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Climate predicts geographic and temporal variation
in mosquito-borne disease dynamics on two
continents
Jamie M. Caldwell 1✉, A. Desiree LaBeaud 2, Eric F. Lambin3,4, Anna M. Stewart-Ibarra 5,6,

Bryson A. Ndenga 7, Francis M. Mutuku 8, Amy R. Krystosik 2, Efraín Beltrán Ayala9, Assaf Anyamba10,

Mercy J. Borbor-Cordova 11, Richard Damoah 12, Elysse N. Grossi-Soyster2, Froilán Heras Heras13,

Harun N. Ngugi14,15, Sadie J. Ryan 16,17,18, Melisa M. Shah19, Rachel Sippy 13,20,21 & Erin A. Mordecai 1

Climate drives population dynamics through multiple mechanisms, which can lead to see-

mingly context-dependent effects of climate on natural populations. For climate-sensitive

diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in

different contexts. Here we show that a model, parameterized with laboratory measured

climate-driven mosquito physiology, captures three key epidemic characteristics across

ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and

duration of outbreaks. The model generates a range of disease dynamics consistent with

observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with vari-

able accuracy (28–85% for vectors, 44–88% for incidence). The model predicted vector

dynamics better in sites with a smaller proportion of young children in the population, lower

mean temperature, and homes with piped water and made of cement. Models with limited

calibration that robustly capture climate-virus relationships can help guide intervention

efforts and climate change disease projections.
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C limate is a major driver of species interactions and
population dynamics, but the mechanisms underlying the
ecological effects of climate are often poorly understood

and rarely tested in the field1. One of the primary ways that
climate impacts populations are through its effects on species’
vital rates2. However, the effects of climate on population
dynamics may appear context-dependent in the field because
multiple climate variables can act synergistically, with each cli-
mate variable potentially affecting multiple vital rates, and their
impacts may be nonlinear, changing direction, and relative
importance across a gradient of conditions3,4. Therefore, para-
doxically, while climate is thought to be one of the most pervasive
drivers of ecological processes, its directional and dynamical
effects on systems are often poorly understood and difficult to
predict. Vector-borne diseases provide an interesting case study
to test whether climate-sensitive traits measured in controlled,
laboratory settings can reproduce the wide range of dynamics
observed in the field. For example, the transmission of mosquito-
borne viral (arboviral) diseases such as dengue, chikungunya, and
Zika occur along a spectrum from low levels of year-round
endemic transmission5 to large seasonal or interannual out-
breaks6. We hypothesize that important features of these differing
dynamics arise due to regional or seasonal differences in climate,
where the magnitude and direction of the effects of climate on
vector and disease dynamics differ7–12.

Understanding the mechanisms that drive disease dynamics
can help address two critically important research priorities for
arboviruses like dengue, chikungunya, and Zika: assessing inter-
vention strategies and projecting climate change impacts on
disease dynamics. While phenomenological models often repli-
cate arboviral disease dynamics remarkably well13, mechanistic
models that do not rely on local data for calibration and capture
mosquito population dynamics and interactions between mos-
quitoes and humans will provide more realistic projections for
epidemic dynamics across a broad range of transmission settings.
With no widely available vaccine, vector control (e.g., larvicides,
Wolbachia-infected mosquito releases) remains the primary
method for preventing arboviral disease transmission, and, like
other vector-borne diseases with complex transmission dynamics,
model simulations can help guide effective intervention
efforts14,15. Further, mechanistic models are better suited to
predict how climate change will impact future disease burden and
distribution, as projected climate conditions are outside the cur-
rent arboviral climate niche space16. Despite the potential use-
fulness of mechanistic approaches, validation with vector and
disease data are limited, raising an important question about
which epidemic characteristics, if any, we should expect a model
to capture when the model was parameterized with data that is on
different scales (e.g., individuals versus populations) and inde-
pendent from the transmission system we wish to predict. Thus,
because we cannot study epidemic dynamics in every possible
transmission setting, it becomes important to understand the
extent to which models derived from fundamental and
laboratory-measured traits explain disease dynamics across
diverse settings.

We hypothesize that a climate-driven mechanistic model with
limited calibration should capture many important characteristics
of disease dynamics for dengue, chikungunya, and Zika because
of the ecology of Aedes aegypti, the primary disease vector. Ae.
aegypti are anthropophilic, globally distributed mosquitoes that
breed in artificial containers with standing water17,18. All mos-
quito and parasite traits that are important for transmission
and linked to metabolism, such as reproduction, develop-
ment, survival, biting rate, and extrinsic incubation period, are
temperature-dependent with an intermediate thermal opti-
mum19–21. Humidity is positively associated with mosquito

survival because the high surface area to volume ratio of mos-
quitoes exposes them to desiccation22,23. Standing water from
rainfall provides essential larval and pupal habitats for mosqui-
toes, but the relationship is complex because heavy rainfall can
flush away breeding habitats24–26, and water-storage practices
during a drought can increase water availability, mosquito
abundance, and contact between mosquitoes and people27–29. A
previous simulation study predicted that in settings with suitable
climate for transmission throughout the year (e.g., mean tem-
perature= 25 °C; range= 20–30 °C), temperature drives the
timing and duration of outbreaks, but not the maximum number
of infections or final epidemic size30. This finding suggests that a
model that incorporates temperature-dependent vector traits
should capture some important epidemic characteristics.

