− 3dγ d(1 + 4d2)

)

for all B ∈ D′
j N .

We start by proving two preliminary lemmas:

Lemma 25 (a) For all n ∈ N and B ′ ∈ En we have that
∑

A∈A(B′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B ′)

)d

≤ 3dαc max

{

αd−c, γ −c
(

ρ( j+1)N

rad(B ′)

)d−c
}

.

(b) If B ∈ D′
j N then

∑

n< j N

∑

A∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B)

)d

≤ 3dγ c max

{

γ d−c, γ −c
(

ρ( j+1)N

rad(B)

)d−c
}

.

Proof of Lemma 25 Firstly, splitting into the cases x ≤ y and y ≤ x , it is easy to see that

min

{

1,
xc

(γ y)c

}

(x + 2y)d ≤ 3d xc max

{

xd−c,
yd−c

γ c

}

for all x, y > 0. (12)

Secondly, we will prove that if n ∈ N and B ′ ∈ En then the claim a) holds. By applying
the inequality (12) to x := diam(Ai,n)

rad(B′) and y := ρ( j+1)N
rad(B′) , summing over all Ai,n ∈ A(B ′) and

using that Alice is playing legally, we have that

∑

Ai,n∈A(B′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B ′)

)d

≤ 3d
∑

Ai,n∈A(B′)

(
diam(Ai,n)

rad(B ′)

)c

max

{(
diam(Ai,n)

rad(B ′)

)d−c

, γ −c
(

ρ( j+1)N

rad(B ′)

)d−c
}

≤ 3d max

{(

max
Ai,n∈A(B′)

diam(Ai,n)

rad(B ′)

)d−c

, γ −c
(

ρ( j+1)N

rad(B ′)

)d−c
}

∑

Ai,n∈A(B′)

(
diam(Ai,n)

rad(B ′)

)c
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≤ 3dαc max

{

αd−c, γ −c
(

ρ( j+1)N

rad(B ′)

)d−c
}

.

Finally, we prove the claim b). By applying the inequality (12) to x := diam(Ai,n)

rad(B)
and

y := ρ( j+1)N
rad(B)

, summing over all elements of
⋃

n< j N A∗
n(B), and using that, since B ∈ D′

j N ,
we have

∑

n< j N

∑

Ai,n∈A∗
n(B)

(
diam(Ai,n)

rad(B)

)c

≤ γ c,

and in particular diam(Ai,n)

rad(B)
≤ γ for every i and every n < j N , we obtain that:

∑

n< j N

∑

Ai,n∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B)

)d

≤ 3d
∑

n< j N

∑

Ai,n∈A∗
n(B)

(
diam(Ai,n)

rad(B)

)c

max

{(
diam(Ai,n)

rad(B)

)d−c

, γ −c
(

ρ( j+1)N

rad(B)

)d−c
}

≤ 3d

⎛

⎝
∑

n< j N

∑

Ai,n∈A∗
n(B)

(
diam(Ai,n)

rad(B)

)c
⎞

⎠max

{

γ d−c, γ −c
(

ρ( j+1)N

rad(B)

)d−c
}

≤ 3dγ c max

{

γ d−c, γ −c
(

ρ( j+1)N

rad(B)

)d−c
}

.

��

Now we are ready to prove Proposition 24.

Proof of Proposition 24

#(D( j+1)N (B) \ D′
( j+1)N )

≤ #

{

B ′ ∈ D( j+1)N (B) : φ( j+1)N (B ′)
(γρ( j+1)N )c

> 1

}

≤
∑

B′∈D( j+1)N (B)

min

{

1,
φ( j+1)N (B ′)
(γρ( j+1)N )c

}

≤
∑

B′∈D( j+1)N (B)

min

⎧
⎨

⎩
1,

∑

n<( j+1)N

∑

Ai,n∈A∗
n(B

′)

diam(Ai,n)
c

(γρ( j+1)N )c

⎫
⎬

⎭

≤
∑

B′∈D( j+1)N (B)

∑

n<( j+1)N

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

≤
∑

B′∈D( j+1)N (B)

∑

n< j N

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

+
∑

B′∈D( j+1)N (B)

∑

j N≤n<( j+1)N

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

. (13)
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We have split the sum in (13) into two parts, depending on whether n < j N or j N ≤
n < ( j + 1)N .

To get a bound for the left-hand sum of (13) we will use that if n < j N then
{
(B ′, A) : B ′ ∈ D( j+1)N (B), A ∈ A∗

n(B
′)
}

⊂ {
(B ′, A) : B ′ ∈ D( j+1)N (B), A ∈ A∗

n(B), A ∩ B ′ 
= ∅} .

