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Abstract: The title epoxide was obtained by spontaneous epoxidation of the corresponding unsat-
urated imide in air or by peracid oxidation. Unambiguous assignment of the 1H- and 13C-NMR
spectra is achieved by comparison between analogous compounds and its X-ray structure confirms
the exo,exo-configuration.
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1. Introduction

Cyclic carboximides have a wide range of applications, as described in a recent mono-
graph [1]. In particular, those fused to a norbornene skeleton have been of interest for
ring-opening metathesis polymerisation (ROMP) to produce a variety of functional poly-
mers [2–5], while norbornane-fused examples have been patented for the medical treatment
of depression [6]. In a continuation of our work on heterocyclic synthesis based on ad-
dition of the crystalline adduct of tributylphosphine and carbon disulfide to norbornene
systems [7,8], we recently prepared the N-butyl imide 2 and were surprised to observe
that this underwent spontaneous oxidation upon storage in air over a period of months
to afford the epoxide 3 (Scheme 1). In this paper, we describe the full characterisation of
this previously unknown compound, including its X-ray structure, as well as spectroscopic
characterisation of the precursor 2 and the related epoxy anhydride 4, which allowed
unambiguous assignment of the NMR spectra for all three compounds (Supplementary
Materials).
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1. Introduction 
Cyclic carboximides have a wide range of applications, as described in a recent mon-

ograph [1]. In particular, those fused to a norbornene skeleton have been of interest for 
ring-opening metathesis polymerisation (ROMP) to produce a variety of functional poly-
mers [2–5], while norbornane-fused examples have been patented for the medical treat-
ment of depression [6]. In a continuation of our work on heterocyclic synthesis based on 
addition of the crystalline adduct of tributylphosphine and carbon disulfide to nor-
bornene systems [7,8], we recently prepared the N-butyl imide 2 and were surprised to 
observe that this underwent spontaneous oxidation upon storage in air over a period of 
months to afford the epoxide 3 (Scheme 1). In this paper, we describe the full characteri-
sation of this previously unknown compound, including its X-ray structure, as well as 
spectroscopic characterisation of the precursor 2 and the related epoxy anhydride 4, 
which allowed unambiguous assignment of the NMR spectra for all three compounds 
(Supplementary Materials). 
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2. Results

Our synthesis started from exo-anhydride 1, readily available [9] from thermal iso-
merisation of the endo-isomer formed by Diels–Alder cycloaddition of maleic anhydride
with cyclopentadiene. As an improvement to the literature procedure, we used acetone [2]
rather than the more toxic benzene to separate the isomers by recrystallisation. This was
converted into N-butyl imide 2 in moderate yield using a literature method [3] involving
reaction with butylamine in the presence of hexamethyldisilazane. Although product 2
initially gave the expected NMR spectroscopic data, rerunning the spectra after storage
under normal laboratory conditions for a few months showed partial conversion into a
new compound, which rather surprisingly proved to be epoxide 3. Specifically, a spectrum
run after 11 months showed a composition of 30% 2 to 70% 3, while after 20 months, this
had changed further to 15% 2 and 85% 3. Such facile epoxidation of a bicyclic alkene in air
is unusual but has been observed before in similar compounds such as 5 [10], for which
the X-ray structure was found to be disordered by the presence of 6% of the cocrystallised
monoepoxide 6 (Scheme 2). In an earlier quantitative study [11], anhydride 7 with the
double bond anti to the anhydride function was found to epoxidise 19 times more rapidly
than isomer 8 with the double bond syn to the anhydride and for diene 9, epoxidation
of the double bond anti to the anhydride to give 10 was favoured over epoxidation of
the syn double bond by a rate factor of over 8:1. It therefore seems clear that the spatial
arrangement of the imide function in compound 2 makes its double bond particularly
susceptible to oxidation.
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Scheme 2. Other readily epoxidised bicyclic alkenes.

