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ABSTRACT
When bars form within galaxy formation simulations in the standard cosmological context, dynamical friction with dark matter
(DM) causes them to rotate rather slowly. However, almost all observed galactic bars are fast in terms of the ratio between
corotation radius and bar length. Here, we explicitly display an 8σ tension between the observed distribution of this ratio and
that in the EAGLE simulation at redshift 0. We also compare the evolution of Newtonian galactic discs embedded in DM
haloes to their evolution in three extended gravity theories: Milgromian Dynamics (MOND), a model of non-local gravity, and
a scalar–tensor–vector gravity theory (MOG). Although our models start with the same initial baryonic distribution and rotation
curve, the long-term evolution is different. The bar instability happens more violently in MOND compared to the other models.
There are some common features between the extended gravity models, in particular the negligible role played by dynamical
friction − which plays a key role in the DM model. Partly for this reason, all extended gravity models predict weaker bars and
faster bar pattern speeds compared to the DM case. Although the absence of strong bars in our idealized, isolated extended
gravity simulations is in tension with observations, they reproduce the strong observational preference for ‘fast’ bar pattern
speeds, which we could not do with DM. We confirm previous findings that apparently ‘ultrafast’ bars can be due to bar-spiral
arm alignment leading to an overestimated bar length, especially in extended gravity scenarios where the bar is already fast.

Key words: gravitation – instabilities – galaxies: evolution – galaxies: bar – galaxies: spiral.

1 IN T RO D U C T I O N

The missing gravity problem on galaxy and larger scales is one
of the long-standing challenges in theoretical physics. After a few
early hints, it was put forward almost a century ago in the Coma
galaxy cluster (Zwicky 1933, 1937) and in the Local Group (Kahn &
Woltjer 1959). From the 1970s onwards, it has been taken as a serious
problem appearing on galactic and cosmological scales (Rubin &
Ford 1970; Rogstad & Shostak 1972; Roberts & Whitehurst 1975;
Bosma 1981) − for an early review, see Faber & Gallagher (1979).
A related issue is that self-gravitating Newtonian discs are unstable
(Miller & Prendergast 1968; Hockney & Hohl 1969; Hohl 1971).
After half a century, the solution is still not known.

The standard hypothesis is haloes of cold dark matter (CDM)
particles surrounding each galaxy (Ostriker & Peebles 1973). Their
microphysical properties are ever more severely constrained by
null detections in sensitive searches (e.g. Hoof, Geringer-Sameth
& Trotta 2020). The CDM hypothesis is a main ingredient of
�CDM, the current standard cosmological model (White & Rees
1978; Efstathiou, Sutherland & Maddox 1990; Ostriker & Steinhardt
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1995). Without the contribution of CDM, cosmic structures cannot
be formed in the context of Einstein’s general relativity (GR). Even
with the assumption of CDM and a cosmological constant �, the
�CDM paradigm still faces cosmological tensions, for instance with
foreground lensing of the cosmic microwave background (CMB; Di
Valentino, Melchiorri & Silk 2019) or the present expansion rate of
the Universe (e.g. Di Valentino 2021, and references therein).

On the smaller scale of individual galaxies, high-resolution
hydrodynamical simulations of structure formation reveal several
additional challenges (e.g. Kroupa et al. 2010; Weinberg et al.
2015; Bullock & Boylan-Kolchin 2017). Depending on their central
baryonic surface density, observed spiral galaxies display a wide
diversity of rotation curve shapes at a fixed mass scale, which would
imply a large variety of central dark matter (DM) profiles ranging
from cusps to cores (Oman et al. 2015). It is very difficult to explain
this diversity through stochastic feedback processes (Ghari et al.
2019) while maintaining other observed regularities such as the
radial acceleration relation (RAR), a very tight relation between
the gravity inferred from galaxy rotation curves and that expected
from the baryons alone (McGaugh, Lelli & Schombert 2016; Lelli
et al. 2017). The dynamics of elliptical galaxies appear to delineate
the same RAR as spirals (Chae et al. 2020; Shelest & Lelli 2020).

One of the most persistent small-scale challenges to �CDM is
the plane of satellite galaxies around the Milky Way (MW, Kroupa,
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Theis & Boily 2005). In the last decade, the situation has dramatically
worsened with the discovery of similar planes around M31 (Ibata
et al. 2013) and Centaurus (Müller et al. 2018a, 2021), with hints
of a plane around M83 (Müller, Rejkuba & Jerjen 2018b). Gaia
data on members of the MW satellite plane confirm its existence at
extremely high significance (Pawlowski & Kroupa 2020), while the
only two M31 satellite plane members with known proper motions
also suggest the dynamical coherence of this structure (Sohn et al.
2020). A comprehensive review of possible solutions in �CDM
failed to find any that were viable (Pawlowski et al. 2014). Such thin
planes of satellite galaxies can actually be most naturally explained as
tidal dwarfs formed out of the debris expelled by a previous galactic
interaction (Pawlowski, Pflamm-Altenburg & Kroupa 2012). Such
tidal dwarf galaxies are expected to be free of CDM, as shown
using idealized simulations (Barnes & Hernquist 1992; Wetzstein,
Naab & Burkert 2007) and in the IllustrisTNG (Pillepich et al. 2018)
cosmological hydrodynamical simulation (Haslbauer et al. 2019).
Without the presence of CDM, some other explanation must be
found for the high internal velocity dispersions of the MW and M31
satellites (McGaugh & Wolf 2010; McGaugh & Milgrom 2013), and
extended or modified gravity can be a solution.1

Another less commonly discussed problem is the fact that observed
spiral galaxies harbour non-axisymmetric features like central bars
and grand-design spirals, which are often difficult to fully reproduce
with galaxy formation simulations in a cosmological context. Such
simulations (e.g. Hopkins et al. 2018) sometimes almost completely
lack bars in non-quenched galaxies at redshift z = 0, probably related
to their sub-grid feedback recipes being too efficient. Such efficient
feedback is however needed in the simulations to get roughly the right
baryon fraction in galaxies. However, other cosmological simulation
projects like IllustrisTNG and Auriga do reproduce some properties
of barred galaxies like the bar fraction, bar sizes, and luminosities
(Blázquez-Calero et al. 2020; Fragkoudi et al. 2020; Rosas-Guevara
et al. 2020).

When bars do form in such simulations, dynamical friction with
CDM particles causes them to rotate rather slowly (Tremaine &
Weinberg 1984), while almost all observed bars are fast (Debattista
& Sellwood 2000; Aguerri et al. 2015; Algorry et al. 2017; Guo et al.
2019). This problem was recently revisited by Peschken & Łokas
(2019), who applied the so-called Tremaine & Weinberg (1984)
method to find the pattern speeds of bars in the Illustris cosmological
simulation (Vogelsberger et al. 2014). Fig. 8 of Peschken & Łokas
(2019) shows that most of the bars are slow. Also, flocculent spirals
are much more common in those simulations than regular grand-
design spiral arms, even though the latter are observed in most disc
galaxies (Hart et al. 2017).

All this means that it is extremely valuable to seriously consider
the other major approach to the missing gravity problem − modi-
fying gravity or inertia in the weak-field regime, hence modifying

1Throughout this paper, we use modified gravity or extended gravity inter-
changeably when discussing alternatives to GR. However, extended gravity
may have a firmer terminological basis because nature does not modify a
law, but rather follows one particular law. More importantly, the original
formulation of gravitation by Newton and Einstein was based only on
the empirical data then available, i.e. for Solar System objects. With the
availability of dynamical data on the scale of galaxies in the late 1970s
and early 1980s, it became established that this description of gravitation
fails, unless additional DM is hypothesized to exist. A plausible solution
to this missing gravity problem is that the original classical formulation of
gravitation needs to be extended, perhaps to include quantum corrections
(Milgrom 1999).

Newtonian dynamics. In this approach, there is in principle no need
for DM particles, at least on galaxy scales. Introducing modifications
to standard gravity has a long history dating back to Einstein when
he tried to find a Palatini approach to GR. Attempts to modify GR
were continued by others like Eddington, Schrödinger, and Cartan.
Their motivations were generally theoretical in nature. Most extended
theories of gravity that are currently explored are instead motivated
by observations, usually in order to resolve cosmological issues
like the nature of dark energy, inflation, and other problems (for
comprehensive reviews, see Clifton et al. 2012; Baker et al. 2021).

Modifications to the gravitational law specifically to address the
missing gravity in galaxies started with Finzi (1963) and were
continued by e.g. Tohline (1983). These works did not gain serious
attention from the astrophysics community. For the latter work,
this is partly because in the same year, Milgrom (1983) presented
another more successful approach in which the modification arises
specifically at low acceleration. After almost 40 yr, it is now
well-known that this Milgromian dynamics (MOND) approach is
remarkably successful at explaining spiral galaxy rotation curves
and many other relevant observations (Famaey & McGaugh 2012).
Indeed, galactic scale dynamical discrepancies arise below a certain
acceleration rather than beyond a fixed distance (e.g. their fig. 10).
The most interesting point about MOND is the introduction of
a single new constant of nature with dimensions of acceleration.
We will discuss the main features of MOND in Section 2.1. Its
unique relativistic completion (sometimes dubbed FUNDAMOND)
is still unknown, though the recently developed theory of Skordis &
Złośnik (2019) is promising because the model predicts that tensor
mode gravitational waves propagate at the speed of light c, even
in the presence of structure. Moreover, it can in principle provide
a term decoupled from the baryon–photon plasma in the early
Universe to explain the CMB angular power spectrum and obtain
a standard late-time matter power spectrum (Skordis & Złosnik
2020). Further exploration of this and other relativistic MOND
theories would help us to check their viability in a cosmological
context, which is the single most important next step for MOND in
general.

In this regard, the recent study of Haslbauer, Banik & Kroupa
(2020) describes a viable MOND cosmology where CDM is replaced
by the same total mass in light sterile neutrinos, as originally
proposed by Angus (2009). This leads to the same behaviour as
�CDM with regards to the CMB anisotropies, primordial light
element abundances, and overall expansion history. The use of
MOND for structure formation leads to significant differences, in
particular by allowing us to reside in a very large and deep void
with enhanced apparent Hubble constant. Such a void is actually
observed (Keenan, Barger & Cowie 2013) and contradicts �CDM at
6.04σ , which rises to 7.09σ in combination with the Hubble tension
(Haslbauer et al. 2020). However, those authors showed that these
and other important local Universe observables can be explained
with only 2.53σ tension in MOND. The use of hot dark matter
(HDM) in this so-called νHDM model also allows the dynamics
of galaxy clusters to be explained in a MOND context (Angus,
Famaey & Diaferio 2010) without much affecting galaxies (Angus
2010). νHDM also better explains the formation of galaxy clusters
like the massive high-redshift interacting pair known as El Gordo
(Menanteau et al. 2012), whose properties arise naturally at about
the right frequency in cosmological νHDM simulations (Katz et al.
2013). El Gordo would be an extremely unlikely 6.16σ outlier in
�CDM cosmology (Asencio, Banik & Kroupa 2021), indicating
that it underpredicts both overdensities and underdensities on large
scales little affected by baryonic physics in galaxies.
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Moffat’s scalar–tensor–vector theory of gravity (known as MOG
in the literature) is another modification to GR (Moffat 2006). This
theory uses two scalar fields and a vector field to address the missing
gravity problem. MOG is a covariant generalization of GR whose
consequences can in principle be investigated in cosmology, which
is possible in MOND only if some particular relativistic extension
is adopted. Another interesting extended gravity theory is non-local
gravity (NLG; Hehl & Mashhoon 2009b). NLG uses the metric tensor
without any other gravitational field. It provides some modifications
to GR originating from the non-local features of gravity. Interestingly,
these non-local corrections can mimic the behaviour of CDM, at least
on galactic scales. In all cases, the parameters of these theories must
be tuned so that the galaxy rotation curves – which are well predicted
by MOND – become close enough to the MOND phenomenology,
and thus reproduce the observed RAR. The detailed secular evolution
of spiral galaxies might however be different in these various
frameworks, especially the development of bar instabilities.