Since B ∈ D′
j N the set A∗

n(B) only makes sense for n < j N . This inclusion holds because
of (11), as A(πn(B ′)) ⊂ A(πn(B)) since B ′ ⊂ B.

So,

∑

B′∈D( j+1)N (B)

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

≤
∑

Ai,n∈A∗
n(B)

∑

B′∈D( j+1)N (B)

B′∩A 
=∅

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

=
∑

Ai,n∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

#{B ′ ∈ D( j+1)N (B), B ′ ∩ A 
= ∅}.

Now, we will get a bound for the right-hand sum in (13), when j N ≤ n < ( j + 1)N .
Recall that B ∈ D′

j N . First, note that if B
′′ ∈ D( j+1)N (B), then B ′′ ∈ E( j+1)N , B ′′ ⊂ 1

2 B
where B ∈ D j N . If we take B ′ := π j N (B ′′) ∈ E j N , by (11) we have that B ′ = B.

For all B ′′ ∈ D( j+1)N (B), there exists B ′ ∈ En with B ′ ⊂ B and B ′′ ⊂ 1
2 B

′ (B ′ = B if
n = j N ). Hence

∑

B′′∈D( j+1)N (B)

∑

Ai,n∈A∗
n(B

′′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

≤
∑

B′∈En
B′⊂B

∑

B′′∈D( j+1)N (B′)

∑

A∈A(B′)
A∩B′′ 
=∅

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

=
∑

B′∈En
B′⊂B

∑

A∈A(B′)

∑

B′′∈D( j+1)N (B′)
A∩B′′ 
=∅

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

=
∑

B′∈En
B′⊂B

∑

A∈A(B′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

#{B ′′ ∈ D( j+1)N (B ′) : A ∩ B ′′ 
= ∅},

where the inequality holds by considering in particular B ′ := πn(B ′′) ⊂ B.
By inequality (13), and what we have noted before,

#(D( j+1)N (B) \ D′
( j+1)N )

≤
∑

B′∈D( j+1)N (B)

∑

n< j N

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

+
∑

B′∈D( j+1)N (B)

( j+1)N−1∑

n= j N

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}
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≤
∑

n< j N

∑

Ai,n∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

#{B ′ ∈ D( j+1)N (B) : B ′ ∩ A 
= ∅}

+
( j+1)N−1∑

n= j N

∑

B′∈En
B′⊂B

∑

Ai,n∈A∗
n(B

′)
min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}

#{B ′′ ∈ D( j+1)N (B ′) : B ′′ ∩ A 
= ∅}

≤
(

rad(B)

ρ( j+1)N

)d ∑

n< j N

∑

Ai,n∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B)

)d

+
( j+1)N−1∑

n= j N

∑

B′∈En
B′⊂B

(
rad(B ′)
ρ( j+1)N

)d ∑

Ai,n∈A∗
n(B

′)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B ′)

)d

, (14)

where in the first term of the last inequality we use that B ∈ D′
j N (so φ j N (B) ≤ (γρ j N )c),

in the second term that Alice is playing legally (i.e.:
∑

i diam(Ai,m)c ≤ (αρm)c), and in both
terms that: for every B ′ ∈ ⋃

n En and every Ai,n , since the elements of D( j+1)N are disjoint,
Ld(B ′′) = Cdρ

d
( j+1)N , and if moreover B ′′ ∩ Ai,n 
= ∅ then B ′′ ⊂ N (Ai,n, 2ρ( j+1)N ) (the

2ρ( j+1)N -neighborhoodof Ai,n),which is contained in a ball of radius diam(Ai,n)+2ρ( j+1)N .
Therefore,

#{B ′′ ∈ D( j+1)N (B ′) : B ′′ ∩ Ai,n 
= ∅}Cdρ
d
( j+1)N = Ld

( ⋃

B′′∈D( j+1)N (B′)
B′′∩Ai,n 
=∅

B ′′
)

≤ Ld (N (Ai,n, 2ρ( j+1)N )
) ≤ Cd(diam(Ai,n) + 2ρ( j+1)N )d ,

in other words,

#{B ′′ ∈ D( j+1)N (B ′) : B ′′ ∩ Ai,n 
= ∅} ≤ (diam(Ai,n) + 2ρ( j+1)N )d

ρd
( j+1)N

.