Arboviral dynamics differ considerably in South America and
sub-Saharan Africa, potentially because of differences in climate
and socio-ecological conditions. Previous studies have found that
Ae. aegypti and dengue were positively associated with warm and
wet conditions in South America and sub-Saharan Africa6,31–33,
although other Ae. aegpyti-vectored arboviruses in Africa such as
chikungunya have been associated with warm and dry condi-
tions34. Countries on both continents have all four dengue ser-
otypes circulating and have recently experienced outbreaks of
chikungunya; yet, arboviral transmission dynamics differ in each
region. In South America, dengue is a re-emerging disease with
large seasonal epidemics that frequently result in severe dengue6;
by contrast, in sub-Saharan Africa, dengue is transmitted at low
levels year-round5 and intermittent self-limiting outbreaks often
go undetected35. Further, compared with South America, severe
dengue is rare in sub-Saharan Africa, perhaps because African
strains of Ae. aegpyti have lower susceptibility to all four dengue
serotypes36, and/or because people of African ancestry are less
susceptible to severe dengue37.

In this work, we test the extent to which climate-driven mos-
quito traits drive disease dynamics across two geographically
distinct regions and characterize additional climatological, eco-
logical, and social factors that may mediate the effects of climate
on disease dynamics. We build on previous mechanistic and
semi-mechanistic models that incorporate the Aedesmosquito life
cycle and human disease dynamics30,38–42 by combining a suite
of temperature, humidity, and rainfall-dependent trait functions
into one epidemiological model. We validate the model with Ae.
aegypti abundances and laboratory-confirmed dengue, chi-
kungunya, and Zika cases from two equatorial countries with
distinct socioeconomic, geographic, cultural, and disease trans-
mission settings: Ecuador and Kenya. We find that a climate-
driven model with limited calibration to local data capture three
key epidemic characteristics across diverse settings: the number,
timing, and duration of outbreaks. The model generates a range
of vector and disease dynamics with varying levels of accuracy.
Further, we find that the model predicted vector dynamics better
in sites with a smaller proportion of young children in the
population, lower mean temperature, and homes with piped
water and made of cement. These results indicate that a climate-
driven model with limited calibration can capture important
epidemic characteristics, which can help guide intervention
efforts and improve disease projections associated with climate
change.

Results
Study sites. We selected study sites within each country that are
distributed across a gradient of temperature, humidity, and
rainfall and are climatologically and socioeconomically distinct
(Fig. 1 and Table 1). The climate gradient is driven by factors like
elevation, distance to the ocean, and the land cover type, as all
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study sites are located at similar latitudes near the equator.
Demographics, housing quality, exposure, susceptibility, and
adaptive capacity vary most strongly between the two regions,
although there are some differences among sites within the same
country.

Capturing key epidemic characteristics. The dynamic suscep-
tible, exposed, infectious-susceptible, exposed, infectious, removed
(SEI-SEIR) compartmental model parameterized with tempera-
ture-, humidity-, and rainfall-dependent mosquito life-history
traits (Fig. 2) reproduced three key characteristics of epidemics:
number of outbreaks, the timing of outbreak peak, and duration of
outbreaks. We defined an outbreak as a continuous-time period
with peak cases exceeding the mean number of cases (predicted or
observed) plus one standard deviation within a site. Across all
sites, the number of outbreaks predicted by the model closely
matched the number of outbreaks observed (R2= 0.79, P < 0.01;
Fig. 3a). Supporting our a priori expectations based on a previous
simulation study30, we found that the climate-driven model pre-
dicted peak timing of outbreaks (R2= 0.71, P < 0.01; Fig. 3b) and
outbreak duration (R2= 0.51, P < 0.01; Fig. 3c) well but did not
predict the final outbreak size (Fig. 3d) or the maximum number
of infections (Fig. 3e) across sites. Overall, the model predicted
four outbreaks that were not observed and did not predict five
outbreaks that occurred. The model may miss an outbreak (i.e.,
false negatives) when, for example, a suitable climate occurs but
the pathogen is not introduced or the susceptible population is
depleted from previous outbreaks.

Capturing spatiotemporal disease dynamics across sites. The
SEI-SEIR model generated mosquito and disease dynamics that
better reflected observed dynamics in some sites than others
(Fig. 4 and Table 2). Model-predicted mosquito abundances were
significantly correlated with field-collected observations of mos-
quito abundances in all eight study sites, explaining 28–85% of
site-level variation through time based on pairwise correlations
with an adjusted P value for time series data (following ref. 43).
Based on surveys conducted across all vector life stages in Kenya
(only adult mosquitoes were collected in the Ecuador surveys),
the SEI-SEIR model explained variation in the abundance of adult
mosquitoes (28–63%) better than pupae (25–32%), late instars
(30–33%), early instars (20–36%), and eggs (33–55%), likely
because the model did not explicitly incorporate other mosquito
life-history stages. Model-predicted disease cases were sig-
nificantly correlated with the laboratory-confirmed arboviral
incidence in seven of the eight study sites, explaining 44–88% of
site-level variation through time (within sites with statistically

significant pairwise correlations). We confirmed that the pre-
dicted dynamics were stable with sensitivity analyses to initial
conditions (see “Methods”), as emerging diseases can display
chaotic dynamics due to a high sensitivity to initial conditions.
Overall, the model reproduced disease dynamics slightly better
for sites in Ecuador compared with Kenya.

