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ABSTRACT
We numerically determine equilibrium states for three-dimensional quasi-geostrophic vortex arrays. The vortex arrays consist of five or
eight equal volume and equal uniform potential vorticity peripheral eddies whose center lies equally spaced along a circle and of a similar
vortex at the center of the array. We are specifically interested in the influence of the height-to-width aspect ratio of the vortices on the arrays’
properties. The linear stability of the vortex arrays is addressed and the vortex arrays are shown to be sensitive to instabilities when the vortices
are close enough together. The onset of instability corresponds to a threshold for the distance between the peripheral vortices and the center
of the array. Measured as a fraction of the mean vortex horizontal radius, the stability threshold increases as the height-to-width aspect ratio
of the vortices increases. For a separation larger than the stability threshold between the vortices, the arrays are linearly stable, hence robust
and long-lived in the nonlinear regime. We also show that prolate peripheral vortices exhibit a concave outer side when they are close to the
center of the array, while it is convex otherwise. The nonlinear evolution of a selection of unstable vortex arrays is examined. In such cases,
the vortices deform and some vortices merge, breaking the symmetry of the vortex array. The later evolution of the unstable vortex arrays can
be convoluted.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0081687

I. INTRODUCTION
Vortices, or swirling masses of fluid, are ubiquitous features

of fluid flows. Vortex arrays may exist in a state of equilibrium,
where the vortices neither deform nor move relative to each other,
leading to the notion of vortex statics introduced by Thomson in
1875.1 For such vortex arrays, the flow induced by the vortices is
steady in a frame steadily moving with the vortices. Vortex arrays
with enough symmetries can often be in equilibrium. Inspired by
the work by Mayer2 on floating magnets, Thomson3 first consid-
ered circular arrays of two-dimensional point vortices. The linear
stability of such circular two-dimensional vortex arrays was first
addressed by Thomson.4 Thomson concluded that circular arrays
of six or less identical vortices were linearly stable. A correction to
Thomson’s results later showed that a circular array of seven identi-
cal vortices was also stable.5,6 Point vortex arrays are only sensitive to
displacement modes of instability, which results in the motion of the
vortices away from their equilibrium location. The study of circu-
lar two-dimensional vortex arrays was later extended to finite-core
vortices.7,8 Finite-core vortices can also be sensitive to deformation

modes of instability, which primarily affects the shape of the vortices
rather than their location. Two-dimensional vortex arrays have been
extensively further investigated.9–12

Large-scale atmospheric and oceanic vortices are strongly influ-
enced by the planetary rotation and stable background density
stratification. When these two effects are dominant, the dynamics
of the vortices is accurately captured by an asymptotic model, the
quasi-geostrophic (QG) model. The study of circular vortex arrays
was first extended to atmospheric and oceanic flows using the quasi-
geostrophic shallow water model13–16 and then in a two-layer QG
system.16,17 More recently, circular vortex arrays have been stud-
ied in a three-dimensional, continuously stratified QG model.18–20

In particular, Reinaud21 investigated the stability of QG point vor-
tex arrays and finite-core vortex arrays for vortices having a unit
height-to-width ratio. It was shown that only arrays of less than six-
point vortices are linearly stable in this regime. Arrays with more
vortices can be stabilized if a like-signed vortex is placed in the
center of the array. The present contribution is an extension to
this study for arrays of vortices with various height-to-width aspect
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ratios. In a continuously stratified fluid, varying the vortex height-
to-width aspect ratio is equivalent to varying the Burger number of
the vortices.