By inequality (14), using claim b) from Lemma 25 to bound the first term, and claim a)
from Lemma 25 to bound the second one, we obtain:

#(D( j+1)N (B) \ D′
( j+1)N )

≤
(

rad(B)

ρ( j+1)N

)d ∑

n< j N

∑

Ai,n∈A∗
n(B)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B)

)d

+
∑

j N≤n<( j+1)N

∑

B′∈En
B′⊂B

(
rad(B ′)
ρ( j+1)N

)d ∑

Ai,n∈A∗
n(B

′)

min

{

1,
diam(Ai,n)

c

(γρ( j+1)N )c

}(
diam(Ai,n) + 2ρ( j+1)N

rad(B ′)

)d
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≤
(

rad(B)

ρ( j+1)N

)d

3dγ c max

{

γ d−c, γ −c
(

ρ( j+1)N

rad(B)

)d−c
}

+
∑

j N≤n<( j+1)N

∑

B′∈En
B′⊂B

(
rad(B ′)
ρ( j+1)N

)d

3dαc max

{

αd−c, γ −c(
ρ( j+1)N

rad(B ′)
)d−c

}

(15)

To continue the estimates, we will use that

rad(B)

ρ( j+1)N
= β j Nρ

β( j+1)Nρ
= β−N .

To bound the second term in (15) we write n = ( j + 1)N − k for some k ∈ {1, · · · , N }.
We know that B := B(3ρ j N z + x0, ρ j N ) for some z ∈ Z

d , and recall that En := {B(
ρn
2 z′ +

x0, ρn) : z′ ∈ Z
d}. So,

rad(B ′)
ρ( j+1)N

= β−k

and

#{B ′ ∈ En : B ′ ⊂ B} ≤ #{ρn
2
z′ + x0 ∈ B : z′ ∈ Z

d}

= #

{

z′ ∈ Z
d ∩ B

(
6

βN−k
z, 2

( 1

βN−k
− 1

))}

≤
(

4
( 1

βN−k
− 1

)
+ 1

)d

≤ 4d
1

βd(N−k)
.

Combining with (15),

#(D( j+1)N (B) \ D′
( j+1)N )

≤
(

rad(B)

ρ( j+1)N

)d

3dγ c max
{
γ d−c, γ −c

(ρ( j+1)N

rad(B)

)d−c}

+
∑

j N≤n<( j+1)N

∑

B′∈En
B′⊂B

(
rad(B ′)
ρ( j+1)N

)d

3dαc max
{
αd−c, γ −c

(ρ( j+1)N

rad(B ′)

)d−c}

≤ β−Nd3dγ c max{γ d−c, γ −cβN (d−c)}
+

∑

1≤k≤N

4dβ−d(N−k)βdk3dαc max{αd−c, γ −cβk(d−c)}

≤ β−Nd3d
(

max{γ d , βN (d−c)} + 4d
(
Nαd + αcγ −c

∑

1≤k≤N

βk(d−c)
))

,

(16)

where in the last inequality we have used that if an, bn ≥ 0 then
∑

n max{an, bn} ≤ ∑
n an +∑

n bn .
Provided we can establish the following claims:

(i) Nαd ≤ γ d ,
(ii) αcγ −c∑

k∈N0
βk(d−c) ≤ γ d ,

(iii) βN (d−c) ≤ γ d ,

123



K. Falconer, A. Yavicoli

then

#(D( j+1)N (B) \ D′
( j+1)N ) ≤ β−Nd3dγ d(1 + 4d2);

hence, by Observation 23,

#(D( j+1)N (B) ∩ D′
( j+1)N ) ≥ β−Nd

(
1

2d4d
√
d
d

− 3dγ d(1 + 4d2)

)

,

as required.
Let us prove (i)–(iii):

(i) This holds by the definition of N .
(ii) Take K2 := max{γ −2d , 2γ −d log(γ −d)}. By hypothesis and by using c ∈ (0, d),

β ∈ (0, 1
4 ], we have

αc

γ c(1 − βd−c)
≤ 1

γ cK2
≤ γ 2d−c < γ d ,

for the second claim.
(iii) Continuing, since αc ≤ αc 1

1−βd−c ≤ 1
K2

≤ γ 2d , then 1 ≤ γ −(2d−c) ≤ (
γ
α
)c, so

γ /α ≥ 1, and thus

N ≥ 1

2
γ dα−d . (17)

On the other hand, using the hypotheses, c ∈ (0, d) and α ∈ (0, 1),

αd ≤ αc ≤ 1

K2
(1 − βd−c) ≤ 1

K2
| log(βd−c)| = 1

K2
(d − c)| log(β)|, (18)

where in the last inequality we have used that d − c ∈ (0, 1), β ∈ (0, 1
4 ], z := βd−c ∈

(0, 1), and f (z) := log( 1z ) + z + 1 is a positive function on (0, 1), so 1 − z ≤ log( 1z ).
Then,

Nαd K2 ≤ N (d − c)| log(β)|. (19)

By inequalities (17) and (19) and the definition of K2,

N (d − c)| log(β)| ≥ Nαd K2 ≥ γ d

2
K2 ≥ | log(γ d)|

which is equivalent to claim (iii).

