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Abstract

It is undecidable in general whether a given finitely presented group is word hyperbolic.
We use the concept of pregroups, introduced by Stallings in [22], to define a new class of
van Kampen diagrams, which represent groups as quotients of virtually free groups. We
then present a polynomial-time procedure that analyses these diagrams, and either returns
an explicit linear Dehn function for the presentation, or returns fail, together with its
reasons for failure. Furthermore, if our procedure succeeds we are often able to produce
in polynomial time a word problem solver for the presentation that runs in linear time.
Our algorithms have been implemented, and when successful they are many orders of
magnitude faster than KBMAG, the only comparable publicly available software.
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1 Introduction

The Dehn function of a finitely presented group is linearly bounded if and only if the
group is hyperbolic. We describe a new, polynomial-time procedure for proving that a
group defined by a finite presentation is hyperbolic, by establishing such a linear upper
bound on its Dehn function. Our procedure returns a positive answer significantly faster
than other methods, and in particular always terminates in low degree polynomial time,
although sometimes it will terminate with fail even when the input group is hyperbolic.
Our approach has the added advantage that it can sometimes be carried out by hand,
which can enable one to prove the hyperbolicity of infinite families of groups.

A finitely generated group is (word) hyperbolic if its Cayley graph is negatively curved
as a geometric metric space; that is, if its geodesic triangles are uniformly slim. There
are several good sources, such as [1], for an introduction to and development of the basic
properties of hyperbolic groups. Another useful reference for the specific properties that
we need in this paper is [14, Chapter 6]. In particular, hyperbolic groups are finitely
presentable, and they admit a Dehn algorithm. Furthermore, for groups that are defined
by a finite presentation, this last condition implies that the group is hyperbolic.

We use [16, Chapter V] as reference for the theory of van Kampen diagrams over group
presentations, and its application to groups defined by presentations that satisfy various
small cancellation hypotheses. The arguments used in the proofs of these results can be
formulated in terms of the assignment of curvature to the vertices, edges and faces of
reduced van Kampen diagrams. The idea is to show that, under appropriate conditions,
the curvature in those parts of the diagrams that are not close to the boundary is non-
positive. For example, one specific conclusion of [16, Theorem 4.4] is that groups with
presentations that satisfy C ′(λ) for λ ≤ 1/6, or T (4) together with C ′(λ) for λ ≤ 1/4,
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have Dehn algorithms. It is not assumed in these results that the group presentations in
question are finite, but we shall be working only with finite presentations in this paper,
in which case these conditions imply that the group is hyperbolic.

The algorithmic methods developed in this paper involve the assignment of curvature
to van Kampen diagrams in the manner described above, such that the total curvature
of every diagram is 1. A serious limitation of methods that rely on small cancellation
conditions is that they are unlikely to be satisfied in the presence of short defining relators
such as powers xn, where n is small and x is a generator. However, such relators are
present in many of the most interesting group presentations. Our methods use the theory
of pregroups, developed by Stallings in [22]. This theory enable us to remove short relators,
replacing them with certain other relators of length three (the pregroup relators), which
we then ignore when considering generalisations of small cancellation.

Our general aim is to assign the curvature in such a way that vertices and edges have
zero curvature, faces labelled by pregroup relators have non-positive curvature, and other
faces that are not close to the boundary of the diagram have curvature that is bounded
above by some constant −ε < 0. Our principal theoretical result is Theorem 5.9, which
states roughly that, if we can assign curvature in this manner to all reduced diagrams
over the presentation, then the group has a Dehn function that is bounded above by a
linear function that we can specify explicitly in terms of ε and various basic parameters
of the defining presentation. So the group is hyperbolic.

Although we cannot expect such methods to work for all hyperbolic groups, we can
explore a variety of methods of assigning curvature, which we call curvature distribution
schemes. In this paper we restrict attention to a single such scheme, which we call RSym.
In Theorem 6.13, we apply Theorem 5.9 to calculate an explicit linear bound on the Dehn
function that is satisfied in the event that RSym succeeds in assigning curvature in the
required fashion. As a simple remedy in examples in which RSym does not succeed and
some, but not all, interior faces of a diagram end up with zero or positive curvature, we
could try to transfer some of the negative curvature from those faces that already have it
to those that do not. This process is hard to implement in a computer algorithm, but it
can often be done by hand, which significantly increases the applicability of the methods.

The principal algorithmic challenge is to prove that RSym succeeds on a sufficiently large
set of reduced diagrams over the input presentation. Our main algorithm, RSymVerify,
which is described in Section 7, attempts to achieve this. It is technically complicated
and involves a detailed study of the possible neighbourhoods of interior faces in diagrams
over the presentation.

For hyperbolic groups, the word problem is solvable in linear time by a Dehn algorithm.
However, the current best results require as a preprocessing step the computation of the
set S of all words of length up to 8δ that are trivial in the group, where geodesic triangles
in the Cayley graph are δ-thin. Given a linear bound λn on the Dehn function D(n) of a
finitely-presented group G, it is therefore theoretically possible to use brute force to test
all such words for triviality in G, and hence to construct the set S. However, this requires
time and space that are exponential in both δ and λ, and so is completely impractical.
We instead devise an additional polynomial-time test, which, if satisfied, enables the
polynomial-time construction of a linear time word problem solver. This additional test
is also the basis of future joint work by the sixth author, which will give a polynomial-time
construction of a quadratic time solver for the conjugacy problem, the second of Dehn’s
classic problems.

Here is a breakdown of the contents of the paper. In Section 2, we summarise the
required properties of pregroups, and define a new kind of presentation, called a pregroup
presentation, for a group G. It was shown by Rimlinger in [20] that a finitely generated
group H is virtually free if and only if H is the universal group U(P ) of a finite pregroup
P : see Theorem 2.14. Pregroup presentations enable us to view the group G as a quotient
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of a virtually free group U(P ), rather than just as a quotient of a free group, and hence
to ignore any failures of small cancellation on the defining relators of U(P ).

In Section 3 we define coloured van Kampen diagrams over these new pregroup pre-
sentations, where the relators of the virtually free group U(P ) (which we collect in a set
VP ) are coloured red, and the additional relators (which we collect in a set R) are green.
We show in Proposition 3.17 that, given any coloured van Kampen diagram Γ satisfying
a certain technical condition, there exists a coloured van Kampen diagram Γ′, with the
same boundary word as Γ, whose area is bounded by an explicit linear function of the
number of green faces of Γ. Hence, to prove that a group is hyperbolic it suffices to prove
a linear upper bound on the number of green faces appearing in any reduced coloured
diagram of boundary length n.

In Section 4 we show that if we replace our presentation by a certain related pre-
sentation, then we can assume without loss of generality that each vertex of a coloured
diagram is incident with at least two green faces. This property will be critical to our
later curvature analysis, and is automatically satisfied by diagrams over free groups, since
for them all faces are green.

Section 5 is devoted to the definition and general discussion of curvature distribution
schemes. These provide an overall schema for the design of many possible methods for
proving that a group given by a finite pregroup presentation is hyperbolic: since a pregroup
presentation is a generalisation of a standard presentation, these methods apply to all finite
presentations. As mentioned earlier, in Theorem 5.9 we characterise how these schema
can produce explicit bounds on the Dehn function.

In Section 6 we present the RSym curvature distribution scheme mentioned earlier.
For reasons of space and ease of comprehension, we restrict attention to this scheme in
this paper, but our approach can be used to define many others. Theorem 6.13 gives
an explicit bound on the Dehn function of the presentation when RSym succeeds on all
coloured van Kampen diagrams of minimal coloured area.

In Section 7 we prove (see Theorems 7.20 and 7.22) that under some mild and easily
testable assumptions on the set R of green relators, one can test whether RSym succeeds
on all of the (infinitely many) coloured van Kampen diagrams of minimal area. This
test is carried out by our procedure RSymVerify (Procedure 7.19), which runs in time
O(|X|5 + r3|X|4|R|2), where X is the set of generators, and r is the length of the longest
green relator. Our assumptions hold, for example, for all groups given as quotients of free
products of free and finite groups. We also prove that without these assumptions, one
can test whether RSym succeeds on all minimal diagrams in time polynomial in |X| and
r|R|: our procedure to do this is called RSymIntVerify (Procedure 7.30).

In Section 8 we go on to consider the word problem. Whilst a successful run of
RSymVerify or RSymIntVerify proves an explicit linear bound on the Dehn function, it is
rarely practical to construct a set of Dehn rewrites. We present a low degree polynomial-
time method to construct a word problem solver: see Theorem 8.6. The construction of
the solver succeeds in many but not all examples in which RSym succeeds, and the solver
itself runs in linear time: see Theorem 8.9 and Proposition 8.12.

In Section 9 we consider a variety of examples of finite group presentations, and show
how RSym can be used by hand to prove that the groups are hyperbolic. In particular, we
prove that RSym succeeds on groups satisfying any of a wide variety of small cancellation
conditions, we use RSym to analyse two infinite families of presentations, and we discuss a
range of possible future applications of RSym to problems concerning the hyperbolicity of
finitely-presented groups.

Our procedures have been released as part of both the GAP [6] and MAGMA [2]
computer algebra systems, and in Section 10 we present runtimes on a variety of examples,
including some with very large numbers of generators and relations. Almost none of these
examples could have been analysed using previously existing methods, due to the size of
the presentations.
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Since we have introduced many new terms and much new notation, we conclude with
an Appendix containing lists of all new terms, notation, and procedures.

As far as we know, the only other publicly available software that can prove hyperbol-
icity of a group defined by an arbitrary finite presentation is the first author’s KBMAG
package [13] for computing automatic structures. Hyperbolicity is verified by proving
that geodesic bigons in the Cayley graph are uniformly thin, as described in [12, Section
5]. It was proved by Papasoglu in [19] that this property implies hyperbolicity, but it
does not provide a useful bound on the Dehn function. An algorithm for computing the
“thinness” constant for geodesic triangles in the Cayley graph of a hyperbolic group is
described in [5], but this is of limited applicability in practice, on account of its high
memory requirements. Even on the simplest examples, the KBMAG programs involve far
too many computational steps for them to be carried out by hand, and they can only be
applied to individual presentations. The automatic structure does however provide a fast
method (at worst quadratic time) of reducing words to normal form and hence solving
the word problem in the group.

Shortly before submitting this paper, we became aware of a paper by Lysenok [17],
which explores similar concepts of redistributing curvature to prove hyperbolicity to those
presented in Section 5 of this paper. His main theorem is similar to our Theorem 5.9, but
the ideas are less fully developed.

2 Pregroup presentations

In this section we introduce pregroups, establish some of their elementary properties, and
show that any quotient of a virtually free group by finitely many relators can be defined
by a finite pregroup presentation. Pregroups were first defined by Stallings in [22].

Definition 2.1. A pregroup is a set P , with a distinguished element 1, equipped with a
partial multiplication (x, y) → xy which is defined for (x, y) ∈ D(P ) ⊆ P × P , and with
an involution σ : x→ xσ, satisfying the following axioms, for all x, y, z, t ∈ P :

(P1) (1, x), (x, 1) ∈ D(P ) and 1x = x1 = x;

(P2) (x, xσ), (xσ, x) ∈ D(P ) and xxσ = xσx = 1;

(P3) if (x, y) ∈ D(P ) then (yσ, xσ) ∈ D(P ) and (xy)σ = yσxσ;

(P4) if (x, y), (y, z) ∈ D(P ) then (xy, z) ∈ D(P ) if and only if (x, yz) ∈ D(P ), in which
case (xy)z = x(yz);

(P5) if (x, y), (y, z), (z, t) ∈ D(P ) then at least one of (xy, z), (yz, t) ∈ D(P ).

Since we will often be working with words over P , if we wish to emphasise that two (or
more) consecutive letters, say x and y, of a word w are to be multiplied we shall write
[xy].

Note that (P2) implies that 1σ = 1, and that (P1), (P2) and (P4) imply that inverses
are unique: if xy = 1 then y = xσ. It was shown in [9] that (P3) follows from (P1), (P2)
and (P4), but we include it to keep our numbering consistent with the literature.

Definition 2.2. Let P be a pregroup. We define X = P \{1}, and let σ be the involution
on X. We write Xσ to denote X, equipped with this involution, but will sometimes omit
the σ, when the meaning is clear. We shall write F (Xσ) to denote the group defined by
the presentation 〈X | xxσ : x ∈ X〉. If σ has cycle structure 1k2l on X, then F (Xσ) is
the free product of k copies of C2 and l copies of Z.

Let VP be the set of all length three relators over X of the form {xy[xy]σ : x, y ∈
X, (x, y) ∈ D(P ), x 6= yσ}. The universal group U(P ) of P is the group given by

〈X | {xxσ : x ∈ X} ∪ VP 〉 = F (Xσ)/〈〈VP 〉〉,
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where 〈〈VP 〉〉 denotes the normal closure of VP in F (Xσ).

Since this presentation of U(P ) is on a set of monoid generators that is closed under
inversion, we can and shall write the elements of U(P ) as words over X, and use xσ

rather than x−1 to denote the inverse of x. More generally, if w = x1 . . . xn ∈ F (Xσ),
then w−1 =F (Xσ) x

σ
nx

σ
n−1 · · ·xσ1 .

Stallings in [22] defines U(P ) as the universal group of P in a categorical sense: every
morphism from P to a group G factors through U(P ).

Remark 2.3. It is an easy exercise using the pregroup axioms to show that if (x, y) ∈
D(P ) and z = [xy] then (y, zσ), (zσ, x) ∈ D(P ), so that if xyzσ ∈ VP then all products of
cyclic pairs of letters are defined in P .

Example 2.4. A pregroup P such that U(P ) = F (Xσ) is free of rank n can be made by
letting X have 2n elements, defining σ to be fixed-point-free on X, and letting the only
products be xxσ = 1, 1x = x1 = x, and 1 · 1 = 1, for all x ∈ X.

Example 2.5. A pregroup P such that U(P ) is the free product of finite groups G and
H can be made as follows. We let P have elements the disjoint union of {1}, G \ {1} and
H \ {1}. We define σ to be the inversion map on both G and H, and to fix 1. We let
D(P ) = (G×G) ∪ (H ×H), and define all products as in the parent groups.

More generally, if the finite groups G and H intersect in a subgroup I, and again
P = G ∪ H with inversion and D(P ) defined as before, then U(P ) is the amalgamated
free product G ∗I H.

Definition 2.6. We define a word w ∈ X∗ to be σ-reduced if w contains no consecutive
pairs xxσ of letters: this is a slight generalisation of free reduction. We define cyclically
σ-reduced similarly.

The word w = x1 · · ·xn ∈ X∗ is P -reduced if either n ≤ 1, or n > 1 and no pair
(xi, xi+1) lies in D(P ). The word w is cyclically P -reduced if either (i) n ≤ 1; or (ii) w is
P -reduced, n > 1, and (xn, x1) 6∈ D(P ).

Stallings defines a relation ≈ on the set of P -reduced words in X∗ as follows.

Definition 2.7. Let v = x1 · · ·xn ∈ X∗ be P -reduced and let w = y1 · · · ym be any word
in X∗. Then we write v ≈ w if n = m and there exist s0 = 1, s1, . . . , sn−1, sn = 1 ∈ P
such that (sσi−1, xi), (xi, si), ([s

σ
i−1xi], si) ∈ D(P ) for all i, and yi = [sσi−1xisi]. We say

that w is an interleave of v. In the case when si 6= 1 for a single value of i, we call the
transformation from v to w a single rewrite.

Notice that if (sσi−1, xi), (xi, si), ([s
σ
i−1xi], si) ∈ D(P ) then it follows from (P4) that

(sσi−1, [xisi]) ∈ D(P ), and that yi = (sσi−1xi)si = sσi−1(xisi).

Example 2.8. Let G = 〈a〉 and H = 〈b〉 be cyclic of order 6 with a2 = b2 and I :=
G∩H = 〈a2〉, and let P = G∪H = {1, a1, a3, a5, b1, b3, b5, i2, i4} as in Example 2.5 above,
with the interpretation aj = ai, bj = bi and ij = aj = bj ∈ I. Let v = a1b1a3. Then, by
choosing s1 = i2 and s2 = i4, we obtain the interleave w = a3b3a5.

Theorem 2.9 ([22, 3.A.2.7, 3.A.2.11, 3.A.4.5 & 3.A.4.6]). Let P be a pregroup, let X =
P \ {1}, and let v, w ∈ U(P ), with v a P -reduced word. Then

(i) if v ≈ w then w is P -reduced;

(ii) interleaving is an equivalence relation on the set of P -reduced words over X;

(iii) each element g ∈ U(P ) can be represented by a P -reduced word in X∗;

(iv) if w is P -reduced, then v and w represent the same element of U(P ) if and only if
u ≈ v; in particular, P embeds into U(P ).
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Corollary 2.10. Let P be a finite pregroup. Then the word problem in U(P ) is soluble
in linear time.

Proof. The only P -reduced word representing 1U(P ) is the empty word, so we can solve
the word problem in U(P ) by reducing words using the products in D(P ). This process
is a Dehn algorithm, which by [4] requires time linear in the length of the input word.

Definition 2.11. We now define a new type of presentation, which we shall call a pregroup
presentation. Let P be a pregroup, let X = P \{1}, let σ be the involution giving inverses
in X, and let R ⊂ X∗ be a set of cyclically P -reduced words. We write

P = 〈Xσ | VP | R〉

to define a group presentation P = 〈X | {xxσ : x ∈ X}∪VP ∪R〉 on the set X of monoid
generators.

Example 2.12. We construct two pregroup presentations for G = 〈x, y | x`, ym, (xy)n〉
(with `,m ≥ 2). For the first, let P be the pregroup with universal group C` ∗ Cm, as in
Example 2.5, so that

P = {1, x = x1, x2, . . . , x`−1, y = y1, y2, . . . , ym−1}

with each xi =P xi and yi =P yi. Then σ fixes 1, maps each xi to x`−i and maps each
yj to ym−j . The set Vp consists of all triples xixjx

σ
i+j and yiyjy

σ
i+j , where + represents

modular arithmetic (and no subscript is equal to zero). Let R = {(xy)n}. Then P =
〈(P \ {1})σ | VP | R〉 is a pregroup presentation for G.

For the second, assume for convenience that `,m ≥ 3, and let Q = {1, x,X, y, Y } be
a pregroup with 1 as the identity, σ exchanging x with X and y with Y , and no other
products defined. Notice that U(Q) is a free group of rank 2. Let S = {x`, ym, (xy)n}.
Then Q = 〈{x,X, y, Y }σ | ∅ | S〉 is also a pregroup presentation for G.

Remark 2.13. We shall assume throughout the rest of the paper that there are no
relators of the form x2 for x ∈ X in R and that, instead, we have chosen a pregroup
P such that xσ = x. This can always be achieved by, for example, choosing P such
that U(P ) = F (Xσ). Notice also that R ∩ VP = ∅, since each element of R is cyclically
P -reduced.

We finish this section by considering the applicability of these presentations.

Theorem 2.14 ([20, Corollary to Theorem B]). A finitely generated group G is virtually
free if and only if G is the universal group of a finite pregroup.

The class of virtually free groups includes amalgamated free products of finite groups,
and HNN extensions with finite base groups, which is the source of many of the pregroups
that are useful in the algorithmic applications to proving hyperbolicity that are described
in this paper. More generally, a group is virtually free if and only if it is the fundamental
group of a finite graph of groups with finite vertex groups [21, Proposition 11].

For the remainder of the paper, we shall be working with groups given by finite pre-
group presentations. The following immediate corollary shows that this includes all quo-
tients of virtually free groups by finitely many additional relators.

Corollary 2.15. Let a group G have pregroup presentation P = 〈Xσ |VP |R〉, as in
Definition 2.11. Then G ∼= U(P )/〈〈R〉〉, where 〈〈R〉〉 denotes the normal closure of R in
U(P ). Furthermore, any group that is a quotient of a virtually free group by finitely many
additional relators has a finite pregroup presentation.
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3 Diagrams over pregroups

In this section, we introduce coloured van Kampen diagrams, which are a natural gen-
eralisation of van Kampen diagrams to pregroup presentations. After completing the
introductory material, our main result is Proposition 3.17, which shows that if a word of
length n can be written as a product of conjugates of k relators from R± over U(P ), then
it can be written as a product of conjugates of λk+n relators from R±∪VP over F (Xσ),
where λ depends only on the maximum length r of the relators in R, and R± denotes
R∪ {R−1 : R ∈ R}.

This section contains many new definitions, and we remind the reader that the Ap-
pendix contains a list of all new terms and notation.

In general we follow standard terminology for van Kampen diagrams, as given in [16,
Chapter 5, §1] for example. For clarity, we record some definitions that will be useful in
what follows.

Definition 3.1. We shall orient each face clockwise. We shall count all incidences with
multiplicities, for example a vertex may be incident more than once with the same face.

In the present article, we shall require our diagrams to be simply connected. There
is therefore a unique external face, and its label is the external word. All other faces are
internal. If an element x ∈ X is self-inverse in P , then x has order 2 in U(P ) and we will
identify x with xσ, so that an edge may have label x on both sides.

We will refer to a nontrivial path of maximal length that is common to two adjacent
faces of a diagram as a consolidated edge.

We denote the boundary of a face f or a diagram Γ by ∂(f) and ∂(Γ), respectively.
We consider ∂(f) (and ∂(Γ)) to contain both vertices and edges, but abuse notation and
write |∂(f)| for the number of edges. An internal face f of a diagram Γ is a boundary face
if |∂(f) ∩ ∂(Γ)| ≥ 1. A vertex or edge of Γ is a boundary vertex or edge if it is contained
in ∂(Γ).

Definition 3.2. A coloured van Kampen diagram over the pregroup presentation P =
〈Xσ |VP |R〉 is a van Kampen diagram with edge labels from Xσ, and face labels from
VP ∪R±, in which the faces labelled by an element of VP are coloured red, and the faces
labelled by an element of R±, together with the external face, are coloured green. We
shall often refer to a coloured van Kampen diagram as a coloured diagram.

For v a vertex in a coloured diagram Γ, we shall write δ(v,Γ) for the degree of v,
δG(v,Γ) for green degree of v: the number of green faces incident with v in Γ, and δR(v,Γ)
for the number of red faces incident with v in Γ.

Notice from our relator set VP that all red faces are triangles: we shall often refer
to them as such. If a word w is a product of conjugates of exactly k relators from R±
in U(P ), then there exists a coloured diagram for w with exactly k internal green faces.
The proof of this is essentially the same as for standard van Kampen diagrams; see [16,
Chapter V, Theorem 1.1], for example.

Definition 3.3. The area of a coloured diagram Γ is its total number of internal faces,
both red and green, and is denoted Area(Γ).

However, when comparing areas of diagrams, it is convenient to count green faces first
and then red triangles.

Definition 3.4. Let Γ be a coloured diagram. The coloured area CArea(Γ) of Γ is an
ordered pair (a, b) ∈ N × N, where a is the number of internal green faces of Γ and b is
the number of red triangles. Let ∆ be a coloured diagram with CArea(∆) = (c, d). We
say that CArea(Γ) ≤ CArea(∆) if a < c or if a = c and b ≤ d. A diagram has minimal
coloured area for a word w if its coloured area is minimal over all diagrams with boundary
word w.
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Definition 3.5. Let Γ be a coloured van Kampen diagram. A subdiagram of Γ is a
subset of the edges, vertices and internal faces of Γ which, together with a new external
face coloured green, form a coloured diagram in their own right.

In particular, we do not allow annular subdiagrams.

Definition 3.6. A coloured diagram is semi-σ-reduced if no two distinct adjacent faces
are labelled by w1w2 and w−1

2 w−1
1 for some relator w1w2 ∈ VP ∪R± and have a common

consolidated edge labelled by w1 and w−1
1 . It is σ-reduced if the same also holds for a

single face adjacent to itself.

Our definition of a σ-reduced coloured diagram corresponds to the usual definition of
a reduced diagram; see [16, p241], for example. Unfortunately, the proof in [16, Chapter
V, Lemma 2.1] that a diagram of minimal area is reduced breaks down in our situation
for faces adjacent to themselves, because two cyclic conjugates of a P -reduced word can
be mutually inverse in F (Xσ): we shall eventually get around this problem, and the first
step in this direction is Proposition 3.9.

First, however, we make a natural generalisation of σ-reduction.

Definition 3.7. A coloured diagram is semi-P -reduced if no two distinct adjacent green
faces are labelled by w1w2 and w−1

3 w−1
1 and have a common consolidated edge labelled

by w1 and w−1
1 , where w2 and w3 are equal in U(P ) (which, by Theorem 2.9 is equivalent

to w2 ≈ w3).

Notice in particular that a semi-P -reduced diagram is semi-σ-reduced.

Proposition 3.8. Let Γ be a coloured diagram with boundary word w. Then there ex-
ists a semi-P -reduced coloured diagram ∆ with boundary word w such that CArea(∆) ≤
CArea(Γ). If Γ is not already semi-P -reduced then this inequality is strict. Notice in
particular that the diagram ∆ is semi-σ-reduced.

Proof. If a coloured diagram Γ fails to be semi-P -reduced, then Γ contains two adjacent
green faces labelled by w1w2 and w−1

3 w−1
1 , as in Definition 3.7.

Since w2 =U(P ) w3, we can remove the consolidated edge labelled w1, identify any con-
secutive edges with inverse labels, and fill in the resulting region, with label the cyclically
σ-reduced word resulting from w2w

−1
3 , by a number of red triangles, yielding a diagram

Γ1. It is possible that Area(Γ1) > Area(Γ), but CArea(Γ1) < CArea(Γ), since Γ1 has two
fewer green faces than Γ. The process terminates at a semi-P -reduced diagram ∆.

The following result will enable us to restrict our attention to σ-reduced diagrams
later in the paper.