Therefore, our purpose in this paper is to compare the traditional
CDM model with MOND, NLG, and MOG in simulated barred spiral
galaxies, as pioneered by Tiret & Combes (2007) in MOND. These
theories are among the main approaches presented in the literature
to solve the missing gravity problem in galaxies. Where a galaxy’s
missing gravity comes from likely has serious implications for its
secular evolution.

The outline of this paper is as follows: In Section 2, we briefly
introduce MOND, NLG, and MOG. In Section 3, we describe
our numerical codes and procedures for constructing the initial
conditions. The results of our simulations are presented in Section 4,
where we also use them to compare the above-mentioned theories.
Although we are mainly interested in comparing theories with each
other in a non-cosmological context, we also consider the latest
observational constraints, especially for the more mature �CDM
simulations. In particular, Section 4.6 quantifies a significant tension
between the statistical properties of bars in the EAGLE simulations
and in observed galaxies. We discuss our results in Section 5 and
summarize them in Section 6.

2 A LT E R NAT I V E TH E O R I E S O F G R AV I T Y
W I T H O U T PA RT I C L E DA R K M AT T E R

In this paper, we compare the evolution of isolated spiral galaxies
in the context of three well-known extended gravity theories, and
compare them with the standard CDM halo models. In the following,
we briefly introduce the extended gravity theories.

2.1 Milgromian dynamics (MOND)

MOND (Milgrom 1983) is the main alternative to galactic DM. It
postulates that the gravitational field strength g at distance r from an
isolated point mass M transitions from the Newtonian GM/r2 law at
short range to

g =
√

GMa0

r
for r �

√
GM

a0

. (1)

MOND introduces a0 as a fundamental acceleration scale of nature
below which the deviation from Newtonian dynamics becomes
significant. Empirically, a0 ≈ 1.2 × 10−10 m s−2 to match galaxy
rotation curves (Begeman, Broeils & Sanders 1991; Gentile, Famaey
& de Blok 2011). With this value of a0 , MOND continues to fit galaxy
rotation curves very well using only their directly observed baryonic
matter (e.g. Kroupa et al. 2018; Li et al. 2018; Sanders 2019).

In particular, observations confirm the a priori MOND prediction
of very large departures from Newtonian dynamics in low surface
brightness galaxies (LSBs; e.g. de Blok & McGaugh 1997; McGaugh
& de Blok 1998). More generally, there is a very tight empirical
relation between the gravity inferred from rotation curves and that
expected from the baryons alone in Newtonian dynamics (McGaugh
et al. 2016; Lelli et al. 2017). This RAR confirms the central
prediction of Milgrom (1983). One important consequence is that
the asymptotic rotational velocity vf far from an isolated galaxy is
related to its total baryonic mass according to

vf = 4
√

GMa0 . (2)

This relation is known as the baryonic Tully–Fisher relation (BTFR),
which extends the work of Tully & Fisher (1977) and has been
reviewed elsewhere (e.g. McGaugh 2020). More complicated ge-
ometries should be handled using equation (13).

In this contribution, we focus on the most common extended
gravity interpretation of MOND. It can also be interpreted as
extended inertia (Milgrom 1994), but the appropriate field equations
are not clear. This is partly because they must be strongly non-
local to be consistent with observations. One of the most pressing
issues in this regard is to understand the barycentric behaviour of
a composite body with high internal accelerations. This issue is
completely resolved in an extended gravity interpretation of MOND
– gravity follows the standard inverse square law near the Sun and
the Galactic centre, but a different law applies in the low-acceleration
regions in between (Bekenstein & Milgrom 1984).

2.2 Non-local gravity (NLG)

In a series of papers, Mashhoon and collaborators have investi-
gated fundamental issues related to non-locality in special relativity
(Mashhoon 2017, and references therein). The idea is that the
locality hypothesis is a useful approximation (Einstein 1950). In
principle, it could be violated for highly accelerated observers.
This directly means that non-local effects should appear in GR as
corrections to the field equations. A novel approach to implement
non-local features into GR has been introduced by Hehl & Mashhoon
(2009b). Their approach exploits the similarity between Maxwell’s
equations and that of the teleparallel equivalent theory of GR (Hehl
& Mashhoon 2009a). In this way, the non-local corrections to GR
can be constructed similarly to those in electrodynamics. Eventually,
by postulating a specific form for the non-locality tensor Nμν , a
non-local version of GR in the teleparallel formalism has been
introduced.2 In this theory, the gravitational behaviour of the system
depends on its past. For recent developments in the theoretical
aspects, we refer the reader to Puetzfeld, Obukhov & Hehl (2019)
and Puetzfeld & Obukhov (2020).

In the Newtonian limit, the non-local terms show up as an extra
effective ‘phantom’ density in the right-hand side of Poisson’s
equation. This effective density is given by

ρp(r) =
∫

q
(∣∣r − r ′∣∣) ρb

(
r ′) d3r ′, (3)

where ρb is the density of the baryonic matter, and q is a kernel which
should be found from observations. ρp mimics the conventional DM
density at galactic scales. Using rotation curve fits, a suitable form

2A teleparallel relativistic version of MOND has also been proposed
(D’Ambrosio, Garg & Heisenberg 2020).
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Figure 1. Illustration of the characteristic length l = μ−1
0 (the radius of the

grey circle) on the surface of a galactic disc at location X beyond which NLG
effects first become dominant.

for the kernel can be written as (Rahvar & Mashhoon 2014):

q
(∣∣r − r ′∣∣) =

(
1

4πλ0

)
1 + μ0

∣∣r − r ′∣∣
|r − r ′|2 e−μ0|r−r ′|, (4)

where λ0 and μ0 are two free parameters with dimensions of length
and inverse length, respectively. Using this kernel and the modified
version of the Poisson equation, one may find the mutual gravitational
force between two point masses located at r1 and r2:

gNLG =
(

1 + α − α
[
1 + μ0

2
|r2 − r1|

]
e−μ0|r2−r1|

)
gN, (5)

where gN is the Newtonian force, and α = 2/(μ0λ0). These pa-
rameters should be obtained from observations like rotation curve
data (e.g. Rahvar & Mashhoon 2014). In our simulations, we use
the following parameters obtained by fitting to our DM numerical
model: α = 10.0 and μ0 = 0.0525 kpc−1.

It is clear that there is a characteristic length l = μ−1
0 in NLG.

This length is assumed to be fundamentally related to the non-local
features of gravity. However, one should note that the existence of
this length does not mean that there is a fixed distance in galaxies
beyond which we expect NLG effects to dominate over conventional
gravity. Specifically, significant NLG effects will appear only at
positions X in the system where the correction to the gravitational
force due to NLG becomes comparable to or larger than the
Newtonian gravitational force. The NLG force is mainly obtained
from the baryonic mass inside radius l = μ−1

0 around the point X ,
as schematically shown in Fig. 1. Expressed more precisely, the
gravitational field in NLG can be written as

gNLG(X) = gN(X) + �(X ; α,μ0) , (6)

where �(X ; α, μ0) is the correction term due to ρp. To determine
the length X beyond which NLG effects appear, one should find
the distance where the correction force first becomes comparable to
the Newtonian force. In other words, we should solve the following
equation:

|� (X ; α,μ0)| � |gN (X)| . (7)

Depending on the value of α and the baryonic matter distribution,
the resulting length X could be completely different from μ−1

0 . Let us
assume that the baryonic matter density has characteristic length rb

and characteristic mass Mb. Then, X would in principle be a function

of α, μ0, rb, and Mb, namely:

X = X(α, μ0, rb, Mb). (8)

At the phenomenological level, this combination of parameters
should mostly reproduce the MOND phenomenology at equilibrium,
although simulated galaxies could evolve differently from MOND.
The current version of NLG respects the weak equivalence principle
in the Newtonian limit. Consequently, the kernel needs to be a
universal function and the free parameters should be the same for all
galaxies (Mashhoon 2017). However, a general version of the theory
might not respect the weak equivalence principle. In this case, the
theory does not prevent the parameters α and μ0 from being mass
dependent.

The energy–momentum tensor Tμν is not conserved in NLG, i.e.
∇μTμν = Iν , where Iν is a tensor containing the non-local features
of gravity. The main kernel of NLG also appears in this tensor. In
the current version of the theory, Iν is postulated to be a universal
function without any direct dependence on the physical properties
of the underlying self-gravitating system. It is possible to construct
a model of NLG by postulating a mass-dependent kernel. In this
case, Einstein’s principle of equivalence will be violated because
the right-hand side of the geodesic equation would depend on the
internal structure of the free-falling body (Roshan 2013).

2.3 MOG

MOG is a scalar–tensor–vector theory of gravity (Moffat 2006). The
scalar fields in this model are similar in spirit to the Brans–Dicke
theory. Thus, one may say that the gravitational constant is time
dependent and appears as a scalar field in the field equations. There
is also another scalar field that appears as a dynamical mass for the
vector field in MOG. The existence of these three extra fields enables
MOG to behave differently than GR on galactic and extragalactic
scales.

It has been shown that the theory has a true sequence of cosmo-
logical epochs. In other words, the cosmos starts from a radiation-
dominated universe and then enters a matter-dominated phase, before
finally evolving towards an accelerated de Sitter universe (Jamali,
Roshan & Amendola 2018). One main issue which should still be
addressed by MOG is cosmic structure formation. The evolution
of cosmic perturbations has been investigated in Jamali, Roshan
& Amendola (2020). It turns out that MOG is consistent with the
redshift distortion data.

The CMB power spectrum in MOG has been investigated in Moffat
& Toth (2013). Their work shows that MOG leads to a serious
enhancement of the baryon acoustic oscillations, which in general
is a very important constraint on any cosmological model (Pardo
& Spergel 2020). A similar problem was claimed to occur in the
relativistic version of MOND known as TeVeS (Dodelson 2011), but
its inherent non-linearity means that modes of different wavelengths
would mix to a substantial extent, likely smoothing these oscillations
in a way that is difficult to determine without numerical simulations
(section 5.2 of McGaugh 2015). In the MOND context, it is also
possible to extend the dynamics of the k-essence scalar field of
TeVeS (Bekenstein 2004) to play the role of DM in the CMB and in
the linear regime of structure formation (Skordis & Złosnik 2020),
or for a MOND-HDM hybrid model to explain the CMB similarly to
�CDM (Angus 2009; Haslbauer et al. 2020). The results presented
in Moffat & Toth (2013) are also based on various assumptions and
analytic descriptions. Therefore, it is necessary to modify standard
codes like CAMB (Lewis & Bridle 2002) to find the CMB power
spectrum in MOG. Due to the existence of three extra fields, this is not
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a simple task. However, it will be necessary to test the cosmological
viability of such a theory.

On galactic scales, MOG introduces some modifications to Newto-
nian gravity. In the weak field limit, the gravitational force between
two point masses located at r1 and r2 takes the following form
(Roshan & Abbassi 2014):

gMOG = (
1 + α − α [1 + μ0|r2 − r1|] e−μ0|r2−r1|) gN, (9)

where α and μ0 are two free parameters that can be fixed using
rotation curve data (Moffat & Rahvar 2013). These free parameters
are related to the background values of the scalar fields in the theory.
However, in our simulations, these parameters are fixed at α = 4.7
and μ0 = 0.2125 kpc−1. In Section 3.3, we describe how these free
parameters in MOG and NLG have been fixed. The consequences
of this extended gravitational law on the evolution of spiral galaxies
have been investigated in Ghafourian & Roshan (2017) and Roshan
(2018). Notice that despite the similarity between the NLG and MOG
point mass force laws (equations 5 and 9), there is a slight difference
because one factor of μ0/2 in NLG is replaced by μ0 in MOG in a
manner distinct from a redefinition.

