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Abstract

The benchmark rational expectations (RE) assumption both as-

sumes an unrealistic degree of rationality for economic agents and

fails to address how agents would come to coordinate on an equilib-

rium. This essay reviews how theories of learning, and more specif-

ically adaptive learning, address these issues and can lead to policy

conclusions distinct from those obtained under RE. Applications dis-

cussed include monetary policy in New Keynesian models, the neo-

Fisherian policy view, inflation targets, hyperinflation models, and

macroeconomic policy to avoid stagnation at the zero lower bound.

JEL classification: E62, E63, E52, D84, D83, E31, E32, E71

Key Words: Learning; bounded rationality; expectational coordina-
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1 Introduction

Expectations of current and future economic variables play a key role in

macroeconomic models. Under the benchmark rational expectations (RE)

assumption, macromodels can typically be summarized by a dynamic system

taking a form like

 =  (−1 +1)  (1)

where  is a vector of variables at time  which may include stochastic ex-

ogenous variables as well as endogenous variables, and  denotes the true
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time  conditional expectation. Often, linearized models are studied, as dis-

cussed below. Solving the model under the RE assumption yields a rational

expectations equilibrium (REE).

The presence of expectations, and the assumption that economic agents

can solve dynamic programing problems, makes macroeconomics inherently

different from natural science. Our primary focus here will be on the role of

expectations. The learning literature questions the wisdom and plausibility

of the RE assumption.

The initial key insight of the “learning” approach to expectation forma-

tion is that an REE is an equilibrium in the Nash sense. Having RE is in

general rational only if other agents have these expectations: the model is

self-referential in the sense that the actual evolution of  over time depends

on the way agents form expectations. This insight of the learning approach

leads to its second key insight, which is the need for stability analysis. It is

only plausible that agents will coordinate on an REE if there are there are

pressures that push agents toward RE if initially expectations deviate from

RE. An implied third insight is that in RE models with multiple equilibria,

learning can be used as a selection criterion since in many cases only a subset

of REE will be locally stable under learning.1

Under the learning approach we need to make a decision about how pre-

cisely to model rationality at the agent level. My general viewpoint is to

follow the “cognitive consistency principle,” that we should model agents

as about as smart as professional economists. For certain relatively simple

economic settings, in which the economic structure is common knowledge,

this suggests modeling economic agents like economic theorists, leading to

what is called the eductive approach. This is the approach stressed by Roger

Guesnerie in a series of papers beginning with Guesnerie (1992).2

This research shows that even hyper-rational agents, with complete knowl-

edge of the true structure and full common knowledge of the hyper-rationality

of all other agents, may or may not be able to coordinate on RE, depending

on whether the structure of the model satisfies non-trivial eductive stability

conditions. Thus even hyper-rational agents may be unable to coordinate on

an REE.

1See, for example, Evans (1985), Evans (1989), Evans and Honkapohja (1994a) and

Evans and Honkapohja (1995).
2See also Guesnerie (2002), Guesnerie (2005), and Evans and Guesnerie (1993). A

related line of thought, involving k-level thinking, is consistent with bounded rationality;

see Nagel (1995).
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In many realistic macroeconomic settings, the cognitive consistency prin-

ciple instead indicates bounded rationality as the appropriate assumption.

After all, we economists do not agree on what is the true model of the

macroeconomy, nor do we know the values of model parameters. We also

are aware that in our own life-decisions we do not formally solve lifetime

optimization problems, based on knowledge of the true transition equations

for all variables. Furthermore, we understand that other agents are in the

same position and are making boundedly rational forecasts and decisions.

In this essay I will focus on the boundedly-rational adaptive learning

approach in which we replace RE with the more specific assumption that

economic agents forecast key aggregate variables using econometric forecast

rules with parameters that are updated over time.3 The stability issue then is

simply whether under adaptive learning the forecast rules converge to an RE

forecasting rule as the parameters are updated over time.4 This is possible

provided the forecast rule specification nests the REE under examination.5

The stability conditions for this are typically straightforward to compute,

using the E-stability principle: see Evans and Honkapohja (2001). If the

econometric forecast rule does not nest an REE there may still be convergence

to a “restricted perceptions equilibrium” consistent with the class of forecast

rules employed by agents.

This “benchmark” formulation of adaptive learning is consistent with the

cognitive consistency principle in the sense that economists, when making

forecasts, use econometric procedures with estimated forecast rules that are

updated over time. Of course, agents may be less sophisticated, using sim-

ple rules of thumb to make forecasts, as is often assumed in “behavioral”

approaches to economics. These approaches still fit with the adaptive learn-

ing perspective provided agents are choosing between rules based on their

relative performance over time. See, for example, Hommes (2013) and also

Branch and Evans (2006a) and Branch and Evans (2007).

The adaptive learning approach has implications for economic policy-

3The adaptive learning approach extends naturally to incorporating boundedly-optimal

decision-making. See Branch, Evans, and McGough (2013), Honkapohja, Mitra, and Evans

(2013) and Evans and McGough (2018c).
4Surveys of this literature that include a wide range of theoretical and policy issues

include Evans and Honkapohja (1999), Evans and Honkapohja (2003a) and Evans and

Honkapohja (2009), Woodford (2013) and Eusepi and Preston (2018).
5Stability conditions under eductive and adaptive learning are distinct but closely re-

lated. See Evans and Guesnerie (1993) and Evans, Guesnerie, and McGough (2019).
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making and assessing alternative policies that take several distinct forms:

1. Unstable policies. Monetary policy rules need to be evaluated for

whether they give solutions that are stable under learning. Even some rules

designed to be optimal can have implementations that are unstable under

learning.

2. Indeterminate steady states. In forward-looking macro models, some

policies may lead to an indeterminate steady state with multiple REE. Gen-

erally these include stationary “sunspot solutions,” i.e. solutions depending

on extraneous exogenous random variables, which may be inefficient yet sta-

ble under learning. In other cases both the steady state and the stationary

sunspot solutions are unstable under learning, leading to paths that push

away from the steady state.