Proposition 3.9. Let G have pregroup presentation P. Suppose that there exists a
coloured diagram Γ over P that contains a face f that is adjacent to itself in such a
way that Γ is not σ-reduced. Then f is green.

Furthermore, there exists t ∈ X such that

(i) tσ = t and t =G 1;

(ii) all coloured diagrams ∆ of minimal coloured area with boundary label t are σ-reduced
and semi-P -reduced, and satisfy CArea(∆) < CArea(Γ).

Proof. The only way that a red triangle could be adjacent to itself is if an element of X
is trivial in U(P ), contradicting Theorem 2.9(iv). Hence f is green.

Let f be adjacent to itself via a consolidated edge labeled w1, so that reading ∂(f)
from the side of the edge labelled w1 gives w1w2, and from the other side gives w−1

1 w−1
2 .

Then w2 contains a subword w−1
1 , so there are words v1 and v2 with w2 =F (Xσ) v1w

−1
1 v2

and w =F (Xσ) w1w2 =F (Xσ) w1v1w
−1
1 v2.
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We have assumed that w2 is the inverse of the cyclic subword of w that starts just after
w−1

1 and finishes just before it, namely v2w1v1. So w2 =F (Xσ) v
−1
1 w−1

1 v−1
2 and hence,

since there is no cancellation in these products, v1 =F (Xσ) v
−1
1 and v2 =F (Xσ) v

−1
2 . Both

v1 and v2 are σ-reduced, so each is an F (Xσ)-conjugate of a self-inverse element of Xσ.
The face f in Γ encloses regions with boundary labels v1 and v2, so the corresponding

involutions are trivial in G. In fact these regions are subdiagrams Γ1 and Γ2 of Γ, and at
least one of them, say Γ1, does not contain f , and hence has coloured area less than that
of Γ. By identifying inverse pairs of edges on ∂(Γ1) we obtain a diagram with the same
coloured area as Γ1, and with boundary label a self-inverse element of Xσ.

Now let ∆ be a diagram with smallest possible coloured area such that its boundary
label is some t ∈ X with t = tσ. Then ∆ is semi-P -reduced by Proposition 3.8, and
it must be σ-reduced, since otherwise we could repeat the above argument and obtain
such a diagram with smaller coloured area. Furthermore, CArea(∆) ≤ CArea(Γ1) <
CArea(Γ).

Definition 3.10. A plane graph is a planar graph embedded in the plane, so that the
faces are determined. We denote the sets of all edges, vertices, and internal faces of a
coloured van Kampen diagram or plane graph Γ by E(Γ), V (Γ) and F (Γ), respectively,
and if the faces of Γ are coloured then we write F (Γ) = FG(Γ)∪FR(Γ), where FG(Γ) and
FR(Γ) denote the sets of internal green and red faces of Γ. For an edge e of Γ, we define
δG(e,Γ) to be the number of green faces incident with e. So δG(e,Γ) = 0, 1 or 2.

Recall from Definition 3.1 that we count incidences of faces with edges and vertices with
multiplicity: we do the same in the corresponding plane graph. Recall from Definition 3.2
that the external face of any coloured diagram Γ is green, and so contributes 1 to the
value of δG(e,Γ) for each edge on its boundary. Recall also Definition 3.2 of δG(v,Γ).

In the proof of the next result, we use the well-known Euler formula |V (Γ)|+ |F (Γ)|−
|E(Γ)| = 1 (we have 1 rather than 2 because F (Γ) does not include the external face).

Proposition 3.11. Let Γ be a simply-connected plane graph, where all faces have been
coloured red or green and the unique external face is green. Assume that the boundary of
every red face has length 3. Then, with the notation of Definition 3.10, we have

∑
e∈E(Γ)

δG(e,Γ) = |FR(Γ)|+ 2

1− |FG(Γ)|+
∑

v∈V (Γ)

(δG(v,Γ)− 1)

 .

Proof. Let E := |E(Γ)|, V := |V (Γ)|, F := |F (Γ)|, FR := |FR(Γ)| and FG := FG(Γ).
The proof is by induction on FR, so suppose first that FR = 0. Then FG = F and∑
v∈V (Γ)(δG(v,Γ) − 1) = 2E − V , so the right hand side of the above equation is 2(1 −

F + 2E − V ), which by Euler’s formula is equal to 2E =
∑
e∈E δG(e,Γ).

For the inductive step, it is enough to prove that the equation remains true when we
change the colour of an internal triangle from green to red, since any two-face-coloured
graph can be made by first colouring all faces one colour and then changing the colour
of some faces. The triangle has three sides, so when it changes colour,

∑
e∈E δG(e,Γ)

decreases by 3, the value of FR increases by 1 and FG decreases by 1. The triangle is
incident with three vertices, so

∑
v∈V (δG(v,Γ)−1) decreases by 3. Thus, the formula still

holds.

Lemma 3.12. Let Γ be a coloured diagram with cyclically σ-reduced boundary word. Then
Γ contains no vertices of degree 1.

9



Proof. We assumed in Definition 2.11 that all boundary labels of internal green faces are
cyclically P -reduced, and hence in particular are cyclically σ-reduced. Furthermore, all
boundary labels of red triangles are σ-reduced by the definition of VP . We have now
assumed that the boundary word of Γ is cyclically σ-reduced. If v is a vertex in Γ of
degree 1, then the boundary of the face containing v has label containing a subword xxσ,
where x is the label of the unique edge incident with v. This is a contradiction.

A number of the results that we prove later require the assumption that certain el-
ements of X are not trivial in G, as in Proposition 3.9. A potential problem with this
assumption is that, on the one hand the triviality of generators is known to be undecidable
in general in finitely presented groups, but on the other hand our algorithms need to be
able to test whether it holds on the presentations that we want to test for hyperbolicity.

Fortunately, as we shall see in Theorem 6.12, there is a way of avoiding these difficulties.
Although we cannot assume in our proofs that our diagrams contain no loops, we can
typically assume that, on consideration of a minimal counterexample to whatever we are
trying to prove, if there is a such a loop in the diagram Γ under consideration, then Γ
has the smallest possible coloured area among all such diagrams. The following definition
formalises this assumption.

Definition 3.13. A letter x ∈ X such that xσ = x or x is a letter of a relator in VP is called
a V σ-letter. A coloured diagram Γ over P is loop-minimal if every coloured diagram ∆ over
P that contains a loop labelled by some V σ-letter x ∈ X satisfies CArea(∆) ≥ CArea(Γ).

Example 3.14. 1. If no element of X is trivial in G, then all coloured diagrams over
P are loop-minimal.

2. If U(P ) is free, and constructed as in Example 2.4, then there are no V σ-letters,
and so all diagrams over P are loop-minimal.

3. Assume that at least one V σ-letter is trivial in G, and let ∆ be a diagram of smallest
coloured area with boundary word a single V σ-letter. Then the set of loop-minimal
coloured diagrams is the set of diagrams with coloured area less than or equal to
CArea(∆).

Our algorithms to prove hyperbolicity will be able to verify for certain presentations
that no V σ-letter is trivial in G, so that all diagrams over these presentations are loop-
minimal: see Theorem 6.12. This approach will succeed for almost all of the examples in
Section 9, and for the remainder we shall demonstrate other methods to prove that no
element of X is trivial in G.

In the remainder of this section, we shall work towards a proof of Proposition 3.17: the
total area of a loop-minimal coloured diagram is bounded above by a linear function of
the boundary length and the number of green faces. First we shall prove two results which
allow us to assume that every vertex v in a coloured diagram Γ satisfies δG(v,Γ) ≥ 1.

Lemma 3.15. Let Γ be a coloured diagram over P with boundary word w. Assume that
Γ contains a vertex v with three consecutive adjacent red triangles, and that none of the
edges in any red triangle incident with v is a loop based at v.

Then there exists a diagram ∆ over P with boundary word w, with the same green faces
as Γ, satisfying CArea(∆) ≤ CArea(Γ), in which v is incident with at least one fewer red
triangle than it is in Γ, and in which none of the edges of any of the red triangles incident
with v is a loop based at v.

Proof. Let f1, f2 and f3 be the three consecutive red triangles, with edge labels as in the
left hand picture of Figure 1. We assume that the edges labelled {a, c, e} are pairwise
distinct, and that the edges {c, e, g} are pairwise distinct, but we allow the possibility that
the edge labelled a is equal to the edge labelled g (so that v has degree 3). Some of the
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Figure 1: Reducing the degree of v

other vertices and edges in Figure 1 may not be distinct, but notice that the assumption
on loops based at v implies that none of v1, v2, v3 and v4 coincide with v, and hence that
f1, f2 and f2 are pairwise distinct.

Then aσ =P bcσ, d =P cσe and g =P ef . Hence by Axiom (P5) at least one of the
pairs ([bcσ], e), ([cσe], f) is in D(P ). Suppose that ([bcσ], e) ∈ D(P ) (the other case is
similar), and let x = [bcσe]. Then

x =P a
σe =P [bcσ]e =P b[c

σe] =P bd.

If x =P 1 then e = a and d = bσ, so Γ is not semi-σ-reduced, and v has degree at
least four (since aσe is not a subword of the label of any red triangle). We may delete
faces f1 and f2, identifying v1 with v3, the directed edge labelled b with the one labelled
dσ, and the edge labelled a with the one labelled e, to produce a diagram ∆. Then
δR(v,∆) = δR(v,Γ) − 2, and ∆ has no loops based at v (since the only amalgamated
vertices are v1 and v3, which do not coincide with v).

Otherwise, x 6= 1, and so axeσ, xσbd ∈ VP , and there is a diagram ∆ in which the
triangles f1 and f2 have been replaced by triangles f ′1 and f ′2 respectively, with labels axeσ

and xσbd (as in the right hand picture of Figure 1). We have deleted an edge {v, v2}, and
added an edge {v1, v3}. Since v1 and v3 are not equal to v, the number of red and green
faces of ∆ is identical to that of Γ, but δ(v,∆) < δ(v,Γ). Since the only added edge is
not incident with v, the condition on loops based at v still holds.

Theorem 3.16. Let Γ be a loop-minimal coloured diagram over P with cyclically σ-
reduced boundary word w. Then w is the boundary word of a loop-minimal coloured
diagram ∆ with CArea(∆) ≤ CArea(Γ), the same green faces as Γ, and every vertex v of
∆ satisfies δG(v,∆) ≥ 1. Furthermore, if Γ contains a vertex v with δG(v,Γ) = 0, then
CArea(∆) < CArea(Γ).

Proof. Suppose that v is a vertex of Γ such that δG(v,Γ) = 0. We shall show that it is
possible to modify Γ to produce a diagram ∆ with the same boundary word and green
faces, but fewer red triangles. Since CArea(∆) < CArea(Γ), the new diagram ∆ must be
loop-minimal. A vertex of degree 1 does not exist in Γ by Lemma 3.12.

We prove the result first under the assumption that the three vertices of any red
triangle are distinct. Suppose that δ(v,Γ) = 2. Let the outgoing edge labels be a and
b. Then one of the incident triangles has label aσb[bσa] and the other has label bσa[aσb],
and so Γ is not semi-σ-reduced. Thus there is a diagram ∆ with boundary word w in
which v and both triangles have been removed from Γ, and in which the edges labelled
aσb and bσa have been identified. Then ∆ has the same green faces as Γ, but two fewer
red triangles.

Suppose δ(v,Γ) ≥ 3. Since δG(v,Γ) = 0, the vertex v 6∈ ∂(Γ), so the loop-minimality
of Γ ensures that there are no loops based at v. Hence by Lemma 3.15, we can replace
Γ by a diagram Γ1 with boundary word w and the same green faces as Γ, such that
CArea(Γ1) ≤ CArea(Γ) and δR(v,Γ1) ≤ δR(v,Γ) − 1, and in which there are no loops
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Figure 2: Triangles with two or three coincident vertices

based at v. By repeating this process, we eventually reduce to a diagram Γk in which
δ(v,Γk) = 2, and the coloured area can then be reduced, yielding ∆. This completes the
proof in the case that no red triangle of Γ meets itself at one or more vertices.

Now we allow for the possibility that not all vertices of a red triangle are distinct.
Figure 2 shows the possible configurations of a red triangle in Γ in which two or more
of the vertices coincide. The red triangle is labelled T and other regions of the diagram,
which may contain additional vertices, edges, and faces, are labelled Θ, Θ1 or Θ2.

In the third of these configurations, two consecutive letters of a word in VP σ-cancel,
which contradicts the definition of VP . In the second and the fourth, there is an internal
loop labelled by a single letter from VP , contradicting our assumption of loop-minimality.

It therefore remains only to consider the case where the whole of Γ has the structure
of the first diagram in Figure 2. Here, the sub-diagram labelled Θ has no loops labelled
by V σ-letters, and so Θ can have no red triangles with coincident vertices. The boundary
word of Θ is σ-reduced, by definition of VP , and so, by the arguments above, we may
assume that all vertices of Θ have green degree at least 1. But we have to consider the
possibility that the only green face of Θ that is incident with the vertex labelled v in Γ is
the external face of Θ, which is coloured red as a face of Γ. We shall now show that this
case does not occur.

If δ(v,Γ) = 2, then the face of Θ incident with v is a red triangle, and so Θ contains a
loop labelled by a V σ-letter, contradicting our assumption of loop-minimality. If δ(v,Γ) ≥
3, there are three consecutive red triangles incident with v. Since Γ has no loops based
at v, we can repeatedly apply Lemma 3.15 to v to reduce its degree, and hence reduce
the coloured area, reaching a diagram Γ′ in which δ(v,Γ′) = 2. This yields the same
contradiction to our assumption of loop-minimality as at the beginning of this paragraph.

Proposition 3.17. Let Γ be a loop-minimal coloured van Kampen diagram with cyclically
P -reduced boundary word w of length n and let r = max{|R| : R ∈ R}. Then there
exists a loop-minimal coloured diagram ∆ with boundary word w, such that Area(∆) ≤
(3 + r)|FG(∆)|+ n− 2. If every vertex v of Γ satisfies δG(v,Γ) ≥ 1 then ∆ can be taken
to be Γ.

Proof. By Theorem 3.16, there exists a loop-minimal coloured diagram ∆ with boundary
word w and the same green faces as Γ, in which every vertex v satisfies δG(v,∆)− 1 ≥ 0.
Hence for ∆, Proposition 3.11 gives the inequality

|FR(∆)| ≤
∑

e∈E(∆)

δG(e,∆)− 2 + 2|FG(∆)|.

Each contribution to δG(e,∆) comes either from the boundary of the external face (of
length n), or from an internal green face (of which there are |FG(∆)| = |FG(Γ)|, each of
boundary length at most r), so we deduce that

|FR(∆)| ≤ n+ r|FG(∆)| − 2 + 2|FG(∆)|,
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and Area(∆) = |FR(∆)|+ |FG(∆)| ≤ (3 + r)|FG(∆)|+ n− 2, as claimed.

4 Interleaving the green relators

In Subsection 4.1 we shall generalise interleaving (Definition 2.7) to cyclic interleaving,
and show that this gives an equivalence relation on cyclically P -reduced words. Then in
Subsection 4.2 we shall prove our main result in this section, Proposition 4.10. This shows
that if we replace R by the (finite) set I(R) of all cyclic interleaves of elements of R, then
a cyclically P -reduced word w is equal to 1 in G = 〈Xσ | VP | R〉 if and only if some
cyclic interleave of w is the boundary of a coloured diagram over 〈Xσ | VP | I(R)〉 in
which each vertex is incident with at least two green faces. Finally, in Subsection 4.3 we
shall study the regions of coloured diagrams that are composed entirely of red triangles.

We remind the reader that all newly defined terms and notation are listed in the
Appendix.

4.1 Cyclic interleaving

Recall Definition 2.7 of interleaving, and that by Theorem 2.9 this yields an equivalence
relation on P -reduced words, with one equivalence class for each element of U(P ).

Lemma 4.1. Let v = x1x2 · · ·xn ∈ X∗ be cyclically P -reduced. If v ≈ w, then w is
cyclically P -reduced.

Proof. If n ≤ 1 then the result is trivial, so assume that n > 1, and let s0 = 1, s1, . . . , sn =
1 be the elements of P from Definition 2.7.

By the transitivity of ≈, it suffices to consider a single rewrite, so assume that si is
nontrivial for a single i. The result is immediate unless i = 1 or i = n − 1, so assume
without loss of generality that s1 6= 1.

Suppose first that n ≥ 3. Then xnx1x2 · · ·xn−1 is P -reduced by assumption, and
xnx1x2 · · ·xn−1 ≈ xn[x1s1][sσ1x2] · · ·xn−1. By Theorem 2.9(i), the word xn[x1s1][sσ1x2] · · ·xn−1

is P -reduced, so (xn, [x1s1]) 6∈ D(P ), which proves the result.
Otherwise, n = 2 and w = [x1s1][sσ1x2]. We need to show that ([sσ1x2], [x1s1]) 6∈ D(P ),

so assume the contrary. We apply Axiom (P5) with

(x, y, z, t) = (s1, s
σ
1x2, x1s1, s

σ
1 )

and conclude that at least one of (x2, x1s1), (sσ1x2, x1) ∈ D(P ). Suppose that (x2, x1s1) ∈
D(P ) (the other case is similar). Applying (P5) again with (x, y, z, t) = (x2, x1s1, s

σ
1 , x2)

gives (x1, x2) ∈ D(P ) or (x2, x1) ∈ D(P ), contradicting v being cyclically P -reduced.

We now define a coarser relation than ≈, by allowing the elements s0 and sn from
Definition 2.7 to be nontrivial but equal.

Definition 4.2. Let v = x1 · · ·xn ∈ X∗ be cyclically P -reduced, and let w = y1 · · · ym ∈
X∗. Then we write v ≈c w if m = n and either n ≤ 1 and v = w, or n > 1 and there
exist s0, s1, . . . , sn−1, sn = s0 ∈ P such that (sσi−1, xi), (xi, si), ([s

σ
i−1xi], si) ∈ D(P ) for

1 ≤ i ≤ n and yi = [sσi−1xisi]. We say that w is a cyclic interleave of v.

Example 4.3. Consider the pregroup P from Example 2.8, and let v = a1b1a3b5 ∈ U(P ).
Notice that since (b5, a1) 6∈ D(P ) the word v is cyclically P -reduced.

Then one cyclic interleave w of v can be made by setting s0 = s1 = s4 = i2 and
s2 = s3 = i4. With this choice of interleaving elements we find that w = a1b3a3b3.
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Theorem 4.4. Let v = x1 · · ·xn ∈ X∗ be cyclically P -reduced. If w = y1 · · · yn ≈c v,
then w is cyclically P -reduced. Furthermore, ≈c is an equivalence relation on the set of
all cyclically P -reduced words.

Proof. Since ≈c is the identity relation on words of length at most 1, we may assume
without loss of generality that n > 1.

We can move from v to w by a sequence of single rewrites. By Lemma 4.1, a single
rewrite with i 6= n replaces v by another cyclically P -reduced word and, by applying the
lemma to a cyclic permutation of v, we see that the same applies when i = n. So w is
cyclically P -reduced.

To show that ≈c is an equivalence relation, it is sufficient to prove that if w ≈c u,
where u = z1 . . . zn is the result of applying a single rewrite to w, then v ≈c u.

Suppose first that this rewrite consists of replacing (yn, y1) by ([ynt], [t
σy1]) for some

t ∈ P , so that u = [tσy1]y2 . . . yn−1[ynt]. Let s0, s1, . . . , sn−1, sn = s0 ∈ P be as in
Definition 4.2, cyclically interleaving v to w. Then yn = [sσn−1xnsn] and y1 = [sσnx1s1].
Since w is cyclically P -reduced, yny1 is P -reduced, and hence (sn, t) ∈ D(P ) by [22,
3.A.2.6]. So, putting s′i = si for 1 ≤ i < n and s′0 = s′n = [snt], we have zi = s′σi−1xis

′
i for

0 ≤ i ≤ n and v ≈c u as claimed.
The argument in the case when the single rewrite from w to u consists of the replace-

ment of (yi, yi+1) with 1 ≤ i < n is similar.

Definition 4.5. Let w ∈ X∗ be cyclically P -reduced. We denote by I(w), called the
cyclic interleave class of w, the set

I(w) = {v ∈ X∗ : v ≈c w}.

We record the following easy lemma for later use.

Lemma 4.6. Let v = x1 . . . xn ∈ X∗ be cyclically P -reduced with n > 1, and suppose
that w ∈ I(v). Then we can obtain w from v by applying a sequence of at most n single
rewrites.

Proof. By definition of the cyclic interleave class of v, there are elements y1, . . . , yn and
s0, s1, . . . , sn = s0 of X with w = y1 . . . yn and yi = [sσi−1xisi] for 1 ≤ i ≤ n. By
Theorem 4.4, the relation ≈c is transitive, so we can introduce the si individually (and
in any order) as single rewrites, where each such rewrite consists of replacing the current
word y′1y

′
2 · · · y′n by either y′1 · · · y′′i y′′i+1 · · · y′n with y′′i = y′isi and y′′i+1 = sσi y

′
i+1 for some i

with 1 ≤ i < n, or by y′′1 y
′
2 · · · y′n−1y

′′
n with y′′1 = sσ0y1 and y′′n = y′ns0.

Definition 4.7. We write I(R) for ∪R∈RI(R), and let I(P) be the pregroup presentation

〈Xσ | VP | I(R)〉.

Note in particular that, since X and R are finite, so is I(R). Faces of diagrams over I(P)
are coloured red and green, just as for coloured diagrams over P.

Theorem 4.8. The normal closure of 〈VP ∪R〉 in F (Xσ) is equal to the normal closure
of 〈VP ∪ I(R)〉 in F (Xσ). Hence, G is defined by P if and only if G is defined by I(P).

Proof. One containment is clear, since R ⊂ I(R). For the other, by Lemma 4.6 each
element of I(R) is made by applying a finite number of single rewrites to each R =
x1 . . . xn ∈ R, and so is conjugate to a word that is equal in U(P ) to an element of R.
The final statement follows from Corollary 2.15.

As a result of the above theorem, we shall move between working with a presentation
P and a presentation I(P) without further comment.
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4.2 Green-rich diagrams

Recall Definitions 3.1 and 3.2 and in particular our conventions on counting incidence,
and on the boundary of diagrams. The following definition will be used throughout the
rest of the paper, as it is key to our methods of proving hyperbolicity.

Definition 4.9. A coloured diagram Γ in which each vertex v satisfies δG(v,Γ) ≥ 2 is
green-rich.

The following is our main result in this section.

Proposition 4.10. Let Γ be a loop-minimal coloured diagram over I(P) with cyclically
σ-reduced boundary word w.

(i) Assume first that w is cyclically P -reduced and that, if |w| = 1, then the unique
boundary face of Γ is green. Then some w′ ∈ I(w) is the boundary word of a green-
rich loop-minimal coloured diagram ∆ over I(P) with CArea(∆) ≤ CArea(Γ).

(ii) If, instead, |w| > 1 and w is not cyclically P -reduced, then w is the boundary word
of a loop-minimal coloured diagram ∆ over I(P) with CArea(∆) ≤ CArea(Γ), in
which all non-boundary vertices v satisfy δG(v,∆) ≥ 2.

In both cases, if Γ is not green-rich, then CArea(∆) < CArea(Γ).

Proof. The assumptions of loop-minimality, and that if |w| = 1 then the unique boundary
face of Γ is green, together imply that Γ does not have a unique boundary face that is red.
The loop-minimality then implies that the vertices of each red triangle of Γ are distinct,
and that if |w| = 1, with v0 the unique boundary vertex, then δG(v0,Γ) ≥ 3.

By Theorem 3.16 we may assume that every vertex v of Γ satisfies δG(v,Γ) ≥ 1.
Assume that δG(v,Γ) = 1, and that if v ∈ ∂(Γ) then w is cyclically P -reduced. Let
ab be the length two subword of the boundary label of the unique green face f that is
incident with v, so that v is between a and b. We shall construct a coloured diagram ∆
with boundary word w′ ∈ I(w), in which v no longer exists, and such that CArea(∆) <
CArea(Γ). The loop-minimality of Γ implies that ∆ is loop-minimal.

If v is incident with a unique red triangle T , then δ(v,Γ) = 2, which implies that bσaσ

is a subword of the boundary label of T , and so (bσ, aσ) ∈ D(P ). Elements of R (and by
Theorem 4.4 also of I(R)) are cyclically P -reduced, so v ∈ ∂(Γ). But in this case w was
assumed to be cyclically P -reduced, a contradiction.

If v is incident with exactly two red triangles, then they must be distinct and share an
edge. Let the third edge incident with v be labelled c, so that the triangles have labels with
subwords cσaσ and bσc. Then (a, c) and (cσ, b) are also in D(P ), and ([ac], [cσb]) /∈ D(P )
by Theorem 4.4. A single rewrite can therefore be applied to the label of f , replacing ab
with [ac][cσb]. This has the effect of replacing f by a face labelled with a cyclic interleave
of the label of f , removing the vertex v and its two incident red triangles from Γ, and
leaving the number of green faces unchanged.

Assume finally that δR(v,Γ) ≥ 3. Since v is not a boundary vertex of a diagram with
boundary length 1, the loop-minimality of Γ means that there are no loops based at v.
Hence we can repeatedly apply Lemma 3.15 to make a diagram Γ′ in which δR(v,Γ′) = 2,
and then delete v and the final two red triangles incident with it, as in the previous
paragraph.

In what follows, we shall often assume that we work with green-rich van Kampen
diagrams. But, since we have not been able to eliminate the existence of non-green-
rich loop-minimal diagrams with boundary length 1 and the unique boundary face a red
triangle, we need to take that possibility into account when developing algorithms, as we
shall do in Theorem 6.12.
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4.3 Red blobs

We now turn our attention to the regions of coloured diagrams that are comprised entirely
of red triangles.

