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Abstract

Despite the importanceofnatural selection in species’ evolutionaryhistory,phylogeneticmethods that take intoaccountpopulation-

level processes typically ignore selection. The assumption of neutrality is often based on the idea that selection occurs at a minority of

loci in the genome and is unlikely to compromise phylogenetic inferences significantly. However, genome-wide processes like GC-

bias and some variation segregating at the coding regions are known to evolve in the nearly neutral range. As we are now using

genome-wide data to estimate species trees, it is natural to ask whether weak but pervasive selection is likely to blur species tree

inferences. We developed a polymorphism-aware phylogenetic model tailored for measuring signatures of nucleotide usage biases

to test the impactof selection in the species tree.Ouranalyses indicate that although the inferred relationshipsamongspeciesarenot

significantly compromised, the geneticdistances are systematically underestimated inanode-height-dependent manner: that is, the

deeper nodes tend to be more underestimated than the shallow ones. Such biases have implications for molecular dating. We dated

the evolutionary history of 30 worldwide fruit fly populations, and we found signatures of GC-bias considerably affecting the

estimateddivergencetimes (upto23%) in theneutralmodel.Ourfindingscall for theneedtoaccount for selectionwhenquantifying

divergence or dating species evolution.
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Introduction

Species trees provide a framework to understand the diver-

gence process and speciation and are nowadays used rou-

tinely in integrative research to address many biological

questions. Despite their generalized use, modeling species

evolution using DNA sequences poses significant challenges.

The main one being that different genes or genomic regions

narrate different evolutionary histories, leading to discordant

gene and species topologies (Maddison and Knowles 2006).

Incomplete lineage sorting (ILS), that is, the maintenance of
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ancestral polymorphisms due to random genetic drift, is a

primary cause of such discordance (Pollard et al. 2006).

However, other processes were also described, such as gene

gain or loss, horizontal gene transfer across the species

boundaries, and gene flow among diverging populations

(reviewed in Szöllösi et al. 2015). Apart from the gene/species

tree discordance, difficulties arise when quantifying diver-

gence. Xu and Yang (2016) reported that calendar times

and evolutionary rates can be particularly challenging to untie

for deeper evolutionary scales where the molecular clock is

violated.

Despite the challenges posed by modeling species evolu-

tion, the last two decades have seen an explosion of sophis-

ticated statistical methods for inferring species trees. The

multispecies coalescent (MSC) model has arisen as a leading

framework for inferring species phylogenies while accounting

for ILS and gene tree–species tree conflict (Rannala and Yang

2003). The coalescent traces the genealogical history of a

sample of sequences from a population backward in time,

describing the stochastic process of lineage joining

(Kingman 1982a, 1982b).

Nevertheless, alternative approaches to the MSC have

been proposed, as the polymorphism-aware phylogenetic

models (PoMos; fig. 1; De Maio et al. 2013, 2015). PoMos

model the allele content of a set of populations over time at a

particular locus, thus naturally integrating over all the possible

allelic histories to directly estimate the species tree. (To be

technically accurate, PoMos estimate population trees.

However, because of PoMo ability to model closely related

populations as well as diverged populations it most prominent

application are populations sampled to estimate species trees.

Therefore, we will adhere to this terminology in this article.)

PoMos naturally account for ILS while avoiding using geneal-

ogy samplers that are computationally costly. Different from

the MSC, PoMos assume independence between sites, which

allows easily gathering information from multiple individuals

and several populations to testing hypotheses genome-wide

(Schrempf et al. 2016, 2019). More importantly, PoMos are

versatile, for they can be straightforwardly rebuilt to account

for other population forces (e.g., allelic selection; Borges et al.

2019). MSC-based methods with selection are notoriously

difficult.

Despite the remarkable effort made to account for forces

that can detail the species evolutionary history, models of

species evolution generally ignore natural selection.

Although the literature acknowledges the need for

selection-aware models of species evolution, the expectation

is that most forms of natural selection are not greatly

compromising phylogenetic analysis (Edwards 2009). Two

main arguments justify this expectation. The first argument

is that selection often occurs at a minority of loci in the ge-

nome, in which case any spurious signals would likely be

swamped out by the many neutral loci that are sampled

(Edwards et al. 2016). The second argument is that the forms

of selection that most likely affect the species tree are rare.

This is the case of selection-driven convergent evolution and

balancing selection, which tend to preserve beneficial alleles

at a gene for long periods of time (Castoe et al. 2009;

Edwards 2009). As corroboration for these expectations, a

recent study found that species-specific positive selection

has mild effects on phylogeny estimation across an extensive

range of conditions encountered in empirical data sets

(Adams et al. 2018).

However, such claims have not been properly tested, es-

pecially for the case of pervasive weak selection. Theoretical

expectations predict the existence of an intermediate category

between the neutral and the selected modes of evolution,

known as nearly neutral. The study of variants with small se-

lection coefficients, particularly slightly deleterious mutations,

has been the focus of the so-called nearly neutral theory (Ohta

1973). This theory provided criteria to define the fate of nearly

neutral variants, which depends on both selection and ran-

dom genetic drift. Ohta (2002) has suggested that if the rel-

ative advantage or disadvantage, r, of a particular allele is less

than twice the reciprocal of the effective population size N

(i.e., the scaled selection coefficient Njrj < 2) the allele’s

trajectory is nearly neutral. However, more lenient thresholds

were also reasoned (Nei 2005).