On smaller scales like the Solar System, the MOG corrections
are very small. This means that the theory remains valid in the
Solar System while leading to significant deviations from Newto-
nian gravity on galactic scales. However, the velocity dispersion
profile of the ultradiffuse galaxy Dragonfly 44 contradicts MOG
at 5.49σ confidence (Haghi et al. 2019). Thus, the MOG theory
can be consistent with observations only if α and μ0 vary in some
environment-dependent way, greatly diminishing the possibility of
making a priori predictions. This problem is most likely caused by the
fact that galactic-scale dynamical discrepancies arise below a certain
acceleration rather than beyond a fixed distance. Thus, consistency
with observations requires the MOG length scale μ0

−1 ∝ √
M

(equation 10 of Green & Moffat 2019), making the theory behave
rather similarly to MOND (equation 1). This also causes severe
theoretical issues since M is not a well-defined covariant quantity,
meaning the theory cannot be fundamental. We nevertheless explore
MOG as representative of a wider class of theories with an extra
Yukawa-like force.

2.4 Phantom dark matter in extended gravity models

The gravitational forces in NLG and MOG are similar (equations 5
and 9), so one might naively expect similar behaviour regarding
the disc evolution. This is not true in detail because although these
models lead to similar rotation curves at z = 0, their effective
‘phantom’ DM density can be substantially different. We quantify
this by rewriting the Poisson equation in NLG and MOG as

∇2
 ≡ 4πG
(
ρb + ρp

)
, (10)

where all the corrections to Newtonian gravity are collected in the
extra term ρp. Inspired by Milgrom (1986) in the MOND context,
we call this term the ‘phantom’ DM density ρp, since combining
it with the baryon density ρb gives the density distribution whose
Newtonian gravity equals that of the baryons alone in some other
theory. Using equation (3), ρp in NLG is

ρp (r) = αμ0

4π

∫
1 + μ0

∣∣r − r ′∣∣
|r − r ′|2 e−μ0|r−r ′|ρb

(
r ′) d3r ′. (11)

The corresponding result for MOG is (Roshan & Abbassi 2014)

ρp (r) = αμ0
2

8π

∫
e−μ0|r−r ′|
|r − r ′| ρb(r ′) d3r ′. (12)

Figure 2. Initial effective ‘phantom’ DM density relative to the Plummer
DM density in terms of R as measured at z = 0.05 kpc (main figure) and z =
3 kpc (inset), shown for an infinitely thin exponential disc whose scale length
is 1 kpc. Densities are shown on a logarithmic scale. The distribution of ρp

for thin exponential MOND discs was visualized in e.g. Lüghausen et al.
(2013); Lüghausen, Famaey & Kroupa (2015). We avoid the disc mid-plane
because of the singular mass distribution there, which causes the MOND ρp

to diverge (see the text).

In MOND, it is necessary to first determine gN and then solve
equation (13). Since the distribution of ρp is not an important part of
our analysis, for simplicity we discuss below its distribution around
an infinitely thin exponential disc in isolation with the same central
surface density as used elsewhere in this contribution. The gN of this
configuration was derived in Freeman (1970).

ρp is not spherically symmetric for a thin baryonic disc, but the
physical DM in our live Plummer halo (LPH) model is spherical
(Section 3.3). Since the evolution of the bar instability should be
closely related to the effective density (ρb + ρp) near the disc mid-
plane, it is instructive to explore their properties here. Fig. 2 shows
ρp relative to the Plummer DM density in our LPH model. The main
panel illustrates ρp at z = 0.05 kpc, while the inset shows ρp at
z = 3 kpc. We have excluded z = 0 because the phantom density
in MOND is singular at z = 0. We see that at z = 0.05 kpc, the
effective phantom DM density in the central regions is much higher
in NLG than in MOG, with MOND giving an intermediate result.
In all cases, ρp is much higher than the physical DM in LPH. At
larger z, the effective phantom density in MOG becomes higher
than in NLG, with MOND giving a much higher result than either
theory. All these theories have a larger ρp than the LPH case out to at
least several disc scale lengths, which for an exponential disc covers
the vast majority of its baryonic mass. This means that the NLG,
MOG, and especially MOND discs are effectively more massive at
z = 0.05 kpc, making them more prone to the bar instability. From
this perspective, one may expect faster bar growth in NLG and to
a lesser extent in MOG compared to the LPH case, with MOND
bars expected to grow fastest of all for reasons discussed below. This
might explain differences between the early time evolution of the bar
strength in these models (Section 4.3).

The DM halo in our LPH model does not have a singular disc
component, even though the baryons are distributed in an infinitely
thin disc. Similarly, MOG and NLG also have a finite ρp at z =
0 because these both involve a distance-dependent modification to
gravity. Since the gravity at some location A just outside the plane
of a thin disc is dominated by baryons very close to A, there is no
modification to the effective surface density of the disc as perceived
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Figure 3. The surface density �p of the phantom disc in MOND, shown
relative to the baryonic surface density �b. Notice that �p 
 �b near the
centre, a consequence of the high central gravity relative to a0 (Section 3.3).
However, the phantom disc is dominant further out. There is no phantom disc
in any of the other considered theories (see the text).

by a Newtonian observer. However, the modification to gravity is
acceleration-dependent in MOND (equation 14), so in this case
there is a phantom DM disc with surface density �p > 0. This
is readily calculated from the local value of ν, which as discussed
in Section 3.3.1 must include an allowance for the vertical gravity
just outside the disc. We use Fig. 3 to show the ratio between �p

and the baryonic surface density �b. The latter dominates at the very
centre due to the rather strong gravity there (Section 3.3). However,
the phantom disc rapidly becomes dominant further out. We expect it
to have a destabilizing effect on the disc, as captured approximately
by the factor of ν in the Toomre stability condition (equation 21).
Since the rotation curve and thus radial epicyclic frequency are rather
similar in all our considered models, the MOND phantom disc could
have important implications for the overall stability. Its importance
would be much greater still for a galaxy with lower �b (Milgrom
1989).

3 N U M E R I C A L M E T H O D S

Two different codes have been used in this paper: one for the MOND
simulations, and the other for DM, MOG, and NLG simulations. In
the following, we briefly introduce them.

3.1 MOND simulations with phantom of RAMSES

Our MOND simulations use its rather computer-friendly quasi-linear
formulation known as QUMOND (Milgrom 2010):

∇ · g = ∇ · (νgN) . (13)

The function ν is the MOND boost to the Newtonian gravity gN for a
spherically symmetric problem, where g ≡ νgN. In our notation,
p ≡ | p| for any vector p. We choose the ‘simple’ form of the
interpolating function (Famaey & Binney 2005) to transition between
the Newtonian and deep-MOND regimes:

ν = 1

2
+

√
1

4
+ a0

gN
. (14)

This provides a good fit to a variety of data on galactic and
extragalactic dynamics (Gentile et al. 2011; Banik & Zhao 2018b).

It is rather similar to the function used by McGaugh et al. (2016)
to fit the Spitzer Photometry and Accurate Rotation Curve data set
(SPARC; Lelli, McGaugh & Schombert 2016). In the QUMOND
approach, ν depends only on gN and is thus readily computable once
standard techniques are used to obtain gN. The approach is quasi-
linear because it requires only a linear grid relaxation stage to solve
the standard Poisson equation, minimizing the computational cost
and the modifications required to existing Newtonian codes.

Our simulations implement equation (13) using the Phantom of
RAMSES N-body and hydrodynamics solver (POR; Lüghausen et al.
2015). POR adapts the potential solver of the grid-based code RAMSES,
which uses adaptive mesh refinement to improve efficiency (Teyssier
2002). POR has previously been used to investigate polar ring galaxies
(Lüghausen et al. 2013), shell galaxies (Bı́lek et al. 2015), and
the tidal streams of Sagittarius (Thomas et al. 2017) and Palomar
5 (Thomas et al. 2018). Recently, it was used in hydrodynamical
simulations of collapsing gas clouds to naturally yield exponential
disc galaxies (Wittenburg, Kroupa & Famaey 2020), and to obtain
a quite realistic morphology for M33 after secularly evolving it
for 10 Gyr (Banik et al. 2020). Galaxy interactions have also been
simulated in POR with hydrodynamics (Renaud, Famaey & Kroupa
2016) and without it (Bı́lek et al. 2018).

For this project, we conduct pure N-body simulations by disabling
the hydrodynamics mode (the flag hydro is set to false). Self-gravity
is enabled by setting gravity type = 0 and activating poisson so the
Poisson solver is utilized. Since the potential is solved on a grid but
is generated by a finite number of particles, we enable the flag pic to
activate the particle-in-cell solver. The simulation is advanced in a
cubic Cartesian grid with side length of 256 kpc. This is much larger
than the simulated galaxy, making it accurate to assume both the
deep-MOND limit and spherical symmetry of the potential on our
computational boundary. To provide adequate spatial resolution, we
use 7–12 levels of refinement, i.e. the highest resolution is 256/212

= 0.0625 kpc. We set the m refine parameter to 20 for all levels,
forcing POR to further refine a cell if it has >20 particles. This is the
only refinement condition because mass sph is set to 0. Since we
do not set the nsubcycle parameter, the default value of 2 is used,
causing the time-step to be halved with each level of refinement.
Further details of the RAMSES package can be found in Teyssier
(2002), along with default values of parameters that we do not
set.

We convert the output files into human-readable text files using
an algorithm that we have made publicly available.3 POR is the most
widely used publicly available N-body solver for MOND. Banik et al.
(2020) provides further details regarding POR and its application to
thin disc galaxies, including links to download the algorithms used
to prepare the initial conditions for both hydrodynamical and stellar-
only thin disc simulations (Section 3.3.1). A user guide for POR

simulations has recently been published, including details on how to
initialize isolated or interacting disc galaxy simulations consisting
of only stars or also including hydrodynamics (Nagesh et al. 2021).
The guide also describes the extraction of both particle and gas data
into human-readable form.

Recently, the RAYMOND algorithm has also been released (Can-
dlish, Smith & Fellhauer 2015).4 It can solve both QUMOND and
the original aquadratic Lagrangian formulation of MOND (AQUAL;
Bekenstein & Milgrom 1984). It is anticipated that discs which are
stable in QUMOND would also be stable in AQUAL as the stability

3github.com/GFThomas/MOND/tree/master/extract por
4ifa.uv.cl/sites/graeme/codes.html
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conditions are numerically quite similar (Banik, Milgrom & Zhao
2018b).

3.2 GALAXY code for simulations other than MOND

The GALAXY code is a standard and well-developed N-body code
for galactic simulations in the conventional CDM picture (Sellwood
2014). It is capable of constructing the equilibrium initial conditions
for a variety of different halo, bulge, and disc combinations. It
uses standard algorithms developed over almost four decades. The
time evolution is obtained by calculating the gravitational field at
each time-step. This can be done with different methods already
implemented in the code; however, the main one is the grid method.

It is not easy to modify this code to include extended gravity
effects. All scripts for setting initial conditions and the evolution are
based on Newtonian gravity. Fortunately, different grid coordinate
systems use different approaches to compute the time evolution. It
is straightforward to implement MOG and NLG effects in galactic
models which use the cylindrical polar 3D mesh (P3D). This grid is
constructed by Nr coaxial cylinders with logarithmically spaced radii,
Nφ equally spaced azimuthal planes, and Nz planes spaced equally in
the vertical z direction. The intersection of these planes gives Nr ×
Nφ × Nz mesh points. The Fourier method is used to determine g in
the azimuthal and vertical directions. The Plummer softening kernel
P(ξ ) is used to prevent singularities, where ξ ≡ ∣∣r − r ′∣∣. This kernel
recovers the Newtonian inverse distance potential at distances much
larger than the softening length, when P(ξ )∝ − 1/ξ . However, P(ξ )
tapers smoothly to zero at short distances. Since we are simulating a
collision-less system, the exact form of the kernel at short distances
does not matter.