Definition 4.11. A red blob in a coloured diagram Γ is a nonempty subset B of the set
of closed red triangles of Γ, with the property that any nonempty proper subset C of B
has at least one edge in common with B \C. Equivalently, the induced subgraph B of the
dual graph Γ of Γ on those vertices that correspond to the triangles in B is connected.

A red blob is simply connected if its interior is homeomorphic to a disc: its boundary
may pass more than once through a vertex.

Notice that a simply-connected red blob corresponds to a van Kampen diagram over
U(P ), and so in particular has boundary length greater than one, by Theorem 2.9. (How-
ever, not all van Kampen diagrams over U(P ) correspond to red blobs, since the interior
of such diagrams may be disconnected).

Lemma 4.12. Let B be a red blob in a coloured diagram Γ, with boundary length l and
area t. Then l ≤ t + 2, and l ≤ t if B is not simply connected. Furthermore, if B is
simply connected, and every vertex of B lies on ∂(B) (which holds in particular when Γ
is green-rich), then l = t+ 2.

Proof. Let B be the induced subgraph of Γ that corresponds to the triangles in B, as in
Definition 4.11. A vertex of degree 1 in B corresponds to a triangle in B that has two
edges on ∂(B). Deleting this triangle reduces both the number of boundary edges and
the number of triangles by 1, and B remains connected. We repeatedly remove degree
1 vertices from B until none remain. At that stage, either a single vertex remains, in
which case l = t+ 2, or the remaining vertices all have degree at least two. Such vertices
correspond to triangles with at most one edge on ∂(B), so the number of triangles is at
least the boundary length, and l ≤ t.

If B is not simply connected, then B contains a circuit, and so the second of the above
two situations arises, and l ≤ t.

Now assume that all vertices of B lie on ∂(B), and B is simply connected. We shall
show that B is a tree, from which the final claim follows. By way of contradiction, let
C be a circuit in B. It is a standard result from graph theory (see, for example, [24,
Corollary 4.15]) that the corresponding edges in B form a cutset in B. Hence the circuit
must enclose at least one vertex of B. We have assumed that all vertices of B lie on ∂(B),
so this contradicts the fact that B is simply connected.

Proposition 4.13. Let Γ be a loop-minimal coloured diagram with cyclically σ-reduced
boundary word w. Then there exists a loop-minimal coloured diagram ∆ with boundary
word w, with CArea(∆) ≤ CArea(Γ), and in which the (cyclic) boundary word of each
simply connected red blob has no proper subword equal to 1 in U(P ). If Γ is green-rich
then ∆ is green-rich. Furthermore, if Γ does not have the required property already, then
CArea(∆) < CArea(Γ).

Proof. Let B be a simply connected red blob in Γ with boundary word w = x1 . . . xn.
First note that by Theorem 3.16, we may assume that all vertices of Γ have green degree
at least one. Hence all vertices of B lie on ∂(B), and Area(B) = n− 2 by Lemma 4.12.

We first consider σ-reduction, so assume (without loss of generality) that w = x1x
σ
1w1.

Notice that w =U(P ) 1, so w1 =U(P ) 1. Hence we can identify the vertices at the beginning
of the edge labelled x1 and the end of the edge labelled xσ1 , and replace B by a coloured
sub-diagram Θ consisting of a red blob B1 with boundary word w1, with a single edge
added to the boundary. The blob B1 is simply connected with all vertices on the boundary,
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and |∂(B1)| = |w1| = n − 2, so Area(B1) = n − 4 by Lemma 4.12. The diagram ∆ in
which B has been replaced by Θ satisfies CArea(∆) < CArea(Γ), so ∆ is loop-minimal.
Replacing B by Θ cannot decrease the green degrees of vertices, so if Γ is green-rich then
∆ is green-rich.

Now we consider subwords of w of length greater than 2. Assume that w has a
factorisation w = w1w2 such that w1 and w2 have lengths b1, b2 ≥ 3, and w1 =U(P )

1 =U(P ) w2. We can produce a new diagram ∆ in which the two vertices where w1 and
w2 start and end are identified, and B has been replaced by two red blobs B1 and B2

with boundary words w1 and w2, of area b1−2 and b2−2, respectively. From b1 + b2 = n,
we see that Area(B1) + Area(B2) = n − 4, so CArea(∆) < CArea(Γ), and hence ∆ is
loop-minimal. As before, if Γ was green-rich then ∆ is still green-rich.

Definition 4.14. We say that a ∈ X intermults with b ∈ X if b 6= aσ and either
(a, b) ∈ D(P ) or there exists x ∈ X such that (a, x), (xσ, b) ∈ D(P ). We also say that
(a, b) is an intermult pair.

Example 4.15. If P is the natural pregroup for a free product (with no amalgamation),
constructed as in Example 2.5, then the intermult pairs are precisely the non-inverse pairs
of non-identity elements contained within a free factor.

If P is instead the natural pregroup for a free product with non-trivial amalgamation,
then the intermult pairs are all non-inverse pairs of non-identity elements.

In the following lemma, we do not assume that the red blob is simply connected: it
may therefore have more than one boundary word. The following lemma will be used in
the algorithmic part of this paper, to reduce the number of possible boundary words of
red blobs.

Lemma 4.16. If g, a ∈ X and ga is a subword of a boundary word of a red blob B with
σ-reduced boundary words, then g intermults with a.

Proof. First notice that the assumption that B has σ-reduced boundary words shows that
g 6= aσ.

Let v be the vertex between g and a on the boundary of B. Reading clockwise around
v from a as far as g, let the labels of the outgoing edges be a = a1, a2, . . . , ak, g

σ = ak+1

(the outgoing label is gσ not g). Notice that the edges labelled a2, . . . , ak are all interior
to B, since ga is a subword of a boundary word. Notice also that

(aσi+1, ai) ∈ D(P ) for 1 ≤ i ≤ k. (1)

We shall show by induction that (1) implies that ak+1 = g intermults with a1 = a.
If k = 1 then (aσ2 , a1) = (g, a) ∈ D(P ). If k = 2 then (aσ2 , a), (g, a2) ∈ D(P ), so

(g, a) is an intermult pair. Assume that k ≥ 3, and for 1 ≤ i ≤ 3 let bi = [aσi+1ai]
σ,

so that the boundary label of each triangle is aσi+1aibi. Then applying Axiom (P5) to
(b1, a

σ
2 ), (aσ2 , a3), (a3, b3) ∈ D(P ) shows that at least one of ([b1a

σ
2 ], a3), (aσ2 , a3b3) ∈ D(P ).

Since b1a
σ
2 = aσ1 and a3b3 = a4, at least one of (aσ3 , a1), (aσ4 , a2) ∈ D(P ), so the result

follows by induction.

5 Curvature distribution schemes

In this section, we introduce the concept of curvature distribution schemes, and prove
that they can be used to show that groups given by a pregroup presentation satisfy an
explicit linear isoperimetric inequality, and hence are hyperbolic.
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Definition 5.1. Let Γ be a coloured van Kampen diagram with vertex set V (Γ), edge
set E(Γ), set of red triangles FR(Γ) and set of internal green faces FG(Γ). Let F (Γ) =
FR(Γ)∪FG(Γ). A curvature distribution is a function ρΓ : V (Γ)∪E(Γ)∪F (Γ)→ R such
that ∑

x∈V (Γ)∪E(Γ)∪F (Γ)

ρΓ(x) = 1.

Definition 5.2. Let K be a set of coloured diagrams over I(P). A curvature distribution
scheme on K is a map Ψ : K → {ρΓ : Γ ∈ K}, that associates a curvature distribution
to every diagram in K.

Example 5.3. For any coloured diagram Γ we can define a curvature distribution by
setting ρΓ(v) := +1 for each vertex v, setting ρΓ(e) := −1 for each edge e, and setting
ρΓ(f) := +1 for each internal face f . Euler’s formula ensures that the total sum of all
curvature values is +1. Since this defines a curvature distribution for every diagram, it
gives rise to a curvature distribution scheme on K, where K is any set of coloured diagrams
over I(P), for any pregroup presentation P.

Definition 5.4. Let Γ be a plane graph, and let Γ be its dual. Let f1 and f2 be faces of
Γ, corresponding to vertices v1 and v2 of Γ. The dual distance in Γ from f1 to f2 is the
distance in Γ from v1 to v2.

Definition 5.5. The pregroup Dehn function PD(n) : Z≥0 → Z of a pregroup presen-
tation P = 〈Xσ | VP | R〉 is defined as follows. For each σ-reduced word w ∈ X∗ with
w =G 1, let A(w) be the smallest area of a coloured diagram over P with boundary label
w. Then PD(n) := max{A(w) : w ∈ X∗, w =G 1, |w| ≤ n}.

PD(n) may differ from the standard Dehn function D(n) of a corresponding group
presentation, because faces of standard van Kampen diagrams labelled by relators x2,
corresponding to generators x ∈ X with x = xσ, are not counted. To bound D(n) in
terms of PD(n), we need to fix a corresponding group presentation.

Definition 5.6. Let P = 〈X | VP | R〉. Let Y be a minimal subset of X such that X =
Y ∪Y σ (so Y generates P as a group). Let subsets V ′P and T of F (Y ) be constructed from
VP and R, respectively, by replacing all symbols x ∈ X \Y by (xσ)−1. Then the standard
group presentation corresponding to P is PG := 〈Y | {x2 : x ∈ Y, x = xσ} ∪ V ′P ∪ T 〉.

Example 5.7. Let P = 〈x, y, z | y3, z3 | (xz)7, (xyxz)4〉 with xσ = x and yσ = z. Then
choosing Y = {x, y} gives PG = 〈x, y | x2, y3, y−3, (xy−1)7, (xyxy−1)4〉 (where we could
of course omit the redundant relator y−3).

The following bound is not at all tight, but suffices to show that if PD(n) is linear
then so is D(n).

Lemma 5.8. Let PD(n) and D(n) be the pregroup and standard Dehn functions of P and
PG, respectively. Let rI be the maximum number of involutory generators appearing in
any R ∈ VP ∪R. Then D(n) ≤ rIPD(n) + n/2.

Proof. To change a coloured diagram into a standard van Kampen diagram, we first
replace each edge label from X \ Y by the inverse of the corresponding element of Y .
This produces a diagram that is almost a van Kampen diagram, except that involutions
x ∈ P may appear on both sides of an edge. But we can rectify that as follows. For
R ∈ VP ∪ R, let RI denote the number of involutory generators occurring in R (with
multiplicity). Then, in a diagram Γ over F (Xσ), a face previously labelled by R±1 needs
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to have RI digons (with boundary labels of the form x2) added to its boundary to correct
the edge labels. There are at most PD(n) faces in Γ, and at most n boundary edges. Each
boundary edge is incident either with an internal face, or twice with the external face, so
the result follows.

The following theorem is one of the key results in this paper. It appears technical,
but the insight behind it is straightforward. We shall show how curvature distribution
schemes give sufficient conditions for the area of a van Kampen diagram Γ over P to
be bounded by a multiple of the boundary length n: this is our generalisation of small
cancellation.

We first ensure that all of the positive curvature is associated with the green faces
of Γ, and that there is a fixed upper bound m on the curvature of any face. Then we
ensure that the green faces at dual distance greater than d from the boundary in fact have
curvature bounded above by −ε, for some fixed d and fixed ε > 0. Notice that the number
of green faces at dual distance at most d from ∂(Γ) is bounded by a function of n and
the length of the longest relator, and this function is linear in n. Hence, since the total
curvature must sum to 1, the total number of green faces is bounded by a linear multiple
of n. If the number of red faces is bounded linearly in terms of the number of green faces
(for example, if Γ satisfies the conditions of Proposition 3.17), then the desired proof of
linear area follows.

Theorem 5.9. Let P = 〈Xσ | VP | R〉 be a pregroup presentation for a group G, and
let r be the maximum length of a relator in R. Let K be a set of coloured van Kampen
diagrams over I(P), and let Ψ : K → {ρΓ : Γ ∈ K} be a curvature distribution scheme.

Assume that there exist constants ε ∈ R>0, λ, µ,m ∈ R≥0 and d ∈ Z>0 such that the
following conditions hold, for all Γ ∈ K:

(a) ρΓ(x) ≤ 0 for all x ∈ V (Γ) ∪ E(Γ) ∪ FR(Γ),

(b) ρΓ(f) ≤ −ε for all faces f ∈ FG(Γ) that are dual distance at least d + 1 from the
external face,

(c) if Area(Γ) > 1, then ρΓ(f) ≤ m for all faces f ∈ FG(Γ) that are dual distance at
most d from the external face,

(d) Area(Γ) ≤ λ|FG(Γ)|+ µ|∂(Γ)|.
Then each Γ ∈ K with boundary length n and area greater than 1 satisfies

Area(Γ) ≤ f(n) = λ

(
n

(r − 1)d − 1

r − 2

(
1 +

m

ε

)
− 1

ε

)
+ µn. (2)

Assume now that, in addition, the following holds:

(e) if w ∈ X∗ is cyclically P -reduced, and satisfies w =G 1, then there exists a diagram
Γ ∈ K with boundary word some w′ ∈ I(w).

Then the group G is hyperbolic. In particular, if I(w) = {w} for all w ∈ X∗, then the
pregroup Dehn function of P is bounded above by max{f(n), 1}.

Proof. We show first that Equation (2) holds. Let Γ ∈ K have boundary length n, and
let F := F (Γ) and FG := FG(Γ). If Area(Γ) = 1, then Equation (2) does not apply, so
assume that Area(Γ) > 1.

Let I be the set of green faces that are dual distance at least d+ 1 from the external
face (the set I may be empty). From Condition (a) we deduce that

∑
f∈FG ρΓ(f) =∑

f∈I ρΓ(f) +
∑
f∈FG\I ρΓ(f) ≥ 1. Combinatorial considerations show that

|FG \ I| ≤ n+ n(r − 1) + n(r − 1)2 + · · ·+ n(r − 1)d−1 = n
(r − 1)d − 1

r − 2
.
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Condition (b) yields
∑
f∈I ρΓ(f) ≤ −ε|I| and then applying Condition (c) (since Area(Γ) >

1), we deduce that

ε|I| ≤ −
∑
f∈I

ρΓ(f) ≤
∑

f∈FG\I

ρΓ(f)− 1 ≤ mn (r − 1)d − 1

r − 2
− 1.

From this we get |I| ≤ 1
ε

(
mn (r−1)d−1

r−2 − 1
)

, and so by Condition (d) we see that

|F | ≤ λ(|I|+ |FG \ I|) + µn

≤ λ
(

1
ε

(
mn (r−1)d−1

r−2 − 1
)

+ n (r−1)d−1
r−2

)
+ µn

and Equation (2) follows.
Now assume that Condition (e) also holds. Each single rewrite of the boundary word

of a diagram Γ adds two red triangles to the diagram, as in the proof of Proposition 4.10.
It therefore follows from Lemma 4.6 that, if there is a diagram Γ with boundary label
a word w of length n then, for any w′ ∈ I(w), there is a coloured diagram of area
at most Area(Γ) + 2n with boundary label w′. So there is a linear upper bound on the
pregroup Dehn function, and hence by Lemma 5.8 the Dehn function, of G. The remaining
assertions now follow.

In the curvature scheme that we shall study in the remainder of this paper, we shall
generally set d = 1, and we shall prove that m = 1/2.

Corollary 5.10. Let P = 〈Xσ | VP | R〉 be a pregroup presentation for a group G, such
that each x ∈ X is nontrivial in G. Let r be the maximum length of a relator in R, let K
contain all diagrams over P of minimal coloured area for each cyclically P -reduced word
w that is trivial in G, and let Ψ be a curvature distribution scheme on K.

If there exists ε > 0 such that Conditions (a), (b) and (c) of Theorem 5.9 hold, with
m = 1/2 and d = 1, then G is hyperbolic, and the pregroup Dehn function of P is bounded
above by

n

(
4 + r +

3 + r

2ε

)
− 3 + r

ε
.

Proof. Notice that since each x ∈ X is nontrivial in G, all diagrams are loop-minimal. By
Theorem 3.16, each diagram Γ of minimal coloured area for its boundary word satisfies
δG(v,Γ) ≥ 1 for each vertex v. Hence by Proposition 3.17 each diagram of minimal
coloured area for its boundary word satisfies Condition (d) of Theorem 5.9, with λ = 3+r
and µ = 1. Substituting for λ, µ, m and d into (2) yields

f(n) = (3 + r)

(
n(1 +

1

2ε
)− 1

ε

)
+ n.

This gives an upper bound on the area of all diagrams whose area is greater than 1. The
assumption that each x ∈ X is nontrivial in G implies that any diagram of area 1 has
n ≥ 2, and one may check that if n ≥ 2 then f(n) ≥ 1. Hence f(n) bounds the pregroup
Dehn function of G.

In general, it is not practical to let K consist only of diagrams of minimal coloured area
for their boundary word, as membership of K cannot easily be tested. We shall however
define in the next section a useful set of diagrams with an easily-testable membership
condition. We shall also deal with the condition in the above corollary that each generator
is nontrivial in the group G.
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The remainder of this paper presents and analyses one curvature distribution scheme,
chosen because it can be tested in time that is bounded by a low-degree polynomial
function of |X|, |R| and r, and because it verifies that V σ-letters are nontrivial in G.
There are, of course, infinitely many possible such schemes, and we leave as an open
problem the development of others that are also computationally or theoretically useful.

6 The RSym scheme

In this section we describe a curvature distribution scheme that treats each vertex and
each edge of each diagram symmetrically, and so is called the RSym scheme. We first
specify the set D of diagrams on which RSym operates.

We remind the reader that all definitions and notation are recorded in the Appendix.

Definition 6.1. Let P be a pregroup presentation. Then D denotes the set of all coloured
diagrams Γ over I(P) with the following properties:

1. the boundary word of Γ is cyclically P -reduced (see Definition 2.6);

2. Γ is σ-reduced and semi-P -reduced (see Definitions 3.6 and 3.7);

3. Γ is green-rich (see Definition 4.9);

4. no proper subword of the boundary word of a simply connected red blob in Γ is
equal to 1 in U(P ).

Recall Definitions 3.1 and 3.2 for our conventions on coloured diagrams.

Definition 6.2. In a coloured diagram, we shall consider each edge to be composed of
two coloured half-edges, oppositely oriented. Each half-edge is associated with the face
on that side, and inherits its colour and orientation from that face.

The following algorithm, ComputeRSym, takes as input a diagram Γ ∈ D, and returns
a curvature distribution κΓ : Γ → R. The algorithm assigns and alters curvature on the
vertices, edges and faces of Γ in several successive steps: the external face has curvature
0 throughout. In the algorithm description, when we say (for example) that a half-edge
e gives curvature c to vertex v, we mean that the curvature of e is reduced by c, and
that of v is increased by c. When we say that a vertex v distributes its curvature equally
among green faces f1, . . . , fk, we mean that, if k > 0, then the current curvature c of v is
replaced by 0, and c/k is added to the curvature of each of f1, . . . , fk.

Algorithm 6.3. ComputeRSym(Γ):

Step 1 Initially, each vertex, red triangle, and internal green face of Γ has curvature +1,
and each half-edge has curvature −1/2.

Step 2 Each green half-edge gives curvature −1/2 to its end vertex, and each red half-
edge gives curvature −1/2 to its triangle.

Step 3 Each vertex distributes its curvature equally amongst its incident internal green
faces, counting incidences with multiplicity.

Step 4 Each red blob B such that ∂(B) 6⊆ ∂(Γ) sums the curvatures of its red triangles,
to get the blob curvature β(B). A red blob with b := |∂(B) \ ∂(Γ)| > 0 then gives
curvature β(B)/b across each such edge to the (internal) green face on the other
side.

Step 5 Return the function κΓ : V (Γ) ∪ E(Γ) ∪ F (Γ) → R, where κΓ(x) is the current
curvature of x.

Definition 6.4. We define RSym to be the map from D to {κΓ(x) : x ∈ D} evaluated by
ComputeRSym, so that κΓ = RSym(Γ). We denote the curvature given by a vertex v to a
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face f in Step 3 of ComputeRSym by χ(v, f,Γ), noting that if f is incident more than once
with v then f will receive a proper multiple of χ(v, f,Γ) of curvature from v. Similarly,
we denote the curvature given by a blob B to a face f in Step 4 of ComputeRSym by
χ(B, f,Γ). We shall omit the Γ from χ(v, f,Γ) and χ(B, f,Γ) when the meaning is clear.

Since the curvature in Step 1 of ComputeRSym is precisely the curvature distribution
from Example 5.3, and curvature is neither created nor destroyed by the algorithm, the
following is immediate:

Proposition 6.5. RSym is a curvature distribution scheme on D.

Recall Definition 5.4 of dual distance.

Definition 6.6. Let P = 〈Xσ | VP | R〉 be a pregroup presentation, and let ε > 0 be a
constant. We say that RSym succeeds with constant ε on a diagram Γ ∈ D if κΓ(f) ≤ −ε
for all internal non-boundary green faces of Γ.

More generally if, for some d ≥ 1, we can bound κΓ(f) ≤ −ε for all green faces of
Γ that are at dual distance at least d + 1 from the external face, then we say that RSym

succeeds with constant ε at level d. (So the default level is d = 1.)
We say that RSym succeeds on P with constant ε (at level d) if this is true for every

Γ ∈ D, and RSym succeeds on P (at level d) if there exists an ε > 0 for which RSym

succeeds.

Our goal in the rest of this section is to show that, if RSym succeeds on a pregroup
presentation P, then the group presented by P is hyperbolic. Before we can do that, we
need to study the behaviour of RSym, and then prove two technical lemmas which will
allow us to deal with our frequent assumption of loop-minimality in earlier sections.

We first show, amongst other things, that for each Γ ∈ D the curvature distribution
κΓ = RSym(Γ) satisfies Condition (a) of Theorem 5.9 for vertices.

Lemma 6.7. Let v be a vertex of a diagram Γ ∈ D, incident with vG := δG(v,Γ) green
faces, of which x are the external face. If x 6= vG then let f be a non-external green face
incident with f . Then

(i) κΓ(v) ≤ 0, and κΓ(v) = 0 if x 6= vG;

(ii) if x 6= vG then χ(v, f,Γ) = 2−vG
2(vG−x) ;

(iii) if vG > 2 and x 6= vG then χ(v, f,Γ) ≤ −1/6.

Proof. The vertex v begins with curvature +1, and vG ≥ 2 since Γ is green-rich. Thus v
has at least two incoming green half-edges, so receives at most −1 in curvature in Step 2
of ComputeRSym(Γ). Thus Part (i) holds, and Part (ii) is now clear. For Part (iii), notice
that if vG > 2 and x 6= vG then the maximum value of 2−vG

2(vG−x) is attained when x = 0

and vG = 3.

We now show that, for each Γ in D, the curvature distribution κΓ satisfies Condition
(a) of Theorem 5.9 for red faces. Recall our conventions in Definition 3.1 on boundaries
of faces.

Lemma 6.8. Let B be a red blob composed of t triangles in a diagram Γ ∈ D. Then
κΓ(T ) ≤ 0 for each triangle T of B.

Let d := |∂(B) ∩ ∂(Γ)|. Then

χ(B, f,Γ) =
−t

2|∂(B) \ ∂(Γ)|
≤ −t

2(t− d) + 4
≤ −1

6
.
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Figure 3: Isolated boundary vertex

Proof. After Step 2 of ComputeRSym(Γ), the curvature of each triangle T is −1/2, so
κΓ(T ) ≤ 0, as required. Hence χ(B, f,Γ) = −t/(2|∂(B) \ ∂(Γ)|). By Lemma 4.12,
|∂(B)| ≤ t+ 2, so

−t
2|∂(B) \ ∂(Γ)|

≤ −t
2(t− d) + 4

≤ −t
2t+ 4

≤ −1

6
.

Recall Definition 3.1 of a consolidated edge. It follows from the fact that all diagrams
Γ ∈ D are green-rich that if a consolidated edge of Γ has length greater than 1, then
both of the incident faces are green. We now show that for all diagrams Γ ∈ D, the
curvature distribution κΓ satisfies Condition (c) of Theorem 5.9, with m = 1/2 and d = 1.
The second part of the next lemma will be used when we attack the word problem, in
Section 8.

Lemma 6.9. Let Γ ∈ D have area greater than 1, and let f be a boundary green face of
Γ. Then κΓ(f) ≤ 1/2.

Furthermore, if κΓ(f) > 0 then the consolidated edges and vertices in ∂(f) \ ∂(Γ) form
a single path p, and at most three of the vertices in p lie on ∂(Γ). If there are three such
vertices, let v be the middle one (as in Figure 3). Then δG(v,Γ) ≥ 4, and f is incident
with no red blobs at v.

Proof. First assume that ∂(f) \ ∂(Γ) contains no edge. Since Area(Γ) > 1, each vertex v0

that lies on both ∂(f) and an edge of ∂(Γ)\∂(f) satisfies δG(v0,Γ) ≥ 3, and is incident at
least twice with the external face. By Lemma 6.7, each such vertex v0 therefore satisfies
χ(v0, f,Γ) ≤ −1/2, so κΓ(f) ≤ 1/2 and both claims follow.

Assume instead that ∂(f) \ ∂(Γ) contains an edge. Let β denote a maximal sequence
of incident vertices and (consolidated) edges on ∂(f), such that each edge of β is internal
in Γ, and let v1 and v2 be the vertices at the beginning and end of β. If δG(vi,Γ) ≥ 3 then
we can apply Lemma 6.7 with x ≥ 1 and vG ≥ 3 to deduce that χ(vi, f,Γ) ≤ −1/4, and so
κΓ(f) ≤ 1/2. So assume that δG(vi,Γ) = 2 for at least one i ∈ {1, 2}. Then f is adjacent
to a red blob Bi at vi, and |∂(Bi) ∩ ∂(Γ)| ≥ 1. By Lemma 6.8, χ(Bi, f,Γ) ≤ −1/4. It
follows that κΓ(f) ≤ 1/2 unless δG(v1,Γ) = δG(v2,Γ) = 2 and B1 = B2. But in this case,
|∂(B1) ∩ ∂(Γ)| ≥ 2, and so χ(B1, f,Γ) ≤ −1/2, by Lemma 6.8.