3. Robustness of policies to learning dynamics. Transitional learning

dynamics can be important, and under “constant-gain” learning (discussed

below) there are persistent (or “perpetual”) learning dynamics. The choice

of policy parameters should take into account economic performance under

perpetual learning.

4. Multiple steady states. In some nonlinear macro models, multiple

steady states can arise. The different steady states, which in some cases are

Pareto ranked, can be assessed for stability under learning. Monetary and

fiscal policies should be designed so that under learning they ensure or make

more likely convergence to a preferred steady state.

With these general principles in mind we consider the implications of

learning for macroeconomic policy in a range of applications. Before doing

so, the next section develops a simple example to provide a basic introduction

to the required techniques.

2 Simple example of adaptive learning

As discussed below in Section 3, macroeconomic models ideally begin with

agent-level decision-making, allowing for possible heterogeneity across agents,

and explicitly impose aggregation and market clearing. However, many key

issues for policy can be studied in representative-agent models after these

steps have already been imposed in a linearized model, yielding a linear

reduced form like (1), but in which  has been replaced by ∗ , the time
 subjective expectations held by agents. Consequently, adaptive learning
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techniques often focus on the following linear set-up,

 =∗ +1 +−1 +  (2)

where  is a vector of endogenous variables,  is a vector of observed ex-

ogenous variables and expectations ∗ +1 are formed using an econometric
forecasting model, with coefficients updated over time. These forecasting

models are often called the “Perceived Law of Motion” (PLM).

As an example, consider a forward-looking univariate linear model

 = ∗ +1 +  (3)

 = +  (−1 − ) + 

where 0    1, 0 ≤   1 and  is exogenous (0 
2
). This could,

for example, represent a risk-neutral asset-pricing model, with exogenous

observed stationary AR(1) dividend process  where  is the price of the

asset and ∗ +1 is the one one-step-ahead forecast of +1.
6 It is easily

verified that under RE the unique non-explosive solution is

 = ̄0 + ̄1, where ̄1 = (1− )−1 and ̄0 = (1− )−1 (1− )̄1

This REE can also be written as

+1 = ̄+ ̄ + ̃+1 (4)

where ̃+1 = (1− )−1+1 and

̄ =
 (1− )

(1− ) (1− )
and ̄ =



1− 


Under adaptive learning we assume that agents do not know
¡
̄ ̄
¢
. How-

ever, they have a PLM forecasting model

+1 = +  + ̃+1 (5)

which nests the REE, and we assume that they use observed data to estimate

to estimate the parameters ( ) andmake forecasts based on these estimates.
Thus, at the end of time  − 1, using observed past data { −1}−1=1  the

6For an application to foreign exchange rates see Chakraborty and Evans (2008).
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PLM (5) is estimated by least squares (LS) giving coefficients (−1 −1).
Using these estimates and the observed dividend , expectations are

∗ +1 = −1 + −1

The “temporary equilibrium”7 price of the asset  is then given by  =
∗ +1 + . At the end of  the next data point ( −1) is added to the
data set and using LS estimates are updated to ( ), which are used in
+ 1 for forecasting +2.

8

This recursive procedure defines a temporary equilibrium path for div-

idends and prices. It can be shown that ( ) →
¡
̄ ̄
¢
with probability

1 as  → ∞. Thus, in this example, adaptive LS learning converges as-
ymptotically to the unique REE. This example can be used to illustrate the

E-stability principle. E-stability is defined in term of the map from PLM

to the actual law of motion (ALM). For the PLM (5), for any given ( )
we have forecasts ∗ +1 =  + , which, when inserted into (3) gives

 = + (+ 1) . This implies ALM  = + (+ 1)  or

 = (+ 1) (1− )+ + (+ 1) −1 + (+ 1) 

which implies ∗ +1 = ( ) + ( ) where

 ( ) ≡ (( ) ( )) = ((+ 1) (1− )+  (+ 1) )  (6)

Equation (6) gives the mapping from perceived forecast parameters ( )
to the implied actual forecast parameters. The REE corresponds to a fixed

point of this map and E-stability is defined as local asymptotic stability of

this fixed point under the notional time ordinary differential equation




( ()   ()) =  ( ()   ())− ( ()   ()) 

E-stability holds when the eigenvalues of the Jacobian matrix 
¡
̄ ̄
¢
have

real parts less than one. Since here the eigenvalues are  and  the REE

7The “temporary equilibrium” terminology was utilized by Hicks (1939).
8A recursive set-up is enabled by using recursive least-square updating, and the re-

sulting system can be analyzed using stochastic approximation techniques based on an

associated differential equation. See Marcet and Sargent (1989) and Evans and Honkapo-

hja (2001). The expectational stability principle is in turn closely related to the associated

differential equation for the system.
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is E-stable. The E-stability principle states that E-stability governs stability

under LS learning, and in the current case this result can be formally proved

using stochastic approximation theorems.

For the general multivariate linear model (2), determinacy and E-stability

conditions for REE are given in Ch. 10 of Evans and Honkapohja (2001). Im-

portant extensions of these results are given in McCallum (2007) and Bullard

and Eusepi (2014).

A final apparently technical but practically important issue that needs to

be emphasized concerns learning “gains.” LS learning is most conveniently

formulated using “recursive least-squares” equations9 in which coefficients

are updated using the most recent forecast error, with the size of adjustment

depending on the “gain sequence.” The recursive formulation of LS uses a

gain sequence 1. This is called a “decreasing gain” sequence, which arises
because LS gives equal weight to each of the observations 1     . Decreasing
gain allows full asymptotic convergence to an REE.10

An alternative often used in practice, particularly in empirical models,

is to replace 1 by a (typically small) “constant gain” 0    1. Con-
ceptually this corresponds to discounted LS, with past data discounted at

geometric rate 1 − . Constant gains allow agents to track more quickly

structural shifts or policy changes. However this generally implies less than

full convergence to REE because estimates remain noisy asymptotically. For

example, in the simple risk-neutral asset-pricing model (3), simulations show

that under constant-gain LS learning the volatility of asset prices var()
can be substantially larger than under RE. The extent of excess volatility

depends positively both on the size of the gain and on how close  is to 1.