As discussed in Sections 2.2 and 2.3, the effects of NLG and MOG
appear at large separations. Therefore, we only need to modify the
Plummer softening kernel at large distances by replacing −1/ξ with
the potential of a point mass obtained in each theory. In particular,
one needs to apply this change to the following subroutines in the
GALAXY code: sftpot, radfor, azifor, vrtfor.

For the DM galactic models, we use a hybrid mesh – a spherical
3D (S3D) system is used for the DM halo, and a P3D mesh for
the baryonic exponential disc (for more details, see Roshan 2018;
Roshan & Rahvar 2019).

3.3 Initial conditions

Every model we run contains an exponential disc with mass md and
scale length rd. The surface density

�(R) = md

2πr2
d

exp

(
− R

rd

)
. (15)

The disc has a sech2 (z/ (2z0)) density profile in the vertical direction
z with scale height z0. Table 1 summarizes this and other properties
of the models like their mass, scale length, and grid properties. For a
single-component exponential disc with known aspect ratio, the only
dimensionless parameter in MOND is the surface density. We use
a model where the vertical Newtonian gravity at the disc centre is
g

N,z
= 2πG�0 = 10 a0 , where �0 is the central surface density of

the disc. The MW parameters in table 1 of Banik & Zhao (2018a) give
g

N,z
= 15 a0 at the disc centre. For M31, the flatline rotation curve

level of vf = 225 km s−1 (Carignan et al. 2006) implies a MOND
mass of vf

4/
(
Ga0

) = 1.6 × 1011M� (equation 2), which for a disc
scale length of 5.3 kpc (Courteau et al. 2011) implies the central
g

N,z
= 7 a0 . Therefore, our adopted value of 10 a0 corresponds to

a galaxy whose surface density is intermediate between the major

Local Group galaxies. However, these galaxies are larger than in our
model, increasing their dynamical time – they would evolve slower
than our simulated Milgromian disc. It is possible to scale the results
of our MOND model to other disc parameters provided the central
surface density is fixed (Section 5.2).

For the DM case, we have two models – one with a live Plummer
halo (LPH), and the other with a rigid Hernquist halo (RHH). The
latter is unphysical in the �CDM context, but interestingly is rather
similar to the expected behaviour for superfluid DM since dynamical
friction would be negligible in this case (Berezhiani & Khoury 2016;
Berezhiani, Elder & Khoury 2019). The Plummer halo density profile
is

ρLPH (r) = 3mh

4πrh
3

[
1 +

(
r

rh

)2
]−5/2

. (16)

The analogous result for the Hernquist profile is

ρRHH (r) = mh

2πr3
h

( rh

r

)[
1 +

(
r

rh

)]−3

. (17)

To perform a meaningful comparison between galactic simulations
in different theories, it is necessary to start with the same initial
conditions. Specifically, the distribution and velocity profile of the
baryonic matter should be the same in all models, which therefore
need to have the same rotation curve. This is the main reason for
using the Plummer and Hernquist models. Our experience shows
that fitting extended gravity with Plummer and Hernquist haloes is
much simpler than other known haloes. The Plummer halo has also
been used in previous MOND simulations (e.g. Tiret & Combes
2007).

The rotation curves of our models are shown in Fig. 4. We take
the MOND model as our main model, and try to fit the NLG and
MOG models by choosing appropriate free parameters α and μ0. In
the DM case, we change the halo properties to find a proper fit. As
is clear from Fig. 4, the rigid halo gives a suitable fit for the MOND
curve. However, this is not the case for the live halo. One should note
that in LPH, we adiabatically compress the Plummer halo to find a
suitable equilibrium model. To do so, we use the original procedure
already implemented in the GALAXY code (Sellwood & McGaugh
2005). Consequently, the halo’s properties are in principle different
from the rigid case. At intermediate radii, the live halo model is thus
unable to exactly reproduce the MOND model. Of course, one cannot
expect exactly the same initial conditions for different theories as it
is not mathematically possible. Though the halo is important at large
radii, the baryonic disc provides the dominant contribution to the total
rotation curve in the central regions, indicating that we are dealing
with maximal discs in a standard context. This can be quantified with
the ratio between the total rotational velocity vc measured at 2.2 rd

and the Newtonian circular velocity v
N

due to the disc alone. For our
models, this ratio is v

N
/vc ≈ 0.91.

It is also necessary to ensure that internal properties like the
velocity dispersions are similar for different models. We use Fig. 5
to show the initial surface density � and the radial, azimuthal,
and vertical velocity dispersions (σ r, σφ , and σ z, respectively). The
internal properties are very similar for all models constructed by the
GALAXY code. Thus, we plot only LPH and MOND. As expected, the
surface density of both models is the same exponential disc law. It is
clear that the velocity dispersions of both models are appropriately
consistent except at very small and large radii, where the Milgromian
model predicts modestly higher σ r and σφ . This is because the gravity
in the disc mid-plane becomes quite weak in these regions, enhancing
the ν factor in MOND (equation 14). However, the gravity at the
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2840 M. Roshan et al.

Table 1. The properties of our galactic models. Column 1: Acronym used to identify the simulation. Column 2: rd is the radial scale length of the exponential
disc. Column 3: Vertical scale height z0 in terms of rd. Column 4: Initial disc mass md in units of 8.57 × 109M�. Column 5: Type of DM halo (if any). Column
6: The halo mass scaled by md. Column 7: Radial scale length of the halo in units of rd. The outer radius of the Plummer halo is 24 rd and the corresponding
value for the rigid Hernquist model is 15.42 rd . Column 8: the basic time-step in units of τ = 5.095 Myr. Column 9: number of rings, spokes, and planes in
the cylindrical polar grid. Column 10: the number of shells in the spherical grid. Column 11: the gravity softening length in units of rd. The MOND models
are advanced using the Phantom of RAMSES solver (Lüghausen et al. 2015), which adapts the potential solver of RAMSES (Teyssier 2002) to implement
QUMOND (Section 3.1) on a Cartesian grid with adaptively refined mesh.

Run rd (kpc) z0/rd md Halo mh/md rh/rd δt Cylindrical polar grid Spherical grid Softening length

MOND 1 0.15 1 None . . . . . . . . . Cell size ranges from (0.0625–2) kpc in powers of 2
LPH 1 0.15 1 Plummer 8 12 0.01 193 × 224 × 45 1001 0.16 rd
RHH 1 0.15 1 Hernquist 13.53 11.87 0.01 193 × 224 × 45 1001 0.16 rd
NLG 1 0.15 1 None . . . . . . 0.01 193 × 224 × 45 1001 0.16 rd
MOG 1 0.15 1 None . . . . . . 0.01 193 × 224 × 45 1001 0.16 rd

Figure 4. Initial rotational velocities for (top to bottom): LPH (red), RHH
(orange), MOG (green), and NLG (blue). All panels also show the Milgromian
model (black). In the DM models, the dashed and dotted curves indicate the
contributions of the disc and halo, respectively. The scale length is 1 kpc
(Table 1).

disc surface is relatively strong at the disc centre, suppressing ν

and therewith σ z. At intermediate radii, the lower gravity implies a
phantom dark disc (Section 2.4), which very slightly increases σ z. At
even larger radii, the very low surface density of an exponential disc
means the vertical restoring force is mostly a geometric one that can
be understood by considering the potential as spherically symmetric.
Since the rotation curve is similar in all our models by construction,
we expect the initial σ z to be very similar at large radii in all
cases.

The above discussion shows that our models can be compared with
each other. For a comparison with real galaxies, it is also important
for the velocity dispersion profile to broadly agree with observations.
We therefore compare our assumed σ r(R) with the observationally
inferred profile σ ∗

r (R) as deduced from observations (Leroy et al.
2008). According to their equation (B3),

σ ∗
r (R) ≈ 0.62

√
md G

rd

exp (−R/rd ) . (18)

This relation is shown as a thin dotted line in the upper right-
hand panel of Fig. 5. Considering that it overestimates σ r (Mogotsi

Figure 5. Top left-hand panel: The initial surface density in units of the
central surface density of the Milgromian model, shown for LPH and MOND.
Other panels: the initial velocity dispersion profiles of these models, expressed
in km s−1. The dotted curve in the panel for σ r shows an observational
estimate (equation 18).

& Romeo 2019), it is clear that our adopted σ r(R) is reasonably
consistent with observations.

3.3.1 Initializing a Milgromian disc

We set up a Milgromian disc using a code we make publicly
available.5 The method was previously used to simulate M33 (Banik
et al. 2020), but we briefly describe it here. We use an adapted version
of the Newtonian code Disk Initial Conditions Environment (DICE;
Perret et al. 2014). DICE offers the advantage that the Jeans equations
are not solved using the potential, which is difficult to define for an
isolated system in MOND. DICE uses only the Newtonian gravity gN,
which it calculates using the principle of superposition accelerated by
a fast Fourier transform. We approximately MONDify this using the
algebraic MOND approximation, which states that the true gravity

g ≈ νgN. (19)

This approximation is exactly correct in spherical symmetry and
works rather well in axisymmetric problems (Angus et al. 2012;

5github.com/GFThomas/MOND/tree/master/init conditions/disc
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Barred spiral galaxies in modified gravity 2841

Jones-Smith et al. 2018). It is expected to work particularly well just
outside the disc (Banik et al. 2018b). However, it becomes inaccurate
within the disc due to the steep vertical gradient in ν caused by that
in g

N,z
. Naively applying equation (19) would imply a rapid change

in g
r

with z, something that is physically unrealistic as it would
cause ∇ × g = 0, allowing energy to be gained around a closed
loop.6 To avoid this, we fix the value of g

N,z
entering the calculation

of ν (equation 14) to 2tanh (2)πG� if |z| is small enough that the
fraction of the local column density �(r) at even smaller |z| falls
below tanh (2). This is based on the assumption that g

N,z
= 2πG�

at the disc ‘surface’, which is valid for a thin disc. Once ν is calculated
in this revised way, we set g = νgN.

3.3.2 Local stability

Although we are mainly interested in the global stability and
evolution of galactic discs, it is useful to mention some points about
their local stability in extended gravity theories. To suppress local
fragmentation of our galaxy models, we set the Toomre parameter Q
> 1 (Toomre 1964), with Q defined as

Q ≡ σrκ

3.36 G�
. (20)

The rotation curve must be known to find κ , the radial epicyclic
frequency.

The local stability of discs in MOG has been investigated in Roshan
& Abbassi (2015). They derived the dispersion relation for local
perturbations and presented a generalized version of the Toomre
criterion. Fortunately, the correction terms induced by MOG are
negligible in spiral galaxies. This is reasonable because MOG effects
appear at long distances – we do not expect them in small scale local
perturbations. Consequently, the standard Toomre criterion (Q > 1)
works very well for MOG galactic models. Due to the similar weak
field limits of MOG and NLG, one may expect the same criterion for
NLG models.

In the case of MOND, the appropriate generalization was derived
in Banik et al. (2018b). Briefly, it states that equation (20) should be
modified to

Q ≡ σrκ

3.36 Gν
(
1 + K0

2

)
�

, where (21)

ν = ν
(√

gN,r
2 + gN,z

2
)

, and (22)

K0 ≡ ∂ ln ν

∂ ln gN

. (23)

Notice that the MOND boost factor ν depends on the total Newtonian
gravity gN just outside the disc plane, i.e. both the radial Newtonian
gravity gN,r and the vertical component gN,z ≡ 2πG� must be
added in quadrature to yield gN. In the deep-MOND limit, K0 ≡ − 1

2 ,
while in the Newtonian limit K0 ≡ 0. Apart from an order unity
correction due to K0, disc stability in QUMOND works similarly to
Newtonian gravity with the local value of G enhanced by the factor
ν. Note that ν can be arbitrarily large in MOND, especially in LSBs.