This concludes the proof of Proposition 24. ��
Conclusion of the proof.

For each γ ∈ (0, 1) we proceed as follows:
By definition, B0 ∈ D0. Moreover, φ0(B0) := 0 < (γρ)c, so B0 ∈ D′

0. We will construct
a Cantor set F as the intersection of a sequence of unions of closed sets:

• B0 := {B0} ⊂ D′
0.• Given a collection B j ⊂ D′

j N we construct the next level of sets B j+1 ⊂ D′
( j+1)N by

replacing each element of B ∈ B j by M :=
⌈
β−Nd

(
1

2d4d
√
d
d − 3dγ d(1 + 4d2)

)⌉

elements of D( j+1)N (B) ∩ D′
( j+1)N ; this is possible by Proposition 24.
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We define

F :=
⋂

j∈N0

⋃

B∈B j

B.

By a standard argument (see e.g. [7,Example 4.6]),

dimH(F) ≥ log(M)

| log(βN )| ≥
log(β−Nd) + log

(
1

2d4d
√
d
d − 3dγ d(1 + 4d2)

)

N | log(β)|

= d +
log

(
1

2d4d
√
d
d − 3dγ d(1 + 4d2)

)

N | log(β)|

≥ d −
2αd log

((
1

2d4d
√
d
d − 3dγ d(1 + 4d2)

)−1
)

γ d | log(β)| ,

where we have used (17).
This last inequality holds for every γ ∈ (0, 1). We can take, for example, γ ∈ (0, 1) such

that 3dγ d(1 + 4d2) =
(
1 − 1

2d

)
1

(8
√
d)d

(this is not sharp, but it is close enough). For this γ

we get

dimH(F) ≥ d − K1
αd

| log(β)| ,

where

K1 :=
2d(24

√
d)d

(
log(2) + log(8

√
d)
)

1 − 1
2d

making K2 :=
(

(24
√
d)d(1 + 4d2)

1 − 1
2d

)2

.

It remains to prove that F ⊂ S ∩ B0, since then

dimH(S) ≥ dimH(S ∩ B0) ≥ dimH(F) ≥ d − K1
αd

| log(β)| .

Clearly F ⊂ B0, by definition of F . We need to show that F ⊂ S. Let x ∈ F . For every
j ∈ N there exists a unique BjN ∈ B j containing x . By definition of B j+1 we have that
B( j+1) ⊂ 1

2 BjN . By (11), π j N (B( j+1)N ) = BjN . The sequence (BjN ) j can be extended in
a unique way to a sequence (Bn)n satisfying Bn ∈ En and Bn := πn(Bn+1) for all n. We
interpret this sequence as Bob’s moves, to which Alice responds according to her winning
strategy.

Thus, for each x ∈ F we construct a sequence (Bn)n as before, where x is the only
element of

⋂
n Bn (so x = x∞ is the outcome of the game). We will show that x ∈ S by

contradiction. Otherwise, suppose that x /∈ S where S is an (α, β, c, ρ)-winning set. Then,
x ∈ ⋃

m∈N0

⋃
i Ai,m , where

∑
i (diam Ai,m)c ≤ (αρm)c = (αβmρ)c (since it is a legal move

for Alice we know that
⋃

i Ai,m ∈ A(Bm)). So x ∈ A ∈ A(Bm) for some m, and as x ∈ Bm

we have x ∈ A ∩ Bm . Since A∗
m(Bn) = A(Bm) for every n > m (because πm(Bn) = Bm),

then φ j (BjN ) ≥ (diam A)c for every j such that j N > m (because (diam A)c is just one
term in the sum of the definition of φ j (BjN ) when A ∈ A∗

m(Bn)).
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On the other hand, since BjN ∈ D′
j , then φ j (BjN ) ≤ (γρ j N )c. Putting everything

together, diam A ≤ γρ j N for all j such that j N > m. Letting j → ∞, we get diam A = 0,
a contradiction. So x ∈ S, that is F ⊂ S.

Finally, using (18), and that K1/K2 < 1,

K1
αd

| log(β)| ≤ (d − c)K1

K2
< d,

so

d − K1
αd

| log(β)| > 0 if αc ≤ 1

K2
(1 − βd−c).

This concludes the proof. ��
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