3 Methodological Issues

As noted in the previous Section, models of the form (2) are typically ob-

tained from linearizations of models in which households and firms have

solved their optimization problems, and in which the representative-agent

assumption, market-clearing and RE are imposed, but in which RE is then

replaced by expectations ∗ +1 formed using a statistical forecasting rule
with parameters updated over time in accordance with adaptive learning.

9See e.g. Ch. 2 of Evans and Honkapohja (2001).
10For convergence results under both decreasing and constant gains, see Evans and

Honkapohja (1998) and Evans and Honkapohja (2001).
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Evans and McGough (2020a) and Evans and McGough (2021) call this a

“reduced form” approach to adaptive learning.

In models like the Muth (1961) cobweb model, or in two-period overlap-

ping generations models, in which the agent optimization problem is simple,

the reduced form learning approach is clearly justifiable. However, most

standard macro models, like the real business cycle (RBC) and New Keyne-

sian (NK) models, require agents to solve infinite-horizon dynamic stochastic

optimization problems.

In these settings Evans and McGough (2021) argue that an “agent-level”

approach should ideally be used, in which one first specifies how agents

make decisions based on boundedly optimal solutions to their optimization

problems, given their expectations. Agents’ conditional supply and demand

curves are then aggregated to obtain the period’s temporary equilibrium.

Under learning agents then update their forecast rules, and, moving to the

next period, new exogenous shocks are realized, expectations are formed,

and a new temporary equilibrium is realized. The path of the economy un-

der adaptive learning is defined recursively.

An agent-level approach can be implemented in detail in several distinct

ways. A central issue is how agents aim to make optimal decisions in infinite

or long-horizon settings. Evans and Honkapohja (2006) and Honkapohja,

Mitra, and Evans (2013) show that if agents make decisions based on one-

step ahead Euler equations, this approach is compatible with reduced-form

learning. The long-horizon approach of Preston (2005) and emphasized, for

example, in Eusepi and Preston (2018), assumes agents at each point in

time make decisions that are optimal, given their expectations of the entire

future path of variables exogenous to their control (while neglecting that

these expectations will be updated over time).

Adam, Marcet, and Nicolini (2016) assume that agents are internally

rational, in the sense that they behave as Bayesian decision-makers who fully

optimize, given their subjective probability distribution over variables outside

their control, even though these subjective distributions may be inconsistent

with the true distributions, and thus not externally rational.

Evans and McGough (2018c) show that Euler-equation learning can be

viewed as a special case of shadow-price learning. They show that shadow-

price learning is boundedly optimal: it leads asymptotically to fully optimal

decision making in linear-quadratic settings. Shadow-price learning can be

implemented in general nonlinear environments, as well as when there are

heterogeneous agents.
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These different agent-level approaches have different advantages. Evans

and McGough (2021) examines the relative performance of Euler-equation,

shadow-price and long-horizon decision-making within a standard RBC set-

ting in which the economy experiences a change in fiscal policy. Although

there are numerous detailed differences, one message from this application

is that qualitatively the outcomes of different agent-level implementations of

bounded rationality share many common features. Reduced-form learning,

in this and other examples, appears to provide a satisfactory short-cut to

results on asymptotic stability and transition dynamics, which align with

agent-level implementations of adaptive learning.

4 Monetary Policy

The implications of learning for monetary policy are extensive. We focus on

several key issues. To keep the discussion compact, the presentation focuses

on reduced-form adaptive learning.

4.1 Policy rules in the canonical NK model

Consider the canonical linearized New Keynesian (NK) model

 = − ( −∗ +1) +∗ +1 +  (7)

 = ∗ +1 +  +  (8)

where 0    1 is the discount factor and    0. Here  is the output
gap,  is inflation and  is the nominal interest rate, all of which are ex-

pressed as deviations from their steady-state values.11 These are called the

NK IS and NK PC equations. The exogenous shocks   are assumed to

be observable independent, stationary, mean zero AR(1) processes:

 = −1 +  and  = −1 + , where 0     1,

and   are  mean zero. We consider a forward-looking Taylor-type

interest-rate rule given by

 = 
∗
 +1 + 

∗
 +1 (9)

11The (steady state) target inflation rate for monetary policy needs to be close to zero

for this formulation to be a suitable approximation.
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where    0. John Taylor recommended  respond more than one-for-

one to inflation — the “Taylor principle”; for (9) this would mean   1.
Substituting out  the model can be written as a bivariate forward-looking

model

 =∗ +1 +  (10)

where 0 = ( ) and 0 = ( ), and  and  are 2× 2 matrices.12
The form of the “reduced-form” model (10) is a bivariate extension of the

model (3), with the exception that in (10) we have suppressed the intercepts

by expressing variables in deviation from mean form. When assessing sta-

bility under learning we include intercepts because agents need to learn the

means of the variables they are forecasting. The model (10) is determinate,

i.e. has a unique nonexplosive REE, when both roots of lie inside the unit

circle, and in this case the REE takes the form  = ̄, where ̄ is a 2× 2
matrix depending on the parameters.

Bullard andMitra (2002) investigated this model for determinacy and sta-

bility under adaptive learning, for the policy rule (9) as well as for contempo-

raneous and backward-looking Taylor rules. Additional results, concerning

stability of sunspot equilibria in the indeterminate case, were obtained by

Honkapohja and Mitra (2004), Evans and McGough (2005) and, within a

nonlinear setting, Evans and McGough (2020b). For the policy rule (9), two

main results are that if   1 and  is not too large then the model is

determinate and the REE is stable under learning. However, for   1 if
 is too large the model is indeterminate with sunspot solutions that are

stable under adaptive learning.13 Thus forward-looking rules with   1
should not respond too aggressively to expected future output gaps.