The local stability criterion is satisfied in all our models, as evident
from the Q parameter when t = 0 and t = 4 Gyr (Fig. 6). Since
MOND predicts higher σ r when t = 0, we see that Q � 1 in the
outer regions. At the end of the simulation, the solid curves show
that the bar’s activity has substantially increased Q, so all the discs

6This problem does not arise if rigorously implementing QUMOND by
applying equation (13) rather than the approximate equation (19).

Figure 6. Toomre Q parameter (equation 20 or 21) at t = 0 (dashed curves)
and t = 4 Gyr (solid curves). The solid grey line shows Q = 1.

remain locally stable throughout our simulations. In what follows,
we therefore deal with their global stability.

4 R ESULTS

We now discuss the time evolution of our models. As already
mentioned, the bar instability and the bar pattern speed are two
of the most important quantities directly related to the missing
gravity problem. The buckling instability is another important feature
in spiral galaxies. We compare these phenomena in our different
models.

4.1 Face-on and edge-on views

The face-on projected positions of particles at different times are
shown as snapshots in Fig. 7 for the models with N = 106 particles.
The first snapshot in each model shows the time at which the bar
magnitude reaches its maximum (Section 4.3) and we see a two-fold
symmetric spiral arm. It is interesting that in all models, the spiral
arms are not permanent patterns (Lin & Shu 1964) – they rapidly
fade to a stable pressure-dominated bar. The second snapshot for
each model is roughly when the buckling instability occurs, causing
the disc thickness to significantly grow. The last snapshot illustrates
the end of each simulation.

The corresponding edge-on views are shown in Fig. 8, with two
rows used for each model to show xz and yz projections. The
first six rows belong to extended gravity models, while the last
four rows illustrate the DM models. Clearly, there are meaningful
differences between the radial and vertical properties of the discs in
extended gravity and DM models. We discuss these differences in
the subsequent sections.

The results remain similar if N = 5 × 106, so we show only the
final face-on and edge-on projections in this case (Figs 9 and 10,
respectively). Differences due to resolution are discussed further in
Section 5.1.

4.2 Radial expansion

An interesting feature of all extended gravity models is that the final
discs are more radially extended compared to the DM case. It seems
that a halo (if present) suppresses global radial expansion of the
disc. This is probably linked to the enhanced role of disc self-gravity
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2842 M. Roshan et al.

Figure 7. Evolution of the disc with 106 particles projected on the xy plane for each model (from top to bottom: MOND, MOG, NLG, RHH, and LPH). Radial
expansion is apparent in all the extended gravity models, but not in the DM models. These plots are constructed using YT (Turk et al. 2011).
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Barred spiral galaxies in modified gravity 2843

Figure 8. Edge on (xz and yz) views of the N = 106 models at the same times used in Fig. 7. Two successive rows are used for each model, showing the xz and
then the yz view. The first six rows belong to our extended gravity models (in order: MOND, MOG, and NLG). The bottom four rows belong to the DM models
(in order: RHH and LPH).

in extended gravity theories, which promotes the redistribution of
angular momentum within the disc.

To quantify the radial expansion, we use Fig. 11 to show the
Lagrange radius R(X) at different times, where X is the fraction
of the baryonic mass inside spherical radius R, e.g. R(0.5) denotes
the half-mass radius (rhalf) of the disc. It is helpful to show the
time evolution of R(X) for two particular values of X, namely X
= 0.5 and X = 0.95. It is clear that there are rapid variations in
R(X) near the beginning. This is expected as the discs are globally
unstable in the early stages, most likely due to the initial conditions
not being exactly in equilibrium. We see that in all models, R(0.5)
decreases in the time interval when the bar instability happens
(Section 4.3), indicating contraction of the central region. There is

no significant difference between extended gravity and DM models
regarding the final magnitude of rhalf. However, R(0.95) grows with
time, as expected from angular momentum conservation. This growth
is tangibly higher in the extended gravity models. It is evident that
R(0.95) at the end of the MOND and NLG models is >40 per cent
larger than for the LPH model. These changes arise mostly in the first
half of the simulations − in the second half, there is no substantial
change in R(X).

To understand the radial expansion in extended gravity models,
we explore the angular momentum transfer in different parts of the
disc. Let us define the inner disc as that part of the disc inside radius
rmax. In all our models, we measure the angular momentum exchange
between the inner and outer disc, with the boundary at rmax = 5 kpc.
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Figure 9. Face-on (xy) projections of the models with N = 5 × 106 particles at the end of the simulations (t = 4 Gyr). Similar to the low-resolution simulations,
the extended gravity discs end up larger than the DM models (Fig. 7).

Figure 10. The final projected positions of particles in our models with N = 5 × 106. All the extended gravity models look thicker than the DM models,
especially at large radii. The peanut shape evident in the LPH model is weaker in the extended gravity discs.

It is clear from the top and middle panels of Fig. 12 that angular
momentum exchange between the inner and outer discs is much
more effective in extended gravity models compared to the DM case.
In the LPH model, the halo absorbs angular momentum from the
disc, so its angular momentum increases significantly. This disc to
halo transfer does not exist in extended gravity models, where we
instead see more effective angular momentum transfer throughout
the disc. This is almost certainly related to the greater amount of
phantom DM close to the disc compared with the amount of physical
DM in the LPH model (Section 2.4).

Although the greater amount of radial expansion in all our
extended gravity models appears to be a clear signature of a departure
from Newtonian dynamics, real galaxies in a cosmological context
would expand due to additional processes not considered here,
including accretion of gas from their environment. Such processes
need to be considered before a comparison is possible with the
observed size evolution of galaxies (e.g. van Dokkum et al. 2010;
Mowla et al. 2019; Yang et al. 2021). Once both secular evolution
and gas accretion are considered, extended gravity theories in the
cosmological context may predict even more radial expansion for

MNRAS 503, 2833–2860 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2833/6162603 by U
niversity of St Andrew

s Library user on 14 January 2022



Barred spiral galaxies in modified gravity 2845

Figure 11. Spherical Lagrange radii R(X) in kpc as a function of time. The
top and bottom panels belong to X = 0.5 and X = 0.95, respectively.

Figure 12. The top and middle panels indicate the angular momentum
change �Lz/Lz0 in the outer (radii larger than 5 kpc, top panel) and inner
regions of the disc (middle panel). Lz is the angular momentum along the z

axis, and Lz0 is the initial angular momentum of the specified region (‘ID’,
‘OD’, and ‘LPH’ stand for the inner disc, outer disc, and live Plummer halo,
respectively). The bottom panel shows the angular momentum change of the
DM halo in the LPH model.

Figure 13. The bar amplitude A2/A0 in our five different models. For better
visualization, the vertical axis is shown in logarithmic scale. The top (bottom)
panel shows our low (high) resolution simulation.

galaxy discs than calculated here. Additionally, if the memory
effect in NLG fades over cosmic time, the phantom DM fraction
monotonically decreases (Mashhoon 2017). As a consequence of
the weaker gravitational interaction, the size of galaxies would
grow as a1.4, where a is the cosmic scale factor (Section 10.6 of
Mashhoon 2017). This is rather similar to the observed size evolution
of a1.05 ± 0.37 (Yang et al. 2021). In Section 5.5, we discuss how our
results might differ once the cosmological context is considered.

4.3 Bar instability

4.3.1 Fourier amplitude

As a suitable representative for the existence and intensity of the
bar instability, we measure the bar amplitude A2(t). This is the third
coefficient in the Fourier decomposition of the surface density in
terms of azimuthal angle φ. Therefore, A2/A0 > 0 indicates the
existence of two-fold symmetric features (e.g. bar and spiral density
waves) propagating in the system.

We measure A2 as a function of time for our models. The time
evolution of this parameter is illustrated in Fig. 13. Both panels show
that none of the models can prevent the bar instability. However, the
stabilizing effect of the rigid halo is clear (orange curves). This has
been known since the seminal paper of Ostriker & Peebles (1973). It
is also well-known that a live halo cannot suppress the bar instability,
as is clear from the evolution of the bar amplitude for our LPH model
(red curves).
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The bar growth rate is substantially higher in MOND compared
to other extended gravity models as well as the DM models. A rapid
bar instability in MOND has also been reported by Tiret & Combes
(2007). In their model, the bar retains its maximum strength for
a long duration (≈4 Gyr) compared to the age of the Galaxy (e.g.
Knox, Hawkins & Hambly 1999). After that, they report a sharp
reduction in the bar magnitude. In our simulations, we see that the bar
amplitude starts to decrease after a sharp maximum, and then stays
almost constant. Observationally, this means that MOND predicts
very strong bars for some spiral galaxies, but weakly barred galaxies
are also expected (see also Banik et al. 2020).

As is clear from Fig. 13, bars are stronger in the DM case (the
LPH model). The bar amplitude first experiences a minimum and
then gradually starts to grow. This is not the case for any of the
other models, implying that a live halo actually promotes a bar
(Athanassoula & Misiriotis 2002). At the end of our simulations,
we see that the live DM model leads to the strongest bar, which is
consistent with e.g. the simulations of M33 conducted by Sellwood,
Shen & Li (2019).

It is interesting that the NLG model is somewhat similar to the
MOND model and predicts a fast bar instability. On the other hand,
the growth rate in MOG is very similar to the LPH model. Though the
growth rate in MOND and NLG is much higher than in the standard
LPH model, it would be seriously difficult to find evidence for this.
The main reason is that we observe a single moment in the dynamical
evolution of a galaxy rather than a time interval.

There are clear oscillations in the bar magnitude for all extended
gravity models, while the DM case leads to smoother behaviour.
These oscillations are not numerical artefacts related to the determi-
nation of the galactic centre (see also Roshan 2018; Roshan & Rahvar
2019). Furthermore, they have been observed in lower resolution
simulations of extended gravity which used a different approach for
the time evolution of the system and an independent method for
calculating the galactic centre (Ghafourian & Roshan 2017). These
oscillations are discussed further in Section 5.3.

4.3.2 Power spectrum

The surface density is a function of φ, r, and t. Therefore the Fourier
transform with respect to φ and t gives Fourier coefficients B(ω, r),
which are functions of the wave frequency ω and radius r. By looking
at the power spectrum |B(ω, r)|2 of the density waves, it turns out that
the extended gravity models host more density waves with different
frequencies propagating throughout the disc. Differences with the
DM models may result in observational discriminants, especially in
LSB galaxies.

The dominant mode in the DM model is the bar mode (m = 2).
To quantify its strength, we plot contours of the power spectrum
for m = 2 (Fig. 14). In the case of LPH, NLG, and MOG models,
the Fourier transform has been taken over t = (1.5 − 4) Gyr to
ensure that the density waves have been excited. Accordingly, for
the MOND model, the interval t = (3 − 4) Gyr has been used.
Any horizontal line with contours concentrated around it indicates
the existence of a density wave whose frequency is shown on the
vertical axis. The upper left-hand panel belongs to the standard
LPH model. We see that there is one dominant m = 2 mode with a
time-varying frequency. We will discuss this case in more detail in
subsequent sections. The other panels use red dashed lines to show
the frequency of density waves for the NLG, MOG, and MOND
models. We see that in NLG there are two waves and in MOG three
waves with different intensities. The MOND model is even noisier.
It seems that unlike in extended gravity, the DM halo suppresses

Figure 14. The power spectrum for density waves in the LPH model (upper
left-hand panel), NLG (upper right-hand panel), MOND (lower left-hand
panel), and MOG (lower right-hand panel). The vertical axis is frequency in
units of 192 km s−1 kpc−1. The horizontal axis is the radius in kpc. Except
the MOND case, the other panels were produced by the GALAXY code.

the excitation of several modes on the surface of the disc, even
though it cannot suppress the main bar instability mode. From this
perspective, we see the expected stabilizing behaviour caused by the
halo.