In order to fully characterise epoxide 3, a sample was prepared by oxidation of
alkene 2 using performic acid [12], leading to a high yield of the product after kugelrohr
distillation. Although this gave satisfactory spectroscopic data, there was some ambiguity
in the assignment of the NMR spectra, particularly the three CH signals relating to the
norbornane ring system. This prompted an assessment of the literature NMR data for
precursors 1 and 2, which showed that both 1H- and 13C-NMR spectra for 1 had been
satisfactorily assigned [2], but for compound 2, only images of the H and C spectra appeared
in a single paper [4] with no numerical data and no attempt at assignment. In order to
make the task of assignment easier, we also prepared the exo,exo-epoxy anhydride 4 by
oxidation of 1 using mCPBA in boiling ethyl acetate [13], which gave the product in low but
adequate yield. This compound is well known, having been first prepared in 1958 [14], but
owing to the early date of the work, no NMR spectra have been reported. It might be noted
that 1H-NMR data have been documented for the exo-epoxy-endo-anhydride isomeric with
4 [15] and for the endo-N-butyl imide isomeric with 2 [16].

Good quality 1H- and 3C-NMR spectra, as well as a 2D HSQC C–H correlation, were
obtained for compounds 2, 3, and 4 (see Supplementary Materials) and, by carefully
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considering these in comparison with the assigned spectra [2] for 1, a comprehensive and
self-consistent assignment for all four compounds was produced (Figure 1). The presence
of an HMBC correlation for compound 3 between δC 177.0 and δH 2.74 and 3.30 but not
2.96 further supports the assignment.
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Figure 1. 1H (in red) and 13C (in blue) NMR chemical shift assignments for 1 [2], 2, 3, and 4 (δ in ppm).

Several features of this are of interest, including the dramatic shielding of the carbon
bridge and only one of its protons on moving from alkenes 1 and 2 to epoxides 4 and 3,
significant deshielding of the bridgehead (1/7) carbons but not protons in moving from
alkenes to epoxides, and the cross-over in order between H and C signals for 1/7, 2/6, and
epoxide positions in all four compounds. By way of comparison, the bridge signals of δH
1.34 and 1.12 and δC 48.8 for norbornene move, upon epoxidation, to δH 1.28 and 0.64 and
δC 25.0 [17].

Since the polycyclic epoxy imide framework of 3 is fairly unusual and the compound
formed good quality crystals, we confirmed its structure by X-ray diffraction. The resulting
molecular structure (Figure 2) confirms the exo, exo-configuration and has the epoxide and
imide rings at angles of 69.4◦ and 61.5◦ to the norbornane core, respectively.
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Figure 2. Molecular structure of 3 (thermal ellipsoids at 50% level) and side view showing angles of
3- and 5-membered rings to norbornane core.

A selection of similar norbornane compounds with fused 3- and 5-membered rings
that have been crystallographically characterised is shown in Figure 3 with CCDC reference
codes, literature references, and angles [18–20].
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Figure 3. Similar crystallographically characterised compounds with inter-ring angles.

Although cyclic NH imides show a wide variety of intermolecular hydrogen bonding
patterns in the crystalline state [21], this relies on having a free NH present and, as might be
expected, there are no strong intermolecular interactions between molecules of 3 in the crys-
tal. A view of the unit cell does however show the molecules arranged with hydrophobic
butyl groups in a layer between the more polar epoxy imide moieties (Figure 4).
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In summary, the epoxy imide 3 is readily formed by spontaneous air oxidation of
the corresponding unsaturated imide 2 and preparation of the related epoxy anhydride 4
allowed unambiguous assignment of 1H- and 13C-NMR spectra for all three compounds.
The X-ray structure for 3 confirms the configuration and shows similar inter-ring angles to
related tetracyclic compounds.