Optimal policy has also been studied in this set-up, see e.g. Clarida,

Gali, and Gertler (1999) and Woodford (1999). Suppose the objective func-

tion of the policymaker can be approximated by 

P∞
=0 


¡
2+ + 2+

¢
.

Under “optimal discretionary” policy the first-order condition (FOC) for op-

timal policy is  +  = 0. Under commitment the policymaker can

do better, as a result of the effect on private sector expectations, and the

corresponding FOC, for commitment under the “timeless perspective,” is

12Under long-horizon adaptive learning, the assumption that agents know the form of

the interest rate rule is non-trivial, and an important issue. See Eusepi and Preston (2010).
13The possibility of REE sunspot equilibria was originally investigated by Shell (1977),

Azariadis (1981), Azariadis and Guesnerie (1982), Cass and Shell (1983) and Azariadis and

Guesnerie (1986). Early papers examining stability under learning of sunspot equilibria

include Woodford (1990), Evans (1989) and Evans and Honkapohja (1994b).
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+ ( − −1) = 0. A full specification of monetary policy requires pro-
vision of an interest-rate rule (or “reaction function”) that implements the

policy, consistent with the FOC.

For simplicity consider implementation of optimal discretionary policy.

An apparently natural choice — a “fundamentals-based rule” — can be ob-

tained as follows. Using the FOC  +  = 0 in (8) to eliminate , and
imposing RE, gives a univariate forward-looking system in  driven by .

This can be solved to obtain the optimal REE  = ̄1, where ̄1 depends

on    and , and  = −−1̄1. Substituting this solution into (7)
and imposing RE it then follows that the interest rate satisfies

 =  +  (11)

where   are functions of the parameters. For algebraic details see Evans

and Honkapohja (2003b). When viewed as a policy rule to implement optimal

monetary policy we call (11) the “fundamentals-based” interest-rate rule.

However, consider the system given by (7), (8) and the policy rule (11).

Under adaptive learning agents have forecast rulesµ
∗ +1
∗ +1

¶
= + ,

where  is 2 × 1 and  is 2 × 2. The time  estimates   are updated

over time using LS to regress +1 and +1 on an intercept and .
14 It

is straightforward to show that the optimal REE is not E-stable and hence

not stable under learning. Thus the apparently optimal policy rule (11) is

fundamentally defective from the learning viewpoint.15

The key to implementing optimal policy so that it is stable under adaptive

learning is to not assume agents have RE. To get an appropriate interest rate

rule, combine equations (7) and (8) with the FOC + = 0, while taking
subjective expectations ∗ +1 

∗
 +1 as given. Eliminating  and  from

the system gives an interest-rate rule of the form

 = 
∗
 +1 + 

∗
 +1 +  + 

where the coefficients depend on the underlying parameters. This is a Taylor-

type rule, viewed now as responding to private-sector expectations, but aug-

mented by a dependence on the observed exogenous shocks. It can be shown

14Agents could also include  as a regressor. This does not affect the results.
15The system is also indeterminate under the fundamentals-based rule.
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that this “expectations-based” rule is stable under LS learning: agents will

learn over time to have RE and the economy will converge to optimal discre-

tionary policy. Again, see Evans and Honkapohja (2003b) for details.

These results carry over to the case in which policymakers can com-

mit to optimal policy satisfying the timeless perspective: the correspond-

ing fundamentals-based rule is unstable under learning, while the analogous

expectations-based rule is stable under learning. See Evans and Honkapohja

(2006).

4.2 Neo-Fisherian policy

Following the Financial Crisis of 2008-9, the US federal funds rate was es-

sentially at the zero lower bound (ZLB) for the whole period 2009 — 2015.

Beginning Dec. 2015 the Fed started to normalize interest rates. This can be

viewed as a return to a Taylor rule. The Neo-Fisherian view— see Cochrane

(2011), Cochrane (2016), Williamson (2016b), Williamson (2016a) — is that

normalization should instead be to a fixed interest rate peg at the steady

state level consistent with the 2% inflation target. Based on adaptive learn-

ing, Evans and McGough (2018b) and Evans and McGough (2018a) argue

that the neo-Fisherian view is misguided.

Neo-Fisherianism starts from the Fisher equation

 =  + 

where  is the net nominal interest rate,  is the corresponding real interest

rate and  is the inflation rate. In steady state  is determined by  and the

growth rate. The neo-Fisherian argument is simple: given , if the inflation

target is ̄ then  should be set at ̄ ≡  + ̄. In the basic NK model, and

for simplicity ignoring exogenous shocks, the steady state is an REE and it

must satisfy ∗ +1 =  = ̄−  = ̄.

The neo-Fisherian policy conclusion is that if interest rates are low and

inflation and expected inflation are below target, policymakers should set a

fixed interest rate peg at the higher level ̄ =  + ̄. The Fisher equation

then, according to this view, ensures that ∗ +1 increase in line with ̄.

The neo-Fisherian argument goes against conventional wisdom that lower 

increases  by increasing demand. Evans and McGough (2018b) argue that

the conventional view is right, and that neo-Fisherian policies are prone to

instability and recession.

12



How does the Evans-McGough critique of the neo-Fisherian policy view

differ from the view based simply on an RE perspective? It is well-known

that a fixed interest-rate peg can lead to indeterminacy, i.e. to multiple

REE, and from a purely RE perspective the implications of indeterminacy

are unclear. One cannot rule out the RE solutions a priori, and in the current

case there is a continuum of solutions that are well-behaved and converge to

the steady state. Indeed, Cochrane (2016) and Williamson (2016a) recognize

this indeterminacy, and focus on the RE result that, following an increase in

the interest rate peg, all of these RE paths converge to the higher inflation

steady state.

The adaptive learning perspective is that multiplicity begs an assessment

of stability, and stability results are in general model dependent. For exam-

ple, in some models with an indeterminate steady state, both the steady state

and sunspot solutions in a neighborhood of the steady state are stable under

learning, while in other cases these solutions are not stable under learning.