We found evidence that rainfall affects transmission through
multiple mechanisms and at different time lags (Table 2). Since
the effect of rainfall on mosquito abundances is not well-
understood, we simulated disease dynamics for each site three
times, using one of three hypothesized rainfall relationships
(Brière, inverse, and quadratic; Supplementary Fig. 3). We
determined the best rainfall function and time lag for each site
based on the highest pairwise correlation value between model
predictions and observations. The model with the exponentially
decreasing inverse rain function (Supplementary Fig. 3c), which
indicates that mosquito abundances peak when there is no or low
rainfall (likely as a result of water-storage practices and/or
unreliable water sources) described observed mosquito and
disease dynamics most often, especially in the Kenya sites
(Table 2), where household access to piped water is very low
(Table 1). The left-skewed unimodal Brière rainfall function
(Supplementary Fig. 3a), which indicates that mosquito abun-
dances increase with increasing rainfall until some threshold
where flushing occurs, described disease dynamics in some
settings, particularly in the Ecuador sites. The symmetric
unimodal quadratic rainfall function (Supplementary Fig. 3b),
which indicates that mosquito abundances peak with intermedi-
ate amounts of rainfall and are reduced with low and high rainfall
values, also described disease dynamics in some settings.
Interestingly, we did not find a single rainfall function that
consistently described dynamics for mosquitoes or arboviral cases
across study sites, or for both mosquitoes and arboviral cases
within individual study sites (Table 2). In contrast, we did find
some consistency with time lags. The model best-predicted
mosquito abundances in the same month or 1 month in the
future. In more than half of the sites, the model best-predicted
human disease cases 3–4 months in the future, and in almost all
sites at least 2 months in the future (the exception is Zaruma,
where very few arbovirus cases were reported during the study
period and were likely due to importation rather than local
transmission). Given that multiple rainfall functions and time lags
are supported by field data (even within the same study site), we
propose a conceptual model that incorporates multiple pathways
for rainfall to affect disease dynamics along a continuum of
rainfall (Fig. 5), in contrast to distinct functional relationships for
a given setting, which motivated the approach used in this study.
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Fig. 3 Model predictions for the number, timing, and duration of arboviral outbreaks closely matched field observations. Scatterplots show model
predictions versus observations for different epidemic characteristics. a The number of outbreaks indicates the total number of predicted and observed
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because the magnitude differed substantially from all other sites.
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Fig. 4 Model predicts vector and human disease dynamics better in some settings than others. Each plot shows the time series of SEI-SEIR model
predictions (gray dots connected by gray lines) and field observations (black dots connected by black lines) for vector (top two rows) and human disease
(bottom two rows) dynamics for each study site with the pairwise correlation (r) and adjusted P value for two-sided hypothesis test (P). We calculated
observed mosquito abundances as the mean number of adult Ae. aegypti per house, month, year, and site. We calculated observed arboviral cases as the
total number of laboratory-confirmed dengue (any serotype), chikungunya, and Zika cases per month, year, and site; six of the eight study sites only
included dengue cases (see “Methods”). The first and third rows show sites in Ecuador, and the second and fourth rows show sites in Kenya. We show
uncertainty in model predictions in Supplementary Figs. 1 and 2.

Table 2 Model predictions reflect a range of observed transmission dynamics when incorporating different rainfall functions and
time lags across sites.

Site Vector dynamics Human disease dynamics

Rainfall
function

r Adjusted
P value

Lag (months) Rainfall
function

r Adjusted
P value

Lag (months)

Huaquillas, Ecuador Quadratic 0.63 0.01 1 Inverse 0.60 0.00 2
Machala, Ecuador Quadratic 0.63 0.01 0 Brière 0.64 0.00 4
Portovelo, Ecuador Brière 0.66 0.01 1 Brière 0.88 0.00 3
Zaruma, Ecuador Inverse 0.85 0.00 1 Inverse 0.33 0.12 0
Chulaimbo, Kenya Inverse 0.45 0.00 1 Quadratic 0.44 0.01 4
Kisumu, Kenya Brière 0.48 0.00 0 Quadratic 0.51 0.00 4
Msambweni, Kenya Inverse 0.28 0.04 0 Inverse 0.57 0.00 3
Ukunda, Kenya Inverse 0.37 0.03 1 Inverse 0.78 0.00 5