Persistent regular vortex arrays have been observed over the
poles of Jupiter by the JUNO mission.22–24 An array of five vortices
rotates around a central vortex (a “5 + 1”-vortex array) on Jupiter’s
south pole, and an array of eight vortices rotates around a central
vortex (a “8 + 1”-vortex array) on its north pole. The exact nature
and the vertical structure of the vortices over the poles of Jupiter are
still debated, but elements of observations may suggest that the flow
regime is similar to the Surface Quasi-Geostrophic (SQG) regime.
Our purpose is not to explicitly model the Jovian polar vortex arrays
but rather to explore the more general case of finite-core QG vortex
arrays. Following Reinaud (2019),21 we determine and character-
ize regular arrays of finite volume and uniform potential vorticity
vortices in mutual equilibrium, and we address their linear stabil-
ity. We focus on “5 + 1” and “8 + 1”-vortex arrays, as they provide
generic examples of typical “m + 1”-vortex arrays. It should be noted
that Reinaud (2019) only considered finite-core vortex arrays up to
m = 7 but analyzed the stability of point vortex arrays up to m = 8.
It should also be noted that within the point vortex approximation,
the dynamics of co-planar QG vortices and SQG vortices are for-
mally equivalent.25 Hence, the stability of SQG point vortex arrays
can be directly recovered from the QG analysis.21 On the other hand,
for finite-core vortices, an SQG vortex can be seen as the limit of
QG finite-volume vortex whose height-to-width aspect ratio tends
to zero.26,27

We show that the vortex arrays are sensitive to deformation
modes when the vortices are close enough together. The impact
of the instability is then investigated by numerically simulating the
nonlinear evolution of a selection of unstable vortex arrays. Vortices
first deform resulting in the partial merger of some of them. These
mergers break the symmetry of the vortex arrays and eventually lead
to a convoluted late evolution of the vortices.

This paper is organized as follows: The governing equations
and the setup of the study are presented in Sec. II. Section III
describes the equilibrium states for the vortex arrays and addresses
their linear stability. The nonlinear evolution of a selection of unsta-
ble vortex arrays is presented in Sec. IV. Conclusions are drawn in
Sec. V.

II. MATHEMATICAL SETUP
A. The quasi-geostrophic model

The quasi-geostrophic model used in this study derives from
the three-dimensional Euler’s equations for a rotating and stratified
fluid under the Boussinesq approximation. Let U be a horizontal
velocity scale, L a horizontal length scale, and H a vertical length
scale. We denote f as the Coriolis frequency and N as the buoyancy
(or Brunt–Väisälä) frequency, both assumed constant for simplicity.
The flow regime in a rotating stratified fluid is characterized by two
non-dimensional numbers, the Rossby number Ro = U/( f L) and
the Froude number Fr = U/(NH). For Fr2 ≪ Ro≪ 1, an asymp-
totic expansion in Ro of the equations leads to the definition of the
quasi-geostrophic potential anomaly (PV), q, as

q = ∂2φ
∂x2 +

∂2φ
∂y2 +

∂2φ
∂z2 , (1)

where φ = p/( f ρ0) is the geostrophic stream function, p is the
pressure, and ρ0 is the mean reference density. The PV q is mate-
rially conserved through a layer-wise two-dimensional geostrophic
velocity (u, v, 0),

∂q
∂t
+ u

∂q
∂x
+ v ∂q

∂y
= 0, (2)

where

u = −∂φ
∂y

, v = ∂φ
∂x

. (3)

Equations (1)–(3) form a closed system. In Eq. (1), the physical verti-
cal coordinate zp has been replaced by z = zpN/ f , where the constant
ratio N/ f ≫ 1 in large parts of the atmosphere and oceans. It should
be noted that in the QG regime, the vertical velocity w is not strictly
speaking zero but too small to contribute to the advection of q. It,
therefore, does not contribute to the dynamics but can be evaluated
as a diagnostics. We will not discuss w in this paper. Equation (1)
can be formally inverted using the appropriate Green’s function,

φ(x) = − 1
4π ∭

q(x′)
∣x − x′∣d

3x′, (4)

in an infinite fluid domain. Equation (4) can be formally differen-
tiated to obtain the advection velocities u and v. The fluid domain
occupied by the vortices in the vertical direction is discretized by
nl horizontal layers of equal thickness, on which the Green’s func-
tions, for φ, u, and v, can be analytically integrated. For uniform PV
vortices, the remaining horizontal integrals can be converted into
contour integrals on the vortex boundary using Green’s theorem.28

At this level of approximation, the flow is completely determined by
the evolution of the materially conserved q.