Similarly in models with multiple RE steady states, one or more RE steady

states may be stable under learning while other steady states are not. In the

current case an analysis of stability under learning is therefore required.

Evans and McGough (2018b) investigate this in detail using the long-

horizon New Keynesian models developed in Eusepi and Preston (2010) and

employed in Evans, Honkapohja, and Mitra (2016). However, Evans and

McGough (2018b) also illustrate their arguments using a simple short-horizon

model introduced by Kocherlakota (2016) and used by Williamson (2016a)

in discussing an earlier version of Evans and McGough (2018b).

This simplified NK model may be written

 = −−1( −∗ +1 − ) +∗ +1 (12)

 =  +  (13)

 = ̄+ 
∗
 (+1 − ̄) (14)

where   ≥ 0. Here  is the output gap,  is the net inflation rate (now not
in deviation from mean form), ̄ is the inflation target, which we now make

explicit,  is the net nominal interest rate, and ̄ = +̄ is the interest-rate tar-
get. Equation (12) is the IS-relation. Equation (13) is a non-accelerationist

Phillips curve with slope   0; this curve can be viewed as an NK Phillips
curve with the usual dependence on ∗ +1 eliminated, and  is a white

noise inflation shock. Equation (14) is the policy rule:  = 0 corresponds to
an interest-rate peg and   1 satisfies the Taylor principle. The interest-
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rate and inflation targets are assumed compatible with a long-run steady

state: ̄ = ̄− . The non-stochastic steady state of this model (for  ≡ 0)
is given by  = ̄ = −1̄,  = ̄, and  = ̄.

The simplified model (12)-(14) has, as an REE, the stochastic steady

state  = ̄ and  = ̄+, so that +1 = ̄. The model can be reduced

to a univariate framework by assuming agents understand (13), so that

∗ +1 = −1∗ +1

Combining equations we get the temporary equilibrium model

 = (1− )̄ + ∗ +1 +  where  = 1− −1 ( − 1)  (15)

Under adaptive learning we assume agents do not fully trust the inflation

target ̄ because they have doubts about either the central bank’s commit-

ment and/or its ability to hit the target. Thus private agents update their

inflation forecasts using observed data according to the rule

∗ +1 = , where  = −1 + −1(−1 − −1) (16)

where we here focus on the decreasing gain case.

Our set-up under adaptive learning is a special case of Section 2, and the

E-stability principle immediately gives the key result. Because the shock is

white noise the forecast PLM is just ∗ +1 = . The corresponding ALM

is  = (1 − )̄ +  +  with associated forecasts 
∗
 +1 =  () =

(1 − )̄ + . E-stability thus holds when   1 and fails when   1.
An interest-rate peg corresponds to  = 0 and   1, and thus fails to be
E-stable, whereas E-stability holds if   1 since then   1. These results
extend to the case in which  is a stationary AR(1) process.

It follows that the REE steady state is stable under adaptive learning

when   1 but not when  = 0: inflation does not converge to the policy
target under an interest-rate peg.16 Instead an interest-rate peg generates

trajectories that push away from the steady state.

Further results confirming the instability under learning of interest-rate

pegs are provided in Evans and McGough (2018b), including results for long-

horizon NK models; the paper also discusses the policy implications for nor-

malizing interest rates in the wake of the Great Recession. In particular they

16Under an interest-rate peg there are also stationary sunspot equilibria. These solutions

are also unstable under learning.
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find that, when inflation expectations are below the target inflation rate,

implementation of an interest-rate peg at a higher rate is likely to lead to

generate explosive trajectories pushing away from steady state, with decreas-

ing output and inflation.

The instability result for fixed interest-rate pegs in the basic NK model of

Section 4.1 was already implied by the results of Bullard and Mitra (2002).

Indeed the problems with fixed interest rate pegs in macromodels had earlier

been analyzed by Howitt (1992).

4.3 Unstable Inflation targets

The ZLB to interest rates was a binding constraint in the US and other

countries following 2007. One policy response suggested for relaxing this

constraint is to raise the inflation target ̄. The higher nominal interest rate

target ̄ = ̄+  would provide more room for reductions in  when there are

large adverse demand shocks. A caution to this based on adaptive learning

considerations arises from the possibility of persistent learning dynamics.

Branch and Evans (2017) make the point that increases in the inflation target

can lead to temporarily self-fulfilling but unstable learning dynamics.

The essence of the argument can be given in a simple univariate model.

Consider a flexible-price representative-agent economy with money in the

utility function and a fixed per-period endowment of perishable goods. When

log-linearized around the steady state the system can be reduced to two

equations: the Fisher equation ̂ = ∗ (+1−̄)+, where ̂ is the deviation
of the interest rate from its steady-state value and  is a white-noise shock

to the real interest rate; and a contemporaneous Taylor-interest-rate rule,

̂ =  ( − ̄), where   1.17 Combining equations gives

 = −1(− 1)̄ + −1∗ +1 + −1 (17)

This equation is a special case of the Section 2 model. There is a unique non-

explosive REE that takes the form  = ̄+−1 and this solution is stable
under learning since   1. Suppose, however, that agents overparameterize
this solution by allowing for AR(1) dynamics,

 = + −1 + 

17See Evans and McGough (2018a) for further details of the underlying temporary equi-

librium system in a closely related set-up.
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Thus agents allow for the possibility that inflation is serially correlated.18 In

the REE  = 0 and the solution ( ) = (̄ 0) is E-stable and thus stable
under learning. However, Branch and Evans (2017) show that when constant-

gain LS learning is used, there are “escape dynamics” of the type documented

in various settings by Sargent (1999), Cho, Williams, and Sargent (2002),

McGough (2006), Kasa (2004) and Branch and Evans (2011).19.