For each study site, we calculated pairwise correlations between time series of field observations (Ae. aegypti abundances or arboviral cases) and time series of model predictions for the SEI-SEIR model
with one of three rain functions for mosquito-carrying capacity (Brière, Inverse, or Quadratic) and six-time lags (0–5 months). This table shows specifications for the model (e.g., rain function and time
lag) with the highest pairwise correlation value, r, for each study site and observation type (vectors or human disease cases), as well as the statistical significance of the correlation value (adjusted P value
for two-sided hypothesis test) based on the Modified Chelton method43 to account for temporal autocorrelation.
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Factors that mediate disease dynamics predictability. The
ability of the model to generate similar dynamics to those found
in the field varied with demography, housing quality, and climate.
Although the sample size is small (N= 8 sites), we found that the
SEI-SEIR model generally predicted vector dynamics better in
sites with a smaller proportion of young children in the popu-
lation (R2= 0.89, P < 0.01; Fig. 6a), lower mean temperature
(R2= 0.63, P < 0.05; Fig. 6c), and a larger proportion of homes
with piped water (R2= 0.76, P < 0.01; Fig. 6b) and made of
cement (R2= 0.69, P < 0.05; Fig. 6d; list of all factors we assessed
are provided in Table 1). Based on the range of mean tempera-
tures at our study sites (22–28 °C), our findings indicate that
vector dynamics become less predictable as temperatures near the
optimal temperature for transmission (derived in previous studies
as 29 °C) following the shape and slope in the R0 curve (Fig. 7).
This complements phenomenological models that have found
minimal effects of temperature near the empirically derived
thermal optima (Fig. 7). None of the socioeconomic factors that
we examined in this study (Table 1) explained variability in the
pairwise correlations for human disease cases among sites.

Discussion
Directly observing the influence of climate on species interactions
and population dynamics is often challenging because of inter-
acting and nonlinear relationships. Here, we directly and quan-
titatively connect laboratory-based climate relationships to
observed mosquito and disease dynamics in the field, supporting
the mechanistic role of climate in these disease systems. The trait-
based modeling approach captured several key epidemic char-
acteristics and generated a range of disease dynamics along a
spectrum of settings with low levels of transmission to seasonal
outbreaks, helping to reconcile seemingly context-dependent
effects (i.e., opposite conclusions about the magnitude and
direction of effects; Fig. 7) of climate on arboviral transmission
dynamics from the literature7–12,44.

The results of this study shed some light on the influence of
climate in driving endemic versus epidemic dengue transmission.
Although Ecuador typically experiences seasonal epidemics6 and
Kenya typically experiences low levels of year-round
transmission5, the sites within this study suggest that epidemic
transmission is more common in settings with clear seasonality
(e.g., coastal sites) whereas endemic transmission is more com-
mon in settings with more climate variability (e.g., inland sites),

regardless of country. Coastal sites experienced more regular
seasonal climate cycles, likely because oceans buffer climate
variability, and this seasonality corresponded with seasonal epi-
demics. In contrast, the inland sites experienced more day-to-day
climate variability, which resulted in more fluctuations in disease
cases. As a result, the occurrence and persistence of suitable
temperature, rainfall, and humidity conditions enabling outbreaks
were less regular in sites with more climate variability. The ability
of the model to detect key epidemic characteristics across ende-
mic and epidemic settings indicates that climate plays a major
role in driving when outbreaks occur and how long they last.

Using field data on mosquitoes and disease cases from diverse
settings and a model parameterized with data from other studies,
we identified several key epidemic characteristics that we should
(and should not) expect to capture in new settings. While we
would never expect a perfect correlation between model predic-
tions and observations, even if the model perfectly captured
climate–host–vector dynamics because of the many additional
factors that affect transmission in nature, our results indicate that
a model with limited calibration can determine the number of
outbreaks across settings remarkably well (Fig. 3a). This finding
could be particularly useful for prioritizing surveillance or inter-
vention activities across a range of potential sites that would
otherwise appear equal in their propensity for outbreaks (e.g.,
similar climate conditions). We also show that the model captures
the peak timing of outbreaks (Fig. 3b) and outbreak duration
(Fig. 3c) but not the final outbreak size (Fig. 3d) or the maximum
number of infections (Fig. 3e), supporting the hypothesis that the
magnitude of disease cases during an outbreak in settings with
year-round climate suitability for disease transmission are
invariant to temperature, as proposed by30, likely because the
magnitude of disease cases is probably more strongly driven by
the availability of susceptible hosts.

Given that the model generally did not predict the magnitude
of outbreaks, we asked how well the model reproduced vector and
human disease dynamics (i.e., variation over time) across sites
and whether this relationship varied systematically with different
socioeconomic factors. Across sites, the range of temporal cor-
relations between model predictions and observations (N= 8;
Fig. 4, Table 2) provides an informative metric for the proportion
of true disease dynamics that we might expect to capture in new
settings, ranging from 28–88%. The correlations varied with
demography, housing construction, and climate (Fig. 6). The
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Fig. 5 Conceptual model for nonlinear functional relationships between rainfall and vector abundance and arboviral outbreak risk. Dashed lines show
multiple potential pathways for rainfall to affect transmission dynamics and include the functional relationships supported in this study. Labels indicate the
hypothesized mechanisms along a gradient of rainfall. Adapted from the following source67.
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model may have better-explained vector dynamics in locations
with a lower proportion of children under 5-year old for a variety
of reasons, including because bottom-heavy demographic pyr-
amids are often associated with lower socioeconomic status and
higher mobility throughout the day. In addition to the demo-
graphic makeup of sites, housing construction within sites also
seems to modify transmission dynamics: vector dynamics were
less predictable in sites with more houses with piped water and
made of cement (Fig. 6b, d). These results suggest that piped
water may prevent additional contact between humans and
mosquitoes associated with stored water around the home. In
addition, housing materials like cement that lower indoor tem-
perature could artificially decrease climate suitability for mos-
quitoes, thereby decreasing the probability that mosquitoes will
enter and bite people inside their homes. Despite incorporating
all known temperature-dependent mosquito traits into the
SEI-SEIR model, we still found vector dynamics became less
predictable near the empirically derived thermal optima for
arboviral transmission (Figs. 6c, 7). This finding may be asso-
ciated with physiological or behavioral responses of mosquitoes
to temperatures near their thermal safety margin45,46 and/or
humans modifying their environment (as described above) in
locations optimal for transmission.