The methods used to determine finite-core equilibrium vortex
arrays, to address their linear stability and their nonlinear evolu-
tion, are all based on this contour representation of uniform PV
vortices, and they all compute the necessary quantities by explicit
contour integration, using local two-point Gaussian quadrature. All
these approaches are Lagrangian in nature, and the fluid domain is
explicitly unbounded.

The method used to determine the equilibrium states is
described in Refs. 21 and 29. It is based on making the vortex-
bounding contours converge to streamlines in the reference frame
rotating with the equilibrium, i.e.,

φ̃(Ci) = ci, (5)

a constant, along each horizontal vortex-bounding contour Ci, where
φ̃ is the stream function expressed in the frame rotating with the
array. It uses an iterative method based on partial linearization of
Eq. (5). The method was first used for two-dimensional vortices.30

The linear stability analysis is performed by analyzing deforma-
tion modes along the vortex-bounding contours, including a mode
corresponding to the displacement of the full contour.

The nonlinear simulation is performed by advection explicitly
the vortex-bounding contours using a fourth-order Runge–Kutta
scheme. A contour surgery procedure31 is used to control the
accuracy and complexity of the contour description of the vortices.
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B. General geometry
Each array consists of m = 5 and 8 peripheral vortices whose

centroid lies on a circle and an additional vortex lying at the cen-
ter of the array, which is set to the origin of the frame. Each vortex
has the same uniform PV, q = 2π, the same volume V , and the same
height-to-width aspect ratio % = h/rh, where h is the half-height of
the vortex and rh its mean horizontal radius. All vortices are centered
on the plane z = 0. It should be noted that since the vertical direction
has been rescaled by the constant ratio N/ f , if hp is the physical half-
height of the vortex (h = hpN/ f ), the vortex height-to-width aspect
ratio is

% = h
rh
= N hp

f rh
= Rov

Frv
= Bu1/2, (6)

where Rov and Frv are the Rossby and Froude numbers based on the
vortex dimensions and Bu is the vortex-based Burger number.

When determining the equilibrium states, symmetries are
imposed to minimize the computational cost. First, we take advan-
tage that the natural symmetry with respect to the plane z = 0, and
corrections to the contours are only calculated on the upper half of
the vortices. These corrections nevertheless depend on the influence
of the full vortices explicitly. We also use the fact that the system has
an m−fold azimuthal symmetry. Hence, corrections to the contours
are calculated on 1/mth of the upper central vortex only and on only
one of the m peripheral vortices. Finally, we also use the fact that
the peripheral vortices are symmetric with respect to a vertical plane
passing through the vortex centroid and the origin. This means that
corrections to the contours are only determined on one-quarter of
one of the peripheral vortices. On the other hand, no symmetry is
explicitly imposed in the linear stability analysis or in the nonlinear
simulations.

Vortices are mapped by nl = 83 horizontal layers. Contours
bounding the vortices in each layer are discretized using np
= 4m(nl/m) nodes, where (nl/m) is an integer division. This offers
a high horizontal resolution of contours while ensuring the num-
ber of nodes is even and divisible by m. This is used in practice to
impose the symmetries discussed above. We determine branches of
equilibria. A branch of equilibria for a “5 + 1”-vortex array (respec-
tively, “8 + 1”-vortex array) corresponds to a set value of %. Equilibria
within a given branch differ by the distance between the vortices. For
both m = 5 and 8, we start each branch with a circular vortex array of
typical radius ℓ = O (5 or 6 rh). Then the iterative procedure is used
to find the corresponding equilibrium. We use spheroidal vortices
as a first guess for the shape of the vortices. This choice is justified
because the vortices are well separated for ℓ ≃ 5, 6rh, and a spheroidal
(axisymmetric) vortex standing alone is a steady solution of the QG
equations. During the iterative procedure, the distance δi between
the origin and the innermost edge of the peripheral vortices for
m = 5 or the distance δo between the origin and the outermost edge
of the peripheral vortices for m = 8 is fixed. These distances can be
varied monotonously along each respective full branch of equilibria
and thus can be used as a parameter to describe the full branch. The
iterative procedure computes the corrections to the vortex-bounding
contours as well as the correction to the angular velocity Ω at which
the equilibrium steadily rotates. The iterative procedure is stopped
when the correction to Ω becomes less than 10−11. Then the distance
between the origin and the peripheral vortices is decreased by a small
amount, δc, and the procedure is resumed for the next state along