Empirical evidence for nearly neutral evolution has become

more substantial within the last few years due to the possibil-

ity of sequencing many genomes and multiple individuals.

One such example is GC-biased gene conversion (gBGC), a

mutation bias favoring G and C alleles over A and T alleles at

mismatch positions during recombination (Galtier et al. 2001).

gBGC affects the fixation probability of GC alleles and is best

modeled as selection (Nagylaki 1983). Integrative analysis con-

sidering the recombination landscape and nucleotide substi-

tution patterns along the genome provided evidence that

gBGC acts in both eukaryotes and bacteria (Galtier et al.

2009; Lassalle et al. 2015). In humans, gBGC was estimated

one order of magnitude lower than the reciprocal of the ef-

fective population size (�1:17� 10�5; Gl�emin 2010), thus,

gBGC produces patterns of nucleotide substitution that re-

semble weak selection. The same was observed for other apes

where most of their exons evolve under weak gBGC

(Nc < 1; where c is the GC-bias rate) (Lartillot 2013). In fruit

flies, most amino acid replacements have weak signatures of

positive selection. However, most of the selective effects are

nearly neutral, with around 46% of amino acid replacements

exhibiting scaled selection coefficients lower than two and

84% lower than four (Sawyer et al. 2007). Also, many non-

synonymous polymorphisms in functionally important sites of

human and bacterial populations were shown to segregate at

frequencies of around 1–10%; that is, much more frequent

than variants associated with classic Mendelian diseases

(Hughes et al. 2003; Hughes 2005). Such an observation sug-

gests that ongoing purifying selection among segregating

amino acids is weak.
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As a substantial part of the genome evolves nearly neu-

trally, this form of weak but pervasive selection has the po-

tential to impact species’ evolutionary history. Here, we

present novel PoMos specially tailored to measure nucleotide

usage bias throughout the genome and use them to assess

the impact of unaccounted-for weak selection (or selection-

like processes) on species tree estimation. We show that near

neutrality significantly blurs inferences of the species tree by

biasing estimations of the species divergence and discuss the

implications of these biases on molecular dating.

Results

Modeling Species Evolution with Selection

PoMos offer a versatile approach to describe species evolution

(Leach�e and Oaks 2017). They add a new layer of complexity

to the standard models of sequence evolution by accounting

for population-level processes (such as mutations, genetic

drift, and selection) to describe sequence evolution. To do

that, PoMos expand the 434 state-space to model a popula-

tion of individuals in which changes in allele content and fre-

quency are both possible. The PoMo state-space includes

fixed (or boundary) states fNaig, in which all N individuals

have the same allele ai 2 fA;C;G;Tg, but also polymorphic

states fnai; ðN � nÞajg, if two alleles ai and aj are present in

the population with absolute frequencies n and N – n (fig. 1).

PoMos do not consider triallelic sites, a simplification that is

generally acceptable for eukaryotes, for which the levels of

polymorphism are low (Lynch et al. 2016). Furthermore, like

many phylogenetic methods, PoMos assume that sites are

independent (i.e., linkage equilibrium).

One of the main challenges of PoMos is the size of their

state-space grows with the effective population size: that is,

4þ 6ðN � 1Þ states. This prohibits inferences with realistic

population sizes as they can easily have 104 � 106 individuals

(Lynch et al. 2016), PoMos would typically employ ten indi-

viduals because it results in manageable state-space and ro-

bust estimates of population properties such as the genetic

diversity h ¼ 4Nl (De Maio et al. 2015; Schrempf et al. 2016).

Recently, we developed theory that permitted us to distin-

guish between the effective and virtual population size

(Borges et al. 2019). Here, we use those results to develop

the virtual PoMos. The idea is to mimic a population dynamic

that unfolds on the effective population N, using a virtual

population of smaller size M. It can be shown that by match-

ing the expected diversity (i.e., the proportion of fixed and

FIG. 1.—State-space and parameter scaling of the virtual PoMos. The tetrahedrons represent the state-space of the virtual PoMos: The fixed sites fMaig
are placed in the vertices, whereas the edges represent the polymorphic states fmai ; ðM �mÞajg. Black and gray arrows distinguish respectively mutation

from genetic drift plus selection events. PoMo is a particular case of the four-variate Moran model with boundary mutations and selection, in which the alleles

are the four nucleotide bases. The formulas represent the parameter scaling between the effective and the virtual populations (supplementary text S1,

Supplementary Material online). lai aj
is the mutation rate from allele ai to aj; and /ai

is the fitness coefficient of allele ai on the effective dynamic of

population size N (/ai
relates to the selection coefficient of ai by the equation /ai

¼ 1þ rai
). l�ai aj

and /�ai
are the corresponding parameters in the virtual

dynamic.
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polymorphic sites) in both the effective and the virtual pop-

ulations (Borges et al. 2019), one can obtain scaling laws for

the mutation rates and fitness coefficients (supplementary

text S1, Supplementary Material online and fig. 1):