Across the study sites, we found support for three hypothesized
relationships between rainfall and mosquito-carrying capacity as
well as several time lags between model predictions and disease
observations. Support for multiple rainfall functions could indi-
cate that the effects of rainfall on immature habitat are highly
heterogeneous, which has been found in previous research in
Ecuador27 and Kenya47. Alternatively, the combination of mul-
tiple rainfall relationships and time lags could arise from non-
linear and delayed effects of extreme climate such as droughts and
floods. More specifically, we hypothesize that there may be
multiple mechanistic relationships for the effects of rainfall on
mosquito abundance and arboviral disease dynamics (Fig. 5), and
they may act on different time scales. For example, previous
research indicated that dengue outbreaks were more likely to
occur 4–5 months after a drought and 1 month after excessive
rainfall and a statistical model that incorporated these duel
exposure-lag-response functions was highly effective at predicting
dengue outbreaks in Barbados48. Further, if multiple rainfall
relationships act in concert across varying time lags, this would
help to explain why many different time lags have been observed
between rainfall and arboviral dynamics in previous
studies6,27,49–52.

Future research can build on this study to improve our
understanding of arboviral dynamics across settings. There were
several factors that we did not include in this study, such as
existing vector control programs, infrastructure, and preexisting
immunity in the population. For instance, in Ecuador, factors
such as distance to abandoned properties, interruptions in access
to piped water, shaded patios, and use of vector control are
documented to influence arbovirus transmission53, whereas in the
study sites in Kenya, factors associated with arboviral transmis-
sion are less well-studied and there are currently no widely used
vector control or local arboviral surveillance programs employed.
Future studies could further improve the model by incorporating
human immune dynamics associated with interactions among
different dengue serotypes54 or cross-reactivity among viral
antibodies55, differential susceptibility across human age clas-
ses56, and heterogeneity in contact rates between mosquitoes and
people based on human behavior and movement57,58. Further, as
experimental data becomes available for trait estimates specific to
chikungunya and Zika, this model could be partitioned to model
each arboviral disease individually. This is likely to be an
important addition as the different arboviruses tend to peak in

different years, possibly due to differences in viral-development
rates and extrinsic incubation periods among arboviruses.
Therefore, validating the model with all three arboviruses com-
bined may oversimplify the complex interannual dynamics that
arise due to competition among arboviruses in mosquitoes and
humans. There were not enough data for chikungunya and Zika
cases in this study to formally test such patterns. This study
provides strong evidence that a trait-based model, parameterized
independently from field data, can reproduce key epidemic
characteristics and a range of spatiotemporal arboviral disease
dynamics. Such mechanistic, climate-driven models will become
increasingly important to support public health efforts in the face
of novel climate regimes emerging due to climate change.

Methods
Climate data. We collected in situ measurements of daily mean temperature,
relative humidity, and rainfall at each study site and interpolated missing data
where necessary. We used temperature and humidity measurements from HOBO
loggers and rainfall measurements from rain gauges for sites in Kenya. We used
temperature, humidity, and rainfall measurements from automatic weather stations
operated by the National Institute of Meteorology and Hydrology in Ecuador. For
Kenya, we interpolated missing temperature data from NOAA Global Surface
Summary of the Day (Supplementary Table 2 and Supplementary Fig. 4) and
interpolated missing rainfall data from NOAA Climate Prediction Center Africa
Rainfall Climatology dataset (Supplementary Table 2 and Supplementary Fig. 5).
For Ecuador, we interpolated missing temperature (Supplementary Table 2 and
Supplementary Fig. 4) and rainfall (Supplementary Table 2 and Supplementary
Fig. 5) data using the nearest study site where possible and otherwise based on
long-term mean values for the corresponding Julian day. To interpolate missing
data, we linearly regressed all measurements taken on the same day in two datasets
and then used the linear model to interpolate temperature for the site with missing
data based on the climate measurement from the secondary source for the date
when the data were missing (Supplementary Figs. 4 and 5). For rainfall, we first
calculated a moving window of 14-day accumulated rainfall (which is short enough
to capture variability and seasonality in rainfall patterns and follows59) for each day
before interpolation because modeled daily rainfall values are less reliable than
accumulated rainfall over a two week period. We interpolated 14-day cumulative
rainfall for any day with a missing rainfall value in the prior 14 days. For both
Kenya and Ecuador, we interpolated missing relative humidity data based on long-
term mean values for the corresponding Julian day (Supplementary Table 2). We
then calculated the saturation vapor pressure deficit (SVPD) from temperature and
humidity to use in the humidity function because previous research suggests SVPD
is a more informative measure of the effect of humidity on mosquito survival
compared with relative humidity60. To calculate SVPD, we first calculated the
saturation vapor pressure as:

SVP ¼ 610:7 � 107:5*T=ð273:3þTÞ ð1Þ

where (T) is the temperature in degrees Celsius. We then calculated SVPD (in
kilopascals) as

SVPD ¼ 1� RH
100

� SVP ð2Þ

where RH is relative humidity. The final dataset had no missing values for tem-
perature (Supplementary Fig. 6), rainfall (Supplementary Fig. 7), and humidity
(Supplementary Fig. 8).