the branch. δc is not constant but is progressively decreased as the
distance δi (respectively, δo) becomes small. In practice, we first set
δc = O(0.1 rh) and start to determine the branch of equilibria. When
the method fails to converge, we restart the procedure from the last
converged equilibrium while dividing δc by ten. This is necessary
because the vortices at equilibrium become increasingly deformed as
they are closer together, hence the corrections required between two
equilibria increase as we decrease δi (respectively, δo). We stop the
procedure when vortices are close enough to nearly touch or when
the vortices form sharp corners, indicating the end of the branch of
equilibria. For each steady state, we determine the location of the
centroid of one of the peripheral vortices, which allow us to deter-
mine the radius ℓ of the circular vortex array. For both m = 5 and
m = 8, we first consider % = 0.1 and then from % = 0.25 with incre-
ments of 0.25 in the aspect ratio. We were not able to determine
numerically the full branches of equilibria for %/rh > 2 for m = 5
and % > 2.5 for m = 8. We label vortex 1 the peripheral vortex whose
centroid lies on the semi-axis x > 0.

III. EQUILIBRIUM VORTEX ARRAYS
We first characterize the shape of the “5 + 1”- and “8 + 1”-

vortex arrays. We present examples of vortex arrays for two
branches of equilibria in Fig. 1. The first branch of equilibria is for
the “5 + 1”-vortex arrays with % = 1.25, while the second branch
corresponds to the “8 + 1”-vortex array with % = 1. In both cases,
as the radius of the array is decreased, the vortices are increasingly
deformed. As already observed, vortices deform the most toward
the nearest vortex.18 If m = 5 < 2π, the closest vortex to a peripheral
vortex is the central vortex, and the innermost edge of the peripheral
vortices points toward the center. This explains why δi decreases
monotonously along the branch for the “5 + 1”-vortex arrays. On the
other hand, for m = 8 > 2π, the closest vortices of given peripheral
vortices are the two neighboring peripheral vortices in the circular
array. The peripheral vortices develop a sharp edge in the azimuthal
direction. A simple way to illustrate this deformation is to measure
the radial extend Δv = δo − δi of the peripheral vortices, defined as
the distance between the innermost and the outermost edges of the
peripheral vortices. Results are presented in Fig. 2. For m = 5, we
see the increase of Δv as ℓ decreases, indicating that the peripheral
vortices elongate in the radial direction, pointing more and more
toward the center of the array as the vortices get closer together.
This trend accelerates near the end of the branch of equilibria,
showing the increased vortex deformation as the strain induced by
the vortices increases. The opposite is observed for m = 8, where
the vortices flatten in the radial direction. Again, the deformation
rapidly increases near the end of the branch of equilibria. This
indicates that the vortices elongate in the azimuthal direction
(the volume of the vortices remains the same along a branch of
equilibria). Overall, we see that, for a given ℓ/rh, Δv/rh increases as %
increases for m = 5, while it decreases for m = 8. In both cases, Δv/rh
increasingly differs from 2; the value for a circular horizontal vortex
cross section as % increases, indicating an increased deformation
as % increases for a given ℓ/rh. The angular velocity Ω at which the
array steadily rotates is shown in Fig. 3. At leading order, Ω scales
as Ω ∼ Q/ℓ3, where Q is the volume integrated PV of the vortices.
Hence, Ω ∼ qr2

hh/ℓ3 = q%(ℓ/rh)−3, explaining qualitatively the
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FIG. 1. Equilibrium vortex arrays (vortex-bounding contours) orthographically viewed at angle of 60○ from the vertical axis. Top row: “5 + 1”-vortex array for % = 1.25 and
from left to right δi/rh = 4.477 (ℓ/rh = 5.491), δi/rh = 2.930 (ℓ/rh = 3.976), and δi/rh = 1.643 (ℓ/rh = 2.921). Bottom row: “8 + 1”-vortex array for % = 1 and from left
to right δo/rh = 5.933 (ℓ/rh = 4.962), δo/rh = 5.171 (ℓ/rh = 4.226), and δo/rh = 3.744 (ℓ/rh = 4.634).