/N�1
ai
¼ /�M�1

ai
^ laiaj

¼ l�aiaj

PM�1
m¼1 /�m�1

ai
/�M�m�1

aj
m/�ai

þ M �mð Þ/�aj

h i
M

mðM�mÞ
PN�1

n¼1 /n�1
ai

/N�n�1
aj

n/ai
þ N � nð Þ/aj

h i
N

nðN�nÞ ;
(1)

where laiaj
is the mutation rate from allele ai to aj and /ai

¼ 1þ rai
the fitness coefficient of allele ai on the effective

dynamic, whereas l�aiaj
and /�ai

are the corresponding param-

eters in the virtual one.

Here, we defined the virtual PoMos Two and Three, by

setting the virtual population size M to two and three individ-

uals, respectively. PoMoTwo has only one polymorphic state

per allelic pair, that is, f1ai;1ajg, and is used to describe

species evolution under neutrality (fig. 1) while still accounting

for mutation bias. For the neutral case, the mutation rates are

scaled by the ratio of harmonic numbers (denoted here by H:)

of the virtual and effective population sizes:

laiaj
¼ l�aiaj

MHM�1

NHN�1
: (2)

PoMoThree includes two polymorphic states per allelic pair,

that is, f1ai;2ajg and f2ai; 1ajg, and additionally allows one

to infer allelic selection (at least two polymorphic states are

necessary to make the selection coefficients identifiable;

fig. 1). The scalings in equation (1) simplify to:

/N�1
ai
¼ /�2ai

^ laiaj

¼ l�aiaj

3

N

/�2ai
þ /�ai

/�aj
þ /�2aj

/N�1
ai
þ
PN�2

n¼1 /n
ai
/N�n�1

aj

1
N�nþ 1

nþ1

h i
þ /N�1

aj

:

(3)

The virtual PoMoThree, in particular, allows quantifying sig-

natures of selection and its impact on evolution.

Virtual Population Dynamics Provide a Good Fit for Their

Effective Counterpart

To validate the concept behind the virtual PoMos, we assessed

their fit and computational performance using simulated

data. We simulated phylogenetic data sets with signatures

of weak but pervasive nucleotide usage biases as observed

in populations of great apes and fruit flies (Begun et al. 2007;

Prado-Martinez et al. 2013; Borges et al. 2019). In particular,

we simulated the typically observed mutation bias from G or

C (also known as strong alleles) to A and T (also known as

weak alleles) opposing gBGC (Gl�emin et al. 2015).

Mutation rates were assumed reversible, where the muta-

tion rate is defined by the product of an exchangeability term

and an allele frequency under no selection: for example, the

mutation rate from a strong (S) to a weak (W) allele is defined

as lSW ¼ qSWpW. The four possible mutation rates are thus

fully determined by three parameters: pW ¼ 1� pS; qSW ¼
qWS and qSS ¼ qWW. The GC-bias preference was modeled by

assigning a fitness of 1 to the weak alleles and a fitness /S

¼ 1þ c to the strong alleles. A four-allelic Moran model was

employed to simulate the evolutionary history of four popu-

lations across eight evolutionary scenarios by combining dy-

namics with high and low genetic diversity, weak, and strong

regimes of GC-bias, and shallow and deep divergence times.

The specific parameters used in each simulated scenario are

listed in table 1.

Phylogenetic data from the eight simulated scenarios and

the virtual PoMoThree model were employed to infer the

mutation rates and the GC-bias fitness on the virtual popula-

tion. These estimates were recalibrated back to the effective

dynamic using equation (1), and the relative bias was calcu-

lated to evaluate their accuracy. The GC-bias fitness shows

the highest accuracy, being estimated with a consistent rela-

tive error smaller than 1% across the eight simulated scenar-

ios. This result demonstrates that PoMoThree is particularly

suited to quantify selection bias on genomic sequences. For

most of the simulated scenarios, the mutation rate parame-

ters are reasonably well estimated, with an average relative

error smaller than 5% (fig. 2). These analyses indicate that the

virtual PoMos provide a good approximation for an effective

dynamic with mutation and selection biases. We have also

estimated the mutation rate parameters using the virtual

PoMoTwo and observed that the equilibrium base composi-

tion of strong alleles is systematically overestimated (i.e.,

pS ¼ 1� pW), particularly in scenarios where GC-bias is

stronger (supplementary fig. S1, Supplementary Material on-

line). This shows that the mutation rates try to accommodate

the effect of selection towards the strong alleles by increasing

the rate of weak to strong mutations (notice that

lWS ¼ qSWpS).

We further compared the computational efficiency of the

virtual PoMos, by comparing it with the standard general

time-reversible (GTR) nucleotide substitution model (Tavar�e

1986) in multiple sequence alignments, including 10–100

species and 100–1 million sites. For the three methods, similar

settings for the phylogenetic inferences were employed in

RevBayes (Höhna et al. 2016), including a standard Markov

chain Monte Carlo (MCMC) chain with 50,000 generations

and no parallelization. The computational performance of

these three methods was assessed using three criteria: mem-

ory usage, CPU time, and average effective sample size (ESS)

of the sampled posterior parameters (i.e., the number of

Borges et al. GBE
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effectively independent draws from the posterior distribution

that the Markov chain is equivalent to).