Vector surveys. We collected, counted, sexed, and classified mosquitoes by spe-
cies, and aggregated the data to the mean number of Aedes aegypti per house,
month, year, and site to account for differences in survey effort across months and
sites. We collected adult mosquitoes using Prokopack aspirators61. In Ecuador, we
collected mosquitoes from ~27 houses per site (range= 3–57 houses across four
sites) every 1–2 weeks during 3, 4-month sampling periods between July 2016 and
August 2018 (≈37 sampling weeks per site) to capture different parts of the
transmission season. We aggregated the Ecuador vector data to monthly values
(≈15 sampling months per site) to correspond with the temporal resolution of
surveys in Kenya. In Kenya, we collected mosquitoes from approximately 20
houses per site (range= 1–47 houses across four sites) every month between
January 2014 and October 2018 (≈54 sampling months per site). In Kenya, we also
collected pupae, late instars, and early instars from containers with standing water
around the home and collected eggs by setting ovitraps for an average of four days
in and around each house monthly. We brought pupae, late and early instars, and
eggs to the insectary and reared them to adulthood to classify individuals by sex
and species. All mosquito traps capture a small portion of the true mosquito
population; therefore, using consistent trapping methods at the same locations
through time allows us to compare relative mosquito population dynamics across
study sites rather than the absolute magnitude of mosquito abundances.
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Arboviral surveys. For Ecuador, we analyzed laboratory-confirmed dengue, chi-
kungunya, and Zika cases provided by the Ministry of Health (MoH) of Ecuador.
The MoH collects serum samples from a subset of people with suspected arbovirus
infections, and samples are tested at the National Public Health Research Institute
by molecular diagnostics (RT-PCR) or antibody tests (IgM ELISA for dengue),
depending on the number of days of illness. Results are sent to the MoH Epide-
miological Surveillance and Control National Directorate (SIVE Alerta system).
Laboratory-confirmed dengue cases were available for all four sites from 2014 to
2018. Laboratory-confirmed chikungunya cases were available for Machala and
Huaquillas from 2015 to 2018. Laboratory-confirmed Zika cases were available for
Machala from 2016 to 2018.

For Kenya, we used laboratory-confirmed dengue cases aggregated by site and
month between 2014 and 2018 collected in a passive surveillance study on
childhood febrile illness in Kenya (NIH R01AI102918, PI: ADL). The study
population consisted of 7653 children <18 years of age with undifferentiated febrile
illness. Children with fever enrolled in the study when attending outpatient care in
one of the four study sites (Mbaka Oromo Health Centre in Chulaimbo, Obama
Children’s Hospital in Kisumu, Msambweni District Hospital in Msambweni, and
Ukunda/Diani Health Center in Ukunda). Local health officers collected
comprehensive clinical and demographic data and phlebotomy at the initial visit.
We tested each child’s blood for dengue viremia by molecular diagnostics
(conventional PCR62 or targeted multiplexed real-time PCR when available63), or
serologic conversion between an initial and a follow-up visit (IgG ELISA64).

For arboviral data collection in Ecuador and Kenya, participants provided
consent and all local and institutional protocols were followed (Stanford IRB
#31488, KEMRI ERC #2611).

SEI-SEIR model. We adapted an SEI-SEIR model parameterized for dengue
transmission in Ae. aegypti mosquitoes30 to simulate mosquito abundance and
arboviral cases through time based on daily weather conditions in eight study
locations. The model (Eqs. (3)–(9); Fig. 2), created independently from the
observed data described above, allows mosquito life-history traits and viral-
development rate to vary with temperature (T) following30, a mosquito-carrying
capacity to vary with accumulated 14-day rainfall (R) following59, and mosquito
mortality to vary with humidity (i.e., saturation vapor pressure deficit) (H) fol-
lowing60.

dSm
dt

¼ φ T;Hð Þ � 1
μ T;Hð Þ � Nm � 1� Nm

K T;R;Hð Þ

� �

� a Tð Þ � pMI Tð Þ � Ih
Nh

þ μ T;Hð Þ
� �

� Sm
ð3Þ

dEm
dt

¼ a Tð Þ � pMI Tð Þ � Ih
Nh

� Sm � PDR Tð Þ þ μ T;Hð Þ� � � Em ð4Þ

dIm
dt

¼ PDR Tð Þ � Em � μ T;Hð Þ � Im ð5Þ

dSh
dt

¼ �a Tð Þ � b Tð Þ � Im
Nh

� Sh þ BR � Sh � DR � Sh þ ie � Nh � ie � Sh ð6Þ

dEh
dt

¼ a Tð Þ � b Tð Þ � Im
Nh

� Sh � δ � Eh � DR � Eh � ie � Eh ð7Þ

dIh
dt

¼ δ � Eh � η � Ih � DR � Ih � ie � Ih ð8Þ

dRh

dt
¼ η � Ih � DR � Rh � ie � Rh ð9Þ

where

φ T;Hð Þ ¼ EFD Tð Þ � pEA Tð Þ �MDR Tð Þ ð10Þ
The adult mosquito population (Nm) is separated into susceptible (Sm), exposed