FIG. 2. Relative radial extend Δv/rh
of the peripheral vortices for (a)
“5 + 1”-vortex arrays and (b)
“8 + 1”-vortex arrays vs the cir-
cular vortex array relative radius
ℓ/rh for % = 0.1 (dashed green),
% = 0.25 (solid green), % = 0.5 (dotted
blue), % = 0.75 (dashed blue), % = 1
(solid blue), % = 1.25 (dotted red), %
= 1.5 (dashed red), % = 1.75 (solid red),
% = 2 (dotted black), % = 2.25 (dashed
black), and % = 2.5 (solid black).

trends observed: Ω increases as ℓ/rh decreases as the vor-
tices interact more strongly, and Ω increases with % for a
given ℓ/rh.

We next present the shape of the equilibrium vortex array for
the last state obtained along each branch of equilibria. Since the
branch is described by decreasing δi for the “5 + 1”-vortex arrays
(respectively, δo for the “8 + 1”-vortex arrays), the last equilibrium
obtained corresponds to the one where the vortices are the closest, as
measured by δi (respectively, δo). Results are presented in Fig. 4 for

the “5 + 1”-vortex arrays and % = 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75,
and 2, and in Fig. 5 for the “8 + 1”-vortex arrays and % = 0.1,
0.25, 0.5, 0.75, 1, 1.25, 1.5 1.75, 2, 2.25, and 2.5. The corresponding
values of ℓ/rh are summarized in Table I. As mentioned above, for
the “5 + 1”-vortex arrays, each peripheral vortex points toward the
center of the array and exhibits a sharp inner corner, indicating the
end of the branch (no single-signed vortex equilibria may exist along
the branch for smaller δi). On the other hand, the peripheral vortices
of the “8 + 1”-vortex arrays exhibit two sharp corners on their sides,
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FIG. 3. Angular velocity Ω vs ℓ/rh for the
equilibria for (a): “5 + 1”-vortex arrays
and (b): “8 + 1”-vortex arrays vs the cir-
cular vortex array relative radius ℓ/rh
for % = 0.1 (dashed green), % = 0.25
(solid green), % = 0.5 (dotted blue), %
= 0.75 (dashed blue), % = 1 (solid blue),
% = 1.25 (dotted red), % = 1.5 (dashed
red), % = 1.75 (solid red), % = 2 (dotted
black), % = 2.25 (dashed black), and %
= 2.5 (solid black).

pointing toward the neighboring peripheral vortices on either side,
while their innermost side flattens.

For both m = 5 and m = 8, however, the most striking differ-
ence between the shape of the peripheral vortices as % is varied in the
vertical direction. Here, the PV distribution is a function of the verti-
cal coordinate z; hence, the velocity field induced by the vortices also
depends on z. This generates a vertical shear. We see that to remain
in equilibrium and withstand the shear they create, the vortices bend.
This is not unlike the deformation observed during the early non-
linear evolution of non-equilibrium pairs of interacting spheroidal
vortices as they attempt to adapt to a nearby equilibrium.32,33 For
h/rh ≤ 1, the outermost side of the peripheral vortices is convex
while it becomes concave for h/rh > 1, near the end of the branches
of equilibria. In the latter case, it should be nonetheless noted that
the outermost side is still convex for large δi (respectively, δo). The
vertical shape of the peripheral vortices is shown in Fig. 6 where
the vertical cross section of vortex 1 passing through its centroid is
displayed in the ((x − x∗)/rh, z/h)-plane. Here, x∗ is the midpoint
between the innermost and outermost edges of the vortex. The figure
also allows us to visualize the sharp innermost corner for m = 5 and
the flattened innermost side for m = 8.