The above-mentioned features do not change with the number of
particles (bottom panel of Fig. 13). We see that by increasing the
particle number N, the time evolution of the LPH model becomes a
bit slower. Therefore, we extend the simulation duration to see the
second increasing phase of the bar magnitude.

4.4 Buckling instability

It is also instructive to compare the buckling instability in different
models. The top panel in Fig. 13 shows that for our NLG and LPH
models, the bar amplitude starts to decrease around t ≈ 0.5 Gyr. It
is well known that a rapid thickening of the disc can substantially
weaken the bar. To see this behaviour, we have plotted the root-mean-
square (rms) thickness at R = 1.1 kpc with respect to time (Fig. 15).
Some particles escape to large vertical distances and artificially
increase the rms height. Therefore, we ignore the contribution of
particles with |z| > 2 kpc. The top and bottom panels belong to N =
106 and N = 5 × 106, respectively. We see the step-like behaviour for
our NLG, LPH, and MOND models. This is related to the buckling
instability through which the disc thickness increases rapidly.

It is interesting that although NLG and MOG lead to almost
the same form for the point mass gravitational force, the evolution
of galactic discs differs. For example, the buckling instability is
postponed in MOG (Fig. 15). The less violent buckling instability
in MOG has also been reported in Roshan (2018). It is clear that
the rigid halo model is more stable against both bar and buckling
instabilities.
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Figure 15. rms height in kpc computed using particles with |z| < 2 kpc for
all models, measured at R = 1.1 kpc where the buckling instability happens
more effectively.

In the MOND simulation, the buckling instability happens earlier.
However, the growth rate of this instability is higher in the LPH
DM model. Also, the rms height at R = 1.1 kpc in the LPH model is
larger than for the extended gravity models for most of the simulation
duration. Among these models, MOND mimics the DM behaviour
more closely at small radii (see also Fig. 16). Overall, we conclude
that not only are stellar bars in spiral galaxies stronger in the LPH
model, the rms height of discs at small radii is also larger in the CDM
paradigm. Of course, a statistical investigation using cosmological
simulations is required to reliably verify if extended gravity models
predict a different morphology for the vertical structures of disc
galaxies.

To get a better understanding of the vertical behaviour of the discs
under the effect of different gravity laws, it is helpful to plot the
mean height (along z) and rms height as a function of radius at the
end of our simulations. In Fig. 16, we plot these quantities for each
model with N = 106 and N = 5 × 106. Recall that at t = 0, the mean
height of all simulated discs is exactly 0 by construction (within
numerical noise). The top panels in Fig. 16 show an increasing mean
height for the NLG disc, directly proving that the disc is warped. The
same behaviour also appears in our low-resolution MOND model
(see also the edge-on projections in Fig. 8). The existence of a warp
in low-resolution MOND simulations has already been reported in
Tiret & Combes (2007), where 2 × 105 particles were used for the
stellar disc. However, no warp is excited in our higher resolution
MOND model. This is most apparent in the edge-on views of the

Figure 16. The mean and rms height as a function of radius at t = 4 Gyr.
The left (right-hand) column belongs to the N = 106 (N = 5 × 106) models.
Distances are given in kpc, and the contribution of particles with |z| > 2 kpc
is ignored.

final disc state in our high-resolution models (Fig. 10). The other
three models do not present a considerable change in mean height at
either resolution setting.

The bottom panels of Fig. 16 show the rms height of each
model, confirming that the vertical structure of the discs changes.
Specifically, the inner region in the LPH DM model is thicker
compared to all other models, though the thickness in MOND rather
closely mimics LPH. According to this figure, a region of increased
thickness is present in the LPH models around R ≈ (1 − 1.5) kpc,
mirroring the peanut shape that appears in these models (readily
apparent in edge-on projections, see Fig. 10). Weaker and shorter
peanuts appear in NLG and MOG around R ≈ (0.5 − 1) kpc. The
MOND peanuts look longer – in the high-resolution MOND model,
the peanut appears at R ≈ 2.5 kpc. In the low-resolution MOND
model, although the rms height varies rather smoothly, the peanut is
clearly visible in Fig. 8. In both cases, there is no rapid change (or
a sharp local maximum as in LPH) in the rms height. Therefore, we
infer that the peanut is weak in MOND, which is consistent with the
results of Tiret & Combes (2007).

Another important feature is that although the inner regions in the
LPH model are thicker, the outer disc (R � 4 kpc) is substantially
thicker in extended gravity models, especially in MOND and NLG.
Different behaviour in the vertical structure is expected – starting with
the same initial rotation curve means that at least on the disc surface,
extended gravity and particle DM models lead to the same radial
acceleration. However, in the vertical direction, the accelerations are
not necessarily the same. For example, the NLG effects appear as
an effective phantom ρp surrounding the baryonic matter (Fig. 2).
One can easily verify that ρp is not spherically symmetric for an
exponential baryonic distribution. This will lead to differences with a
DM model that has a spherical halo component. Indeed, the presence
of a phantom DM disc (Fig. 3) is an important prediction of MOND
(Bienaymé et al. 2009). Since the vertical restoring force at large
radii is mostly fixed by the rotation curve due to the low disc surface
density, the thicker outer disc in MOND may indicate stronger secular
disc heating due to enhanced self-gravity, which is evident in that �p

> 0 unlike the other models. However, it is not clear why the NLG
model should flare so strongly. A complementary study is required
to carefully investigate ρp and its time evolution, and to relate this to
the vertical structure of the disc. We leave this as a subject for future
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studies, though the initial ρp and �p are discussed in Section 2.4 for
an infinitely thin exponential disc.

4.5 Pattern speed �p

The bar pattern speed �p is another important quantity which
may help us to discriminate between DM and extended gravity.
Its evolution is directly correlated with the properties of any DM
halo. Knowing �p would help us to understand how the stellar bar
redistributes angular momentum throughout the disc and influences
the secular evolution of the galaxy. Furthermore, the location of
resonances depends on �p.

�p can be measured rather precisely in simulations by finding
the position angle of the bar axis at different times. Measuring
�p for real galaxies is not a simple task. There are several model-
dependent methods (e.g. Pérez, Fux & Freeman 2004; Rautiainen,
Salo & Laurikainen 2008). The so-called Tremaine & Weinberg
(1984) method is the only one that is model-independent. For its
limitations and practical difficulties, we refer the reader to Garma-
Oehmichen et al. (2020).

Observations indicate that spiral galaxies host fast bars (Aguerri
et al. 2015). This is inconsistent with standard CDM-based isolated
and cosmological simulations (Debattista & Sellwood 2000; Algorry
et al. 2017). It is well understood that dynamical friction between
DM particles and baryonic discs substantially damps �p, causing
a gross disagreement with observations. This issue is considered a
challenge for the CDM paradigm in small scale systems (� 10 kpc).
We explore this further in Section 4.6.

These arguments do not necessarily challenge the existence of
DM on galactic scales. In particular, superfluid DM haloes around
galaxies would create very little dynamical friction (Berezhiani
& Khoury 2016; Berezhiani et al. 2019). We discuss this model
further in Section 5.6. A similar argument applies to ultralight (m
≈ 10−22 eV c−2) bosonic DM particles because they have a long
de Broglie wavelength λ ≈ 1 kpc. Consequently, their wave-like
behaviour would appear on a galactic scale, preventing them from
causing significant dynamical friction in spiral galaxies (Hui et al.
2017). Moreover, it is claimed that this model can lead to a viable
cosmic structure formation scenario (Mocz et al. 2019). Those
authors showed that it predicts serious deviations from �CDM at
the large redshifts when the first stars formed. This is a smoking gun
that should be tested by future telescopes like JWST.

In extended gravity theories for the missing gravity problem, there
is no DM slowing down the pattern speed. Therefore, one may expect
fast stellar bars in extended gravity simulations. Bearing this in mind,
we discuss the evolution of �p in our simulations. The result is
illustrated in Fig. 17. In the top panel, we present �p for N = 106,
while the bottom panel belongs to N = 5 × 106. There are other
density waves excited in the discs, e.g. the m = 3 mode excited at t ≈
300 Myr in the MOND model (Fig. 7). To ensure that we have a well-
settled bar rotating almost uniformly within the disc, we concentrate
on t > 1 Gyr. We see that when the halo is rigid (the RHH model),
the pattern speed remains constant with time. This is as expected
since a perturber moving in a rigid halo potential cannot induce a
perturbation to the halo density and pressure. Consequently, there is
no wake behind the perturber to cause dynamical friction.

On the other hand, it is clear from both panels of Fig. 17 that the
pattern speed decreases in the LPH model. This is because dynamical
friction transfers angular momentum between the live halo and the
stellar bar, as confirmed directly in the bottom panel of Fig. 12. The
pattern speed for the LPH model decreases almost linearly with time
as �p(t) ≈ −at + b, where a and b are positive. In the model with

Figure 17. Time evolution of the bar pattern speed �p for all our models.
Different panels show results for a different number N of particles. The inset
in the lower panel shows �p in the LPH model over a longer duration.

N = 106 we have a = 4.775 Gyr−2, b = 42.632 Gyr−2. For a point
mass perturber moving inside a uniformly distributed medium, the
dynamical friction can be expressed as Chandrasekhar’s formula. It
is not possible to find an exact analytic expression for the case of a
stellar bar inside a differentially rotating disc and halo. However, as
the pattern speed varies roughly linearly with time, we can estimate
the magnitude of the friction. For a very crude estimation of the
dynamical friction force, let us assume that the bar is rigid with
length Rb and mass mb. Using Newton’s second law, one may
infer that the friction force is almost constant and given by Fd ≈
Rbmba.

As expected, the lack of a halo causes �p to remain nearly constant
with time in all considered extended gravity models. Furthermore,
we see that NLG has the highest �p. MOND gives a relatively low
�p. A similar result for the time evolution of �p in MOND has
already been reported (Tiret & Combes 2007). The MOND model
also shows small oscillations in �p by up to ≈ 10 per cent due to the
coupling with other modes in the disc. This phenomenon was noted
in the CDM context by Hilmi et al. (2020), and is also apparent in
our LPH model.

Despite clear differences in the time evolution of �p, the long
time-scale involved makes this difficult to directly constrain. The
present value of �p can be determined, but by itself this is not
enough to compare galaxies with different properties and dynamical
time-scales. Instead, the ratio of the corotation radius Rc over the bar
semimajor axis Rb provides an appropriate measure to compare the
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Barred spiral galaxies in modified gravity 2849

Figure 18. Time evolution of the R parameter (equation 24) for simulations with N = 106 (left-hand panel) and N = 5 × 106 (right-hand panel). From top to
bottom, the panels belong to RHH, NLG, MOG, and MOND. In all panels, we show the DM case (LPH) for better comparison. We divide the evolution period
into time intervals of �t ≈ 200 Myr and choose the time-step closest to the middle of the interval as representative of the whole �t interval. The simulation
duration is 4 Gyr except in the top right-hand panel, which covers 6 Gyr. The rising R in the LPH model is due to a decreasing pattern speed (Fig. 17).

bar pattern speed in different galaxies. We next discuss this parameter
for our simulations.

4.6 R parameter

Bar pattern speed measurements help us to find the corotation radius
Rc. Combined with measurements of the bar length (semimajor axis)
Rb, we can find the R parameter, defined as

R ≡ Rc

Rb

. (24)

From an observational point of view, R has great importance since
it reveals the above-mentioned contradiction between observations
and �CDM simulations. The bar is ‘fast’ when R � 1.4, while it is
‘slow’ otherwise (Binney & Tremaine 2008).

To measure R at a given time t, we first calculate the corotation
radius. To do so, we use the pattern speed �p(t) to find the radius
at which this matches the angular velocity �(R) from the rotation
curve. Since both can be obtained very simply in our simulations,
the corotation radius is measured with appropriate precision.