Despite PoMoThree and Two having a larger state-space

(16 and 10 states, respectively) and therefore more possibili-

ties for different site patterns at the tips, the memory usage is

relatively similar among the methods (fig. 3A). The memory

usage of PoMoThree is on average 16% higher than that of

PoMoTwo and 39% higher than that of GTR. However, we

observed that in some cases, RevBayes could not start the

analyses because the memory reached the computers’ max-

imum. Thus, although memory usage does not differ greatly

among the methods, it certainly might be a limitation for

genome-wide applications. Different from memory usage,

the CPU time varies considerably among methods. We ob-

served that the time consumed by each method increases

exponentially with the alignment size (fig. 3B). PoMoThree

requires, on average, 10.5 times more CPU time than the

GTR and 2.3 times than PoMoTwo. This is because the

PoMoThree has a larger state-space and consequently more

site patterns to evaluate the likelihood. Regarding the average

ESS, PoMoThree is the slowest mixing method with an aver-

age ESS of 2,000 (supplementary table S1, Supplementary

Material online), 21.9% and 17.6% smaller than the average

ESS of GTR and PoMoTwo, respectively.

Ignored Selection Affects Species Tree Topology Mildly

The impact of unaccounted-for selection on the reconstructed

species tree can only be truly known by assessing the correct-

ness of the estimation of both the topology and the branch

lengths. Such aspects can be easily tested using simulated

data on a known species tree. We used a species tree with

four evolving populations, including two closely related pop-

ulations and a third one recently diverging from the other

two: (A (B (C, D))). We set the evolutionary distances matching

so that the first, second, and third divergence times are equal

to s, s=2, and s=4, respectively, where s is the time of the

most recent common ancestor. We thus expect higher levels

of ILS when s is equal to N generations than when it is equal

to 10 N (table 1).

To investigate the impact of selection on the species tree

topology, we compared the trees inferred by the virtual

PoMos (i.e., neutral PoMoTwo and the selection-aware

PoMoThree) and the standard GTR model. If not stated oth-

erwise, fixed and polymorphic counts from a sampled ten

individuals per population were used to perform the phyloge-

netic inferences with the virtual PoMos. As the GTR model

only includes fixed states, a single random individual was

used. The posterior probability of the correct topology was

used to evaluate the accuracy of each method. Our results

show that the virtual PoMos are more accurate than the GTR

in all the tested scenarios, especially for alignments with fewer

sites (fig. 4 and supplementary fig. S2, Supplementary

Material online). Because there are 15 different topologies,

the expected posterior probability of the true tree if there is no

signal in the data is around 6.7%, which is close to the per-

formance of our methods in some conditions when there is

little data. An interesting feature is that the topologies esti-

mated by the GTR model tend to pick the first diverging

branch incorrectly with greater probability than PoMos, espe-

cially for polymorphism-poor data sets (scenarios 1 and 5;

fig. 4). This suggests that apart from being able to correct

for ILS among closely related taxa, the PoMos are also superior

in establishing deeper relationships. Despite that, we observed

that the GTR’s accuracy increases with the alignment size,

showing that the GTR topologies should converge to the cor-

rect species tree topology with genome-scale data.

PoMoThree is only slightly more accurate than PoMoTwo,

which indicates that neutral models may already provide fairly

good estimates of the species tree topology (fig. 4). This is still

valid when we increase the intensity of GC-selection (scenario

5 vs 7; fig. 4), suggesting that weak selection regimes should

not greatly impact inferences of the relationships among spe-

cies. Overall, our results confirm that the three methods per-

form similarly in estimating the species tree topology if

enough genomic data is available. The specific number of sites

necessary to return the correct topology will depend on sev-

eral aspects, as the number of taxa and the complexity of the

phylogenetic relationships among them. In any case, our

results suggest that regardless of the employed method, bet-

ter estimates of the species tree topology are expected for

well-diverged taxa and polymorphism-rich data sets (scenario

1 vs 2 and 7; fig. 4).

Similar conclusions can be drawn from when a sample of

two individuals per population is taken instead of 10. Though

the overall accuracy of PoMos decreases (supplementary fig.

S3, Supplementary Material online), we again observed that

the posterior probability of the correct topology increases with

the alignment size. This result is not surprising if we consider

the results we have already discussed for the GTR model.

Choosing a single virtual sequence to represent the whole

population, as is often done when employing the standard

Table 1

Description of the Simulated Scenarios /S ¼ 1þ c

Scenario H Nc T

1 0.02 0.5 N

2 0.02 0.5 10 N

3 0.02 1.5 N

4 0.02 1.5 10 N

5 0.002 0.5 N

6 0.002 0.5 10 N

7 0.002 1.5 N

8 0.002 1.5 10 N

NOTE.—h represents the genetic diversity, c the GC-bias coefficient (which relates
to the GC-bias fitness by /S ¼ 1þ c), and s the time of the most recent common
ancestor in the phylogeny (defined in units of generations).
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nucleotide models with multi-individual data, corresponds to

sample a single individual for the population (i.e., the situation

where no polymorphisms are observed). Nevertheless, despite

the dramatic reduction of the observed diversity, we observed

that the GTR model can estimate the correct topology with

enough genomic data.