We next address the linear stability of the finite-core vortex
equilibrium arrays. The linear stability analysis consists of the anal-
ysis of deformation modes of the vortex-bounding contours, taken
proportional to exp σt, where σ = σr + iσi ∈ C. The real part σr of σ is
therefore the mode growth rate while σi is its frequency. The detail
of the approach is provided in Refs. 21 and 29. Reinaud (2019)21 has
shown that both the arrays of “5 + 1” and “8 + 1” identical point vor-
tices are linearly (neutrally) stable. This stability is independent of
the distance between the vortices, and only displacement modes of
instability can be studied within the point vortex approximation. It
is therefore anticipated that the finite-core vortex arrays are linearly
stable when the vortices are far apart, and in that case, well mod-
eled by point vortices. The maximum growth rates σr are plotted vs
ℓ/rh in Fig. 7. For m = 5, the equilibria are stable for large ℓ/rh, and
a first mode of instability appears for a critical distance lc = (ℓ/rh)c.
The distance lc increases with the vortex aspect ratio % indicated that
tall vortices are more sensitive to instabilities. This is related to the
increased influence of the vertical shear as % increases. The situa-
tion is similar for m = 8 and % ≥ 2. For m = 8, smaller %, and large ℓ,
the numerical linear stability captures a small non-zero growth rate,

slowly growing from large ℓ as ℓ decreases before the growth rate
increases sharply. The small growth rates before the sharp increase
are believed to be spurious. They are believed to result from numeri-
cal truncation errors and the fact that the equilibria are not exact but
obtained numerically within a given accuracy. The latter is related
to the finite spatial discretization of the vortex boundary and the
tolerance on the correction to Ω used in the iterative method to
obtain the equilibria. This may result in a residual unsteadiness in
the “equilibria.” Numerical nonlinear simulations, however, suggest
that these equilibria (for ℓ large) are in fact stable. The sharp increase
in σr , however, indicates the onset of a genuine instability.

The instability consists of deformation modes that primarily
affect the regions of the vortices where sharp corners are forming:
that is the innermost corner of the peripheral vortices for m = 5 and
the side-corners for m = 8 as shown in Sec. IV, which addresses the
nonlinear evolution of a selection of unstable equilibria.

IV. NONLINEAR EVOLUTION
We next perform nonlinear simulations of unstable equilibria

using Contour Surgery.28 The initial conditions consist of the equi-
libria obtained in Sec. III. The modes of instability are not forced, but
the perturbations triggering the instability arise from the numerical
noise. The latter is mostly associated with redistributing the nodes
on the vortex-bounding contours, decreasing their number while
retaining an accurate description of the vortex boundary. In prac-
tice, the numerical method used to obtain the equilibria typically
requires a high spatial resolution, beyond what is needed and prac-
tical in the nonlinear simulations. Reducing the initial number of
nodes discretizing the vortex-bounding contours allows us to speed
up the initial stages of the nonlinear simulation. In all cases, the time
scale is implicitly defined by the vortex PV, q = 2π. For comparison,
a single sphere of PV has a turnover period T = 6π/q. The length
scale of the problem is set by the vortex half-height, h = 0.5.

We first consider the “5 + 1”-vortex array for % = 0.25 and
δi/rh = 2.583 corresponding to the last equilibrium of the branch.
Recall that the last equilibrium of the branch is the most unstable
one. The shape of the vortices is shown in Fig. 8 at times t = 15, 20,
and 50. The innermost edges of the peripheral vortices deform, and
filaments of PV are formed. They interact with the central vortex
by wrapping around it and merging with it. Asymmetries build up
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FIG. 4. Shape (vortex-bounding contours) of the equilibrium “5 + 1”-vortex arrays for the last state numerically obtained for % indicated to the left of the images. Two views
are presented: a top view (0○ from the vertical axis) and a view at 60○ from the vertical axis. The corresponding values for ℓ/rh are given in Table I.

in the evolution, and one of the peripheral vortices shares more
material with the central vortex compared to the other peripheral
vortices. This further increases rapidly the asymmetry of the flow.
The later evolution is convoluted with more of the peripheral vor-
tices merging. A large compound structure forms at the center,
which exerts further complex shear and strain on itself and the

surrounding vortices and filaments. The evolution is generic of the
interaction for % ≤ 1 and m < 7.21