Unfortunately, measuring the bar length is not a trivial task.
Various methods have been introduced in the literature to determine
Rb (Erwin 2005; Aguerri, Méndez-Abreu & Corsini 2009; Aguerri
et al. 2015, and references therein). The method applied in this work
makes use of the Fourier decomposition of the galaxy’s surface
density profile (Elmegreen & Elmegreen 1985; Ohta, Hamabe &
Wakamatsu 1990; Aguerri et al. 2000). The bar radius is computed
using the ratio of intensity in the bar (Ib) and inter-bar (Iib) regions,
where

Ib = I0 + I2 + I4 + I6, (25)

Iib = I0 − I2 + I4 − I6. (26)

Here, Im stands for the m-th component of the azimuthal Fourier
decomposition of the intensity, which depends on R. According to
the definition of Aguerri et al. (2000), the bar length would be the
outer radius beyond which

Ib

Iib

< 0.5

[(
Ib

Iib

)
max

+
(

Ib

Iib

)
min

]
. (27)

In this definition, the surface density profile is also considered.
The error of using this method in numerical simulations has been
reported as � 4 per cent except for very thin bars, where it reaches
≈ 8 per cent (Athanassoula & Misiriotis 2002).

The results for N = 106 and N = 5 × 106 are shown in the left-hand
and right-hand panels of Fig. 18, respectively. The fast bar regime
is shown with horizontal dashed lines. In both panels, we see that
R in the live DM model (LPH) is always above this regime. As
already mentioned, this is a well-known fact formerly reported in
several papers (e.g. Debattista & Sellwood 2000). This is because R
increases with time under the direct influence of dynamical friction.
As expected, due to the absence of dynamical friction in the RHH
model, bars are faster in this case. For MOND and MOG, we see
almost the same behaviour as for RHH – the bars lie in the desired
fast bar regime. This is also true for NLG bars, though they are
relatively slower.

Although the majority of spiral galaxies host fast bars (see fig. 8
in Garma-Oehmichen et al. 2020), some appear to have the predicted
ultrafast bars (R < 1; Guo et al. 2019). In Section 5.3, we discuss
in more detail how we are able to get apparently ultrafast bars in
our extended gravity models despite theoretical arguments that they
should be unstable (e.g. Contopoulos 1980). We caution that for
a meaningful comparison with observations, we still need more
realistic simulations including gas components and a bulge. One
should also use different techniques for measuring the bar length
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Table 2. Top: The observational sample of galaxies that we
use to quantify the distribution of R (equation 24). For Aguerri
et al. (2015), we read off the results in fig. 9 of Algorry et al.
(2017). Much of our data comes from Guo et al. (2019) – we
use the right-hand panel of their fig. 11. Bottom: Number of
galaxies in the EAGLE simulation used to quantify the expected
distribution ofR at the indicated redshift. We use all the EAGLE
galaxies analysed by Algorry et al. (2017).

Reference Number Number used
of galaxies in our analysis

Corsini (2011) 17 9
Cuomo et al. (2019) 16 2
Aguerri et al. (2015) 15 5
Guo et al. (2019) 17 13

EAGLE (z = 0) 48
EAGLE (z = 0.27) 41
EAGLE (z = 0.5) 32

to derive an average value. We have used only one method that
is rather precise, but it estimates a slightly larger value for Rb

compared to other methods (Aguerri et al. 2015). However, we
emphasize again that our main purpose in this paper is to compare
different theories with each other, and not with real observations.
Consequently, from the above discussion, we only conclude that
bars are faster in extended gravity models.

To quantify the distribution of R more precisely, we assume

R̃ ≡ log10 R is distributed as a Gaussian with mean R̃ and intrinsic
dispersion σ

˜R, thereby imposing the physical prior that R > 0
despite a completely uninformative prior on R̃. We infer the pop-

ulation parameters
(
R̃, σ

˜R

)
from observations and using different

theoretical models. Values of R calculated from barred galaxies in
the EAGLE cosmological simulation at redshift z = 0 should be
directly comparable to observations of nearby barred galaxies. As an
example, the MW has a fast bar with R = 1.22 ± 0.11 (Section 10.1
of Portail et al. 2017). 7

The likelihood P of any
(
R̃, σ

˜R

)
combination is

P
(
R̃, σ

˜R

)
=

∏
i

1√
σ

˜R
2 + σi

2
exp

⎛⎜⎝−
(
R̃ − R̃i

)2

2
(
σ

˜R
2 + σi

2
)
⎞⎟⎠ , (28)

where i runs over different simulated or observed galaxies. In the
simulations, we assume no measurement error σ i in the value of R̃,
since any such uncertainty is expected to be very small compared to
other uncertainties. We apply a similar analysis to the observational
sample summarized in Table 2. To begin with, we average the low
and high error bars to come up with a single uncertainty δRb for each
measured length. We then require Rb to have a fractional uncertainty

δRb

Rb

< ε, (29)

where the quality control parameter ε = 1
3 . The analogous criterion

is imposed on the corotation radius Rc and its uncertainty δRc. We
find that ε = 1

3 achieves a good compromise between the quality and

7The corotation radius of 6.1 ± 0.5 kpc in Portail et al. (2017) is consistent
with the 6.6 ± 0.2 kpc reported by Chiba & Schönrich (2021). Note also that,
as evident from our Fig. 17, the bar pattern speed can oscillate over time by
up to ≈10 per cent in extended gravity theories due to couplings with other
modes in the disc (see also Hilmi et al. 2020).

Figure 19. The posterior inference on R and the intrinsic dispersion of
log10 R found by applying equation (28) to our compilation of observational
results (Table 2) and to the EAGLE simulation at z = 0 based on fig. 9 of
Algorry et al. (2017). Although the calculations are done in the space of
log10 R, we change the x-axis to a linear scale when plotting so the results

are more intuitive (i.e. we plot 10 ˜R). The black (blue) contours correspond
to 1σ , 3σ , and 5σ outliers from the observed (EAGLE) posterior. Due to the
significant mismatch, the 6σ contour is also shown for the EAGLE simulation.

quantity of data, with observational difficulties lying mainly in the
determination of Rc. We then estimate the fractional uncertainty in
R as

α ≡ δR
R =

√(
δRb

Rb

)2

+
(

δRc

Rc

)2

. (30)

To further assure the quality of our data set, we require that

α < ε. (31)

Despite this, α is sometimes not very small. Thus, we assume that a
good estimate for σ i is

σi = 1

2
log10

(
1 + α

1 − α

)
. (32)

Fig. 19 shows our posteriors on
(
R̃, σ

˜R

)
based on a high-

resolution grid in both parameters, with the resulting array then
normalized to a sum of 1. There is a very significant mismatch
between the EAGLE (Algorry et al. 2017) and observational pos-
teriors, mainly because observations prefer R ≈ 1 while EAGLE
galaxies prefer R ≈ 3 with more scatter. The 5σ allowed regions
consistent with EAGLE and with observations represent distinct parts
of parameter space, demonstrating that the two are incompatible at
>5σ . Thus, we also show the 6σ confidence interval for the EAGLE
galaxies. This still does not intersect the 5σ observational contour.
Therefore, we expect that the level of disagreement is slightly above√

52 + 62 = 7.8σ .
To quantify the probability that EAGLE galaxy bars are compatible

with observations, we pick some
(
R̃, σ

˜R

)
and draw the EAGLE

contour through that point. We then find the probability that the
EAGLE population parameters lie outside this contour, yielding a

P value. Since the observations do not uniquely specify
(
R̃, σ

˜R

)
,

we repeat this calculation for all different parameter combinations.
Our final result is obtained by averaging the individual P values,
each weighted according to the observational probability of the
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Barred spiral galaxies in modified gravity 2851

Figure 20. Similar to Fig. 19, but now showing only the 1σ allowed region
observationally and in different theories for our higher resolution simulations.
Different snapshots are assumed to represent the diversity of galaxies at the
same cosmic time. Our simulations are most comparable to EAGLE at z

= 0.5 (see the text). Notice that the EAGLE region moves to higher R as
time passes, a consequence of dynamical friction. This is also evident in
our LPH model, results of which are shown separately for different periods
in the simulation (solid and dashed red ellipses). Our RHH and extended
gravity models lack this process as there is no live halo, leading to signif-
icantly faster bars (lower R) whose pattern speed changes little with time
(Fig. 18).

corresponding
(
R̃, σ

˜R

)
. In this way, we find that the EAGLE

results shown in fig. 9 of Algorry et al. (2017) are incompatible
with observations at 7.96σ confidence, in line with our previous
estimate of slightly above 7.8σ . Clearly, this �CDM model does
not provide a good explanation for the observed distribution of R in
barred spiral galaxies. The disagreement is so serious that we had
to modify our algorithm so the P value is not numerically rounded
down to 0.

To compare EAGLE data with observations of nearby galaxies,
one should consider simulated galaxies at z = 0, when the age of
the Universe is 13.8 Gyr (Planck Collaboration XIII 2016). Due to
their 4 Gyr duration, our LPH simulations are expected to be most
comparable to EAGLE galaxies at z = 0.5, when the age of the
Universe is ≈8.9 Gyr. This is based on the average behaviour of bars
in EAGLE (fig. 6 of Algorry et al. 2017) – the bar instability happens
around z ≈ 1.3 (t ≈ 5 Gyr), after which the bars enter a smooth and
stable phase. Our 4 Gyr long simulations thus take us up to t ≈ 9 Gyr.
To make the comparison with observations more accurate, we also
extend the high-resolution LPH simulation to 6 Gyr, confirming that
the bar continues to slow down (Fig. 18).

We treat R at different times in our simulations as representing the
diversity of R in different galaxies at the same time. This is only an
approximate approach, so a detailed comparison of our simulations
with observations is not meaningful − our main objective is to
compare theories with each other. For this purpose, we use Fig. 20 to
show the 1σ allowed regions of

(
R, σ

˜R
)

for different theories and
for EAGLE at z = 0, 0.27, and 0.5. As expected, our LPH model
yields a similar R to EAGLE at z = 0.5, though with less dispersion
because we use only one galaxy sampled at different times. The
effect of dynamical friction is apparent in that the EAGLE preferred
R increases with time, as also occurs in our LPH model (solid and
dashed red contours in Fig. 20).

The LPH model is a clear outlier to both observations and the
extended gravity models (Fig. 20). This is due to its unique increasing
behaviour of R at later times (top panel in Fig. 18), which is related
to the long-term decline in �p (inset to Fig. 17). Using more massive
haloes (which makes the disc sub-maximal) would make R grow
even faster since a higher DM density causes stronger dynamical
friction. We check this by performing another simulation where rh

is reduced from 12 kpc to only 8 kpc, but the truncation radius and
halo mass are left unchanged. In this case, the bar is stronger and
the dynamical friction is much more effective than in the maximal
disc – at the end of the simulation, R ≈ 3.5. This agrees with the
general intuition that dynamical friction is enhanced when there is
more DM.

Dynamical friction is absent in our RHH and extended gravity
models, leading to much lowerR. This causes much better agreement
with observations, which imply R ≈ 1 with little intrinsic scatter
(Fig. 19). Therefore, our results on the R parameter strongly suggest
that the anomalous rotation curves of galaxies are better understood
as arising from a modification to gravity rather than from haloes of
particle DM capable of exerting dynamical friction. It is important
to mention that the lack of dynamical friction in MOND also implies
galaxies evolve without merging much (Renaud et al. 2016), which
may explain the high observed frequency of thin bulge-less disc
galaxies (Kormendy et al. 2010; Peebles 2020).