Neglected Selection Distorts the Measured Divergence

We investigated the impact of selection on the branch lengths

by comparing the genetic distances estimated by the virtual

PoMos and the standard GTR model. To assess the accuracy

of the branch length estimates, we evaluated the absolute

error between the estimated and expected pairwise distances

among the four taxa. This strategy has the advantage of per-

mitting comparing methods even if the estimated topologies

are not exactly matching. Normalized distances were used for

this comparison, as the GTR and PoMos operate in different

evolutionary units: number of substitutions and Moran events

(i.e., mutations plus frequency shifts), respectively.

Our results show that the error in the estimated branch

lengths decreases as the size of the alignments increases
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mutation bias and selection was fed to the virtual PoMoThree and the population parameters estimated using the Bayesian phylogenetic tool RevBayes

(Höhna et al. 2016). As the population parameters were estimated in a population of three virtual individuals, we recalibrated them back to the effective
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assumed reversible (i.e., lSW ¼ qSWpW); /S is the fitness coefficient of the strong alleles (i.e., the GC-bias fitness). The average bias of the estimates was

obtained based on alignments of 105 sites and 25 replicates per scenario. The specific parameters used in each simulated scenario are listed in table 1. The red

dotted line represents a 5% relative error threshold.
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(fig. 5 and supplementary fig. S4, Supplementary Material

online). Again, we observed that the GTR is the model of

evolution producing the least accurate estimates, with an av-

erage error 2.5 times higher than PoMoThree, indicating that

polymorphisms have a considerable impact on branch length

estimation. PoMoThree outperforms PoMoTwo for all the ob-

served scenarios, with PoMoTwo having an increased error of

61% on average. In some scenarios, PoMoThree has a neg-

ligible error (e.g., scenarios 2 and 8; fig. 5 and supplementary

figs. S4 and S5, Supplementary Material online), demonstrat-

ing that the virtual PoMos provide a good fit for the diver-

gence process operating in an effective dynamic with

mutation and selection biases. If we only consider the scenar-

ios where selection is more intense (i.e., Nc ¼ 1:5), the error

increases to 75%, indicating that ignored selection signifi-

cantly contributes to bias the estimated divergence (e.g., sce-

narios 6 vs 8; fig. 5 and supplementary figs. S4 and S5,

Supplementary Material online).

We have also observed that the error on the estimated

branch lengths does not decay to zero as fast as for the to-

pology case, persisting in some cases even when the topolo-

gies are perfectly estimated (inferences with 105 sites in

scenarios 1 and 7; fig. 5). Because of the sampling of

individuals, polymorphisms in the original population may ap-

pear as fixed differences and provide misleading phylogenetic

signal that could contribute to this slow decay. We observed

that decreasing the sample size from ten to two individuals

increases the error of the estimated branch lengths by 75%

on average in the virtual PoMos (supplementary fig. S5,

Supplementary Material online). As the patterns of diversity

on the original and sampled populations are different, the

models of evolution are unable to determine the exact con-

tribution of mutations, fixations, and frequency shifts for the

divergence process. The impact of such sampling bias should

be particularly problematic among recently diverged popula-

tions, where several populations likely share segregating poly-

morphisms. Indeed, our simulations corroborate this

expectation: scenarios 1 versus 2 (fig. 5).

To establish that the superior performance of PoMoThree

was not due to a larger state space with more polymorphic

states, we have calculated the accuracy of the estimated to-

pologies and branch lengths by employing the PoMoThree

model with selection coefficients fixed to 0. We observed

that this neutral PoMoThree has an intermediate accuracy

between PoMoTwo and PoMoThree with selection (supple-

mentary figs. S6 and S7, Supplementary Material online),
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which suggests that modeling selection does increase the fit

of PoMos beyond that what would have been expected by

having a finer state space with more polymorphic states.

To further investigate the source of bias on the branch

lengths, we tested whether the placement of the estimated

divergence varies across evolutionary scales. To do that, we

compare the height of each node on the true tree as estimated

by the neutral PoMoTwo and the selection-aware PoMoThree

models. For this comparison, we have only used node heights

estimated under the 100,000 sites alignments, where both

methods estimate the true topology correctly. We observed

that PoMoTwo produces smaller node heights on average

than PoMoThree (clouds always below the identity line in

fig. 6A). This result suggests that weak selection signatures

can mislead neutral models to estimate species histories with

more recent divergence events. However, and more impor-

tantly, this bias is not uniform across nodes. The shallow nodes

are less underestimated than the deeper nodes, with the ratio

of node heights moving away from 1.0 from the shallow to the

deeper nodes in all the tested scenarios (fig. 6A and supple-

mentary figs. S8 and S9, Supplementary Material online). The

rate of evolution is known to be challenging to untie at deeper

evolutionary scales (Xu and Yang 2016); here, we show that

ignoring pervasive weak selection may contribute to it.