Suppose now that κΓ(f) > 0. Then, by the previous paragraph, there must be exactly
one such maximal sequence β on ∂(f). Suppose that β contains a vertex v 6= v1, v2 that
lies on ∂(Γ). If δG(v,Γ) = 2, then there are two red blobs adjacent to f at v (either or
both of which may be equal to B1 or B2), giving additional combined curvature at most
−1/2 to f , and so κΓ(f) ≤ 0, contrary to assumption. If δG(v,Γ) = 3, then f is adjacent
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to at least one red blob B3 at v, and the combined additional curvature that B3 and v
give to f is at most −1/2, giving κΓ(f) ≤ 0 again. Hence δG(v,Γ) ≥ 4, and so v gives at
most −1/3 of curvature to f , and there can be at most one such v.

In particular, we have now shown that, if RSym succeeds on a diagram Γ ∈ D, then κΓ

satisfies Conditions (a), (b) and (c) (with m = 1/2) of Theorem 5.9. Since all diagrams in
D are green-rich, if no V σ-letter is trivial in G it follows immediately from Proposition 3.17
that κΓ satisfies Condition (d).

We shall show next that the set D satisfies Condition (e) of Theorem 5.9, provided
that no V σ-letter is trivial in G.

Proposition 6.10. Let P be a pregroup presentation for a group G, and let w be a
cyclically P -reduced word that is equal to 1 in G. Assume that no V σ-letter is trivial in
G. Then there exists w′ ∈ I(w) that is the boundary word of a coloured diagram Γ ∈ D.

Proof. Let Γ be a coloured diagram of minimal coloured area, amongst all coloured dia-
grams of words w′ ∈ I(w), and let w′ be the boundary word of Γ. We shall show that
Γ ∈ D.

Since w′ ≈c w, it follows from Theorem 4.4 that w′ is cyclically P -reduced. The as-
sumption that Γ has minimal coloured area implies that Γ is semi-P -reduced, by Propo-
sition 3.8.

We have assumed that no V σ-letter is trivial in G, so Γ is loop-minimal, and if |∂(Γ)| =
1 then the unique boundary face is green. No letter x ∈ X such that x = xσ is trivial in G,
so by Proposition 3.9 the diagram Γ is σ-reduced. It now follows from Proposition 4.10(i)
and the minimality of CArea(Γ) that Γ is green-rich.

Finally, the loop-minimality of Γ and the minimality of CArea(Γ) imply that the
boundary word of each simply connected red blob has no proper subwords equal to 1 in
U(P ), by Proposition 4.13. Hence Γ ∈ D.

It remains to deal with the assumption that no V σ-letter is trivial in G. To do so, we
first prove that, subject to some easily-checkable conditions on the set R of relators, if
RSym succeeds then there are no diagrams in D of boundary length two.

Lemma 6.11. Let P = 〈Xσ | VP | R〉 be a pregroup presentation. Suppose that no R ∈ R
has length 1 or 2 and that no two distinct cyclic conjugates of relators R,S ∈ I(R)± have
a common prefix consisting of all but one letter of R or S. Let Γ be a diagram in D with
boundary length 2. Then RSym does not succeed on Γ.

Proof. Suppose that RSym succeeds on Γ. Since each R ∈ R has length at least three,
Area(Γ) > 1. Each boundary face f of Γ satisfies κΓ(f) ≤ 1/2 if f is green, by Lemma 6.9,
and κΓ(f) ≤ 0 if f is red. Hence, since all of the positive curvature of κΓ lies on the
boundary faces and sums to at least 1, the diagram Γ has exactly two boundary faces,
f1 and f2 say, both green, and κΓ(f1) = κΓ(f2) = 1/2. Now any other green face f of Γ
would satisfy κΓ(f) < 0, so no such face exists.

The two vertices v1 and v2 on ∂(Γ) both satisfy δG(vi,Γ) ≥ 3, so by Lemma 6.7 in Step
3 of ComputeRSym they each give curvature at most −1/4 to each of f1 and f2. On the
other hand, the assumptions on common prefixes of relators imply that Area(Γ) > 2. So f1

and f2 are both adjacent to red blobs, and by Lemma 6.8 they receive a negative amount
of curvature from these blobs in Step 4 of ComputeRSym, giving a contradiction.

We now give a condition under which the success of RSym shows that no V σ-letter is
trivial in G.
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Figure 4: Boundary vertex with red degree 4

Theorem 6.12. Let P be a pregroup presentation for a group G. Assume that no R ∈ R
has length 1 or 2 and that no two distinct cyclic conjugates of relators R,S ∈ I(R)± have
a common prefix consisting of all but one letter of R or S. If RSym succeeds on P at level
1, then no V σ-letter is trivial in G.

Proof. Suppose that some V σ-letter x is equal to 1 in G, and let Γ be a coloured diagram
over I(P) with boundary word x, and with smallest possible coloured area for diagrams
with boundary word a single V σ-letter. We do not assume that Γ ∈ D. We shall show
that Γ does not exist.

Proposition 3.8 shows that Γ is semi-P -reduced. The diagram Γ is loop-minimal by
definition, and Γ is σ-reduced by Proposition 3.9. Our assumption that no R ∈ R has
length 1 implies that Area(Γ) > 1. Let f be the unique boundary face of Γ.

Suppose that Γ is green-rich. Then, since we chose Γ to have minimal coloured area,
Proposition 4.13 implies that Γ ∈ D. Hence RSym succeeds on Γ for some ε > 0, and in
particular Lemma 6.9 implies that κΓ(f) ≤ 1/2, which contradicts the total curvature of
Γ being 1.

Hence Γ is not green-rich. By Proposition 4.10 (i), this can only occur when f is a red
triangle. The fact that Γ is loop-minimal implies that Γ looks like the left hand picture
in Figure 2. The boundary label of the subdiagram labelled Θ in Figure 2 is cyclically
σ-reduced, since the label of f is in VP , so by Proposition 4.10 (ii), with the possible
exception of v and the other vertex in Figure 2, which we shall call u, all vertices w in Θ
satisfy δG(w,Θ) = δG(w,Γ) ≥ 2. We shall show that δG(u,Γ) ≥ 2 and δG(v,Γ) ≥ 2, and
hence that Γ is in fact green-rich, a contradiction.

Consider first the vertex labelled v in Figure 2. Theorem 3.16 shows that δG(v,Γ) ≥ 1,
so assume, by way of contradiction, that δG(v,Γ) = 1, and let f1 be the green face incident
with v. If δR(v,Γ) = 1, then the boundary label z of f1 is not cyclically P -reduced, a
contradiction. If δR(v,Γ) = 2, then both incident red faces are adjacent to f1. Then f1

can be replaced by a green face with boundary label an interleave of z, yielding a diagram
with boundary word x but with smaller coloured area, a contradiction. If δR(v,Γ) ≥ 3
then, since the loop-minimality of Γ implies that there are no loops labelled by elements
of VP based at v, we can apply Lemma 3.15 to reduce δR(v,Γ) to two, and then we reach
a contradiction as before. Hence δG(v,Γ) ≥ 2.

Assume next that δG(u,Γ) = 1 (so the only green face incident with u is the external
face), and notice that δR(u,Γ) ≥ 3, since u is incident twice with the red face f , and with
at least one other red face. If δR(u,Γ) = 3, then Γ contains a loop at v labelled by a letter
from VP , contradicting the minimality of Γ. If δR(u,Γ) = 4, then Θ consists of two red
triangles that meet at v, and enclose a subdiagram ∆ of boundary length 2, as in Figure 4.
Let the boundary label of ∆ be ab, and notice that b 6= aσ, as otherwise there would exist a
diagram proving that x =U(P ) 1, contradicting Theorem 2.9. If (a, b) or (b, a) is in D(P ),
then there would exist a diagram consisting of ∆ surrounded by a single red triangle,
which would have boundary a single letter from VP but have coloured area less than that
of Γ, contradicting the minimality of Γ. Hence ∆ is a σ-reduced, semi-P -reduced, green-
rich loop-minimal coloured diagram with cyclically P -reduced boundary word, and the
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minimality of Γ means that Proposition 4.13 shows that ∆ ∈ D. However, we showed
in Lemma 6.11 that RSym fails on all diagrams in D of boundary length 2, contradicting
our assumption that RSym succeeds. Hence δR(u,Γ) ≥ 5, and so δR(u,Θ) ≥ 3. Applying
Lemma 3.15 to Θ (in which there are no loops based at u with labels from VP ), allows one
to reduce δR(u,Θ) down to three, eventually yielding a contradiction as in the previous
paragraph. Hence δG(u,Γ) ≥ 2, and so Γ is in fact green-rich, a contradiction.

Finally, we are able to prove that, subject to the same conditions on R as in The-
orem 6.12, if RSym succeeds on a pregroup presentation P for a group G, then G is
hyperbolic. Recall Definition 5.5 of a pregroup Dehn function.

Theorem 6.13. Let P = 〈Xσ | VP | R〉 be a pregroup presentation of a group G, and let
r be the maximum length of a relator in R.

Assume that no R ∈ R has length 1 or 2 and that no two distinct cyclic conjugates of
relators R,S ∈ I(R)± have a common prefix consisting of all but one letter of R or S.

(i) Suppose that RSym succeeds on the presentation P (at level 1) for some ε > 0. Then
the pregroup Dehn function of I(P) is bounded above by

f(n) = n

(
6 + r +

3 + r

2ε

)
− 3 + r

ε
.

(ii) If VP is empty, and RSym succeeds on P, then the pregroup Dehn function of I(P)
is bounded above by n( 1

2ε + 1)− 1
ε .

(iii) If VP is nonempty, I(w) = w for all cyclically P -reduced words w, and RSym succeeds
on P, then the pregroup Dehn function of P is bounded above by f(n) − 2n, where
f(n) is as in Part (i).

(iv) If no V σ-letter is trivial in G, and RSym succeeds at level d on P then the pregroup
Dehn function of I(P) is bounded above by

n

(
(3 + r)

(r − 1)d − 1

r − 2

(
1 +

1

ε

)
+ 3

)
− 3 + r

ε
.

In particular, if RSym succeeds at level 1, or if no V σ-letter is trivial in G and RSym

succeeds at level d, then G is hyperbolic.

Proof. We first prove (i), by showing that RSym satisfies all conditions of Theorem 5.9.
By Proposition 6.5, RSym is a curvature distribution scheme on D. Let Γ ∈ D, and let
κΓ = RSym(Γ). The fact that κΓ is non-positive on vertices and red triangles follows from
Lemmas 6.7 and 6.8, and it is clear from Step 2 of ComputeRSym that κΓ(e) = 0 for each
edge e. Hence κΓ satisfies Condition (a). Condition (b) is satisfied with d = 1 by our
assumption that RSym succeeds (at level 1). By Lemma 6.9, κΓ satisfies Condition (c) with
m = 1/2. By Theorem 6.12, no V σ-letter is trivial in G. Hence all coloured diagrams over
I(P) are loop-minimal and green-rich, so by Proposition 3.17 all diagrams in D satisfy
Condition (d) with λ = 3 + r and µ = 1.

It now follows from Theorem 5.9 that if Γ ∈ D has boundary length n and area greater
than 1 then, as in Corollary 5.10,

Area(Γ) ≤ n
(

4 + r +
3 + r

2ε

)
− 3 + r

ε
.

A diagram of area 1 has boundary length n ≥ 3, since no R ∈ R has length less than 3.
For n ≥ 3 the above bound evaluates to at least 1, so in fact this area bound applies to
all Γ ∈ D.
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We showed in Proposition 6.10 that if w =G 1 then there exists an w′ ∈ I(w) that is
the boundary of a coloured diagram Γ ∈ D. Hence it follows from the definition of I(w)
and Lemma 4.6 that there is a coloured diagram Γ′ with boundary word w and area at
most Area(Γ) + 2n, which gives the bound in the theorem statement.

(ii) Since there are no red triangles, κΓ satisfies Condition (d) of Theorem 5.9 with
λ = 1 and µ = 0, so the formula in Part (i) simplifies as given (and is valid for diagrams
consisting of a single face).

(iii) We keep λ and µ as in Part (i), but take w = w′ in the final paragraph of the
proof.

(iv) The assumption that no V σ-letter is trivial in G means that all diagrams are
loop-minimal. Hence as in Part (i), by Proposition 3.17 we can set λ = 3 + r and µ = 1
in Theorem 5.9. We can then apply Theorem 5.9 with m = 1 and the specified value of d
to diagrams Γ ∈ D. Proposition 6.10 applies, since all diagrams are loop-minimal, and so
we can complete the argument as in the case d = 1.

7 A polynomial-time RSym tester

In this section we describe a pair of polynomial-time procedures, RSymVerify(P, ε) and
RSymIntVerify(P, ε) (see Procedures 7.19 and 7.30) that attempt to verify that RSym

succeeds on a given presentation P = 〈Xσ | VP | R〉 with a given value of ε. They return
either true or fail, together with some additional data in the event of fail.

If true is returned, then RSym is guaranteed to succeed on P with constant ε. If
fail is returned, then it does not necessarily mean that RSym does not succeed on P.
The additional returned data describes one or more configurations that could arise in a
diagram in D over I(P) on which RSym might fail, but such a diagram may not exist. The
user can either attempt to show that such a diagram does not exist, or try again with a
smaller value of ε.

For convenience of exposition, RSymVerify works under the assumption that I(R) =
R. This is a commonly-occurring special case – for example all quotients of free products
of free and finite groups can be presented this way – and is the case that is currently
implemented (see Section 10). RSymIntVerify is the generalisation of RSymVerify to the
case where I(R) 6= R, and will be presented in Subsection 7.8.

Since we have had to introduce many new data structures and auxiliary functions to
produce a polynomial-time procedure, we shall start by giving an outline of our approach.
We remind the reader that our newly-defined terms, our notation, and our procedures are
all listed in the Appendix.

Recall from Definition 6.6 that to test whether RSym succeeds on P means to test
whether RSym succeeds on all of the coloured diagrams Γ in D. There are infinitely
many such diagrams, but fortunately there are only finitely many elements in R. Hence
RSymVerify will consider each possible relator R ∈ R± as the label of a non-boundary
green face f of such a diagram, and attempt to show that κΓ(f) ≤ ε.

After describing some pre-processing, which is not part of RSymVerify, we begin the
real work in Subsection 7.2, where we introduce some data structures that will be used
to work efficiently with our relators as cyclic words, and to record information about the
possible faces edge-incident with such a green face f labelled by R.

The curvature κΓ(f) is equal to 1 +
∑
v∈∂(f) χ(v, f,Γ) +

∑
B χ(B, f,Γ), where the

second sum is over those red blobs B which share an edge with f . We will therefore
bound κΓ(f) by bounding χ(v, f,Γ) and χ(B, f,Γ), over all diagrams Γ ∈ D containing
a face f labelled by R. There are infinitely many possible vertices and red blobs in
diagrams in D, but we shall take a pragmatic approach of determining partial data about
those vertices and blobs which could give f close to zero curvature in Steps 3 and 4
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of ComputeRSym, and otherwise use an upper bound of −1/3 for vertices and −5/14 for
red blobs. This analysis results in the creation of two functions, called Vertex and Blob

(Algorithms 7.7 and 7.12), which take as input information about f and its adjacent faces,
and return these curvature bounds.

The next complication arises from our desire for a low degree polynomial time algo-
rithm. This means that we cannot run, say, a backtrack search which tries all possible
ways of fitting neighbouring faces around f to bound κΓ(f), as this would lead to a com-
plexity with the length r of the longest relator in the exponent. To keep the complexity
where we want it, we use a combinatorial result: Lemma 7.21. This tells us that, provided
we associate to each vertex on f the length of the consolidated edge before it, and require
the cumulative curvature coming from red blobs and vertices to be less than the propor-
tion of |R| that their edges take up, we can avoid doing a backtrack search. To make
this approach work, we need a careful analysis of edge lengths and their corresponding
curvature values, and this is the content of Subsection 7.5.

In Subsection 7.6, we shall finally be able to present RSymVerify, then in Sub-
section 7.7 we shall prove Theorem 7.22, which states that RSymVerify runs in time
O(|X|5 + r3|X||R|2), where r is the length of the longest relator.

Finally, in Subsection 7.8, we shall describe the modifications that must be made if
I(R) 6= R, and present Procedure 7.30 (RSymIntVerify), which is the generalisation of
RSymVerify to this case. The outline of the procedure and the majority of the subroutines
barely change, but we must work with slightly more complex data structures to handle
the potentially exponential size set I(R), whilst still terminating in polynomial time.

The majority of the subroutines used by RSymVerify will be useful for testing other
curvature distribution schemes, not just RSym.

7.1 Preprocessing

Before running RSymVerify, we assume that some preprocessing has been done to the
presentation, to ensure that the assumptions of Theorem 6.13 hold, and to improve the
likelihood that RSym succeeds. The first two steps of preprocessing are done before a
pregroup P is chosen, when we just have a group presentation 〈X | R〉.
Preprocessing Step 1: Eliminate any relators of the form x or xy with x, y ∈ X, and
x 6= y, by eliminating generators. Delete any relators of the form x2 with x ∈ X, and
require that xσ = x in the pregroup P .

Preprocessing Step 2: Look for pairs R1, R2 ∈ R for which there are distinct cyclic
conjugates S1, S2 of R±1

1 , R±1
2 that have a common prefix of length greater than half of

|S1|. That is, S1 = ww1 and S2 = ww2 with |w| > |w1|. If R1 6= R2, then replace R2 by
the shorter relator w−1

1 w2. Notice that it is not possible to have R1 = R2 and S1 6= S2

with |w1| = |w2| = 1.

We may need to carry out these two steps repeatedly, but at the end of them all relators
have length at least 3, and no two distinct cyclic conjugates of relators R,S ∈ R± have
a common prefix consisting of all but one letter of R or S. See, for example, [11, Section
5.3.3] for discussion of how to do this efficiently. Note that we are only carrying out Steps
1 and 3 of the simplification in [11]: we are not attempting to eliminate generators using
relators of length greater than two.

Preprocessing Step 3: Define a pregroup P on the remaining generators (adding addi-
tional generators if necessary to close P ), and ensure that all elements of R are cyclically
P -reduced. Ideally, as many remaining relators of length 3 as possible should become
elements of VP rather than R.

After this, all hypotheses in Theorem 6.13 are satisfied. Recall that we assume for now
that after Preprocessing Step 3, I(R) = R: see Subsection 7.8 for further preprocessing
that is required if this assumption does not hold.
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7.2 Steps, locations and places

RSymVerify needs to check that, for every diagram Γ ∈ D, every non-boundary internal
green face f ∈ Γ receives at most −1 − ε of curvature from its incident vertices and
red blobs in Steps 3 and 4 of ComputeRSym. Each such face f has boundary label some
R ∈ R± = I(R±), and ∂(f) is split up into the consolidated edges (see Definition 3.1)
that f shares with its adjacent faces in Γ. In this subsection, we describe how we represent
this decomposition into consolidated edges.

The idea is to consider each relator R ∈ R in turn, and to use the relators in VP and
R± to determine the possible decompositions into consolidated edges ei of the boundary
of a non-boundary face f with label R. We do not need to consider R−1, as the situation
for each R−1 will be equivalent to that for R. Each such decomposition corresponds to
an expression of some cyclic conjugate R′ of R as w1w2 · · ·wk, where wi is the label of ei.

We attach a colour Ci ∈ {G,R} to each wi in the decomposition, which is the colour of
the adjacent region (green face or red blob): there could be more than one decomposition
R′ = w1w2 · · ·wk with the same wi but with different colours Ci. We have assumed that
Γ ∈ D, so Γ is green-rich. Hence if Ci = R then |wi| = 1. For reasons that will become
clear shortly, we do not allow C1 = R and Ck = G; in that situation, we shall instead
consider the decomposition w2 · · ·wkw1.

Definition 7.1. If Ci = G then let εi be the maximum value of χ(vi, f,Γ), considered
over all possible diagrams Γ ∈ D in which wi labels a maximal green consolidated edge
on f . If Ci = R then let εi be the maximum value of χ(vi, f,Γ) + χ(B, f,Γ), considered
over all possible diagrams Γ ∈ D on which wi labels a red consolidated edge of f , and all
possible incident red blobs B at wi.

If we find a decomposition with ε1 + · · ·+ εk > −1− ε, then RSymVerify returns fail
and gives details of the decomposition.

We shall see later, in Lemma 7.17, that εi ≤ −1/6 when Ci = R and when Ci =
Ci+1 = G, but when Ci = G and Ci+1 = R, we can have εi = 0. In our main algorithm
it is convenient to have an upper bound of −1/6 on all curvature contributions and, for
this reason, we combine subwords wiwi+1 with Ci = G and Ci+1 = R into a single unit,
which we call a step, and use the curvature contributions from these steps, rather from
each individual wi.

Definition 7.2. For a given coloured decomposition R′ = w1w2 · · ·wk as above, a step
consists either of a single subword wi, or of two consecutive subwords wiwi+1, determined
as follows, where subscripts should be interpreted cyclically.

(i) If Ci = G and Ci+1 = R, then wiwi+1 is a step.

(ii) If neither wi−1wi nor wiwi+1 is a step by Condition (i), then wi is a step.

We have disallowed the combination, C1 = R, Ck = G, so this cannot give rise to a step
wkw1. Note that the steps are the same for any cyclic permutation of the decomposition
that does not violate the C1 = R, Ck = G condition.

Let εi be as in Definition 7.1. We define the stepwise curvature χ of a step to be
χ = εi when the step is wi and χ = εi + εi+1 when it is wiwi+1. The length of a step is
the number of letters of R′ that it comprises.

To carry out the required estimates of upper bounds on the curvature ε1 + · · · + εk,
we need to study the possible diagrams Γ in which the decomposition w1 · · ·wk of R
under consideration can occur. We can choose the amount of detail in which we analyse
possible neighbourhoods of the face labelled R in such diagrams. More detail may lead
to better estimates, but will take longer to compute. In RSymVerify, we generally limit
our consideration to the faces of Γ ∈ D that have at least one edge in common with the
face labelled R.
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Figure 5: (a) Instantiation of place on face f ; (b) Instantiation of partial vertex on face f

To devise efficient algorithms for carrying out this analysis and for storing the infor-
mation in a useful form, we need to devise some suitable data structures. The definitions
of locations and places that follow may seem somewhat arbitrary on a first reading but,
after some experimentation, they have turned to be efficacious for the purpose in hand.

Definition 7.3. Let R ∈ R±, and fix a word w = x1x2 · · ·x|w| such that R = wk with
k maximal amongst such expressions for R. A location on R is an ordered triple (i, a, b),
denoted R(i, a, b), where i ∈ {1, . . . , |w|}, a = xi−1 (or x|w| if i = 1), and b = xi.

For example, if R = abab = (ab)2 then the locations are R(1, b, a) and R(2, a, b).
We shall present a method to find such a w and k in the proof of Theorem 7.22. Note
that writing R as a proper power, where possible, is not essential to the running of our
algorithm, but merely reduces the number of locations. It therefore helps with hand
calculations, as in Section 9, and also with the running time of our implementations, but
if the reader wishes to think of every pair of letters on every relator as being a different
location, no great harm will be done.

In the case of places, we needed to distinguish between places that could conceivably
occur, and those that really do occur in some diagram Γ ∈ D: recall that all such diagrams
are σ-reduced.

Definition 7.4. A potential place P is a triple (R(i, a, b), c, C), where R(i, a, b) is a
location, c ∈ X, and C ∈ {G,R}. A potential place is a place if it is instantiable, in the
following sense. (See Figure 5 (a).)

(i) There exists a σ-reduced diagram Γ (see Definition 3.6) with a face f labelled R,
a face f2 meeting f at b, and a vertex between a and b on ∂(f) of degree at least
three;

(ii) the half-edge on f2 after bσ is labelled c;

(ii) if C = G then f2 is green, and if C = R then f2 is a red blob.

We say that P is green if C = G and red otherwise.

Notice that if C = G then, by the fact that Γ is σ-reduced, there exists a location
R′(j, bσ, c) such that the label of R′ beginning at bσ is not equal in F (Xσ) to the inverse of
the label of R that ends at b. If C = R, then bσ must intermult with c, as in Definition 4.14.

RSymVerify computes an array of all intermult pairs, and then finds all locations of
relators R ∈ R±. For each location R(i, a, b) with R ∈ R, it must find all instantiable
places. To do so, it considers each letter c ∈ X, and each C ∈ {R,G}. For C = R it checks
that bσ intermults with c. For C = G it checks that there exists a location R′(j, bσ, c) such
that a diagram of area two with faces labelled by R and R′, sharing the edge labelled b,
is σ-reduced.

7.3 Vertex data and the Vertex function

Fix a relator R ∈ R and let f be a non-boundary face labelled R in a diagram in D. Whilst
decomposing R into steps, we find an upper bound on

∑
v∈∂(f) χ(v, f,Γ). Although
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Table 1: Vertex curvature χ(v, f,Γ)

δG(v,Γ) v 6∈ ∂(Γ) v ∈ ∂(Γ)

2 0 0
3 −1/6 −1/4
4 −1/4 −1/3
5 −3/10 (−3/8)
6 −1/3 (−2/5)
≥ 7 (≤ −5/14) ( ≤ −5/12)

there are infinitely many possible vertices v that can arise in such a diagram, almost
all give f not much more than −1/2 of curvature. In this subsection we show how to
produce a list of descriptions of the finitely many possible vertices v on ∂(f) such that
χ(v, f,Γ) ≥ −1/3. For reasons of efficiency, we do not completely describe each such v,
but only store information on the possibilities for three consecutive incident faces, reading
anticlockwise, together with an upper bound on χ(v, f,Γ), over all Γ ∈ D.