Stochastic simulations find that occasionally paths arise in which ( )
converge, for a sustained period of time, to near (0 1), a random-walk fore-
cast, during which time  is volatile, before eventually ( ) returns to near
the REE (̄ 0). The intuition for this is that while ( ) = (0 1) does not cor-
respond to an equilibrium, it is approximately self-fulfilling. To see this note

that under the PLM ( ) the corresponding forecast, under the assumption
that expectations are formed at the start of , is ∗ +1 =  (1 + )+ 2−1.
Inserting this into (17) gives the ALM

 = −1(−1)̄+−1(1+)+−12−1+−1 ≡ ( )+( )−1+−1

The REE corresponds to the fixed point of  ( ) = (( ) + ( ))
given by ( ) = (̄ 0). However if   1 is close to 1 then ( ) = (0 1) is
close to being rational in the sense the forecasts are almost self-fulfilling.

Near random-walk forecasts arise from occasional sequences of random

shocks  that are interpreted under LS learning as a positively serially corre-

lated inflation process. The frequency and likelihood of random-walk beliefs

depend on how close  is to one, and it also depends on the level of the

inflation target ̄. An increase in the inflation target results in a sequence

of forecast errors that is particularly likely to induce random walk beliefs.

Branch and Evans (2011) show that these key insights and similar results

arise in sticky-price bivariate New Keynesian models including versions that

incorporate trend inflation.

There are clear implications for policy. If a central bank increases its

inflation target their commitment to the new target needs to be as credible

as possible: if agents constrain their forecasts to impose the new target as the

mean, then random walk beliefs will not arise. Alternatively, the policy rule

should employ a large reaction coefficient  to prevent drifts in expectations

towards random walk beliefs.

18Indeed there is another REE with AR(1) parameter −1. This solution is explosive,
though with   1 close to 1, it is only mildly explosive.
19See also Evans and Honkapohja (1993a) and Evans and Honkapohja (2001), Ch. 14.
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5 Policy in Nonlinear Models

In nonlinear models of the form (1), multiple steady states can arise, and

adaptive learning can play a central role for policy.20 We focus on two appli-

cations.

5.1 Hyperinflation

Monetary models in which government expenditure is partly or wholly fi-

nanced by money creation can have two steady states. The simplest set-up

is an overlapping generations model. For the case in which a real deficit  is

financed by money creation, i.e.  =  − −1, and in which the real de-
mand for money  =  by young agents is a negative function (


+1),

where +1 = +1 is the inflation factor, the temporary equilibrium equa-

tion takes the form  = ()
¡
(+1)− 

¢
. Here and in Section 5.2 it

is convenient to use the notation +1 ≡ ∗ +1 and  ≡ ∗−1.
If utility of consumption takes an additive log form, then, for suitable

endowments of labor time, (+1) =  − +1 for    0 provided this
is positive. If  =   0 is not too large there are two perfect foresight
steady-state inflation rates   

This model has been studied under both RE and adaptive learning. See

Sargent and Wallace (1987), Evans and Ramey (1995), Evans, Honkapohja,

and Marimon (2001) and Marcet and Nicolini (2003). The RE literature

focused on the result that the low-inflation steady state  is determinate

while  is indeterminate. There are thus perfect foresight paths , starting

from an initial inflation rate   0   in which  → . These were

viewed as hyperinflation paths. However, these perfect foresight hyperinfla-

tion paths have an apparently paradoxical policy implication. An increase in

the deficit  increases  and decreases . Consequently this suggests that

if  = , then inflation can be reduced by increasing the deficit.21

Adaptive learning provides the opposite policy conclusion. Under a steady-

state learning rule like (16) it can be shown that  is locally stable under

learning, while  is locally unstable. This holds also in stochastic versions

of the model, in which  is random with mean . Hyperinflation can still

20A more general set-up that allows for expectations of nonlinear functions of future

variables, takes the implicit form ∗ ( −1 +1 ) = 0, where 
∗
 denotes subjective

conditional expectations.
21This assumes  is not increased to more than the level at which  and  coalesce.

17



emerge if a sequence of random shocks happens to drive expectations above

, at which point inflation under adaptive learning will tend to explode

along an unstable inflationary path that, if unimpeded, would lead to cur-

rency collapse.22

Evans, Honkapohja, and Marimon (2001) and Marcet and Nicolini (2003)

extend the adaptive learning model in two directions. Evans, Honkapohja,

and Marimon (2001) assume there is a limit on the ratio  of the deficit 

relative to GDP (the portion of goods, produced by the young, entering the

market). This ensures there will always exist a steady state that is stable

under learning, even if  is large. For  small enough so that  and 

exist, and for  large, there are now three steady states      , with

 and  locally stable under learning. The comparative statics for policy

in this version of the model are now natural at both  and  ,23 and,

furthermore, Evans, Honkapohja, and Marimon (2001) provide laboratory

evidence in support of the adaptive-learning predictions.24

Marcet and Nicolini (2003) place the hyperinflation model, with two

steady states   , within an open economy context. Under normal pol-

icy, the foreign exchange rate is flexible and purchasing power parity holds.

However, if inflation would otherwise be above some critical level   

then policymakers switch to an exchange-rate rule regime with the target ex-

change rate target chosen so that the inflation rate is reduced to  = . This

stabilizes inflation and expected inflation, at which point the exchange-rate

rule regime is lifted. Marcet and Nicolini (2003) show that this set-up can

lead to recurring bouts of hyperinflation that fit the stylized facts of South

American countries subject to recurring hyperinflation episodes.25 The pol-

icy implications are again natural, e.g. a reduction in the deficit lowers the

frequency of hyperinflation episodes.