3. Experimental

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna,
Austria) and are uncorrected. IR spectra were recorded using the ATR technique on a
Shimadzu IRAffinity 1S instrument. NMR spectra were obtained for 1H at 300 or 400 MHz
and for carbon at 75 or 100 MHz using, respectively, Bruker AV and AV-II instruments
(Bruker, Billerica, MA, USA). Spectra were run at 25 ◦C on solutions in CDCl3 with internal
Me4Si as the reference. Chemical shifts are reported in ppm to high frequency of the
reference and coupling constants J are in Hz. The starting exo-anhydride 1 was prepared
by thermal isomerisation of the endo-isomer as described in the literature [9], with the
distinction that acetone [2] rather than benzene was used for the recrystallisation.
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3.1. 2,6-exo-4-Butyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (2)

Following a literature procedure [3], a solution of exo-bicyclo[2.2.1]hept-5-ene-2,3-
dicarboxylic anhydride 1 (2.00 g, 12.2 mmol) was dissolved in MeOH/THF (1:1) (40 cm3).
A solution of n-butylamine (0.89 g, 1.21 cm3, 12.2 mmol) in MeOH/THF (1:1) (7 cm3) was
added dropwise to the stirring solution cooled at 0 ◦C over 15 min. The mixture was stirred
at 0 ◦C for 30 min, then heated to 65 ◦C, with the addition of hexamethyldisilazane (2.42 g,
3.14 cm3, 15 mmol), and the heating was continued for 72 h. After cooling, the solvent was
removed under reduced pressure and the residue dissolved in CH2Cl2, which was washed
successively with aq. NaHCO3, 2.0 M HCl, and water. The organic layer was dried over
MgSO4 and the solvent removed under reduced pressure to yield a light brown oil. This
was subjected to column chromatography using EtOAc/hexane (1:1) to yield a yellow oil
(1.37 g, 48%). The 1H- and 13C-NMR spectra were in good agreement with the literature
images [4] although these are given here in numerical form for the first time. 1H-NMR
(300 MHz, CDCl3): δ 6.29 (2H, t, J 2, =CH–), 3.46 (2H, t, J 7.5, NCH2), 3.27 (2H, t, J 1.5,
1,7-H), 2.68 (2H, d, J 1.2, 2,6-H), 1.59–1.49 (3H, m, Bu C-2 and 10-Ha), 1.32 (2H, sextet, J
7.2, Bu C-3), 1.24 (1H, d, J10a–10b 10, 10-Hb), 0.93 (3H, t, J 7.2, Bu C-4); 13C-NMR (75 MHz,
CDCl3): δ 177.9 (C=O), 137.6 (2CH, =CH–), 47.6 (2CH, C-2,6), 45.0 (2CH, C-1,7), 42.5 (CH2,
C-10), 38.3 (CH2, Bu C-1), 29.7 (CH2, Bu C-2), 20.1 (CH2, Bu-C-3), 13.5 (CH3, Bu C-4).

3.2. 2,6-exo-8,10-exo-4-Butyl-9-oxa-4-azatetracyclo[5.3.1.02,6.08,10]undecane-3,5-dione (3)

Following a literature procedure [12], the imide 2 (1.37 g, 6.25 mmol) was dissolved
in formic acid (10 cm3) and hydrogen peroxide (30% w/w in H2O, 1.5 g, 13.23 mmol) was
added dropwise. The mixture was stirred at rt for 24 h, and then evaporated in vacuo to
yield a yellow crystalline solid. The crude material was purified by kugelrohr distillation
at 250 ◦C and 15 Torr. Upon cooling, the product (1.32 g, 90%) formed waxy, colourless
crystals, mp 75–76 ◦C. IR (ATR): 1767, 1686, 1437, 1395, 1373, 1294, 1194, 1138,934, 910, 851,
766, 610, 552, 457 cm–1; 1H-NMR (400 MHz, CDCl3): δ 3.47 (2H, t, J 7.6, N-CH2), 3.30 (2H, s,
1,7-H), 2.96 (2H, s, 8,10-H), 2.74 (2H, d, J11a–2,6 1.2, 2,6-H), 1.54 (2H, m, Bu C-2), 1.41 (1H, d
of t, J11a–11b 11.6, J11a–2,6 1.2, 11a-H), 1.31 (2H, sextet, J 7.6, Bu C-3), 0.92 (3H, t, J 7.2, Bu C-4),
0.65 (1H, d, J11a–11b 11.6, 11b-H); 13C-NMR (100 MHz, CDCl3): δ 177.0 (C=O), 50.8 (2CH,
C-1,7), 45.7 (2CH, C-2,6), 40.3 (2CH, C-8,10), 38.6 (CH2, Bu C-1), 29.7 (CH2, Bu C-2), 20.8
(CH2, C-11), 20.0 (CH2, Bu C-3), 13.5 (CH3, Bu C-4); HRMS (ESI): Calcd. for C13H18NO3
(M + H): 236.1287. Found: 236.1281.