From now on, we shall often think of the triangles within a red blob as having been
merged, and treat the blob as having no internal structure other than its area. As a
consequence, we will never consider a vertex to have more than one consecutive incident
red face. The following lemma therefore bounds the total degree of the vertices that we
shall classify, as well as their green degree.

Lemma 7.5. Let v be a vertex in a diagram Γ ∈ D, and let f be an internal green face
incident with v. If v is incident more than once with the external face, then χ(v, f,Γ) ≤
−1/2. Otherwise, the curvature χ(v, f,Γ) is as in Table 1.

Proof. Since Γ ∈ D, the diagram Γ is green-rich, so δG(v,Γ) ≥ 2. Let x be the number of
times that v is incident with the external face. Then δG(v,Γ) > x because f is incident
with v. By Lemma 6.7, v gives curvature χ = χ(v, f,Γ) = (2− δG(v,Γ))/(2(δG(v,Γ)−x))
to f . The result follows by computing χ for δG(v,Γ) ≤ 7 and 0 ≤ x < δG(v,Γ), and
noticing that χ decreases as δG(v,Γ) and x increase.

Let P = (R(i, a, b), c, C) be a place, and let v be a vertex on ∂(f) between the edges
labelled a and b in a diagram Γ ∈ D that instantiates P, in which f is non-boundary.
Let f1 and f2 be the faces incident with the edges labelled a and b, respectively, as in
Figure 5 (b), so that f2 is as in Definition 7.4. We describe how to encode this situation,
and efficiently bound χ(v, f,Γ).

Suppose that v is internal and has degree k. Let the outgoing edges from v, reading
anticlockwise, be labelled x1 = aσ, x2 = b, x3 = c, x4, . . . , xk, and let the face adjacent
to v with edges labelled xσi , xi+1 have colour Ci for 1 ≤ i ≤ k (with xk+1 = x1). In
particular, C1 = G and C2 = C. To help us compute the required upper bound on
χ(v, f,Γ), we record these edge labels and face colours in a certain directed graph G. To
avoid confusion with the vertices and edges of coloured diagrams, we shall always refer to
the vertices and edges of G as G-vertices and G-edges.

The location R(i, a, b) of v on f is encoded by the G-vertex (aσ, b,G), and there exist G-
vertices labelled (xσi , xi+1, Ci) for each i. There are G-edges from G-vertex (xσi−1, xi, Ci−1)
to G-vertex (xσi , xi+1, Ci) for each i, so the vertex v of Γ is represented by a circuit of
length k in G starting at the G-vertex (aσ, b,G). We assign the G-edge from (xσi−1, xi, Ci−1)
to (xσi , xi+1, Ci) the weight 1 if Ci−1 = G and 0 if Ci−1 = R. Then δG(v,Γ) is equal to the
total weight of the circuit in G, and so we can bound χ(v, f,Γ) by bounding the weight
of circuits in G that start at (aσ, b,G).
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We shall now present the formal definition of the vertex graph G.

Definition 7.6. The vertex graph G of P has G-vertices of the form (a, b, C) with a, b ∈ X
and C ∈ {G,R}. There is a green G-vertex (a, b,G) if and only if there exists a location
R(i, a, b). There is a red G-vertex (a, b,R) if and only if (a, b) is an intermult pair (see
Lemma 4.16).

There is a (directed) G-edge from (a, b,G) to (bσ, c,G) if there exist locations R(i, a, b)
and R′(j, bσ, c) such that the one-face or two-face diagram in which faces labelled R and
R′ share this edge labelled b is σ-reduced. There is a G-edge from each (a, b,G) to each
(bσ, c,R). There is a G-edge from each (a, b,R) to each (bσ, c,G). There are no G-edges
between red G-vertices, since we do not allow red blobs to share edges with other red
blobs. The G-edges have weight 1 if their source is green and weight 0 if it is red.

After computing the list of all places, the next step in RSymVerify is to construct G.
We also store a list of the locations that correspond to each green G-vertex. For each
G-vertex ν, and for each path ν1, ν, ν2 in G, we let w(ν2, ν1) denote the smallest weight of
a path in G from ν2 to ν1 with at least one G-edge. (So in the case ν1 = ν2 this cannot be
0.) If there is no G-path from ν2 to ν1, then we take its weight to be infinite. We can use
the Johnson-Dijkstra algorithm [15] to find and store the weights of all of these paths.

The Vertex function takes as input a triple (ν1, ν, ν2) of G-vertices for which ν is green
and there is a (directed) path ν1, ν, ν2 in G. The existence of such a directed path means
that ν1, ν and ν2 represent subwords of boundary labels, and colours, of adjacent faces
f1, f and f2 around a vertex v in a coloured diagram, as in Figure 5 (b). The Vertex

function returns an upper bound on χ(v, f,Γ).

Algorithm 7.7. Vertex(ν1, ν, ν2): Require that (ν1, ν) and (ν, ν2) are G-edges.

1. If ν1 and ν2 are both green, then return −1/6, −1/4, −3/10, or −1/3 when w(ν2, ν1)
is respectively 1, 2, 3, or greater than 3.

2. If ν1 is green and ν2 is red, then return 0, −1/6, or −1/4 when w(ν2, ν1) is respec-
tively 0, 1, or greater than 1.

3. If ν1 is red and ν2 is green, then return 0, −1/6, or −1/4 when w(ν2, ν1) is respec-
tively 1, 2, or greater than 2.

4. If ν1 and ν2 are both red, then return 0.

Lemma 7.8. Let f1, f, f2 be three consecutive faces around a vertex v in a diagram Γ ∈ D,
in locations corresponding to G-vertices ν1, ν, ν2. Then χ(v, f,Γ) ≤ Vertex(ν1, ν, ν2).

Proof. It is clear from Definition 7.6 that there are G-vertices ν1, ν, ν2, as required, and
G-edges from ν1 to ν and from ν to ν2. Let χ = χ(v, f,Γ), and let β = Vertex(ν1, ν, ν2).

Assume first that ν1 and ν2 are both green, so that δG(v,Γ) ≥ 3, and δG(v,Γ) ≥ 4 if
v is boundary. If χ > −1/3 then, by Lemma 7.5, v is not boundary and δG(v,Γ) ≤ 5, so
w(ν2, ν1) ≤ 3. If β = −1/3, then w(ν2, ν1) ≥ 4. Hence the shortest G-path from ν2 to
ν1 passes through at least three additional green G-vertices (and possibly some red ones),
and so either v is boundary or δG(v,Γ) ≥ 6. Hence by Lemma 7.5, χ ≤ −1/3 = β. If
β = −3/10, then w(ν2, ν1) = 3, so either v is boundary or δG(v,Γ) ≥ 5. Therefore by
Lemma 7.5, χ ≤ −3/10 = β. If β = −1/4, then w(ν2, ν1) = 2, so δG(v,Γ) ≥ 4, and hence
by Lemma 7.5, χ ≤ −1/4 = β. Similarly, if β = −1/6 then w(ν2, ν1) = 1, so δG(v,Γ) ≥ 3,
and χ ≤ −1/6 = β.

Next assume that ν1 is green and ν2 is red, so that δG(v,Γ) ≥ 2, and δG(v,Γ) ≥ 3
if v is boundary. If β = −1/4 then w(ν2, ν1) ≥ 2, so the shortest G path from ν2 to
ν1 passes through at least two additional green vertices. Hence either v is boundary, or
δG(v,Γ) ≥ 4, and so by Lemma 7.5 χ ≤ −1/4 = β. If β = −1/6 then w(ν2, ν1) = 1, so
either v is boundary or δG(v,Γ) ≥ 3, and hence χ ≤ −1/6 = β.
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Table 2: Bounds on simply connected red blob curvature

|∂(B)| |∂(B) ∩ ∂(Γ)| χ(B, f,Γ)

3 0 −1/6
3 1 −1/4
4 0 −1/4
4 1 −1/3
5 0 −3/10
6 0 −1/3

The case ν1 red and ν2 green is similar, except that the weights w(ν2, ν1) are increased
by one, since every edge leaving ν2 has weight one.

Finally, if ν1 and ν2 are both red, then β = 0, which by Lemma 7.5 is an upper bound
on χ.

Remark 7.9. When testing RSym at level 1, each non-boundary face f ∈ Γ may be at
dual distance two from the external face. Since we are not recording whether the next
edges on f1 and f2 (the ones labelled c and d in Figure 5 (b)) are boundary edges, we
allow the Vertex function to consider them as boundary. See Remark 7.14.

Similarly, as a consequence of the possible presence of the external face at dual distance
two, the bracketed values of χ(v, f,Γ) in Table 1 are not used by RSymVerify, and we
impose a lower bound of −1/3 on the return values of the Vertex function. However if,
for example, we are testing RSym at level 2 and VP = ∅ (so there are no red triangles
in any diagram, and U(P ) is a free product of copies of Z and C2), then all boundary
vertices v of a face f to be tested satisfy δG(v,Γ) ≥ 6, and so we can make use of these
smaller curvature values.

7.4 Red blob data and the Blob function

Similarly to vertices, there are infinitely many possible red blobs in diagrams in D. The
methods described in this subsection collect information about possible red blobs B such
that there exists a diagram Γ ∈ D and a green face f of Γ, with χ(B, f,Γ) > −5/14.

Lemma 7.10. Let B be a red blob in a diagram Γ ∈ D, let f be an internal green face
adjacent to B at an edge e. If B is not simply connected or if |∂(B) ∩ ∂(Γ)| ≥ 2 then
χ(B, f,Γ) ≤ −1/2. If χ(B, f,Γ) > −5/14, then |∂(B)|, |∂(B) ∩ ∂(Γ)|, and χ(B, f,Γ) are
as in Table 2.

Proof. Let B have boundary length l and area t. If B is not simply connected, then by
Lemma 4.12, l ≤ t, so χ(B, f,Γ) ≤ −1/2. Hence B is simply connected and Γ is green-rich,
and so t = l − 2, by Lemma 4.12. The result now follows easily from Lemma 6.8.

Recall from Lemma 4.16 and Definition 6.1 that two consecutive letters of the boundary
word of a red blob in a diagram in D must intermult. We create a function Blob(a, b, c),
which takes as input (a, b, c) ∈ X3 such that (a, b) and (b, c) intermult, and returns an
upper bound on

{χ(B, f,Γ) : Γ ∈ D contains both a red blob B with abc a subword of its boundary
label, and a green face f that is incident with B at b}.

Definition 7.11. We call x ∈ X an R-letter if x occurs in an element of I(R±).
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Notice that non-R-letters can only appear on the boundary of a diagram, and that
our present assumption that I(R) = R implies that an R-letter occurs in an element of
R±.

It is straightforward (see the proof of Theorem 7.22 for details) to compute a list B of
all cyclic words w ∈ X∗ that satisfy all of the following conditions.

1. The word w is equal to 1 in U(P ).

2. 3 ≤ |w| ≤ 6.

3. Each consecutive pair of letters in w intermult.

4. No proper nonempty subword of w is equal to 1 in U(P ).

5. w contains at most one non-R-letter, and none if |w| > 4.

When RSymVerify bounds χ(B, f,Γ), it will have specified three consecutive letters
a, b, c on ∂(B).

Algorithm 7.12. Blob(a, b, c) : Require that (a, b), (b, c) intermult.

1. If abc is a cyclic subword of a word in w ∈ B then return the maximal curvature
from Lemma 7.10 over all such words w, with |∂(B) ∩ ∂(Γ)| assumed to be nonzero
if and only if w contains a non-R-letter.

2. Otherwise, if at most one of a and c is not an R-letter then return −5/14.

3. Otherwise, return −1/2.

Lemma 7.13. Let B be a red blob with subword abc of its boundary word, in a diagram
Γ ∈ D, and let f be the green face incident with B at b. Then χ(B, f,Γ) ≤ Blob(a, b, c).

Proof. By Lemma 4.16 both (a, b) and (b, c) intermult, so Blob(a, b, c) is defined.
If B is not simply connected, then from Lemma 7.10 we see that χ(B, f,Γ) ≤ −1/2 ≤

Blob(a, b, c), so assume that B is simply connected, and let w be the boundary word of
B. If w contains at least two R-letters, then ∂(B)∩∂(Γ) ≥ 2, and so χ(B, f,Γ) ≤ −1/2 ≤
Blob(a, b, c), by Lemma 7.10, so assume that w contains at most one non-R-letter, and
in particular that at most one of a and c is not an R-letter.

Let l be the length of w. If l ≥ 7 then χ(B, f,Γ) ≤ −5/14 ≤ Blob(a, b, c), so as-
sume that l ≤ 6. If l ∈ {5, 6} and w contains an R-letter, then χ(B, f,Γ) ≤ −5/14 ≤
Blob(a, b, c), so assume not.

Then: w is equal to 1 in U(P ), since B is simply-connected; each consecutive pair of
letters of w intermult, by Lemma 4.16; and no proper empty subword of w is equal to 1
in U(P ), since Γ ∈ D (see Definition 6.1). Hence w ∈ B, and so χ(B, f,Γ) ≤ Blob(a, b, c),
as required.

Remark 7.14. In Remark 7.9 we observed that the Vertex function often assumes that
the face f is dual distance two from the external face. At present this data is not being
used by the Blob function, which may be bounding curvature as if any corresponding
blobs have no boundary edges. Some curvature is potentially being missed. We plan
to rectify this in future versions of RSymVerify, by modifying our definition of places to
also record whether the edge labelled by the extra letter is on the boundary, and hence
enabling the Vertex and Blob functions to use this extra data.
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Figure 6: One-step reachable places

7.5 One-step reachable places and the OneStep lists

Recall Definition 7.2 of step and step curvature. In this subsection, we describe how to
find the steps, and use the Vertex and Blob functions to bound the corresponding step
curvature. For each place P on each relator R, we shall create a list OneStep(P) of those
places Q on R that can be reached from P in a single step, together with the largest
possible associated step curvature χ.

If R = wk is proper power, then each place occurs k times on R. So a place Q could
occur several times in OneStep(P), corresponding to different positions on R relative to
P. To differentiate them, we store the number of letters of R between P and Q for each
item on the list.

Definition 7.15. Let P be a place with location R(i, a, b). A place Q is one-step reachable
at distance l from P, where 1 ≤ l < |R|, if the following hold:

(i) Q has location R(j, s, t) for some s, t ∈ X, where j = i+ l (interpreted cyclically).

(ii) If P is red, then l = 1 (and so s = b).

(iii) If P is green, then exactly one of the following occurs:

(a) there exists a green face f ′ instantiating P, and a consolidated edge between f
and f ′ of length l from the location of P to that of Q, and Q is green;

(b) there exists an intermediate place P′ whose location is R(j− 1, u, s) and whose
colour is red, there is a green face f ′ instantiating P such that there is a
consolidated edge between f and f ′ of length l − 1 between the locations of
P and P′, and there is red edge between P′ and Q.

For each place P = (R(i, a, b), c, C) on R, we compute the list OneStep(P) as follows.
In the description below, by including an item (Q, l, χ) in OneStep(P), we mean append
it to the list if there is no entry of the form (Q, l, χ′) already or, if there is such an entry
with χ > χ′, then replace that entry with (Q, l, χ). (If there is such an entry with χ ≤ χ′,
we do nothing).

Algorithm 7.16. ComputeOneStep(P = (R(i, a, b), c, C)):

Step 1 Initialise OneStep(P) as an empty list.
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Step 2 Case C = R. For each place Q = (R(i+ 1, b, d), x, C ′), and for each y ∈ X such
that y intermults with bσ, proceed as follows. (See Figure 6 (a).)
Let χ1 := Blob(y, bσ, c), and let χ2 := Vertex((y, bσ,R), (b, d,G), (dσ, x, C ′)).
Include (Q, 1, χ1 + χ2) in OneStep(P).

Case C = G. For each location R′(k, bσ, c) instantiating P, proceed as follows.
For each place P′ = (R(j, d, e), x, C ′) on R that can be reached from P by a
single (not necessarily maximal) consolidated edge α between R and R′, let
ν1 := (y, dσ,G) be the green G-vertex corresponding to the location on R′ at
the end of α, and let l := `(α). For each out-neighbour ν2 := (eσ, x, C ′) of
the G-vertex ν := (d, e,G), compute χ′ := Vertex(ν1, ν, ν2).

(i) If P′ is green then include (P′, l, χ′) in OneStep(P). (See Figure 6 (b).)

(ii) If P′ is red then P′ is the intermediate place of the step. Find all places Q
that are one letter further along R than P′. (See Figure 6 (c).) Just as in
Case R, compute the combined maximum curvature χ′′ returned by the
red blob between P′ and Q and the vertex at Q. Include (Q, l+1, χ′+χ′′)
in OneStep(P).

Lemma 7.17. Let P = (R(i, a, b), c, C) and Q = (R(j, d, e), c′, C ′) be places on the same
relator R. Then the following are equivalent.

(i) The place Q is one-step reachable from P at distance l.

(ii) There exists a coloured decomposition of a cyclic conjugate R′ of R such that a
subword wk or wkwk+1 of R′ between a location of P and a location of Q is a step
of length l, the face adjacent to f at wk has colour C, and edge after w−1

k labelled c,
and the face adjacent to f at the letter after the end of the step has colour C ′ and
next letter c′.

(iii) There exists χ such that (Q, l, χ) ∈ OneStep(P).

Furthermore, if (Q, l, χ) ∈ OneStep(P) then χ is an upper bound for the step curvature,
and χ ≤ −1/6.

Proof. It follows from the definitions that (i) and (ii) are equivalent: the only thing for
the reader to check is that enough conditions have been placed in (ii) to uniquely identify
the place Q at distance l from P.

It is also clear that the OneStep algorithm finds all one-step reachable places, and
does not find any places that are not one-step reachable, so the equivalence of (i) and (iii)
follows.

The step curvature is the sum of the curvature given to f by at most two vertices
and at most one blob. Hence the fact that χ is an upper bound on the step curvature is
immediate from the fact that the Vertex and Blob functions return an upper boud on
χ(v, f,Γ) and χ(B, f,Γ) (see Lemmas 7.8 and 7.13).

When C = R, or when C = G and P′ 6= Q so that P′ is red, the claim that χ ≤ −1/6
follows from Blob(y, b, c) ≤ χ(B, f,Γ) ≤ −1/6 for all y, b, c, B. Otherwise C = G and
P′ = Q is green, and the vertex v at any instantiation of P′ in a diagram Γ ∈ D has three
consecutive incident green faces. These are encoded by three green G-vertices ν1, ν and
ν2 which form a directed G-path, and so χ(v, f,Γ) ≤ Vertex(ν1, ν, ν2) ≤ −1/6.

7.6 The main RSymVerify procedure

The user chooses a value of ε > 0 to test, and we must check whether the steps computed
in the lists OneStep(P) could be combined around a relator to leave it with more than −ε
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of curvature. In this subsection, we shall present the main procedure RSymVerify(P, ε)
which carries out these checks and prove that it works.

After computing the data and functions from the previous subsections, RSymVerify(P, ε)
runs a sub-procedure, RSymVerifyAtPlace(Ps, ε), at each start place Ps on each relator
R ∈ R in turn. If every call to RSymVerifyAtPlace returns true, then RSymVerify

returns true, but if any fail, then it aborts and returns fail.
RSymVerifyAtPlace(Ps, ε) creates a list L, whose entries are quadruples (Q, l, k, ψ).

The first three components represent a place Q at distance l from Ps along R that can be
reached from Ps in k steps. The final component ψ is equal to ((1 + ε)l/|R|) + χ, where
χ is the largest possible total curvature arising from these k steps. If ψ ≤ 0 then we are
on track for a final curvature of most −ε, whereas if ψ > 0 then we are not. We shall
show in the proof of Theorem 7.20 that there is no need to keep a record of situations in
which ψ < 0. In other words, we may assume that if the test fails then ψ ≥ 0 after each
step in the failing decomposition.

By Lemma 7.17, the largest possible step curvature is −1/6, so the cumulative curva-
ture after d6(1 + ε)e steps is at most −ε, and we only need consider d6(1 + ε)e − 1 steps
from Ps. There can also be at most r steps, where r is the length of the longest relator
in R, so we define

ζ := min(d6(1 + ε)e − 1, r),

and use ζ as an upper bound on the number of steps. Notice that if ε < 1 then ζ ≤ 11:
the default value of ε in our implementations (see Section 10) is 1/10.

Similarly to Algorithm 7.16, by including an entry (Q, l+ l′, i, φ′) in a list L, we mean
appending it to L if there is no entry (Q, l + l′, j, φ′′) in L or, if there is such an entry
with φ′ > φ′′, then replacing it by (Q, l + l′, i, φ′).

Procedure 7.18. RSymVerifyAtPlace(Ps = (R(i, a, b), c, C), ε):

Step 1 Initialise L := [(Ps, 0, 0, 0)].

Step 2 For i := 1 to ζ do:

For each (P, l, k, ψ) ∈ L with k = i− 1, and for each (Q, l′, χ) ∈ OneStep(P)
with l + l′ ≤ |R|, do:

(i) Let ψ′ := ψ + χ+ (1 + ε)l′/|R|.
(ii) If ψ′ < 0, or if l + l′ = |R| and Q 6= Ps, then do nothing;

(iii) else if ψ′ > 0, Q = Ps and l + l′ = |R|, then return fail and L;

(iv) else include (Q, l + l′, i, ψ′) in L.

Step 3 Return true.

We now make a couple of remarks on Procedure 7.18. First, notice that if on the ith
iteration of Step 2 there are no places Q that can be reached from any P with non-positive
curvature, then RSymVerifyAtPlace stops early. As we shall see in the proof of Theorem
7.20, Lemma 7.21 implies that, if there is a decomposition of a cyclic conjugate of R
that leads to failure of RSymVerifyAtPlace, then there is a start place from which each
intermediate place can be reached with non-negative curvature.

Another observation is that, in Step 2 (iv), a list entry (Q, l+ l′, k, ψ′′) can be replaced
by (Q, l+l′, i, ψ′) with i > k. If there is a failing decomposition of R′ involving the original
entry, then there must be a (possibly longer) failing decomposition involving the new entry.

We are now able to summarise the overall procedure, RSymVerify.

Procedure 7.19. RSymVerify(P = 〈Xσ | VP | R〉, ε):

Step 1 For all a, b ∈ X, use VP and σ to test whether a and b intermult: Subsection 7.2.
Store the list of intermult pairs.

37



Step 2 Express each relator R ∈ R± as a power wk and find all locations on w: Subsection
7.2. Store the list of locations.

Step 3 For each location R(i, a, b), and for each choice of extra letter x ∈ X and colour
C ∈ {G,R}, test whether the potential place (R(i, a, b), x, C) is instantiable: Sub-
section 7.2. Store a list of all places, and for each green place store the list of
locations R′(k, bσ, c) which instantiate it.

Step 4 Use the list of places and the list of intermult pairs to compute the vertex graph G.
Store G and the lists of locations corresponding to each green G-vertex: Subsection
7.3.

Step 5 For each pair of G-vertices ν2 and ν1, find the minimal weight of a non-trivial
G-path from ν2 to ν1. Hence create the Vertex function: Algorithm 7.7.

Step 6 Identify R-letters and compute the list B, to create the Blob function: Algo-
rithm 7.12.

Step 7 For each relator R ∈ R, and each place P on R, use the Vertex and Blob functions
to run ComputeOneStep(P): Algorithm 7.16. Store the list OneStep(P), for each
such place P.

Step 8 For each relator R ∈ R, and each place Ps on R, run RSymVerifyAtPlace(Ps, ε).
If RSymVerifyAtPlace(Ps, ε) ever returns fail and a list L, then return fail

and L, otherwise do nothing.

Step 9 Return true.

Theorem 7.20. Let P = 〈Xσ | VP | R〉 be a pregroup presentation, such that I(R) = R
for all R ∈ R, and let ε > 0. If RSymVerify(P, ε) returns true then RSym succeeds on P
with constant ε.

Before proving Theorem 7.20 we prove a useful combinatorial lemma.

Lemma 7.21. Let ` ∈ Z>0, let L := {1, 2, . . . , `}, and let a1, a2, . . . , a` ∈ R. For m ∈ Z,
denote by m the element of L with m ≡ m (mod `). If S :=

∑
m∈L am ≥ 0 then there

exists j ∈ L such that for all i ∈ Z>0 the partial sum

sj,i :=

i−1∑
m=0

aj+m ≥ 0.

Proof. If S = s1,` is the minimum of {s1,i | i ∈ L}, then all partial sums starting at a1

are positive, so we can set j = 1. Otherwise, choose j ∈ L \ {1} such that s1,j−1 ≤ s1,i

for all i ∈ L.
Notice that sa,b + sa+b,c = sa,b+c for all a, b, c ∈ Z>0. Thus sj,i = s1,j+i−1 − s1,j−1

for all i ∈ Z>0. However, s1,j+i−1 = s1,j+i−1 + kS for some k ∈ Z≥0. So in any case,
sj,i = kS + s1,j+i−1 − s1,j−1 ≥ 0 by the choice of j.

Proof of Theorem 7.20 Suppose that RSym does not succeed on P with the constant
ε. Then there exists a diagram Γ ∈ D over P, and a face f ∈ Γ, such that f is green, has
no boundary edges, and satisfies κΓ(f) > −ε, where κΓ = RSym(Γ). We shall show that
RSymVerifyAtPlace(Ps, ε) returns fail for some Ps on f .

Let the label on ∂(f) be R ∈ R±. If R 6∈ R, then the corresponding face f ′ in the
diagram where all faces have labels the inverses of the labels of those in Γ will also satisfy
κΓ(f ′) > −ε, so assume without loss of generality that R ∈ R.