(Em), and infectious (Im) compartments, and the human population (Nh) is
separated into susceptible (Sh), exposed (Eh), infectious (Ih), and recovered (Rh)
compartments (Fig. 2). Climate-independent model parameters include the
intrinsic incubation period (δ= 5.9 days), human infectivity period (η=−5 days),
birth rate (BR= 31.782 and 20.175 per 1000 people in Ecuador and Kenya,
respectively), death rate (DR= 5.284 and 5.121 per 1000 people for Ecuador and
Kenya, respectively), and immigration/emigration rate (i.e.= 0.01). The
temperature-dependent SEI-SEIR model was developed by Huber et al.30 and
allows mosquito life-history traits and viral-development rate to vary according to
thermal response curves fit from data derived in laboratory experiments conducted
at constant temperatures (Table 3). Although laboratory experiments do not reflect
real-world conditions, the physiological responses measured are biologically
meaningful. The temperature-dependent traits include eggs laid per female per day
(EFD), the probability of egg-to-adult survival (pEA), mosquito development rate
(MDR), mosquito mortality rate (lifespan−1; μ), biting rate (a), probability of
mosquito infection per bite on an infectious host (pMI), parasite development rate
(PDR), and the probability of mosquito infectiousness given an infectious bite (b).

We modified the mosquito mortality rate equation to vary as a function of
temperature and humidity by fitting a spline model based on a pooled survival
analysis of Ae. aegypti60 (Supplementary Fig. 9):

μ T;Hð Þ ¼ 1
c � T � T0ð Þ � T � Tmð Þ þ 1� 0:01þ 2:01 �Hð Þð Þ � y H < 1 ð11Þ

μ T;Hð Þ ¼ 1
c � T � T0ð Þ � T � Tmð Þ þ 1� 1:22þ 0:27 �Hð Þð Þ � y H ≥ 1 ð12Þ

where the rate constant (c), minimum temperature (T0), and maximum
temperature (Tm) equal −1.24, 16.63, and 31.85, respectively (Table 3), humidity
(H) is the saturation vapor pressure deficit, and y is a scaling factor that we set to
0.005 and 0.01, respectively, to restrict mosquito mortality rates within the range of
mortality rates estimated by other studies19,60. The linear humidity function has a
steeper slope at lower humidity values (Eq. (11)) compared with higher humidity
values (Eq. (12)) based on previous research60 (Supplementary Fig. 9).

We modeled adult mosquito-carrying capacity, K, as a modified Arrhenius
equation following30,65:

K T;H;Rð Þ ¼ EFD T0ð Þ � pEA T0ð Þ �MDR T0ð Þ � μ T0;H0ð Þ�1�μ T0;H0ð Þ
EFD T0ð Þ � pEA T0ð Þ �MDR T0ð Þ � μðT0;H0Þ�1 � Nm:max � e

�EA� T�T0ð Þ2
κB� Tþ273ð Þ� T0þ273ð Þ � f Rð Þ ð13Þ

with T0 and H0 set to the temperature and humidity where carrying capacity is
greatest (i.e., physiological optimal conditions from laboratory experiments; 29 °C
and 6 kPA), Nm,max set to the maximum possible mosquito abundance in a
population (twice the human population size following30), and the Boltzmann
constant, (KB), is 8.617 × 10−5 eV/K. We set the activation energy, EA, as 0.05 based
on ref. 30. Since there were no experimental data from which to derive the
functional response of mosquito-carrying capacity across a gradient of rainfall
values, we tested several functional relationships based on hypothesized biological
relationships between freshwater availability and immature mosquito breeding
habitat, modeling the effect of rainfall on carrying capacity, f(R), as either:

f RBriereð Þ ¼ c � R � R� Rminð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rmax � Rð Þ

p
� z ð14Þ

f RQuadratic

� � ¼ c � R� Rminð Þ � R� Rmaxð Þ � z ð15Þ

f RInverseð Þ ¼ 1
R
� z ð16Þ

where minimum rainfall (Rmin) equaled 1 mm and maximum rainfall (Rmax)
equaled 123 mm based on the high probability of flushing26. The quadratic
function is similar to the rainfall function found in ref. 26 and the inverse function
is based on the rainfall function used in ref. 59. We used rate constants (c) of
7.86e−5 and −5.99e−3 for the Brière and quadratic functions, respectively, based on
rate constants for other parameters with similar functional forms (Table 3). We
also included a scaling factor, z (0. 28, 0.025, and 0.60, respectively), to restrict the
maximum carrying capacity to produce model outputs based on a subsample of the
total population for comparison with observations. Since the rate constant, c, is
multiplied by z, inferring the exact value of c is not necessary because it is scaled by
z. The scaling factor could be removed from the model to simulate dynamics in the
total population.