Although our simulations intend to represent realistic sce-

narios, one might want to know what is the overall impact of

selection (not necessarily nearly neutral) on the branch

lengths. An advantage of PoMos is that some quantities can

be formally obtained, such as the expected divergence per

generation in diverse mutation-selection regimes (fig. 6B

and supplementary text S2, Supplementary Material online).

We observed that the expected divergence is generally

higher for the neutral case and tends to decrease as selection

becomes more intense (fig. 6B; such trend is not qualitatively

affected by the effective population size as shown in supple-

mentary fig. S10, Supplementary Material online). Directional

selection fades alleles that could potentially be drifting in the

population to fixation, overall reducing the expected diver-

gence: that is, for the same amount of time, we expect

more homogeneous sequences if directional selection is act-

ing. Consequently, to match the same patterns of diversity,

selection-aware models tend to return larger branch lengths

than the neutral models, corroborating the results obtained in

figure 6A. Furthermore, the underlying population dynamic

strongly determines the magnitude of biases on the estimated

branch lengths. For instance, the expected divergence is gen-

erally higher when selection counteracts mutation (i.e., rarer

alleles are favored and vice versa, as is the case with gBGC)

0.6

0.4

0.0A
bs

ol
ut

e 
er

ro
r

A
bs

ol
ut

e 
er

ro
r

A
bs

ol
ut

e 
er

ro
r

0.4

0.2

0.0

0.4

0.2

0.0

A
bs

ol
ut

e 
er

ro
r

Number of sites
102 103 104 105

Number of sites
102 103 104 105

Number of sites
102 103 104 105

Number of sites
102 103 104 105

Scenario 1 Scenario 2

0.2

0.6

0.4

0.0

0.2

Scenario 6 Scenario 8

GTR P2 P3

FIG. 5.—Estimating the species tree branch lengths with selection. Data sets of different sizes (x-axis) and simulated under different scenarios were used

to perform species tree inferences with three methods: GTR, PoMoTwo (P2 in the figure), and PoMoThree (P3 in the figure). We investigated the accuracy of

the branch lengths by calculating the absolute error of all six pairwise comparisons of genetic distances among the four taxa. As the three methods employ

different evolutionary units, the branch lengths were normalized so that the three models could be compared. PoMoTwo and Three trees were inferred

based on a sample of ten individuals per taxa (totaling 40 sequences).

Borges et al. GBE

8 Genome Biol. Evol. 14(1) https://doi.org/10.1093/gbe/evab290 Advance Access publication 4 January 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/14/1/evab290/6496956 by guest on 21 January 2022

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab290#supplementary-data


than when selection and the mutational bias act concordantly

(i.e., rarer alleles are disfavored and vice versa; fig. 6B).

To assess the impact of weak selection on the species trees,

we have here simulated and estimated genome-wide effects

of GC preference. We note that this strategy is a simplification

of the means by which gBGC acts, as it behaves transiently

along the genome, being stronger close to recombination

hotspots that rapidly change their location at phylogenetic

scales (Duret and Galtier 2009; Romiguier and Roux 2017).

Nevertheless, we note that our RevBayes implementation

allows for setting more realistic scenarios, including branch-

specific models or regional variation on GC-bias rates along

the sequence alignment.

Molecular Dating with Fruit Fly Populations

The geographic origins of the globally distributed fruit fly

(Drosophila melanogaster) are still not fully understood. This

is certainly not due to the lack of genomic data, as hundreds

of sequenced genomes are available for the fruit flies (Hervas

et al. 2017), but primarily due to the methods of species tree

estimation not scaling with multiple populations and genome-

wide data. We employed the virtual PoMos to estimate and

date the evolutionary history of 30 fruit fly populations. We

used 966 sequences (supplementary table S2, Supplementary

Material online) from 1 million distantly located genomic sites,

acknowledging the sites’ independence assumption. We also

assumed a global clock for molecular dating analyses, which is

generally valid for short time scales. We set a uniform prior of

60,000615,000 years dating the African population expan-

sion, as is suggested in the field’s literature (Li and Stephan

2006; Stephan and Li 2007; Laurent et al. 2011). The phylog-

enies estimated by the virtual PoMos agreed for most of the

major clades (fig. 7), overall supporting a similar phylogeo-

graphic history for the fruit fly populations. Our analyses

showed that the fruit fly populations have flourished in the

southeast of the African continent. It is generally accepted

that fruit flies originated in equatorial Africa (Lachaise et al.

1988; Stephan and Li 2007). Our analyses suggested further

that the species spread to the north, establishing in western

equatorial Africa. From there, fruit flies colonized the western

equatorial and the northern regions of Africa, with the north-

ern wave leading to the spread of fruit flies worldwide. This
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phylogeography is not captured by the GTR model (supple-

mentary fig. S11, Supplementary Material online), probably

due to high levels of ILS among fruit flies. Indeed, we found

that 4.8% of polymorphisms are shared by three or more

populations, and 2.0% by ten or more populations.