As discussed in Subsection 7.2, for some cyclic conjugate R′ of R, we have R′ =
w1w2 · · ·wk, where each wi labels a consolidated edge ei in Γ, and each wi has an asso-
ciated colour Ci ∈ {G,R} describing the colour of the other face incident with ei in Γ.
Recall that we do not allow the combination C1 = R, Ck = G. From this we derive a
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decomposition R′ = v1v2 · · · v`, where each vi labels a step and is equal either to a single
wj or to some wjwj+1 with wj green and wj+1 red.

Let the step curvature given to f by the step corresponding to vi be χi, let li be
the number of letters in vi, let λi = (1 + ε)li/|R|, and let ai = χi + λi. Then κΓ(f) =

1 +
∑`
i=1 χi > −ε, so

∑`
i=1 ai > 0.

By Lemma 7.21 there exists an i such that the partial sums

ai, ai + ai+1, . . . , ai + · · ·+ a` + a1 + · · ·+ ai−1

are all non-negative. Replace R′ if necessary by its cyclic conjugate R′′ := vivi+1 · · · vi−1,
and observe that the steps induced by the corresponding decomposition into consolidated
edges are the same subwords vi as before.

Let Ps be the place on R at the beginning of R′′ (which is instantiable because
Γ ∈ D). We showed in Lemma 7.17 that each step vi corresponds to a pair P,Q of
places on R, and that there exist l and χ such that (Q, l, χ) ∈ OneStep(P), with χ ≥ χi.
RSymVerifyAtPlace(Ps, ε) uses χ in place of χi, so the partial sums calculated for each
place are greater than or equal to the actual curvature sums, and in particular are all
non-negative. Thus RSymVerifyAtPlace(Ps, ε) returns fail. 2

7.7 Complexity of RSymVerify

We now show that RSymVerify runs in time polynomial in |X|, |R| and r, where r :=
max{|R| : R ∈ R} is the length of the longest relator.

Recall that we assume that before running RSymVerify, the presentation has been
simplified and the pregroup has been defined: see Subsection 7.1. The presentation sim-
plification process involves comparing subwords of cyclic conjugates of the relators, and
any simplification reduces the total length of the presentation, so it is clear that this can
be carried out in polynomial time.

Theorem 7.22. RSymVerify(P = 〈Xσ | VP | R〉, ε) runs in time O(|X|5 + r3|X|4|R|2).

Proof. We shall work through Steps 1 to 8 of Procedure 7.19, bounding the time complex-
ity of each step. We are not attempting to find the optimal bounds, simply to show that
the process runs in low-degree polynomial time. We assume that products and inverses
in the pregroup can be computed in constant time.

In Step 1, we compute an X × X boolean array describing the set of all intermult
pairs (a, b) ∈ X2. For each a ∈ X, and for each b ∈ X \ {aσ}, we must check whether
(a, b) ∈ D(P ) and, if not, whether there exists an x ∈ X such that (a, x) ∈ D(P ) and
(xσ, b) ∈ D(P ). This can be done in time O(|X|3).

In Step 2, for each R ∈ R we first find w that maximises the value of k for which
R = wk. For 2 ≤ l ≤ |R|/2, we let w be the length l prefix of R, and test whether
w|R|/l = R, in total time O(r2|R|). There are at most 2r|R| locations defined by R±.
When compiling the list of locations, we record which pairs of locations are mutually
inverse, in the sense that they describe corresponding positions in inverse pairs of relators.

In Step 3, we find the O(r|X||R|) places P = (R(i, a, b), c, C) with R ∈ R±. To do
so, for each of the O(r|R|) locations R(i, a, b) we first find all c such that (bσ, c) is an
intermult pair, and hence all instantiable red places P = (R(i, a, b), c,R), in time O(|X|).
Then, for each location R′(j, bσ, c) there is a green place (R(i, a, b), c,G) if and only if
the locations R(i, a, b) and R′(j, bσ, c) are not mutual inverses. We computed the inverse
pairs of locations in Step 2. So Step 3 requires time O(r|R|(|X|+ r|R|)) = O(r2|X||R|2).

In Step 4, we compute the vertex graph G. It has at most 2|X|2 G-vertices. We
can find these, and also list the locations corresponding to each green G-vertex, in time
O(r|R| + |X|2). Let ν = (a, b,G) be a green G-vertex. There is a G-edge from ν to the
G-vertex ν1 = (c, d,G) if and only if (i) c = bσ; and (ii) if d = aσ then there is more than
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one location corresponding to ν1. (For Condition (ii), note that there is at least one such
location, since there is one coming from the corresponding position of the inverse R′ of
each relator R associated with ν. But if there was only one, then the only diagram in
which faces labelled R and R′ shared the edge labelled b would fail to be σ-reduced. So
Condition (ii) ensures that there exists a σ-reduced diagram instantiating this G-edge.)
These two conditions can be tested in constant time for each G-vertex ν1. There is a
G-edge from ν to each G-vertex (bσ, c,R) and one from each G-vertex (c, aσ,R) to ν. We
can define all of these edges from and to ν in time O(|X|). There are no edges between red
G-vertices. So each G-vertex has G-degree O(|X|), and we can find the O(|X|3) G-edges
and assign their weights in time O(|X|4). The time complexity of Step 4 is O(r|R|+|X|4).

In Step 5, we compute the values of Vertex(ν1, ν, ν2). We begin by using the Johnson–
Dijkstra algorithm [15] to find the smallest weights of paths between all pairs of G-vertices
in the vertex graph. This algorithm runs in time O(|V |2 log |V | + |V ||E|), on a graph
with |V | vertices and |E| edges, so O(|X|5) in our case, and returns a matrix of path
weights. We then consider each of the O(|X|2) green G-vertices ν in turn, and for each
of the O(|X|2) directed G-paths ν1, ν, ν2, we record the appropriate curvature value for
Algorithm 7.7. The total time complexity of Step 5 is O(|X|5).

In Step 6, we compute the values of the Blob function. We first identify the set of
R-letters, in time O(r|R|), and store this information as a boolean array. We next use
the intermult table to construct all of the O(|X|5) words of length l between 3 and 5 such
that each cyclically consecutive pair of letters intermult, and that include at most one
non-R-letter when they have length 3 or 4, and none otherwise. We then discard all such
words w that have length 3 or 4 and are not equal to 1 in U(P ), or have length 5 and are
not equal in U(P ) to some a ∈ P . Finally, if l = 5, and w =U(P ) a 6= 1, then we check
that aσ is an R-letter, and that all cyclic subwords of waσ of length 2 or 3 are not equal
to 1 in U(P ). The checks on each word take constant time, so the time complexity of
Step 6 is O(|X|5).

In Step 7, we compute OneStep(P), for each of the O(r|X||R|) places P in turn. If
P is red then there are O(|X|) 1-step reachable places Q and, for each of them we make
O(|X|) calls to both Vertex and Blob to find the maximum step curvature. If P is
green, then there are O(r|X|) 1-step reachable places (Q, l). To find them, we look up
all O(r|R|) locations for the second face f1 that instantiates P, and for each of them we
find the length l1 of the maximal consolidated edge between f and f1 in time O(r). For
each such f1, there are O(l|X|) = O(r|X|) possibilities for the place P′ at the end of the
consolidated edge. If P′ is green, then P′ = Q, and we include its step curvature with a
single call to Vertex. If P′ is red, then we need a further O(|X|2) calls to Vertex and
Blob to find all possible triples (Q, l, χ) at the end of the step. So the time complexity of
Step 7 is O(r3|X|4|R|2).

Step 8 runs RSymVerifyAtPlace at each of the O(r|X||R|) places. The length of the
list L constructed by RSymVerifyAtPlace is O(r|X|). Each item on L is considered at
most ζ ≤ r times, so the time complexity of Step 8 is O(r3|X|2|R|).

7.8 RSym with interleaving

In the previous subsections, we described a procedure, RSymVerify(P, ε), that checks
whether RSym succeeds on a pregroup presentation P under the assumption that I(R) =
R. We now describe the modifications that we make when this assumption does not hold,
defining a more general procedure RSymIntVerify(P, ε). It follows the same overall steps
as RSymVerify, and the reader may wish to refer to Procedure 7.19 for these steps. After
presenting the key ideas, we describe RSymIntVerify at the end of this subsection: see
Procedure 7.30.
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We remind the reader that all terms, notation and procedures are listed in the Ap-
pendix.

The set I(R) is potentially of exponential size, since it might be possible to interleave
between each pair of letters of each R ∈ R (for an example of this, let R be any cyclically
P -reduced word in U(P ), where P is the pregroup for a free product with amalgamation
given in Example 2.8). Despite this, we shall see that RSymIntVerify runs in polynomial
time.

The overall strategy of RSymIntVerify is the same as that of RSymVerify: we con-
sider each relator R ∈ R in turn, and look for ways to decompose each cyclic conjugate R′

of each element of I(R) into words w1w2 · · ·wk that maximise the curvature received by
R′ in Steps 3 and 4 of ComputeRSym. Each wi is an interleave of [sσi−1w

′
i1]w′i2 · · · [w′ilisi]

for some si−1, si ∈ P , where w′i = w′i1 · · ·w′ili is the corresponding subword of the corre-
sponding cyclic conjugate of R. It follows from Lemma 4.6 that all elements of I(R) have
a description of this form.

In the preprocessing stage (see Subsection 7.1), we first carry out Preprocessing Steps
1 to 3. Once the pregroup has been chosen, if I(R) 6= R then in Preprocessing Step 4 we
find all R1, R2 ∈ R for which there exist distinct cyclic conjugates S1, S2 in I(R±1 ), I(R±2 )
with S1 = ww1, S2 = ww2 and |w| > |w1|. Each such common prefix w is equal in U(P )
to sσw′t for some s, t ∈ P , where w′ has length |w| and is a prefix of a cyclic conjugate of
R1 or R−1

1 . We can solve the word problem in U(P ) in linear time by Corollary 2.10, so
we can find all such S1, S2 in polynomial time.

As in preprocessing Step 2, if we find such a pair and R1 6= R2, then we replace R2 by
w−1

1 w2. It is conceivable that R1 = R2, S1 6= S2 and |w1| = |w2| = 1. In that case we use
the implied length two relator w−1

1 w2 to adjust the pregroup. So again the simplification
process ensures that the hypothesis, and hence also the conclusion, of Theorem 6.13 holds.

Definition 7.23. For each (a, b) ∈ X ×X the interleave set, denoted I(a, b), consists of
all s ∈ P such that (a, s), (sσ, b) ∈ D(P ). We explicitly permit s = 1, so that no interleave
set is empty.

Example 7.24. Let P1 be the pregroup for a free product G ∗H, as in the first part of
Example 2.5. If g, h ∈ G then I(g, h) = G, whilst if g ∈ G and h ∈ H then I(g, h) = 1.

Let P2 be the pregroup for a free product with amalgamation, as in the second part
of Example 2.5. Then I(a, b) = P2, for all a, b ∈ X.

Definition 7.25. Let R ∈ R±. A decorated location on R is a 4-tuple (i, a, b, s), denoted
R(i, a, b, s), where R(i, a, b) is a location, and s ∈ I(a, b). Let the subword of the cyclic
word R containing the location R(i, a, b) be dabe with d, e ∈ X. The pre-interleave set
Pre(R(i)) of R(i, a, b, s) is I(d, a), and the post-interleave set Post(R(i)) is I(b, e).

We now generalise Definition 7.4 to cover non-trivial interleaves. Recall that [a1a2 · · · an],
with ai ∈ P , denotes the element of P that is the product in U(P ) of the ai.

Definition 7.26. A potential decorated place P is a triple (R(i, a, b, s), c, C), where
R(i, a, b, s) is a decorated location, c ∈ X, and C ∈ {G,R}. A potential decorated place
is a decorated place if it is instantiable in the following sense:

1. There exists a σ-reduced and semi-P -reduced diagram Γ over I(P) with a face f
labelled by an element of I(R), elements t ∈ Pre(R(i)) and u ∈ Post(R(i)), a face
f2 meeting f at an edge labelled [sσbu] ∈ X, and the vertex between the edges of f
labelled [tσas] ∈ X and [sσbu] has degree at least three;

2. the half-edge on f2 after [sσbu]σ is labelled c;

3. if C = G then f2 is green, and if C = R, then f2 is a red blob.
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Notice in particular that we require ([sσb], u), ([tσa], s) ∈ D(P ).
We determine whether a potential decorated place P = (R(i, a, b, s), c, C) is instan-

tiable as follows. If C = R, then P is a decorated place if and only if there exists
u ∈ Post(R(i)) such that [sσbu]σ is an element of X that intermults with c. When
C = G, for each decorated location R′(j, d, e, v), we first check whether there exists
x ∈ Post(R′(j)) such that [vσex] =P c. Then, for each u ∈ Post(R(i)) we check whether
there exists y ∈ Pre(R′(j)) such that [yσdv] =P [sσbu]σ. Finally, we check whether the
resulting diagram is σ-reduced and semi-P -reduced. If there exist such R′(j, d, e, v), u, x
and y, then P is a green decorated place.

Definition 7.27. The decorated vertex graph V of I(P) has two sets of vertices. There
is a green V-vertex (a, b, s,G) if and only if there exists a decorated location R(i, a, b, s).
There is a red V-vertex (a, b,R) for each intermult pair (a, b).

There is a V-edge from (a, b, s,G) to (d, e, v,G) if there exist decorated locations
R(i, a, b, s) and R′(j, d, e, v) such that each one-face or two-face diagram with faces labelled
by elements of I(R) and I(R′), sharing an edge at these locations labelled [sσbu] ∈ X
on the R-side and [yσdv] = [sσbu]σ on the R′-side, is σ-reduced and semi-P -reduced, for
some u ∈ Post(R(i)) and y ∈ Pre(R′(j)).

There is a V-edge from (a, b, s,G) to each ([sσbu]σ, c,R), where u ∈ Post(R(i)) for some
R(i, a, b, s) and [sσbu] ∈ X. There is a V-edge from (a, b,R) to (c, d, t,G) if and only if
there exists a decorated location R(j, c, d, t), and a u ∈ Pre(R(j)), such that [uσct] = bσ.

The V-edges have weight 1 if their source is green, and weight 0 if it is red.

The most significant difference between RSymVerify and RSymIntVerify is in finding
the one-step reachable decorated places (see Algorithm 7.16). To simplify the exposition,
we shall break this task into two parts: finding the edges between green faces, and finding
the steps. It would be quicker to carry out these tasks concurrently.

The following algorithm, FindEdges, takes as input R ∈ R and S ∈ R±, and returns
a list LR,S of all possible consolidated edges e between faces f and f1 with labels in
I(R) and I(S). The list LR,S consists of a 5-tuple for each (not necessarily maximal)
consolidated edge e: the decorated locations of R at the beginning and end of e in f , the
two corresponding decorated locations of S, and the length of e.

Algorithm 7.28. FindEdges(R,S):

Step 1 Initialise LR,S := [ ].

Step 2 For each pair of decorated locations R(i, u0, u1, s) and S(j, v1, v0, t), with corre-
sponding cyclic conjugates u0u1 . . . un−1 of R and vσ0 v

σ
1 . . . v

σ
m−1 of S−1:

(a) Test, using V, whether these could be the beginning of a consolidated edge
e.

(b) If so, then consider each possible consolidated edge length l = 1, 2, . . . , r. For
each sl ∈ I(ul, ul+1) and each tl ∈ I(vl+1, vl), if

[sσu1]u2 · · ·ul−1[ulsl] =U(P ) ([tσl vl]vl−1 · · · v2[v1t])
−1

then add (R(i, u0, u1, s), R(i+ l, ul, ul+1, sl), S(j, v1, v0, t), S(j− l, vl+1, vl, tl),
l) to LR,S . If not, then do nothing.

Step 3 Return LR,S .

Lemma 7.29. Let R ∈ R and S ∈ R±. Then FindEdges(R,S) returns all of the
consolidated edges between cyclic conjugates of elements of I(R) and I(S). Furthermore,
FindEdges(R,S) runs in time O(r4|X|4).
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Proof. To simplify the notation, we will write R = u1u2 · · ·un and S = vmvm−1 · · · v1.
Assume that

R′ = [sσ0u1s1][sσ1u2s2] · · · [sσn−1uns0] ∈ I(R),
S′ = [tσ0vmtm−1][tσm−1vm−1tm−2] · · · [tσ1v1t0] ∈ I(S)

have a consolidated edge e between them.
Since FindEdges considers each possible pair of starting decorated locations, we may

assume without loss of generality that e is labelled by the subwords

[sσ0u1s1][sσ1u2s2] · · · [sσl−1ulsl] and [tσl vltl−1][tσl−1vl−1tl−2] · · · [tσ1v1t0]

of R′ and S′, respectively. Hence

[sσ0u1s1][sσ1u2s2] · · · [sσl−1ulsl] =F (Xσ) [tσ0v
σ
1 t1][tσ1v

σ
2 t2] · · · [tσl−1v

σ
l tl],

and these words are P -reduced. So

[sσ0u1]u2 · · ·ul−1[ulsl] =U(P ) [sσ0u1s1][sσ1u2s2] · · · [sσl−1ulsl]
=U(P ) [tσ0v

σ
1 t1][tσ1v

σ
2 t2] · · · [tσl−1v

σ
l tl]

=U(P ) [tσ0v
σ
1 ]vσ2 · · · vσl−1[vσl tl]

=U(P ) ([tσl vl]vl−1 · · · v2[v1t0])−1.

So e will be found by FindEdges(R,S).
For the complexity claims, notice that there are O(r2|X|2) decorated locations in Step

2 of FindEdges, that l ≤ r, that for each l we consider O(|X|2) pairs (sl, tl) of interleaving
elements, and that

[sσu1]u2 · · ·ul−1[ulsl][t
σ
l vl]vl−1 · · · v2[v1t] =U(P ) 1

can be tested in time O(l) = O(r), by Corollary 2.10.

For each decorated place P = (R(i, a, b, s), c, C), we compute a list OneStep(P) of
decorated places that are 1-step reachable from P, together with an upper bound on the
corresponding step curvature, as follows.

If C = R then for each decorated place Q = (R(i+1, b, d, t), x, C ′), for each y ∈ X such
that y intermults with [tσbσs], and for each V-vertex ν2 of colour C ′ with a V-edge from
(b, d, t,G) to ν2, we let χ1 = Blob(y, [tσbσs], c) and χ2 = Vertex((y, [tσbσs],R), (b, d, t,G), ν2).
We include (Q, 1, χ1 + χ2) in OneStep(P).

If C = G then we use those 5-tuples in the list LR,S with first entry R(i, a, b, s) to locate
the possible decorated places P′ = (R(j, d, e, sl), c, C

′) that can be reached from P by a
single consolidated edge. For each such 5-tuple, the fifth data item specifies the length of
this edge, the second identifies the location of P′, and the fourth identifies the V-vertex
ν1, in the notation of Case C = G in Algorithm 7.16. Furthermore, the component c of P
must be equal to [tσv0u] for some u ∈ P , where R1(j, v1, v0, t) is the second entry of the
5-tuple. Otherwise, Case G is as in Algorithm 7.16.

Here is an overall summary of RSymIntVerify.

Procedure 7.30. RSymIntVerify (P = 〈X | VP | R〉, ε):

Step 1 For all a, b ∈ X, use VP to test whether (a, b) ∈ D(P ), and store the result. If
(a, b) 6∈ D(P ) then compute and store the interleave set I(a, b).

Step 2 Express each relator r ∈ R as a power wk and find all decorated locations on w.
Store the pre- and post-interleave sets of each decorated location.

Step 3 For each decorated location, find all corresponding decorated places.

Step 4 Compute the decorated vertex graph, V.

Step 5 Use V to create the Vertex function.
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Step 6 The set of R-letters is all elements of X of the form [sσbu], where R(i, a, b, s) is
a decorated location and u ∈ Post(R(i)). Create the Blob function.

Step 7 For each R,S ∈ R, use FindEdges to compute the list LR,S of possible con-
solidated edges between faces with labels in I(R) and I(S). Hence, for each
decorated place P = (R(i, a, b, s), c, C), construct the list OneStep(P).

Step 8 From each decorated start place Ps, run RSymVerifyAtPlace(Ps, ε) (using deco-
rated places rather than places). If it returns fail and a list L, then return fail

and L, otherwise do nothing.

Step 9 Return true.

It is clear that RSymIntVerify runs in polynomial time, although with a higher time
complexity than that of RSymVerify.

8 RSym and the word problem

Suppose that RSym succeeds on a presentation P = 〈Xσ | VP | R〉 for a group G. We shall
show in this section that this leads to a linear time algorithm for solving the word problem
in G, which can be made into a practical algorithm in many examples. We remind the
reader that all newly defined terms, notation and procedures are listed in the Appendix.

One approach to solving the word problem is to use the following result.

Proposition 8.1. Let G be defined by the pregroup presentation P = 〈Xσ | VP | R〉, and
let PG be the standard group presentation of G. Let r be the length of the longest relator
in VP ∪ R. Suppose that, for some constant λ, the Dehn function D(n) of PG satisfies
D(n) ≤ λn for all n ≥ 0. Then any word w over X with w =G 1 has a subword of length
at most 384λr(r − 1) + 64 that is not geodesic.

Proof. It is shown in the proof of [14, Theorem 6.5.3] that G is hyperbolic and that all
geodesic triangles in its Cayley graph of G are δ-slim with δ ≤ 96λr2 + 4. In fact the
result of [14, Lemma 6.5.1] can easily be improved from area(∆) ≥ mn/l2 to area(∆) ≥
4mn/l(l − 1), which results in the improved bound δ ≤ 24λr(r − 1) + 4. It is proved in
[14, Theorem 6.1.3] that all geodesic triangles in the Cayley graph are 4δ-thin, and then
[14, Theorem 6.4.1] implies that any word w with w =G 1 must contain a non-geodesic
word of length at most 16δ, which is at most 384λr(r − 1) + 64.

We proved in Theorem 6.13 that if RSym succeeds with constant ε, then the pregroup
Dehn function PD(n) ≤ λ0n, where the constant λ0 depends only on r and ε. It follows
from this and Lemma 5.8 that D(n) ≤ λn, with λ = rλ0 + 1/2. So we can apply
Proposition 8.1, and compute γ = 384λr(r − 1) + 64 explicitly, which is typically a
moderately large but not a huge number. We can therefore solve the word problem in
linear time using a Dehn algorithm, provided that we can solve it for words of length
at most γ, which can in principal be accomplished in constant time using a brute force
algorithm which tests all products of conjugates of up to D(n) relators. This is clearly
impractical. In practice, one possibility is to use KBMAG for this purpose, but that is
only possible if KBMAG can compute the automatic structure, which may not be feasible,
particularly for examples with large numbers of generators.

An alternative approach to solving the word problem, which succeeds in many exam-
ples, is to use the success of RSym directly to produce a linear-time word problem solver
RSymSolve, and the main purpose of this section is to describe how to do that. It is
not guaranteed that such a solver can be constructed, even when RSym succeeds, but the
attempted construction of RSymSolve takes low-degree polynomial time.

The remainder of the section is structured as follows: first, in Definition 8.2 we define
an extra condition that RSym may satisfy, which guarantees that RSymSolve works. Then
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we present a procedure called VerifySolver, which tests for this extra condition. Finally
we describe the algorithm RSymSolve, which solves the word problem, and prove its
correctness and complexity. It is similar in spirit to a Dehn algorithm, with complications
arising from the fact that we work over I(P) whilst only storing rewrites arising from
VP ∪R, and that we need to work with P -reductions rather than just free reductions.

Definition 8.2. RSym verifies a solver for I(P) if, for any green boundary face f in any
Γ ∈ D with κΓ(f) > 0, the removal of f shortens ∂(Γ).

We assume in this section that RSym has succeeded. In fact, it is possible to use RSym

to solve the word problem under somewhat weaker hypotheses: see Remark 8.11.
The procedure VerifySolver seeks to check that RSym verifies a solver for I(P). It

is very similar to the main RSym tester, except that some of the places are on ∂(Γ). We
shall assume that RSymVerify(P, ε) has returned true for some ε > 0, and that the data
computed have been stored.

We describe VerifySolver only for the case where I(R) = R: the modifications
necessary when I(R) 6= R are straightforward. We shall describe the word problem
solver RSymSolve in the general case, when we do not assume that I(R) = R: as we shall
explain in Remark 8.10 below, if VerifySolver succeeds then we can use a standard
Dehn algorithm when I(R) = R.

Procedure 8.3. VerifySolver(P = 〈Xσ | VP | R〉):

Step 1 For each R ∈ R do

(a) For each place Ps on R do

(i) If VerifySolverAtPlace(Ps) returns fail then return fail.

Step 2 Return true.

For a start place Ps = (R(i, a, b), c, C) on a face f labelled byR, VerifySolverAtPlace
works along all possible sequences of internal edges of f starting at Ps, bounding the re-
sulting curvature of f . We seek to show that if κΓ(f) > 0, then these internal edges take
up less than half of ∂(f).

The vertex where VerifySolverAtPlace terminates is on ∂(Γ), so need not be a place
in the sense of Definition 7.4, as it need not be instantiable for any choice of extra letter
c ∈ X. We now rectify this.

Definition 8.4. A terminal place is a triple (R(i, a, b), terminal,G) where R(i, a, b) is
a location. A terminal place is green, and has no extra letter. For use in this section,
Definition 7.15 should be modified, to say that no place is 1-step reachable from a terminal
place.

For the rest of this section, a place may be terminal, unless specified otherwise. Before
running VerifySolver we re-run ComputeOneStep(P) (Algorithm 7.16), to also find the
one-step reachable terminal places from each non-terminal place P. The curvature values
χ of the triples (Q, l, χ) in OneStep(P), when Q is terminal, are as follows (we shall justify
them in the proof of Theorem 8.6).

C = R. We set χ to be the maximum curvature given to a face labelled R by a boundary
red blob at P (calculated using Lemma 7.10 with |δ(B) ∩ δ(Γ)| ≥ 1).