22Such paths under learning also arise if  is so large that no steady state exists. The
possibility of currency collapse under bounded rationality was emphasized in Evans and

Ramey (1995).
23Evans and Honkapohja (2007) show how Paul Samuelson’s correspodence principle,

linking comparative statics to stability, extends to expectational stability.
24In related work Evans, Honkapohja, and Marimon (2007) show, in a cash-in-advance

model with government spending partly financed by seigniorage, that, if the intertemporal

elasticity of substitution of labor is less than one, there is an indeterminate steady state

with sunspot equilibria that are stable under adaptive learning. Fiscal policy can be used

to eliminate the sunspot equilibria.
25Marcet and Nicolini (2003) use gains that switch endogenously between constant and

decreasing gain. This leads to eventual convergence to the low-inflation steady state.
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A formally similar structure underlies several papers on stock-price dy-

namics. In Branch and Evans (2011) there are two distinct self-fulfilling

solutions, a fundamentals steady state and a dynamically explosive rational

bubble solution. In Adam, Marcet, and Nicolini (2016) the fundamentals

steady state is complemented by a singularity that is the analog of an explo-

sive rational bubble. In both papers, under adaptive learning the fundamen-

tals steady state is locally stable, but is prone to unstable trajectories that

temporarily go away from the fundamentals steady state.

5.2 Stagnation and the ZLB

Multiple steady states arise in New Keynesian models as a result of the ZLB

for net interest rates. As emphasized by Benhabib, Schmitt-Grohe, and Uribe

(2001), if the interest-rate rule satisfies the Taylor principle at the targeted

steady state inflation rate  ≡ −1 = ∗, then for continuous interest-
rate rules there will exist another steady state at −1 ≤   ∗. Thus we
have two RE steady states, a locally determinate steady state at ∗ and a
locally indeterminate steady state at .

26

As in the neo-Fisherian set-up, under RE this global indeterminacy raises

the question of which solution should be selected. Since there are an infinity

of RE paths, indexed by initial expectations, that converge to the  steady

state, one possible view is that one of these paths is most likely. An alter-

native RE viewpoint is that, faced with global indeterminacy, a determinate

steady state, here the ∗ steady state, should be selected. The adaptive
learning perspective instead argues that an expectational stability analysis is

required: attainable RE solutions are those that can be reached over time by

an adaptive learning process (an “evolutionary process” in the terminology

of Sargent (2008))).

The situation under adaptive learning is presented most simply using the

NK model based on Rotemberg price-adjustment costs. Evans, Guse, and

Honkapohja (2008) show that under Euler-equation learning this leads to a

26This model also has rational sunspot equilibria.
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nonlinear bivariate temporary equilibrium system:




( − 1) = 





¡
+1 − 1

¢
+1

+( + )
(1+) − 

µ
1− 1



¶
( + )

−1


 = +1(

+1 ())

11 

where  is consumption,  is government spending and () is the interest-
rate rule. Here +1 and +1 denote 

∗
 +1 and ∗ +1. The first equation

is the NK Phillips curve and the second equation is the consumption Euler

equation.27 Here +1 and +1 denote 
∗
 +1 and ∗ +1

Figure 1: Locally stable targeted steady state E and stagnation path

starting from A

Figure 1 shows the situation under adaptive learning. The targeted steady

state ∗ at E is locally stable under learning, whereas the unintended low-
inflation steady state  at U is not locally stable under learning. It is worth

noting that the levels of consumption (and output) are about the same at

27A long-horizon version of this model under adaptive learning is developed in Benhabib,

Evans, and Honkapohja (2014).
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E and U. Based simply on local learning stability results one might simply

conclude that equilibrium E should be selected. However, the global stability

analysis illustrated in Figure 1 reveals a major issue of concern: the steady

state E is locally but not globally stable under learning.

Suppose initial expectations are pessimistic, to the southwest of the dashed

line, e.g. at point A. Under learning dynamics the economy then follows a

path with eventually falling output and inflation. This region is called the

“stagnation trap” or “deflation trap.” Evans, Guse, and Honkapohja (2008)

show that if there is a large negative expectations shock, following some event

like a financial crisis, that shifts expectations into the stagnation trap, tem-

porary aggressive monetary and fiscal policy can in effect push the economy

back into the basin of attraction of the targeted steady state. The role of

fiscal policy is further explored in Benhabib, Evans, and Honkapohja (2014),

and Evans, Honkapohja, and Mitra (2020).

If unimpeded by aggressive monetary and fiscal policy, what ultimately

happens under a trajectory, like the one starting at point A in Figure 1, in

which consumption and inflation fall over time? Evans, Honkapohja, and

Mitra (2020) show, in a version of this model in which private and govern-

ment consumption are partial substitutes, that there is a well-defined RE

third steady state with a very low level of output and rapid deflation. This

“stagnation” steady state is stable under learning.

Adaptive learning thus both resolves the selection issue and has major

policy implications: if expectations are not too far from the targeted steady

state E, the economy under adaptive learning, and with unchanged policy,

will converge over time to E. If instead expectations are outside the basin

of attraction for E, the economy, under unchanged policy, would follow a

trajectory that ultimately converges to a stagnation steady state. However,

from starting points like A, outside the basin of attraction for E, aggressive

fiscal and monetary policy can be used to move the economy to a trajectory

that eventually takes it to the targeted steady state E.

The adaptive learning results for this model differ from those under RE

in two crucial ways. First, under RE, there is a continuum of paths that

converge to U (as well as stationary sunspot local to U). These solutions

are not stable under adaptive learning. Learning analysis instead reveals,

and emphasizes, the region in which the paths have falling output and in-

flation. Secondly, while policy under RE also often focuses on expansionary

monetary and fiscal policies desirable at the interest-rate zero lower bound,

this is usually studied in the context of responding to fundamental discount
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rate or credit-spread shocks (typically assumed to be temporary and to end

with a fixed probability each period). The adaptive learning story focuses

instead on pessimistic expectations that can still be present after fundamen-

tal shocks are gone. Suppose, in the aftermath, say, of a credit crisis, the

fundamental credit shocks have ended, but expectations remain pessimistic

and are currently at point A. Then, even though the targeted rational steady

state is at E, output and inflation will remain low, and learning dynamics

will drive the economy further into deep recession, unless these forces are

offset by aggressive expansionary macro policies.