The time inferences are less consistent between the virtual

PoMos, with PoMoThree providing, as expected by our formal

results and simulations, more ancient node ages (around

23%; fig. 7 and supplementary figs. S12 and S13,

Supplementary Material online). Our divergence times are

also comparatively more ancient than other studies. For ex-

ample, some studies suggested a split of the African lineage at

about 16,000 years ago (Stephan and Li 2007; Laurent et al.

2011), whereas our analyses estimated it around 38,000 years

ago. Although unaccounted signatures of selection can un-

derestimate the divergence times, we also notice that the

nonmonophyly of the out-of-Africa fruit fly populations (i.e.,

the Egyptian population [EG in fig. 7] clades together with

these populations). This can cause such volatility in the esti-

mated divergence times among studies. We note that the

narrow time intervals obtained in our dating analyses should

be taken with care, as we are using a sample size of 1 million

sites and a while more complex still simplifying models of

evolution and molecular clock. The influence of large data

on the time divergence intervals is most clear with the GTR

model, which infers a completely different phylogeny than

PoMos but with quite accurate time intervals (supplementary

fig. S11, Supplementary Material online).

An additional advantage of using selection-aware methods

is that we can quantify selection coefficients. We measured

the fruit flies’ GC-bias rate at around 6:17� 10�7 per site per

generation, one order of magnitude lower than the reciprocal

of their effective population size (�1 million individuals

according to Lynch et al. 2016) and matching the expect-

ations of gBGC. It remains unclear whether fruit flies have

gBGC (Robinson et al. 2014). Although it is difficult to think

of any other process than gBGC favoring G and C alleles

genome wide, further studies associating these signatures

with the recombination landscape are still needed.

Discussion

Methods of species tree estimation have become an essential

tool in studies of molecular evolution. Despite their wide-

spread use, most of these methods assume neutrality. Here,

we showed that unaccounted-for pervasive selection and

selection-like processes such as gBGC significantly impact

the inferences of the species tree. Our extensive analyses in

both simulated and real data have two main implications for

phylogenomic studies.

The first one is that assumed neutrality is likely to bias ge-

netic distances in typical population genetic data sets.
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Modeling natural selection within the species evolution frame-

work is not theoretically or computationally trivial, which has

undoubtedly contributed to most tree inference methods

making the neutral assumption. The virtual PoMos are full-

likelihood methods that include selection and scale with

genome-wide data from multiple populations and individuals.

Other species tree inference methods, like the MSC, experi-

ence a data bottleneck for a few sequences and a handful of

populations. Constraints between the species tree and the

genealogical histories make it difficult to perform their joint

inference. Furthermore, the space of unknown genealogies is

large, and the genealogy samplers computationally intensive

(Flouri et al. 2020; Rannala et al. 2020). In contrast, PoMos

directly estimate the species tree and naturally integrate over

all possible genealogies. Hence, we expect that our methods

will permit us to understand better the practical consequences

of assuming neutrality in real contexts. Here, we have focused

on the case of weak pervasive selection for populations with

patterns of diversity similar to fruit flies and great apes.

However, our results are likely to extend to several other bio-

logical groups, as gBGC is found all across the major groups of

eukaryotes (Pessia et al. 2012).

The second one is that the bias created by ignoring selec-

tion is not uniform across nodes; it is more significant in the

deeper nodes than in the shallow ones. Previous reports rea-

soned that directional selection should only mildly affect the

rate of evolution (Edwards 2009). By demonstrating that this

effect is node-height dependent, we show that merely recali-

brating the overall expected divergence is insufficient to cor-

rect divergence time inferences. Therefore, selection-aware

models are particularly crucial for molecular dating or other

phylogenetic analyses relying on the estimated branch

lengths. By showing that one cannot ignore the net effect

of selection in the evolutionary process (even in its weakest

forms as tested here), we question the neutral assumption’s

suitability in species tree inference.

As the number of genomes sequenced increases rapidly,

the development of methods describing the evolutionary pro-

cess in all its complexity emerges as of fundamental impor-

tance. The methods presented here represent an important

extension of existing approaches by allowing selection and

permitting inference with large-scale data. In the future, we

envision that our methods will be particularly useful for mo-

lecular dating using genome-wide data sets.

Materials and Methods

Simulations

As our methods aim at estimating species trees with genomic

sequences, our simulations were designed to imitate general

patterns of molecular evolution. In particular, we set a molec-

ular dynamic with GC-bias favoring the fixation of G and C

alleles (or strong alleles) and mutational bias to A and T alleles

(or weak alleles; Prado-Martinez et al. 2013; Begun et al.

2007). Mutation rates were assumed reversible and defined

by the product of an exchangeability term and an allele fre-

quency: for example, the mutation rate from a strong to a

weak allele is lSW ¼ qSWpW. Exchangeabilities between weak

and strong alleles (i.e., qSW ¼ qWS) were set three times more

likely than between similar alleles (i.e., qSS ¼ qWW). We have

also set the frequency of the weak alleles to be higher than

the strong alleles (i.e., pW ¼ 0:7 and pS ¼ 0:3). By combining

the two exchangeabilities and allele frequencies, four muta-

tion rates can be computed: lSW ¼ qSWpW; lWS ¼ qSWpS;

lSS ¼ qSSpS and lWW ¼ qSSpW. A fitness of /S ¼ 1þ c was

set to the strong bases, where c is the GC-bias rate, whereas

the weak bases were assumed neutral with fitness 1.