Crystal data for C13H17NO3, M = 235.28 g mol−1, colourless plate, crystal dimensions
0.10 × 0.10 × 0.01 mm, monoclinic, space group P21/c, a = 14.0208(9), b = 6.8847(3),
c = 12.3947(7) Å, β = 103.388(6)◦, V = 1163.93(12) Å3, Z = 4, Dcalc = 1.343 g cm–3, T = 93 K,
R1 = 0.0790, Rw2 = 0.2127 for 1389 reflections with I > 2σ(I), and 155 variables. Data were
collected using graphite monochromated Mo Kα radiation λ = 0.71073 Å and deposited at
the Cambridge Crystallographic Data Centre as CCDC 2128556. The data can be obtained
free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.
ac.uk/getstructures. The structure was solved by direct methods and refined by full-matrix
least-squares against F2 (SHELXL, Version 2018/3 [22]).

3.3. 2,6-exo-8,10-exo-4,9-dioxatetracyclo[5.3.1.02,6.08,10]undecane-3,5-dione (4)

Following a literature procedure [13], a solution of exo-bicyclo[2.2.1]hept-5-ene-2,3-
dicarboxylic anhydride 1 (0.30 g, 1.83 mmol) in ethyl acetate (7 cm3) was stirred at rt while
mCPBA (50%, 1.26 g, 3.63 mmol) was added, and the reaction was heated under reflux
for 18 h. After cooling to 0 ◦C, the mixture was filtered to yield a crude product (0.18 g)
still containing some chlorobenzoic acid. This was purified by recrystallisation first from
petroleum/acetone (1:1) and then from chloroform, producing the pure product (0.10 g,
30%) as colourless crystals, mp 205–207 ◦C (lit. [14] 204–206 ◦C). IR (ATR) 1857, 1771, 1196,
1082, 928, 903, 849, 754, 694, 592, 534, 480 cm−1; 1H-NMR (400 MHz, CDCl3): δ 3.32 (2H, s,
1,7-H), 3.10 (2H, s, 8,10-H), 3.04 (2H, d, J11a–2,6 2, 2,6-H), 1.59 (1H, d of t, J11a–11b 12, J11a–2,6
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1.6, 11a-H), 0.85 (1H, d, J11a–11b 12, 11b-H); 13C-NMR (100 MHz, CDCl3): δ 171.0 (C=O),
50.3 (2CH, C-1,7), 46.5 (2CH, C-2,6), 41.7 (2CH, C-8,10), 22.2 (CH2, C-11).

Supplementary Materials: The following are available online. Figure S1: 1H-NMR spectrum of 2;
Figure S2: 13C-NMR spectrum of 2; Figure S3: HSQC 2D C–H correlation NMR spectrum of 2; Figure
S4: 1H-NMR spectrum of 3; Figure S5: 13C-NMR spectrum of 3; Figure S6: HSQC 2D C–H correlation
NMR spectrum of 3; Figure S7: IR spectrum of 3; Figure S8: 1H-NMR spectrum of 4; Figure S9:
13C-NMR spectrum of 4; Figure S10: HSQC 2D C–H correlation NMR spectrum of 4; Figure S11: IR
spectrum of 4. Cif and check-cif files for compound 3.
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