5.3 Other applications

There are a number of macromodels with three steady states that are Pareto

ranked. These can be viewed as models of “coordination failure” because

there exist steady states that are locally stable under adaptive learning, but

are Pareto dominated, as well as inefficient sunspot equilibria.28 The sim-

plest models of this type have either positive production externalities or

monopolistic competition and increasing returns. The “increasing social re-

turns” model used in Evans and Honkapohja (1993a), Evans and Honkapohja

(1993b) and Evans and Honkapohja (2001), Ch. 4.6 and 14.3, introduces a

positive production externality into an overlapping generations model with

production. For a range of parameters there are three steady states; the

high and low output steady states are locally stable under learning, while

the middle steady state is unstable under learning. Under adaptive learning,

production subsidies can be used to steer the economy away from Pareto

dominated steady states and can eliminate sunspot equilibria or endogenous

fluctuations arising under learning dynamics.

Other examples of forward-looking models with two locally stable steady

states under learning include the labor search model of Howitt and McAfee

(1992) and the endogenous growth model of Evans, Honkapohja, and Romer

(1998). In the latter model stable growth cycles arise due to monopolistic

competition and complementarity between capital goods of different types.

28See Arifovic, Evans, and Kostyshyna (2020) for experimental evidence of coordination

on stable inefficient steady states or sunspot fluctuations.
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6 Concluding Remarks

To be satisfactory as an equilibrium concept, rational expectations needs

to be complemented by a stability analysis that shows how a rational ex-

pectations equilibrium can be attained. This essay has focused on using the

adaptive learning approach, grounded in temporary equilibrium and bounded

rationality, to assess stability and provide learning dynamics. We have seen

that adaptive learning results have strong policy implications.

Moving forward there are many issues that need to be studied. Adap-

tive learning is becoming increasingly incorporated into empirical macro-

economics and financial economics models. A selection of examples include

Milani (2007), Branch and Evans (2006b), Orphanides and Williams (2007),

Milani (2011), Slobodyan and Wouters (2012), Eusepi and Preston (2011),

Adam, Marcet, and Nicolini (2016), Chakraborty and Evans (2008) and Sinha

(2016). In many cases the data reject restrictions imposed by RE but are

consistent with adaptive learning. The implications of adaptive learning are

also increasingly studied in laboratory experiments, e.g. Hommes (2011),

Bao, Duffy, and Hommes (2013), Hommes and Lustenhouwer (2019), Ari-

fovic, Evans, and Kostyshyna (2020) and Evans, Hommes, McGough, and

Salle (2021).

In empirical and experimental applications there are significant choices to

be made in how to model adaptive learning. Three broad unresolved issues

are the decision horizon, how to specify forecast rules, and statistical learning

vs. behavioral learning.

In Section 3 we briefly discussed the issue of the decision horizon. Long-

lived agents face difficult optimization problems, that depend on key aggre-

gate variables far into the future. Should agents be assumed to use long-

horizon or short-horizon decision rules?

Evans and McGough (2018c) show that in a stationary environment

boundedly optimal short-horizon shadow-price learning can be asymptoti-

cally fully optimal under adaptive learning. On the other hand long-horizon

decision-making appears particularly appropriate if there is anticipated struc-

tural change. Branch, Evans, and McGough (2013) show that both short-

horizon and infinite-horizon decision-making have intermediate finite-horizon

counterparts. Empirically the decision horizon used by agents may be a key

behavioral parameter, and this horizon length may depend on the economic

situation agents face. Evans, Hommes, McGough, and Salle (2021) shows in

a lab experiment that the forecast horizon can have a large effect on asset
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price dynamics.

If agents form expectations using statistical or econometric forecasting

techniques, their models, just like econometric forecasting models used by

economists, are likely subject to misspecification in terms of omitted vari-

ables or use of parsimonious lags. Model misspecification under adaptive

learning can be readily addressed: the key equilibrium concept is a restricted

perceptions equilibrium (RPE). In an RPE orthogonality conditions, that

forecast errors be uncorrelated with regressors, must be satisfied. RPEs can

be viewed as a bounded-rationality extension of an REE, and analogous E-

stability conditions can be obtained for RPEs.

An important empirical question therefore is the appropriate way to spec-

ify the forecast equations used by agents to form expectations. The answer

may, of course, depend on whether we are considering households, firms,

professional forecasters or central bank policymakers. It is also possible to

allow for heterogeneity across agents in forecast rules, and to model agents as

switching between forecast specifications based on recent performance, as in

Branch (2004), Hommes (2011), Branch and Evans (2007) or Cho and Kasa

(2015). One can also allow for the impact of the judgemental adjustments

often used by professional forecasters or policymakers, as in Bullard, Evans,

and Honkapohja (2008).

The specification issue leads in turn to the question of whether simple

behavioral rules, of the type emphasized by Hommes (2011), or statistical

forecast rules based on least-squares learning, provide a better description

for how agents form expectations. The answer may well depend on whether

the setting is a laboratory experiment, an empirical macro model, or survey

data for households, firms or professional economists.

A criticism often made of bounded rationality models of expectations and

decision-making is that, because of the wide range of ways to specify bounded

rationality, it will be almost impossible to distinguish between them. How-

ever, each specification imposes strong restrictions on the data. The assump-

tion that the economy is in an REE imposes tight cross-equation restrictions

on the data. But analogous cross-equation restrictions also must be satis-

fied in a restricted perceptions equilibrium. Likewise constant-gain learning

leads to specific forms of non-REE dynamics. Each behavioral model also

has implications that are falsifiable. In addition, econometric tools are being

developed for estimating models with adaptive learning. See Chritopeit and

Massmann (2018). In some cases structural parameters not econometrically

identified under RE are identified under adaptive learning.
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It is useful to conclude with one obvious policy implication of the alter-

native ways to model bounded rationality in macroeconomic settings. Espe-

cially when combined with uncertainty about values of key structural para-

meters of the macroeconomy, the range of ways to model boundedly rational

decision-making indicates the need for policies that are robust to different im-

plementations and alternative values of structural parameters. Examples of

this approach in the adaptive learning literature are Orphanides andWilliams

(2007) and Evans and McGough (2007).
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