To initiate the model, we used site-specific values for human population size
and randomly selected one set of values for all sites for the proportion of
mosquitoes and humans in each compartment. For Ecuador, we used population
estimates from official population projections produced by Proyección de la
Población Ecuatoriana, por años calendario, según cantones 2010–2020 (https://
www.ecuadorencifras.gob.ec/proyecciones-poblacionales/) with population sizes of
57,366, 279,887, 13,673, and 25,615 for Huaquillas, Machala, Portovelo, and
Zaruma, respectively, based on 2017 projections. For Kenya, we estimated the
population sizes served by each outpatient care facility by creating a polygon
around all the geolocations of study participants’ homes enrolled at each outpatient
care facility and summed population count data from NASA’s Socioeconomic Data
and Applications Center Gridded Population of the World v4 (https://doi.org/
10.7927/H4JW8BX5) within each polygon using ArcGIS v 10.4.1. We estimated
population sizes of 7,304, 547,557, 240,698, and 154,048 for Chulaimbo, Kisumu,
Msambweni, and Ukunda, respectively. We set the ratio of mosquitoes to humans
to two, following30. We used the following values as the initial proportion of
mosquitoes and humans in each model compartment: Sm= 0.22, Em= 0.29, Im=
0.49, Sh= 0.58, Eh= 0.22, Ih= 0.00, and Rh= 0.20. We determined that the model
was invariant to initial proportion values after a short burn-in period (90 days)
based on sensitivity analysis (Supplementary Fig. 10); therefore, we randomly
selected one set of initial proportion values from the sensitivity analysis for all the
model simulations. We also determined that the temporal trajectories of model
dynamics did not change when we varied the critical thermal minimum,
maximum, and rate constants (Table 3) for Aedes aegypti life-history traits
(Supplementary Figs. 1 and 2).

We ran all model simulations using the deSolve package in R statistical
software v 3.5.366.

Model validation. To validate the SEI-SEIR model, we calculated pairwise corre-
lations with an adjusted p value to account for autocorrelation for each site. For the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21496-7

10 NATURE COMMUNICATIONS |         (2021) 12:1233 | https://doi.org/10.1038/s41467-021-21496-7 | www.nature.com/naturecommunications

https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/
https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.7927/H4JW8BX5
www.nature.com/naturecommunications


pairwise correlations, we used the ccf function in base R66 to calculate correlations
between the two time series of model predictions and observations with 0, 1, 2, 3, 4,
and 5-month lags. We then calculated an adjusted p value using the Modified
Chelton method43 to adjust the null hypothesis test of sample correlation between
autocorrelated time series. To assess predictions and observations for vector
dynamics for each site, we compared the monthly time series of the total predicted
mosquito population from the SEI-SEIR model with the monthly time series of the
mean number of Aedes aegypti (per house). We followed the same procedure to
compare model predictions with other mosquito life stages for sites in Kenya.
Similarly, to compare predictions and observations for human disease dynamics for
each site, we compared the monthly time series of predicted infected individuals
from the SEI-SEIR model with the monthly time series of total laboratory-
confirmed arboviral cases. For subsequent analyses, we used model predictions
from the model (e.g., SEI-SEIR model with a specific rainfall function and time lag)
with the highest pairwise correlation value.

To compare key epidemic characteristics between model predictions and
observations and to compare site-specific correlations with socioeconomic factors,
we used linear regression models using the lm function in the stats package in R66.
We defined outbreaks as a continuous-time period where the peak cases exceeded
the mean number of cases (predicted or observed) plus one standard deviation
within a site. We then used those outbreak periods to count the total number of
outbreaks within each site, and, for predicted and observed outbreaks that
overlapped in time, the duration, peak timing, total outbreak size, and the
maximum number of infections. We compared predictions and observations for
each of these metrics with linear regression. Since we were interested in whether
model predictions matched observations for each independent outbreak period, we
did not allow varying intercepts or slopes by site. Similarly, we compared the
pairwise correlation values (described above) across all sites with each
socioeconomic factor listed in Table 1 separately using linear regressions.

Comparison of R0 with prior studies. We collected effect sizes of tempera-
ture on dengue incidence from 12 peer-reviewed studies from the literature
(Supplementary Table 1). We selected studies with mean temperatures across
the predicted temperature range where arboviral transmission can occur. We
scaled the coefficient values to visualize the relative effect of temperature across
studies given that the original analyses were conducted with different tem-
perature metrics and across different temperature ranges. We provide addi-
tional information and sources in Supplementary Table 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are deposited in a public repository, with
the exception of arboviral incidence data from Ecuador, which is available from the
corresponding author upon reasonable request. Climate, epidemic characteristics,
socioeconomic, vector, and Kenya arboviral incidence data that we analyzed in this study
are available in the following public repository: https://github.com/jms5151/SEI-
SEIR_Arboviruses. This data supported Figs. 3, 4, and 6 in the main text and
Supplementary Figs. 1–3 and 6–10. Data that support Fig. 7 are available in
Supplementary Table 1. The arboviral case data from Ecuador are available from the
corresponding author upon reasonable request. The data are not publicly available due to
a Confidentiality Agreement with the Ecuador Ministry of Health. Crude birth and death
rates used in the model are from The World Bank Open Data. The URL for crude birth
rate in Ecuador is https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=EC
and for Kenya is https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=KE.
The URL for crude death rate for Ecuador is https://data.worldbank.org/indicator/SP.
DYN.CDRT.IN?locations=EC and for Kenya is https://data.worldbank.org/indicator/SP.
DYN.CDRT.IN?locations=KE.

Code availability
Model and analysis codes are available at https://github.com/jms5151/SEI-
SEIR_Arboviruses.
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