C = G. If P′ = Q we set χ = −1/4. If P′ 6= Q then we let χ be the maximum sum of
the curvature given to a face labelled R by the vertex at P′ and a boundary red
blob at P′.

For a non-terminal place Ps on R, VerifySolverAtPlace(Ps) makes a list of 4-tuples
(Q, l, t, ψ). The first three components represent a place Q at distance l from Ps along R
that can be reached from Ps in t steps, where if Ps is green then the first “step” consists
of only the boundary vertex. The final component ψ is 1 + χ, where χ is the largest
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possible curvature given to R by these t steps: unlike in Subsection 7.6 we do not adjust
for the length of the step. The algorithm VerifySolverAtPlace(Ps) returns fail if there
is a sequence of neighbouring green faces and red blobs, starting at Ps and ending at a
terminal place, that occupies at least half of ∂(f) and from which f receives more than
−1 of curvature. It returns true otherwise.

In the description below, the meaning of including an entry in the list L is the same
as in Procedure 7.18.

Procedure 8.5. VerifySolverAtPlace(Ps = (R(i, a, b), c, C)):

Step 1 Let n := |R|, and initialise L := [ ].

Step 2 If C = G then include (Ps, 0, 1, 3/4) in L.

Step 3 If C = R then, for each non-terminal place P1 at distance 1 from Ps, calculate
the maximum value of χ = χ(B, f,Γ) + χ(v, f,Γ), where B is boundary red blob
between Ps and P1, and v is the vertex at P1. Include (P1, 1, 1, 1 + χ) in L.

Step 4 For i := 1 to 3, for each (P, l, i, ψ) ∈ L, and for each (Q, l′, χ) ∈ OneStep(P) do:

(a) If l + l′ < n/2 and Q is not terminal then let ψ′ := ψ + χ;
if ψ′ > 0 then include (Q, l + l′, i+ 1, ψ′) in L.

(b) If l + l′ ≥ n/2, Q is terminal, and ψ + χ > 0, then return fail and L.

Step 5 Return true.

Note that we do nothing in Step 4 if neither of the specified conditions hold.

Theorem 8.6. Assume that I(R) = R. If VerifySolver returns true, then RSym verifies
a solver for P. The procedure VerifySolver runs in polynomial time.

Proof. Let f be a boundary green face of a diagram Γ ∈ D such that κΓ(f) > 0, and
assume that at most half of the edges of f are contained in ∂(Γ). Let the label of f be
R ∈ R. We show that VerifySolverAtPlace returns fail for at least one start place Ps

on R.
By Lemma 7.5, a boundary vertex v with δG(v,Γ) ≥ 3 satisfies χ(v, f,Γ) ≤ −1/4, so

Step 2 of VerifySolverAtPlace, and the value of χ in OneStep(P) when P is green and
Q = P′ is terminal, correctly bound χ(v, f,Γ) when the first or last edge of ∂(f) \ ∂(Γ) is
incident with a green internal face.

Step 3 of VerifySolverAtPlace, and the remaining cases of OneStep(P) when Q is
terminal, bound χ(B, f,Γ) as if the B is on the boundary. To see why this is correct, first
notice that the label of any non-boundary red blob is permissable as a label of a boundary
red blob. Let v be the vertex at Ps, and let B be a red blob at Ps with boundary length
l and area t (the case where the red blob is at the end of ∂(f) \ ∂(Γ) is equivalent). By
Lemma 4.12, χ(B, f,Γ) is maximised by assuming that B is simply-connected, in which
case l = t+ 2 since Γ is green-rich. If B has a boundary edge at Ps, then by Lemmas 6.7
and 6.8, χ(v, f,Γ) = 0 and χ(B, f,Γ) ≤ −t

2(t+1) . If B has no boundary edge at Ps, then

χ(v, f,Γ) ≤ −1/4 and χ(B, f,Γ) ≤ −t
2(t+2) . For all t

−t
2(t+ 1)

>
−t

2(t+ 2)
− 1

4

so χ(v, f,Γ)+χ(B, f,Γ) ≤ −t
2(t+1) . Hence Step 3 of VerifySolverAtPlace and OneStep(P)

correctly bound the curvature received by R when the first or last edge of ∂(f) \ ∂(Γ) is
incident with with a red blob. We showed in Lemma 7.17 that the OneStep lists correctly
bound all other step curvatures.

We showed in Lemma 6.9 that ∂(f)∩∂(Γ) consists of at most one consolidated edge to-
gether with at most one isolated vertex v, and that the internal edges of ∂(f) form a path.
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Therefore each place on R at a vertex along these internal edges (except for the last one)
has a face of Γ instantiating it, and so is not terminal. Therefore VerifySolverAtPlace

is correct to require in Steps 3 and 4(a) that all places are non-terminal.
It remains only to show that ∂(f) \ ∂(Γ) consists of at most three steps along R, after

the initial one (which may not formally be a “step”). Assume first that f ∩ ∂(Γ) contains
an isolated vertex v. Then we can decompose ∂(f) into v1, β1, v, β2, v2, β3, where v1, v2, v
are vertices on ∂(Γ), and each βi is a sequence of edges and vertices such that β3 ⊂ ∂(Γ),
and β1 and β2 are internal to Γ (see Figure 3). As we have just seen, the curvature given
to f by the vertices and blobs at the beginning of β1 and the end of β2 sums to at most
−1/2. We showed in Lemma 6.9 that f is incident with no red blobs at v, and that
δG(v,Γ) ≥ 4, so χ(v, f,Γ) ≤ −1/3.

Since κΓ(f) is assumed to be positive, by Lemmas 7.5 and 7.10 the face f is adjacent
to only these two green internal faces (and possibly some red blobs at v1 and v2), and so
VerifySolverAtPlace will return fail when i ≤ 2, with Ps a place at v1.

Next assume that f∩∂(Γ) consists of a single consolidated edge e. Write the boundary
of f as e, v1, β, v2, where β is a sequence of edges and vertices internal to Γ. The vertices
v1 and v2, together with any incident red blobs, give at most −1/2 of curvature to f .
Excluding the red blobs that might be incident with v1 and v2, by Lemmas 7.5 and 7.10
the path β can be incident with at most two red blobs, or at most two vertices of green
degree greater than two, or exactly one of each. Hence f is adjacent to at most three
internal green faces, and VerifySolver will return fail.

The complexity claims follow as in the proof of Theorem 7.22.

We now show how to solve the word problem, provided that RSym verifies a solver.
First we show that any word w = x1 . . . xn can be cyclically P -reduced in linear time.

Proposition 8.7. Let w = x1 . . . xn ∈ X∗. On input w and P = 〈Xσ | VP | R〉,
a cyclically P -reduced word w′ that is conjugate in U(P ) to w can be found in time
O(|w| − |w′|) = O(n).

Proof. The word problem over U(P ) can be solved in linear time by Corollary 2.10, so
without loss of generality we may assume that x1 . . . xn is P -reduced.

It remains to consider cyclic P -reduction. Assume we have two pointers, start, ini-
tially pointing at x1 and end, initially pointing at xn. We check whether (xn, x1) ∈ D(P ).
If [xnx1] =P 1, we move start to x2 and end to xn−1. If [xnx1] =P a 6= 1, we replace x1

by a, and move end to xn−1. We continue this process until the letters s and t pointed
to by end and start satisfy (s, t) 6∈ D(P ). We then test (t, u) ∈ D(P ), where u is the
letter after the one to which start points. If not, we are done. If tu =P 1 then we move
start forwards by two letters. If tu =P a 6= 1 then we replace u by a and move start

forward by one letter. We continue moving start and end towards the middle of w until
no further reductions are possible. We then return the word reading from start to end.

Let w′ be the resulting word, with m = |w| − |w′|. Then each pointer moves O(m)
times, and O(m) products in P are calculated.

We compute a list L, whose entries are pairs of words (u, v) = (u1 · · ·uk, v1 · · · vl) ∈
X∗×X∗, where [sσu1]u2 · · ·uk−1[ukt]([s

σv1]v2 · · · vl−1[vlt])
−1 is a cyclic conjugate of some

R ∈ R± for some s, t ∈ P , and k = d(|R|+ 1)/2e.
In the light of Proposition 8.7 we may assume that the input to RSymSolve is a

cyclically P -reduced word w = x1 · · ·xn ∈ X∗. Let r be the length of the longest relator
in R. In the description below, we interpret all subscripts cyclically, so that xn+1 = x1.

Algorithm 8.8. RSymSolve(w = x1 . . . xn):

Step 1 Store w as a doubly-linked list: each letter has a pointer to the letter before it,
and the letter after it.
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Step 2 Set α := 1.

Step 3 For α ≤ i ≤ n, search for m ∈ {1, . . . , d(r + 1)/2e}, a ∈ I(xi−1, xi), b ∈
I(xi+m−1, xi+m) and (u, v) ∈ L such that [aσxi]xi+1 . . . xi+m−2[xi+m−1b] =U(P )

u.

(a) Let i,m, a, b, v := v1 . . . vl be the first such found, if any.

(b) If none such exist then w 6=G 1. Terminate and return false.

Step 4 Replace xi−1 by [xi−1a] and replace xi+m by [bσxi+m]. Put a pointer CutStart

to the new xi−1 and a pointer CutEnd to the new xi+m. Store v as a doubly-linked
list, with pointers NewStart to v1 and NewEnd to vl.

Step 5 P -reduce at the beginning of v: If [xi−1v1] =P s 6= 1, then replace v1 by s, and
move CutStart to xi−2. If [xi−1v1] =P 1, then move NewStart and CutStart to
v2 and xi−2.

Step 6 Repeat Step 5 until one of the following: no further reductions are found; CutStart
should be moved back past x1; NewStart should be moved forward past vl.

Step 7 Provided that there is at least one letter left in v, perform Steps 5 and 6 (with
the appropriate pointers) to P -reduce at the end of v.

Step 8 Update the links in the list describing w so that whatever remains of v is now
inserted into the correct place in x1 . . . xn, yielding a word w1.

Step 9 Cyclically P -reduce w1, as in the proof of Proposition 8.7, yielding a word w2. If
w2 is empty, then terminate and return true.

Step 10 Let j be the position in w2 to which CutStart points, and let α := max{1, j −
d(r + 1)/2e+ 1}. Replace n by |w2|, and go to Step 3 with w2 in place of w.

(When returning to Step 3, we start the search for the next rewrite at xα, as earlier
untouched letters will still not be eligible for rewriting.)

Theorem 8.9. Let P = 〈Xσ | VP | R〉 be a pregroup presentation for a group G, such
that RSym succeeds on P. If VerifySolver succeeds on I(P) then for all n ∈ N, and for all
x1 . . . xn ∈ X∗, the algorithm RSymSolve(x1 . . . xn) correctly tests whether x1 . . . xn =G 1
in time O(n).

Proof. Let w = x1 . . . xn ∈ X∗. By Proposition 8.7 in O(n) we can replace w by a word
w1 = y1 . . . yk that is cyclically P -reduced. By Theorem 6.13, since RSym succeeds on
P, for some w2 ∈ I(w1) there exists a diagram Γ ∈ D with boundary word w2. By
Lemma 6.9, either Γ consists of a single face f1, which must be green and have curvature
+1, or there are at least two boundary faces f1 and f2 of Γ with positive curvature. In
this second case, since VerifySolver succeeds, the faces f1 and f2 each have more than
half of their boundary length as a continuous subword of the boundary of Γ.

Hence a rewrite applies to at least one subword zi . . . zi+m−1 of w2. Such a subword is
equal in U(P ) to [aσyi] . . . [yi+m−1b] for some a ∈ I(yi−1, yi) and b ∈ I(yi+m−1, ym), and
so will be found by RSymSolve.

On input a cyclically P -reduced word w of length n, RSymSolve runs O(n) tests of
equality in U(P ) of words of the form aσw′b, where w′ = t1 . . . tm is a subword of w with
m ≤ (r + 1)/2 such that (aσ, t1) ∈ D(P ) and (tm, b) ∈ D(P ), with the first entry of each
pair in L. It also tests for O(n) (cyclic) P -reductions. Every time a letter of w (or of a
substring v for replacement into w) is changed, it is due to a shortening of |w|, so at most
O(n) letter replacements occur.

Remark 8.10. If VerifySolver succeeds and I(R) = R, then we can replace RSymSolve
by a standard Dehn algorithm using the length reducing rewrite rules derived from VP ∪R.
The presence of the rules from VP ensures that we reduce our input word w to a P -reduced
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word. There is no need to carry out any additional cyclic reduction or cyclic P -reduction
on w.

This is because cyclic (P -)reduction might delete some letters at the beginning and
end of w, and might insert a single new letter at the beginning of w. If the resulting
cyclically P -reduced word w′ was equal to the identity in G, then a diagram Γ ∈ D for w′

would either consist of a single green face, or have at least two green regions with more
than half of their length on the boundary. In the former case, all but one letter of w′ is
a subword of the original word w. In the latter case, the label of the intersection of at
least one of these two regions with the boundary of Γ would be a subword of w. So this
subword would be reduced in length by the application of one of the rewrite rules.

Although a standard Dehn algorithm is no faster than RSymSolve in terms of complex-
ity (both are linear in the length of w) it has the advantage that it can be implemented
efficiently using a two stack model, as described for example in [4].

An improvement to VerifySolver is sometimes possible: for example, when P is the
standard pregroup for a free product of finite and free groups.

Remark 8.11. Consider the situation where if (a, b) is an intermult pair, then (a, b) ∈
D(P ). Note that this implies in particular that I(R) = R. In this case we design an
upgrade to VerifySolver, which we call VerifySolverTrivInt.

Let Γ be a diagram in D and let f be a boundary face of Γ with κΓ(f) > 0, with k
boundary edges and l internal edges. By Lemma 6.9, the edges in ∂(f)\∂(Γ) form a path
e1, . . . , el, say.

If exactly one of e1 or el is incident to a red blob whose next edge is on the boundary,
then deleting f leaves a red blob B with two edges appearing consecutively on ∂(Γ). By
Lemma 4.16 the labels a and b of these two edges intermult. Hence (a, b) ∈ D(P ), so the
new boundary word can be P -reduced, deleting at least one red triangle. Hence, deleting
f followed by P -reduction shortens ∂(Γ) by at least (k + 1) − l edges. If both e1 and el
are incident with boundary red blobs, then deleting f , followed by P -reduction, shortens
∂(Γ) by at least (k + 2)− l edges.

Hence one can produce a more powerful algorithm, VerifySolverTrivInt, by modi-
fying VerifySolverAtPlace and the OneStep values for terminal places. The list L from
VerifySolverAtPlace should now contain two types of entries, those that record places
on paths that start at a boundary red blob, and those that do not.

In Step 4(a) of VerifySolverAtPlace, we replace l + l′ < n/2 by l + l′ < (n+ 2)/2.
In Step 4(b) of VerifySolverAtPlace, if there is a boundary red blob at either Ps or

just before Q, then failure is only reported if l+l′ ≥ (n+1)/2. If Ps and the edge before Q
are both incident with boundary red blobs, then failure is only reported if l+l′ ≥ (n+2)/2.

When using VerifySolverTrivInt, appropriate additions need to be made to the list
L of rewrites for RSymSolve to adjoin the letters which can appear on such boundary red
blobs. We shall refer to the enhanced version as RSymSolveTrivInt.

As in Remark 8.10, in many situations (we omit the details) we can use a standard
Dehn algorithm in place of RSymSolveTrivInt, with the modified list L.

We can use the success of VerifySolver or VerifySolverTrivInt to lower our bound
on the Dehn function of G. Recall Definition 5.5 of the pregroup Dehn function.

Proposition 8.12. Let PD(n) be the pregroup Dehn function of P. If both RSym and
VerifySolver succeed, then PD(n) ≤ n. If RSym and VerifySolverTrivInt succeed,
then PD(n) ≤ 3n.

Proof. The first claim is clear, since RSymSolve is a variation of a Dehn algorithm. For
the second, notice that the removal of at most three faces from each diagram results in a
shortening of the boundary word.
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Remark 8.13. Assume that we know that all V σ-letters are nontrivial in G. Then
with a little effort one may show that we can deduce the same bounds on the pregroup
Dehn function of G from the success of RSymSolve and RSymSolveTrivInt, even when
RSym fails, provided that RSym is able to show that all green faces at dual distance at
least two from the external face have non-positive curvature. The assumption that no
V σ-letters are trivial in G means that all diagrams are loop-minimal, which permits us
to use Proposition 3.17, and to deduce that if w =G 1 then there is a diagram Γ ∈ D
with boundary word w. We excluded this case from our earlier analysis as it gave no
immediate upper bound on the Dehn function, but RSymSolve and RSymSolveTrivInt

together provide such a bound.

9 Applications of RSym

In this section we shall first show that RSym generalises several small cancellation con-
ditions. We then show how RSym can be verified by hand to prove the hyperbolicity of
various infinite families of presentations. This is an advantage over the algorithm based
on the theory of automatic groups that is used by the KBMAG package, which can only
handle individual groups and is not susceptible to hand-calculation. Finally, we discuss
possible further applications of RSym.

We remind the reader that all new terms, notation and procedures are listed in the
Appendix.

9.1 Small cancellation conditions

As a first example of the applicability of RSym, we consider various small cancellation
conditions, thereby recovering the result proved in [7, Corollary 3.3]. Furthermore, in
many cases RSymSolve solves the word problem.

Theorem 9.1. Let Q = 〈Y | R〉 be a group presentation for a group G, satisfying
C(p) − T (q) for some (p, q) ∈ {(7, 3), (5, 4), (4, 5)}. Then RSym succeeds on Q with ε =
−1/6, −1/4 and −1/5, respectively. If (p, q) = (3, 7), then RSym succeeds at level 2 with
ε = −1/14. In all of these cases, G is hyperbolic.

Proof. We let X = Y ∪̇{yσ : y ∈ Y } and set VP = ∅, just as in Example 2.4. Then let
P = 〈X | ∅ | R〉, so each coloured diagram over P is also a diagram over Q. Let Γ be a
reduced coloured diagram; notice that each face of Γ is green, so Γ ∈ D. By [16, Chapter
V, Lemma 2.2], the fact that Q satisfies C(p)− T (q) means that all non-boundary faces
of Γ have at least p edges (and hence at least p vertices), and all non-boundary vertices
v satisfy δ(v,Γ) = δG(v,Γ) ≤ q.

First assume that (p, q) ∈ {(7, 3), (5, 4), (4, 5)}, and let f be a non-boundary face of Γ.
A vertex v of f that is not on ∂(Γ) satisfies

χ(v, f,Γ) =
2− δ(v,Γ)

2δ(v,Γ)
=

1

δ(v,Γ)
− 1

2
≤ 1

q
− 1

2
,

by Lemma 6.7 (ii). Since f is a non-boundary face, a vertex v of f on ∂(Γ) has degree
at least 4 and so χ(v, f,Γ) ≤ −1/3 by Lemma 7.5. The claim that RSym succeeds, and
the stated values of ε, now follow from the fact that f has at least p incident vertices of
degree at least q. Since RSym succeeds at level 1, it follows from Theorem 6.13 that G is
hyperbolic.

So suppose instead that (p, q) = (3, 7), so that each non-boundary face has at least 3
incident eges, each of degree at least 7. If f has only three incident vertices, all boundary
vertices of degree exactly four, then κΓ(f) = 0, so RSym fails at level 1. We therefore
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apply RSym at level 2 to Γ, and let f be an internal face at dual distance at least 2
from ∂(Γ). Then δ(v,Γ) ≥ 6 for all vertices v of f on ∂(Γ), so Lemma 7.5 tells us that
χ(v, f,Γ) ≤ −2/5. Since the non-boundary vertices v of f satisfy χ(v, f,Γ) ≤ −5/14 in
this case, and −2/5 < −5/14, we conclude that RSym succeeds at level 2 with ε = −1/14 as
claimed. Since VP = ∅, there are no V σ-letters, so G is hyperbolic by Theorem 6.13.

With metric small cancellation conditions, RSymSolve solves the word problem.

Theorem 9.2. Let Q be a group presentation satisfying C ′(1/6) or C ′(1/4)−T (4). Then
both RSym and VerifySolver succeed on Q.

Proof. The success of RSym follows from Theorem 9.1. VerifySolver considers up to
three steps from each place on each relator, with the vertices at each end giving curvature
at most −1/4, and the intermediate vertices giving curvature at most 1/q − 1/2, where
q ∈ {3, 4}. Hence for C ′(1/6) a boundary face f with κΓ(f) > 0 has at most three
internal consolidated edges, and for C ′(1/4) − T (4) it has at most two. By Lemma 6.9
these internal consolidated edges are contiguous, and comprise less than half of the length
of the relator.

Our second example considers the generalisation of small cancellation to amalgamated
free products, as described in [16, Chapter V §11]. Let X1, . . . , Xm be finite groups with
proper subgroups Ai ≤ Xi, let A = A1, and let ψi : A → Ai be isomorphisms. Let
F = 〈∗Xi : A = ψi(Ai)〉 be the free product of the Xi, amalgamated over the Ai.

A normal form for g ∈ F \{1} is any expression y1y2 · · · yn such that g =F y1y2 · · · yn,
each yi ∈ Xj for some j, successive yi come from different Xj , and no yi is in A unless
n = 1. The length n, and the factors in which the yi lie, are uniquely determined by g.
An element g ∈ F \ {1} with normal form y1 · · · yn is cyclically reduced if n = 1 or y1 and
yn are in different factors, and weakly cyclically reduced if n = 1 or yny1 6∈ A. A product
of normal forms y1 · · · ynx1 · · ·xm is semi-reduced if ynx1 6∈ A and neither normal form is
a single element of A.

Let R be a set of weakly cyclically reduced elements of F \ A. The symmetrised set

R̂ consists of all normal forms of all weakly cyclically reduced F -conjugates of elements
of R±. A normal form b ∈ F \ A is a piece if there exist distinct R1, R2 ∈ R̂ such that
R1 =F bc1 and R2 =F bc2, where c1 and c2 are normal forms, and the products bc1 and
bc2 are both semi-reduced.

Notice that if R1 = x1 . . . xn and R2 = x1 . . . xkyk+1 . . . ym are normal forms of ele-
ments of R with m,n ≥ k + 2, and xk+1 and yk+1 are in the same free factor Xi, then
x1 . . . xk+1 is a piece. To see this, observe that we can write yk+1 = xk+1z for some z ∈ Xi.
If z 6∈ A then x1 . . . xk+1 · zyk+2 . . . ym is a semi-reduced product of two normal forms. If
z ∈ A then let zk+2 = zyk+2 6∈ A, and notice that the product x1 . . . xk+1 ·zk+2yk+3 . . . ym
is a semi-reduced product of two normal forms.

Definition 9.3. A symmetrised set R̂ satisfies C′FA(λ), where λ ∈ R>0, if

(i) |R| > 1/λ for all R ∈ R̂;

(ii) if R ∈ R̂ is equal in F to a semi-reduced product bc, where b is a piece, and c is a
normal form, then |b| < λ|R|.

We have not attempted to optimise the value of ε in the following result.

Theorem 9.4. Let X1, . . . , Xm be finite groups, let F = 〈∗Xi : A = ψi(Ai)〉 be a free
product with amalgamation, and let R be a finite set of cyclically reduced elements of F
such that R̂ satisfies C′FA(1/6).

Let P = X1 ∪
⋃̇
i>1(Xi \ Ai), with products defined within each Xi but not across

factors. Then P is a pregroup and RSym succeeds on the presentation 〈(P \ 1)σ | VP | R〉
with ε = 1/(2r).
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Proof. The fact that P is a pregroup and U(P ) = F is established in [22, 3.A.5.2]. The
set I(R) consists of all normal forms of cyclic conjugates of elements of R, and so is

contained in R̂. The set R̂ also contains elements of F that are weakly cyclically reduced
but not cyclically P -reduced, but these are not labels of faces in van Kampen diagrams
(coloured or otherwise).

We shall use the approach of RSymVerifyAtPlace (Procedure 7.18) and consider each
possible decomposition of a face f in a diagram Γ ∈ D that is labelled by R ∈ I(R) into
steps. We shall consider the cumulative curvature of f , namely the curvature value ψ
stored as the last entry of the 4-tuples in the list L created by RSymVerifyAtPlace. We
shall show that this is negative after at most two steps, and hence κΓ(f) ≤ −1/2r. Let
the first step have length l, let χ1 be the curvature of the first step, and let n = |R|. Then
the cumulative curvature ψ1 after the first step is

ψ1 = χ1 + (1 + ε)
l

n
= χ1 +

2r + 1

2r
· l
n
.

Each element of R̂ has length at least 7, by the assumption that R̂ satisfies C′FA(1/6).
Therefore r ≥ n ≥ 7, and in particular (2r + 1)/(2r) ≤ 15/14. By Lemma 7.17, the step
curvature χ1 ≤ −1/6, so if l = 1 then ψ1 ≤ −2/147 < 0, and we are done. Hence we
may assume that l > 1, and in particular that the first edge is green. Let S ∈ I(R) be
such that f and a face f1 labelled by S are incident with a consolidated edge e labelled
x1x2 · · ·xk. Notice that n = 6k +m for some m > 0, by Condition C′FA(1/6).

If the step consists just of the edge e, so that we are in Case 3(a) of Definition 7.15,
then l = k. Hence

ψ1 ≤ −
1

6
+

2r + 1

2r
· k

6k +m
,

and a short calculation shows that this is always negative.
So assume that the step consists of e, ending at a vertex v1, and then a red edge

(labelled xk+1) between f and a blob B1, then a vertex v2. Hence l = k + 1, and a short
calculation shows that 2r+1

2r ·
k+1

6k+m < 3/10, so we may assume that χ1 > −3/10. Notice
that χ1 = χ(v1, f,Γ) + χ(B1, f,Γ) + χ(v2, f,Γ), and so in particular δG(v1,Γ) = 2 (so f
and f1 are both adjacent to B1), the length |∂(B1)| ≤ 4, and δG(v2,Γ) = 2. In particular,
χ1 = χ(B1, f,Γ).