We simulated the evolution of a population of four pop-

ulations of 100 individuals using the PoMo transition matrix,

which embedded Markov chain is equivalent to the four-

variate Moran model with boundary mutations and allelic se-

lection. The simulator was implemented in R Core Team

(2021) and is provided in the additional files (see Data

Availability). The mutation rates and the selection coefficient

were set according to the previously defined molecular dy-

namic and appropriately rescaled. To make our simulation

more realistic, we defined different evolutionary scenarios.

Following the patterns of diversity observed in populations

of fruit flies and great apes (Prado-Martinez et al. 2013;

Begun et al. 2007), we varied the levels of genetic diversity

by setting h ¼ 0:02 or 0.002. We added two regimes of GC-

bias with scaled selection coefficient Nc ¼ 0:5 or 1.5, both

under the nearly neutral range (i.e., Nc < 2). We have also

considered different divergence times by setting the time of

the most recent common ancestor to s ¼ N or 10 N gener-

ations. The evolution of four populations was simulated

according to the following phylogenetic tree ([fpop4:s=4,

pop3:s=4g:s=4, pop2:s=2]:s=2, pop1:s). As some popula-

tions are closely related, we expect considerable levels of ILS

for shorter divergence times. The simulated scenarios and re-

spective parameters are listed in table 1. For each scenario, we

produced alignments of 100–105 sites and 25 repetitions. We

further generated two additional data sets by sampling ten

and two individuals per population. To assess the computa-

tional performance of the virtual PoMos, we simulated phy-

logenetic data for 10–100 populations and alignments of

100–1 million sites based on the parameters of scenario 5.

Because the simulations were performed in terms of the

effective dynamic, the simulated data were converted to

match the GTR, PoMoTwo, and PoMoThree state spaces.

The fixed states in the original population fNaigwere directly

converted to the fixed states f3aig and f2aig in the virtual

PoMoThree and Two respectively. The polymorphic state f
nai; ðN � nÞajg in the original population was directly con-

verted to the state f1ai;1ajg PoMoTwo state, as this model

has only one polymorphic state per polymorphic type.

Differently, PoMoThree has two polymorphic states per
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polymorphic type. In this case, we used the allele frequency

fai
¼ n=N in the original state and attributed the state

f2ai; 1ajg with probability fai
and f1ai;2ajg with prob-

ability 1� fai
. As the GTR state-space only includes the

four alleles, fixed states were set to the fixed allele faig
whereas polymorphic ones to one of the alleles, faig or

fajg, by randomly drawing according to the allele fre-

quency. The state conversion for the GTR model corre-

sponds to sample a single individual from the population.

Bayesian Phylogenetic Inferences

Phylogenetic trees were estimated using Bayesian inference in

the RevBayes software (Höhna et al. 2016). The virtual PoMos

are implemented in RevBayes and can be employed using the

functions fnReversiblePoMoTwo4N and fnReversiblePoMoTh

ree4N, which can be found in the RevBayes GitHub project

(https://github.com/revbayes, last accessed January 7, 2022).

Alternatively, the general function fnReversiblePoMo4N can

also be used by setting the population size to two or three. In

total, four free parameters were estimated during the

Bayesian inferences: pW, qWS, qSS ¼ qWW and /S. We set a

Beta prior on pW and an exponential prior on the exchange-

abilities and the GC-bias fitness /S. We assumed a strict

global clock rate for the molecular clock, drawn from an ex-

ponential prior with a root age fixed to 1.0. We fixed the root

age to allow distance comparisons between the GTR and the

virtual PoMos, as they all operate with different evolutionary

units. A uniform time tree prior was set for the phylogeny.

MCMC estimation was carried out with two chains with

50,000 generations for the GTR model and 75,000 for the

virtual PoMos. The ESS was checked for convergence. The

MCMC samples were accepted provided that the ESS of all

model parameters was above 200. Similar priors were used

for the GTR model, with the exception that the exchangeabi-

lites were also set with a beta prior instead of an exponential

one.

Application to Fruit Fly Populations

Genome-wide data from 30 worldwide distributed popula-

tions of D. melanogaster with 4–205 individuals (966 individ-

uals) were extracted from the PopFly database (Hervas et al.

2017). We have only used genomic data from the 2R, 2L, 3R,

and 3L autosomes. In total, 1 million genomic sites were ran-

domly sampled for the phylogenetic inferences. The fruit flies

allele counts were converted to the GTR, PoMoTwo, and

Three state spaces following the same procedure as for the

simulated data. The resulting multiple sequence alignments

were then used to perform molecular dating analyses in

RevBayes (Höhna et al. 2016). We employed a global clock

model together with a uniform prior of 60,000615,000years

dating the African population expansion, following the results

of Laurent et al. (2011). For the remaining parameters, we set

the same priors as for the Bayesian phylogenetic inferences

with the simulated data.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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