We next consider the last “5 + 1”-vortex array for % = 2 and cor-
responding to δi/rh = 1.371. Results are shown in Fig. 9 at t = 12, 5,
15, and 25. The initial phase of the interaction is similar to the one
in the previous case. The innermost edges of the peripheral deform,
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FIG. 5. Shape (vortex-bounding contours) of the equilibrium “8 + 1”-vortex arrays for the last state numerically obtained for % indicated to the left of the images. Two views
are presented: a top view (0○ from the vertical axis) and a view at 60○ from the vertical axis. The corresponding values for ℓ/rh are given in Table I.
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TABLE I. Value of ℓ/rh for the last equilibrium states found along the branch and shown in Figs. 4 and 5.

% 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
ℓ/rh (N = 5) 2.59 2.61 2.67 2.73 2.8 2.87 2.96 3.06 3.19 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
ℓ/rh (N = 8) 3.51 3.53 3.58 3.63 3.68 3.73 3.75 3.81 3.85 3.9 3.95

FIG. 6. Vertical cross section of the
shape of a peripheral vortex for the last
equilibrium of the branch (a): “5 + 1”-
vortex arrays and (b): “8 + 1”-vortex
arrays and for % = 0.1 (dotted yellow),
% = 0.25 (dotted green), % = 0.5 (dot-
ted blue), % = 0.75 (dotted red), % = 1
(dotted black), % = 1.25 (solid yellow), %
= 1.5 (solid green), % = 1.75 (solid blue),
% = 2 (solid red), % = 2.25 (solid black),
and % = 2.5 (dashed yellow). The curves
for % = 0.1 and % = 0.25 are almost
undistinguishable. For each case, the
corresponding value of ℓ/rh is given in
Table I.

FIG. 7. Maximum growth rates σr/q
vs ℓ/rh for (a): “5 + 1”-vortex arrays
and (b): “8 + 1”-vortex arrays and for
% = 0.1 (dashed green), % = 0.25 (solid
green), % = 0.5 (dotted blue), % = 0.75
(dashed blue), % = 1 (solid blue), %
= 1.25 (dotted red), % = 1.5 (dashed
red), % = 1.75 (solid red), % = 2 (dotted
black), % = 2.25 (dashed black), and %
= 2.5 (solid black).

FIG. 8. Top view on the vortex-bounding contours for the last “5 + 1”-vortex array for % = 0.25 and δi/rh = 1.2 at times t = 15, 20, and 50.
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FIG. 9. Orthographic view at 65○ on the vortex-bounding contours for the last “5 + 1”-vortex array for % = 2 and δi/rh = 1.371 at times t = 12.5, 15, and 35.

shedding filaments of PV that wrap around and merge with the
central vortex. In the QG regime, the angular impulse,

J = 1
2∭ (x2 + y2) q d3x, (7)

is conserved. The migration of PV toward the center as the inner-
most edges of the peripheral vortices merge with the central vortex
must be compensated by the migration of some PV away from the
center. In the initial equilibrium vortex array, the top and bottom of
the peripheral vortices are horizontally further away from the center,
due to the vortex curvature. This is accentuated during the nonlinear
evolution by the requirement of conserving J as the middle section
of the peripheral vortices interacts strongly with the central vortex.
As the top and bottom of the peripheral vortices move further away
from the center of the array, they are less influenced by the PV accu-
mulating near the center and rotate more slowly than the center. The
differential rotation stretches the vortex top and bottom into long
filaments, which spiral around the merged structure in the center as
seen on the right panel of Fig. 9.

We next turn our attention to selected “8 + 1”-vortex arrays.
We again start by considering an array of very oblate vortices with
% = 0.25. We consider the last state along the equilibrium branch
corresponding to δo/rh = 4.408. Results are shown in Fig. 10. The
instability results in the deformation of the peripheral vortices, in

the region of the side corners where the peripheral vortices are close
to their neighbors. Some of the vortices merge with their neigh-
bors, forming long-curved structures. Similar results for % = 0.5 (not
shown) show that such structures can break and reform, resulting in
a convoluted late evolution and the build-up of asymmetries.