Let xk+1 lie in the free factor Xi. If the corresponding letter of S also lies in Xi, then
R contains a piece of length k+ 1. Hence k+1

6k+m < 1/6, so m ≥ 7, and a short calculation

shows that 2r+1
2r ·

k+1
6k+m ≤

2r+1
2r ·

k+1
6k+7 < 1/6, and so ψ1 is negative. Hence we may assume

that the corresponding letter of S does not lie in Xi, so B1 contains two triangles, and
χ1 = χ(B1, f,Γ) = −1/4.

We are therefore done if 2r+1
2r ·

k+1
6k+m < 1/4, so assume otherwise. Since 2r+1

2r ≤ 15/14,

a short calculation shows that k = 1 and m ≤ 2, so n is 7 or 8. The assumption that R̂
satisfies C′FA(1/6) now implies that there are no pieces on R of length 2.

Let f2 be the green face incident with B1 and v2. Then the edge shared by f2 and B1

has label from Xi. Since one edge label of f2 at v2 is from Xi and no pieces have length
2, the faces f2 and f cannot be edge-incident after v2. Since δG(v2) = 2, it follows that
the next step is red, corresponding to a blob B2. The face f2 is edge-incident with B2,
so B2 cannot be a single red triangle. Hence |∂(B2)| ≥ 4. Thus the curvature χ2 of this
second step is at most −1/4, and so χ1 + χ2 ≤ −1/2. However, the sum of the two step
lengths is 3, and since (15/14) · (3/7) < 1/2, the cumulative curvature after two steps is
negative.
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9.2 Families of presentations

We shall now consider some infinite families of presentations where we can show by hand
that RSym succeeds. To help make our descriptions clear and concise, we shall not work
through every step of RSymVerify, but just extract the parts that we need.

For our first family of examples we consider the triangle groups. The following result
is well known, but it illustrates how we can use RSym to provide a straightforward proof.

Proposition 9.5. Let G = 〈x, y | x`, ym, (xy)n〉 with 2 ≤ ` ≤ m ≤ n and 1/` + 1/m +
1/n < 1. Then RSym and VerifySolverTrivInt both succeed on a pregroup presentation
of G, and so G is hyperbolic.

Proof. Let P be the first pregroup presentation for G from Example 2.12. Then R± =
{R1 := (xy)n, R2 := (x−1y−1)n =U(P ) (x`−1ym−1)n}. Let Γ be a σ-reduced coloured
diagram over P.

Suppose first that ` ≥ 3 and hence n ≥ 4 and |R1| = |R2| ≥ 8. Then it is not possible
for two internal green faces of Γ to share an edge, and so there are no instantiable green
places. Hence all steps are red and have length 1. Now each step curvature is at most
−1/6 by Lemma 7.17, so each non-boundary face f of Γ satisfies κΓ(f) ≤ 1−8 · 16 = −1/3,
and so RSym succeeds with ε = 1/3.

We now show that VerifySolverTrivInt succeeds when ` ≥ 3, and hence that
RSymSolveTrivInt solves the word problem. Let f be a boundary face of Γ with κΓ(f) >
0. We must show that at least half of ∂(f) is on ∂(Γ). If f has at most one internal edge
(which is red, so has length 1), then at least 2n − 1 edges of f are boundary, so assume
that f has at least two internal edges. Then the ends of at least two of these internal
edges must intersect ∂(Γ) non-trivially and, by Lemma 7.10, the steps corresponding to
those edges have step curvature at most −1/4. Hence κΓ(f) > 0 implies that f has at
most four internal edges, which must be contiguous by Lemma 6.9. Hence if n > 4 then
more than half of ∂(f) is on ∂(Γ), and so VerifySolver succeeds. If n = 4, and f sat-
isfies κΓ(f) > 0 and has four contiguous internal edges, then the first or last such edge
is incident with a boundary red blob. If (a, b) is an intermult pair then (a, b) ∈ D(P ), so
VerifySolverTrivInt succeeds.

So suppose for the remainder of the proof that ` = 2, and so m ≥ 3. Then on R1 there
is a single instantiable (non-terminal) green place P1 = (R1(1, y, x), y,G). Furthermore,
the consolidated edges between two adjacent green faces in any diagram Γ ∈ D have
length 1. So each step in a decomposition of R1 has length at most 2.

Assume that n ≥ 7, and notice in particular this holds when m = 3. Then κΓ(R1) ≤
−1/6, and so RSym succeeds with ε = 1/6. For RSymSolveTrivInt notice that the longest
possible sequence of edges between a boundary face f with positive curvature and the
interior of a diagram is length 7 (with label y(xy)3) resulting in κΓ(f) = −1/6. So
VerifySolver fails when n = 7, but this sequence of edges has a boundary red blob at
each end, so VerifySolverTrivInt succeeds by Remark 8.11. Note that VerifySolver

succeeds when n ≥ 8. This completes the proof when m = 3.
So suppose that m ≥ 4 and hence n ≥ 5. We shall show that the stepwise curvature

of steps of length 2 is at most −1/4, and hence that RSym succeeds with ε = 1/4. A step
of length 2 in a green face f of Γ consists of two consolidated edges e1 and e2 of length 1,
labelled x and y, for which the adjacent faces are green and red, respectively. Let v be the
vertex between e1 and e2, and B the blob incident with f at e2. Then χ(B, f,Γ) ≤ −1/6,
by Lemma 7.10, so by Lemma 7.5 if δG(v,Γ) ≥ 3 then the step curvature is at most −1/3.

Otherwise, δ(v,Γ) = 3 and δG(v,Γ) = 2. Then B has two successive edges both
labelled y−1 = ym−1. If Area(B) > 1, then χ(B, f,Γ) ≤ −1/4. Otherwise B is a triangle.
But then the third edge of ∂(B) is labelled y2, which is not equal to y or y−1 since m ≥ 4.
Hence B is a boundary red blob, and so again χ(B, f,Γ) ≤ −1/4.
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Finally, we consider the word problem for m ≥ 4. Similarly to the previous cases, the
longest possible sequence of edges between a boundary face with positive curvature and
the interior is length 5, with label y(xy)2, and so VerifySolverTrivInt succeeds.

The next result is a more complicated application and is, as far we know, new. (Note
that there are general results due to Gromov and others that adding a suitably high power
of a non-torsion element to a presentation of a hyperbolic group yields another hyperbolic
group.)

For this proof, we shall modify ComputeRSym, by adding an extra step, which is
currently not implemented and is used only for hand calculations. After Step 4 of
ComputeRSym, we insert the following.

Step 4+ (Optional) Each green face with curvature less than −ε, for some user-determined
ε, gives some of its curvature to any adjacent non-boundary green faces f for which
f has curvature greater than −ε.

Definition 9.6. We shall refer to the curvature distribution calculated by this modifiation
of RSym as RSym+.

Theorem 9.7. Let G = 〈x, y | x2, y3, (xy)m, (xyxy−1)n〉. Then there exists a pregroup
presentation P of G such that the following hold.

(i) If m ≥ 13 and n ≥ 7, then RSym and VerifySolverTrivInt succeed on P.

(ii) If m ≥ 7 and n ≥ 19, or if m ≥ 25 and n ≥ 4, then RSym+ succeeds on P at level 2.

Furthermore, G is hyperbolic in all of these situations.

Proof. We let P = {1, x, y, Y }, with products x = xσ, Y = yσ, y2 = Y and Y 2 = y.
So the only red blobs in diagrams Γ in D are single red triangles with boundary yyy or
Y Y Y , and we can take R± = {R1 := (xy)m, R2 := (xY )m, R3 := (xyxY )n}.

We start by listing the possible labels of consolidated edges between two green faces
in any diagram Γ ∈ D, but we omit those in which one of the two faces is labelled R2,
since these correspond in an obvious way to those with a face labelled R1. In each case,
we have specified the words labelling the two faces, with the labels of the consolidated
edge positioned at the beginning of each of the two words.

1. x between (faces labelled) (xy)m and (xy)m;

2. x between (xy)m and (xyxY )n;

3. x between (xy)m and (xY xy)n;

4. xy between (xy)m and (Y xyx)n;

5. xyx between (xy)m and (xY xy)n;

6. yx between (yx)m and (xY xy)n;

7. y between (yx)m and (Y xyx)n;

8. x between (xyxY )n and (xY xy)n.

Since consolidated edges have length at most 3, each step has length at most 4 and
so, if m ≥ 13 and n ≥ 7, then there are least 7 steps in any decomposition of a relator
and hence RSym succeeds with ε = 1/6, by Lemma 7.17. The longest possible sequence of
edges between a boundary face with positive curvature and the interior of Γ is comprised
of three steps together with a red triangle at the beginning; and hence has length at most
13. Any such sequence of edges has a red triangle at each end of it, so if m ≥ 13 and
n ≥ 7 then VerifySolverTrivInt succeeds. This proves Part (i) of the theorem.

For Part (ii), assume that m ≥ 7. Let f1 be a non-boundary face with boundary label
R1 = (xy)m, in a diagram Γ ∈ D. We consider the possible decompositions of R1 into
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steps. A step of length k on R1 constitutes a proportion k/(2m) ≤ k/14 of |R1|, and the
step curvature is at most −1/6. So, when k ≤ 2, the step curvature is less than its length
requires on average for κΓ(f1) ≤ 0. In fact, the step curvature is less than required by a
factor of at least 7/6.

Consider a consolidated edge labelled xy, as in item 4 of the list above. The edges of
all red triangles are labelled y or Y , and the letter following xy in R1 is x, so such an
edge must be followed by another green consolidated edge. So this step consists of the
consolidated edge xy only and hence has length 2. Hence the step curvature is less than
required by a factor of at least 7/6. This deals with items 1, 2, 3, 4 and 7 of the list above.

Consider next a consolidated edge e labelled xyx, as in item 5 of the list above, and
let v be the vertex at the end of e. There are two places that could come at v, namely
P1 = (R1(2, x, y), Y, R) and P2 = (R1(2, x, y), x,G). For P2, the step consists of e, and it
is easily checked that δG(v,Γ) ≥ 4 and hence χ(v, f1,Γ) ≤ −1/4. Since 1/4 > 3/14, such
a step gives less than its proportionate contribution to f1, by a factor of at least 7/6. The
same is true for P1, except when δ(v,Γ) = 3 and δG(v,Γ) = 2.

Similar considerations apply to consolidated edges labelled yx, as in item 6 of the
list above, so there are just two types of steps that give more than their proportionate
contribution to f1, namely those consisting of a consolidated edge labelled xyx or yx
together with a red edge, with the property that the vertex in the middle of the step has
total degree 3. These steps have lengths 4 and 3, respectively, and have curvature −1/6.

Let us call these consolidated edges labelled xyx or yx in these steps bad consolidated
edges. Then the other face f2 incident with a bad consolidated edge is labelled R3 =
(xyxY )n and, since a bad consolidated edge on R3 is immediately preceded by a red edge
labelled y, there can be at most n bad consolidated edges on ∂(f2). (Note that the bad
consolidated edges of f2 could also be incident with faces labelled R2 = (xY )m, but the
same restrictions apply.)

Now suppose that n ≥ 19. Then, since the steps have length at most 4 and the step
curvature is at most −1/6, a non-boundary face f2 labelled R3 satisfies κΓ(f2) ≤ 1−n/6.
For such faces, we can now apply Step 4+ of the algorithm to compute RSym+, as follows.
Fix some small ε > 0. Then f2 donates curvature −1/6 + (1 + ε)/n across each of its bad
consolidated edges. Since there at most n of these, it still has curvature at most −ε after
making these donations.

A face f1 labelled R1 (corresponding considerations apply to faces labelled R2) that is
at dual distance at least 3 from ∂(Γ) receives at most −1/6 + (1 + ε)/19 curvature across
each bad consolidated edge in Step 4+ of the algorithm to compute RSym+. If f1 has d
bad consolidated edges, then d ≤ m/2, so the curvature of f1 before and after Step 4+ is
at most

1−
(

2m− 4d

2m
· 7

6

)
− d

6
and 1−

(
2m− 4d

2m
· 7

6

)
− d

3
+
d(1 + ε)

19
.

It can be checked that this is negative for all m ≥ 7 and d ≤ m/2, with ε close to 0.
The proof in the case n ≥ 4 and m ≥ 25 is analogous, and is omitted.
To deduce hyperbolicity of G, we apply Theorem 6.13(i) when RSym succeeds at level

1. To apply Theorem 6.13(iii) in the cases when RSym succeeds only at level 2, we need to
know that neither x nor y is trivial in G. We could verify that in each of the individual
cases by describing a finite homomorphic image of G in which the images of x and y are
nontrivial, but it is quicker just to observe that if either x or y were trivial in G then G
would be finite of order at most 3 and hence hyperbolic.

It seems possible that by working a little harder we could slightly improve the above
result to include more pairs (m,n), but we have not done this, because we can use the
KBMAG package to test hyperbolicity in individual cases. By doing that, and combining
it with the result of Theorem 9.7, we obtain
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Theorem 9.8. Let G = 〈x, y | x2, y3, (xy)m, (xyxy−1)n〉. Then G is infinite hyperbolic
whenever any of the following conditions hold.

• m = 7 and n ≥ 13;

• m = 8 and n ≥ 8;

• m = 9 and n ≥ 7;

• m = 10 and n ≥ 6;

• m ≥ 11 and n ≥ 5;

• m ≥ 15 and n ≥ 4.

In the cases (m,n) = (7, 12), (8, 7), (9, 6), (10, 5) and (14, 4), the group G is automatic
and infinite. In each of these examples, by using straightforward searches through the
elements of G of bounded length, we were able to find a pair g, h of commuting elements
that project onto a free abelian group of rank 2 in an abelian quotient of a suitably chosen
subgroup of finite index in G. So these group all contain free abelian subgroups of rank
2, and hence they are not hyperbolic.

These groups are finite for some smaller values of m and n. The final case to be
settled was (m,n) = (13, 4), which was proved finite by coset enumeration. In the cases
(m,n) = (7, 10), (7, 11), (8, 6) and (12, 4), G has been proved to be infinite, and we
conjecture that it is not automatic, and hence also not hyperbolic, but we are unable to
prove this. See [8] for details and further references on the finiteness question.

9.3 Further examples

In an interesting combination of RSym with some theoretical arguments involving cur-
vature, Chalk proves in [3] that the Fibonacci groups F (2, n) are hyperbolic for odd
n ≥ 11. The hyperbolicity of F (2, n) for even n ≥ 8 was proved earlier in [10], and that
of F (2, 9) has been proved computationally, using KBMAG. Furthermore, F (2, n) is finite
for n = 1, 2, 3, 4, 5, 7 and virtually free abelian of rank 3 (and so not hyperbolic) for n = 6.
So this completes the proof that F (2, n) is hyperbolic if and only if n 6= 6. Additionally,
in as yet unpublished work, Chalk has used some concepts from RSym to prove that the
Heineken group 〈x, y, z | [x, [x, y]] = z, [y, [y, z]] = x, [z, [z, x]] = y〉 is hyperbolic.

Whilst in this paper we have only proved that RSym naturally generalises the classical
small cancellation conditions C(p), C ′(1/p) and T (q) over free groups, and free products
with amalgamation, we are confident that RSym naturally generalises a wide variety of
other small cancellation conditions. For example, in [16] there is a form of small cancella-
tion for groups constructed as HNN extensions, which we have not analysed only because
the construction of a pregroup describing an HNN extension is a little technical. Metric
small cancellation has been defined over graphs of groups, and used to prove hyperbolicity
of large families of groups [18]. Other conditions for small cancellation over free groups
have been introduced by many authors: for example, Condition V (6) in [23]. We think it
is likely that RSym generalises most, or even all, of these, although it would be some work
to check all of the details.

More speculatively, we believe that it is possible that more powerful curvature distri-
bution schemes than RSym could be used to tackle a wide range of problems regarding
the hyperbolicity of finitely-presented groups. RSym, even with the modification we have
called RSym+, is rarely useful for 1-relator groups, but curvature distribution schemes that
allowed the same relator to be treated differently in different contexts might well be use-
ful. Similarly, curvature distribution schemes that permitted the curvature to be moved
(bounded distances) across diagrams could be useful for the Restricted Burnside Problem.
We chose to present RSym in this paper because it can be tested in low-degree polynomial
time, but if one is willing to accept a higher degree polynomial cost, or perhaps a cost
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with exponent the length of the longest relator, then schemes could be devised which
would prove the hyperbolicity of much wider classes of finite presentations.

10 Implementation

We have implemented RSymVerify, for the case where I(R) = R for all R ∈ R, in the
computer algebra systems GAP and MAGMA, as IsHyperbolic. It is in the released
version of MAGMA, and in the deposited GAP package Walrus. The two implementa-
tions are moderately different in their details, so we have used each of them as a test
of correctness of the other. We have provided methods to produce a pregroup whose
universal group is a given free product of free and finite groups, as in Examples 2.4 and
2.5. The user is then able to add any additional relators. We have also implemented
VerifySolverTrivInt and RSymSolveTrivInt in MAGMA.

In this section we describe some run times, using the MAGMA version. The experi-
ments were run on a MacBook Pro laptop with a 3.1GHz processor, and all set ε = 1/10.
We have not compared timings with the KBMAG package, as with the exception of the
very smallest presentations we found that KBMAG did not appear to terminate.

We first ran IsHyperbolic on presentations of the form 〈x, y | x2, ym, (xy)n〉, con-
structed as a quotient of the free product C2 ∗ Cm, for 3 ≤ m ≤ 6 and n ∈ {5, 10, 15}.
As expected, it succeeded for all (m,n) 6= (3, 5). The time taken was not noticeably
dependent on m or n and was less than 0.01 seconds for each trial.

We then tested presentations of the form 〈x, y | x2, y3, (xy)m, [x, y]n〉, again con-
structed as a quotient of C2 ∗ C3, for 10 ≤ m ≤ 20 and 6 ≤ n ≤ 15. IsHyperbolic

failed for m ≤ 12 or n = 6, and otherwise succeeded on all trials. Again, the time taken
was not noticeably dependent on m or n and was less than 0.01 seconds for each trial.

We have also run experiments with randomly chosen relators, and the results appear in
Table 3. For each, we take the average time for 20 sets of random relators with the given
parameters. After each run time we give the number of times IsHyperbolic successfully
proved that the group was hyperbolic, with ε = 1/10.

For random quotients of free groups we choose random, freely cyclically reduced words
of the given length as additional relators. For random quotients of free products of two
groups we choose random nontrivial group elements alternating between the two factors.
For random quotients of three finite groups, we choose a factor at random (other than the
previous factor) and then a random nontrivial element from that factor. For free products
with a nontrivial free factor we allow the free factor to be chosen twice in a row, but not
then to choose the inverse of the previously-chosen letter.

Let F be a free group of rank n, and consider the quotient of F by r random, freely
cyclically reduced relators of length 3. There are 2m(4m2 − 6m+ 3) ∼ (2m)3 such words
of length 3 over {a±1

1 , . . . , a±1
m }, so define the density d ∈ (0, 1) of the presentation by

r = (2m)3d. Żuk showed in [25] that if d < 1/2 then the probability that P defines an
infinite hyperbolic group tends to 1 as m→∞, whilst if d > 1/2 then the probability that
P defines the trivial group tends to 1 as m→∞. These asymptotic results tell us what to
expect when we choose r random cyclically reduced relators of length 3 in the cases when
r/n is either very small or very large, and it seemed interesting to study the case when
n → ∞ with r/n constant. We used our MAGMA implementation of IsHyperbolic to
investigate this situation experimentally, and also attempted to analyse it theoretically

Provided that we enforce our condition that there are no pieces of length 2 in the
presentation, the most common cause of failure of RSym for moderate values of r/n is the
possible existence of an internal vertex of degree 3 in a van Kampen diagram. A simple
calculation, of which we omit the details, shows that the expected number of triples
{a, b, c} of distinct elements of X which could label the edges incident with such a vertex
tends to λ := 9(r/n)3/2 as n → ∞. Assuming that the number of such vertices forms a
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Table 3: Run times averaged over 20 randomly-chosen examples

A free group of rank 2 with m random relators of length n
m = 2 n = 20 30 40

0.02 (0) 0.04 (20) 0.07 (20)
m = 3 n = 25 35 45

0.05 (0) 0.10 (20) 0.17 (20)
m = 10 n = 40 50 60

1.42 (11) 2.21 (20) 3.26 (20)
m = 40 n = 52 62 72

47.83 (12) 70.68 (20) 103.00 (20)

A free group of rank 10 with m random relators of length n
m = 10 n = 8 20 30

0.13 (8) 1.02 (20) 2.33 (20)
m = 20 n = 10 20 30

1.02 (3) 3.77 (20) 6.97 (20)
m = 30 n = 13 20 30

4.00 (19) 7.01 (20) 12.31 (20)
m = 50 n = 15 25 35

8.82 (18) 20.02 (20) 35.90 (20)

A free group of rank 100 with m random relators of length n
m = 30 n = 4 10 20

0.09 (14) 0.91 (20) 7.11 (20)
m = 50 n = 4 10 20

0.33 (6) 4.23 (20) 41.78 (20)
m = 70 n = 5 10 50

1.49 (18) 13.51 (20) 132.21 (20)

C2 ∗ C3 with m random relators of length n
m = 1 n = 96 120 160

0.39 (1) 0.59 (19) 1.02 (20)
m = 2 n = 120 160 200

2.33 (3) 4.32 (19) 6.74 (20)
m = 5 n = 200 240 280

40.60 (20) 62.55 (20) 83.64 (20)

C3 ∗ C3 ∗ C3 with m random relators of length n
m = 1 n = 12 24 36

0.01 (8) 0.03 (19) 0.06 (20)
m = 2 n = 20 30 40

0.06 (5) 0.12 (20) 0.19 (20)
m = 5 n = 25 55 75

0.41 (1) 1.82 (20) 3.43 (20)

C3 ∗A5 ∗ F3 with m random relators of length n
m = 2 n = 5 10 20

1.74 (4) 7.60 (19) 38.36 (20)
m = 3 n = 12 20 30

26.58 (19) 98.67 (20) 302.00 (20)
m = 5 n = 15 25 35

184.92 (19) 638.24 (20) 1575.63 (20)

58



Poisson distribution, this would imply that the probability of there being no such triples
would tend to exp(−λ). This estimate agrees surprisingly well with our experiments with
RSym. When r/n = 1/2, for example, we have exp(−λ) ' 0.570 and, the proportion of
successes over 1000 runs of our implementation with n = 100, 500 and 1000, were 0.510,
0.577, and 0.569.

If d > 1/3, then the probability that two relators share a subword of length 2, and
hence that our “preprocessing step” simplifies the presentation, tends to 1, and renders
the presentation non-random. It is therefore unclear to us how to complete the analysis.

11 Appendix: Glossary and list of notation

List of mathematical terms

Term See
area 3.3
blob curvature 6.3
boundary face, edge, vertex 3.1
coloured area 3.4
coloured (van Kampen) diagram 3.2
consolidated edge 3.1
curvature distribution 5.1
curvature distribution scheme 5.2
cyclic interleave 4.2
cyclic interleave class 4.5
(cyclically) σ-reduced 2.6
(cyclically) P -reduced 2.6
decorated location 7.25
decorated place 7.26
decorated vertex graph 7.27
dual distance 5.4
external face 3.1
external word 3.1
G-vertex 7.6
green degree 3.2
green place 7.4
green-rich 4.9
half-edge 6.2
intermult, intermult pair 4.14
internal face 3.1
interleave 2.7
interleave set 7.23
intermediate place 7.15
length of step 7.2

Term See
location 7.3
loop-minimal 3.13
one-step reachable 7.15
P -reduced, semi-P -reduced 3.7
place, potential place, 7.4
plane graph 3.10
post-interleave set 7.25
pregroup 2.1
pregroup presentation 2.11
pregroup Dehn function 5.5
pre-interleave set 7.25
R-letter 7.11
red blob 4.11
red degree 3.2
red place 7.4
σ-reduced, semi-σ-reduced 3.6
simply connected red blob 4.11
single rewrite 2.7
standard group presentation 5.6
step 7.2
stepwise curvature 7.2
subdiagram 3.5
succeeds with constant ε 6.6
succeeds at level d 6.6
terminal place 8.4
universal group 2.2
V σ-letter 3.13
verifies a solver 8.2
vertex graph 7.6

59



List of notation
Symbol See
Area(Γ) 3.3
β(B) 6.3
χ(v, f,Γ), χ(B, f,Γ) 6.4
CArea(Γ) 3.4
∂ 3.1
D 6.1
D(P ) 2.1
D(n) 5.5
δG(v,Γ), δR(v,Γ) 3.2
δG(e,Γ) 3.10
εi 7.1
F (Xσ) 2.2
G 7.6
I(P), I(R) 4.7
I(w) 4.5
I(a, b) 7.23
κΓ 6.3
OneStep(P) 7.16
P = 〈Xσ | VP | R〉 2.11
PG 5.6
PD(n) 5.5
Post(R(i)) 7.25
Pre(R(i)) 7.25
R(i, a, b) 7.3
RSym 6.4

Symbol See
RSym+ 9.6
U(P ) 2.2
V 7.27
VP 2.2
Xσ 2.2
≈ 2.7
≈c 4.2
[ab] 2.1

Procedures
Name See
Blob 7.12
FindEdges 7.28
ComputeOneStep 7.16
ComputeRSym 6.3
RSymIntVerify 7.30
RSymSolve 8.8
RSymSolveTrivInt 8.11
RSymVerify 7.19
RSymVerifyAtPlace 7.18
VerifySolver 8.3
VerifySolverTrivInt 8.11
VerifySolverAtPlace 8.5
Vertex 7.7
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