This can also be seen in the next example for % = 1. Again,
we consider the last and most unstable equilibrium, correspond-
ing to δo/rh = 4.528. Results are shown in Fig. 11. Mergers of some
peripheral vortices create large compound structures. These large
asymmetric structures surround and shear the central vortex, which
elongates and is eventually absorbed by merger by one of the periph-
eral compound structures. The late evolution is convoluted and
resembles a chaotic motion of a collection of vortices of various sizes
and shapes, which occasionally strongly interact.

The final example presented is for the tallest “8 + 1”-vortex
array with % = 2.5. We consider again the most unstable state with
δo/rh = 4.635. Results are presented in Fig. 12. As in the two other
“8 + 1”-vortex arrays discussed above, the instability results in the
deformation of the side corners of the peripheral vortices and the
merger of some of them with their neighbors. Like the previous
example, one of the compounds merged peripheral structures gets
close to the central vortex and merges with it. As the flow evolves,
filaments are shed away from the center to conserve the angular
impulse J, mostly from the vortices top and bottom.

FIG. 10. Top view on the vortex-bounding contours for the
last “8 + 1”-vortex array for % = 0.25 andδo/rh = 4.408 at
times t = 35 and 50.
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FIG. 11. Orthographic view at 45○ on the vortex-bounding
contours for the last “8 + 1”-vortex array for % = 1 and
δo/rh = 4.528 at times t = 15 and 40.5.

FIG. 12. Orthographic view at 65○ on the vortex-bounding
contours for the last “8 + 1”-vortex array for % = 2.5 and
δo/rh = 4.635 at times t = 5, 15, 20, and 36.

V. CONCLUSION
We have determined and studied branches of equilibria for

three-dimensional quasi-geostrophic vortices “m + 1”-vortex arrays
for m = 5, 8 and for various vortex aspect ratios %. It should be noted
that as % decreases, the dynamics becomes similar to the dynamics
of surface density anomalies of the surface quasi-geostrophic the-
ory. The vortex aspect ratio is related to the vortex, hence the flow’s,
Burger number. Tall vortices tend to bend to reach equilibrium as %
increases to withstand the vertical shear they induce onto each other.
When the vortices are far apart, the vortex arrays are linearly neu-
trally stable. When the distances between the vortices are less than
a threshold, depending on the number m of peripheral vortices and

% the vortex height-to-width aspect ratio (or equivalently depend-
ing on the vortex Burger number), the vortex arrays are linearly
unstable. The threshold is, however, typically close to the end of the
branch of equilibria, meaning that, in practice, most vortex arrays
are stable. This threshold, measured as a critical value of ℓ/rh for the
onset of instability, increases as % increases. The instability deforms
the vortices in the regions where they are the closest to a neighboring
vortex. This corresponds to the region of the vortices subjected to the
strongest strain. This means that for m = 5, the instability primarily
affects the innermost edges of the peripheral vortices and precipi-
tates their merger with the central vortex. On the other hand, for
m = 8, the instability triggers the merger of some peripheral vortices
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with their neighbors along the circular array. This re-organization
of the peripheral vortices breaks the symmetry of the configuration.
Eventually, the peripheral vortex structures can merge with the cen-
tral vortex. For both m = 5 and m = 8, tall vortices bend, with their
middle section closer to the center of the array than their top and
bottom sections. During the nonlinear evolution, spiraling filaments
are shed from the top and bottom of the peripheral vortices.

A natural extension to this work is to investigate three-
dimensional finite-core staggered vortex arrays. A staggering array
can be seen as a combination of two concentric circular vortex
arrays. For example, the vortices of the “8 + 1”-vortex array observed
on the north pole of Jupiter are in fact slightly staggered. The stagger-
ing of the peripheral vortices is a natural mode of instability of cir-
cular vortex arrays with an even number of peripheral vortices.21,34

Staggered point vortex arrays have already been studied,20 but it
would be interesting to determine finite-volume staggered vortex
array and to investigate whether an unstable circular vortex array
can re-organize itself into a stable staggered array.
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