5 D ISCUSSION

5.1 Numerical consistency tests

To assure the integrity of our results, we checked that the energy
and angular momentum are conserved for the LPH, RHH, NLG, and
MOG models to an accuracy of better than 5 per cent throughout
the full duration of the simulation. One should also check that
the main results are unaffected by changing the particle number
(i.e. N should be large enough to suppress artefacts and shot
noise). As already reported, changing the particle number from 1
to 5 million keeps the results consistent (Fig. 18). Moreover, we
decreased the time-step δt to increase the precision. To ensure
that the results are independent of the adopted grid, we varied
the number of grid points and the softening length (Table 1).
These variations do not affect the overall behaviour of our mod-
els.

Our POR simulations use a refinement condition based on the
number of particles per cell (Section 3.1). Thus, using 5 × as many
particles automatically increases the spatial resolution used by the
potential solver in many parts of the simulated volume. Since the POR

results are not much changed by quintupling the number of particles,
they appear to be numerically converged.

The main aim of this paper is to see if using an extended gravity
theory to replace the role of CDM can reduce the typical value of R
from ≈3 to ≈1, as required to explain observations. Fig. 21 shows
that our statistical analysis of the R parameter is not much affected
by the choice of N for any of our explored models. Thus, our main
results are not dependent on the resolution – though of course we
generally focus on the models with N = 5 × 106.

5.2 Scaling results to other parameters

As discussed in Section 3.3, our simulations use a central disc surface
density intermediate between the major Local Group galaxies.
In MOND, the central surface density is the only dimensionless
parameter of the matter distribution once the aspect ratio is fixed.
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2852 M. Roshan et al.

Figure 21. Similar to Fig. 20, but now showing the effect of numerical
resolution. The 1σ allowed regions for simulations with N = 106 are
shown as dashed contours, while the corresponding simulation with N =
5 × 106 is shown using a solid contour of the same colour. For reference, the
observationally allowed 1σ region is shown as a thin solid green line.

This allows our results to be scaled to discs with the same central
surface density but a different size and mass. This is also true
for our LPH model because spiral galaxies fall on a rather tight
RAR (Lelli et al. 2017). As a result, the DM fraction within a
fixed number of disc scale lengths must remain the same. This
means that our LPH model addresses the evolution of maximal
discs more generally than just discs with the parameters given in
Table 1. The behaviour is more complicated in other extended
gravity theories with a fundamental length scale, so results for
these cannot simply be scaled to a galaxy with different mass and
size.

We consider scaling the distances in our models by some factor
k. Observationally, this is analogous to the effect of changing
the heliocentric distance but keeping the same angular size. The
scaling relations are given below, with primed (unprimed) variables
indicating quantities in the scaled (original) version of our model:

r ′ ≡ kr (33)

�′ (r ′) = � (r) (34)

M ′ = k2M (35)

v′ (r ′) =
√

k v (r) (36)

t ′ = =
√

k t (37)

ρ ′ (r ′) = k−1ρ (r) . (38)

To make the mass MW-like, we consider the case k = 3. The
peak rotation velocity then rises from ≈150 km s−1 (Fig. 4) to almost
260 km s−1. The 6 Gyr evolution of our LPH model now corresponds
to a longer effective duration of 10.4 Gyr, which covers most of the
Hubble time. Since our results are applicable to maximal discs more
broadly, we argue that the steady increase in bar strength (Fig. 13)
and the R parameter (Fig. 18) are likely generic features of maximal
discs in �CDM, at least if they are not disturbed too frequently and
lie on the empirical RAR.

5.3 Ultrafast bars

The bars in our extended gravity simulations spend some fraction
of their time in the ultrafast regime (Fig. 18). This is unexpected on
theoretical grounds as a bar longer than its own corotation radius
should be unstable (Contopoulos 1980). Since the bars in extended
gravity are already in the fast regime, even a small error in calculating
R could artificially push it into the ultrafast regime. In particular, the
existence of several modes propagating on the disc induces apparent
oscillations in the bar length (Hilmi et al. 2020). In other words, the
existence of spiral modes along with the bar in the central part of
the disc artificially increases the bar length at times when they align,
leading to a smaller R parameter – possibly in the ultrafast regime.

This behaviour shows up in the MOND model. We illustrate this
in Fig. 22, where we have shown the complete time evolution of
R and Rb in our LPH and MOND models – which we choose for
illustration as other models behave similarly. It is clear that there
are strong oscillations in Rb, and consequently in R. To avoid this
artefact, it is necessary to consider only minima in Rb (Hilmi et al.
2020). Therefore, we divide the evolution into time intervals of �t
≈ 200 Myr, choose the minimum value of Rb in each interval, and
compute the R parameter then. Different choices for �t do not
change the main result, as long as �t is larger than the oscillation
period.

Using Fig. 22, one can imagine what happens if we instead choose
the maxima in Rb. In this case, the R parameter would artificially
drop. Although the bar still remains slow in the LPH case, in the
MOND model the bar enters deep into the ultrafast regime.

For a better illustration, we also plot face-on projections of the
system at four different times for the MOND model (Fig. 23). The
upper row shows that when Rb has a peak in its time evolution,
there are relatively strong spiral arms in the system. As a result,
the calculated Rb is artificially large. However, as is clear in the
lower row, such features are absent in the snapshots corresponding
to minima in Rb.

As discussed in Section 4.3.2, the power spectrum is another
powerful way to detect the different modes in a system. We have
plotted the power spectrum of the MONDian disc in the lower left-
hand panel of Fig. 14. The intensities indicate that this model is
even noisier than LPH and the other extended gravity models (other
panels). The MOND disc has two prominent modes and two modes
with less intensity. The lowest frequency mode appears in the disc
outskirts, representing the spiral pattern illustrated in Fig. 23. The
period of this mode is ≈0.2 Gyr, compatible with the ≈0.17 Gyr
oscillation period in Fig. 22.

We can also consider how our statistical analysis (Section 4.6)
would be affected if instead of using all snapshots where R can be
calculated, we use only those corresponding to minima in Rb. This is
done in Fig. 24. Although uncertainties become larger due to the ≈10
× smaller amount of data, it is clear that this procedure removes the
preference for R < 1 in at least some time-steps previously apparent
in Fig. 20. Unfortunately, this procedure is very difficult to mimic in
an observational sample, so it is unsuitable if the goal is to compare
simulations with observations.

Our results show that oscillations in Rb provide a plausible expla-
nation for why some galaxies appear to have ultrafast bars – though
only if the bar is already in the fast regime. If the bar is deep in the slow
regime, then we would need to very significantly overestimate Rb,
which is not very likely (Hilmi et al. 2020). Moreover, the oscillations
are much weaker in our LPH model (Fig. 22). Thus, the issue should
not affect our previous conclusion that barred spirals in EAGLE
disagree very significantly with observations (Fig. 19).
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Barred spiral galaxies in modified gravity 2853

Figure 22. Time evolution of the R parameter (left-hand panel) and the bar length (right-hand panel) for simulations with N = 5 × 106. The solid curves show
the complete time evolution, while dashed curves show the corresponding quantities at only those snapshots when the bar length is at a local minimum in time.
The horizontal dashed lines in the left-hand panel correspond to R = 1 and 1.4, which demarcate the fast bar regime (ultrafast bars lie below 1).

Figure 23. Face-on projections of four snapshots in the MOND model. The
presence of spiral arms (upper row) is simultaneous with the appearance of
maxima in the right-hand panel of Fig. 22. The two snapshots in the lower
row correspond to the minima in that figure. Distances are given in kpc.

5.4 Higher Toomre parameter in the LPH model

We have argued that slow bars are expected in maximal �CDM discs
because this is what happens in the EAGLE cosmological simulation
and in our LPH model. The development of a bar could be inhibited
by heating up the disc, which would involve a Toomre parameter
Q > 1. Our nominal LPH models use Q = 1.5, but observationally
there is some evidence that galaxy discs are dynamically overheated
in the �CDM context such that higher values are appropriate (Fuchs
2003; Saburova 2011; Das et al. 2020). A dynamically overheated
disc with Q = 2 was able to suppress the bar instability in an idealized
CDM-based Newtonian simulation of M33 (Section 4.3 of Sellwood
et al. 2019).

We therefore redo our LPH simulation with N = 106 for Q = 2
and Q = 3. We implement a higher Q by using a higher initial σ r

(equation 20). As before, σφ and σ z are set by solving the Jeans

Figure 24. Similar to Fig. 20, but now showing the effect of considering
only times at which the bar length is at a local minimum in its short-term
oscillations. The solid 1σ confidence regions show results for all snapshots
where R could be calculated. The dashed contours show the effect of
considering only minima in Rb, with the same colour used for each model.
Since the amount of data is ≈10 × smaller in this case, the error ellipse is
much larger. None the less, it is clear that the shift in R is enough to move
the MOND and MOG models out of the ultrafast regime (R < 1).

equations. Unlike in Sellwood et al. (2019), we keep the initial
vertical scale height unchanged for models with higher Q.

Fig. 25 shows the evolution of the bar strength. All our LPH models
have a rather strong bar by the end of the simulation. Interestingly,
the model with the strongest bar after 4 Gyr is actually the Q = 3
model, which is the highest Q model that we consider. This could
be related to the bar being thicker in this case, which makes it less
prone to the buckling instability (Klypin et al. 2009). Those workers
also found that models with a thicker disc (and presumably higher
Q) have stronger bars. Our models with different Q indeed exhibit
differences in how the rms thickness evolves with time, but the values
are very similar after 4 Gyr in all three cases considered (Fig. 26).

Having demonstrated that our higher Q models also develop bars,
we can analyse their pattern speed �p, which is shown in Fig. 27.
The bar slows down substantially in all cases, with a quite similar
evolution regardless of the initial Q. This is consistent with the earlier
result of Widrow, Pym & Dubinski (2008).
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2854 M. Roshan et al.

Figure 25. Strength of the m = 2 Fourier mode as a function of time in
our LPH model with N = 106, shown here for three different values of Q as
indicated in the legend.

Figure 26. Disc rms thickness in kpc computed for LPH models with
different Q, measured at R = 1.1 kpc.

We are now in a position to obtain the R parameter in our LPH
models with higher Q. The results are shown in Fig. 28. As expected
from the decreasing �p, the R parameter rises well above the fast
bar regime in all cases. Indeed, the Q = 3 model consistently has a
higher R parameter than the other models. It is therefore clear that
our LPH model yields a slow bar even if we start with a dynamically
overheated disc. If anything, starting with higher Q causes an even
more significant tension with observations, which prefer R ≈ 1 with
little intrinsic dispersion between galaxies (Fig. 19). Moreover, self-
regulated discs would be expected to have Q ≈ 1 (Silk 1997).

5.4.1 Comparison to previous isolated CDM models

The bar growth rate is lower in our LPH models with a higher Q,
this being consistent with earlier results using 2D simulations (fig. 3
of Athanassoula & Sellwood 1986). Those authors were able to
suppress the bar instability for Q � 2 − 2.5 (see their Section 6.4).
In contrast, our results indicate that higher Q merely delays but does
not prevent the bar instability, with a strong bar developing after
4 Gyr in all cases (Fig. 25). The difference could be due to motions

Figure 27. Similar to Fig. 25, but now showing the pattern speed �p of the
bar.

Figure 28. Similar to Fig. 25, but now showing the R parameter (equa-
tion 24). The horizontal lines demarcate the fast bar regime (R = 1 − 1.4).

out of the disc plane, and perhaps other details of the numerical
implementation. Note also that many of their models do not have a
DM halo.

The subsequent study of Athanassoula (2003) found that the bar
slows down more gradually in models with higher Q, whereas we
find Q has little effect (Fig. 27). However, their fig. 4 shows the bar
slowdown rate is nearly the same over the range Q = 1.6 − 2.2
(higher Q models were not considered). This is broadly consistent
with our LPH models, which only cover Q ≥ 1.5. By considering
models with even lower Q, Athanassoula (2003) showed that bars in
galaxies with higher Q slow down to a greater extent. This disagrees
with the results of Klypin et al. (2009), possibly because the latter
work used much shorter time-steps which are necessary to properly
capture resonant bar–halo interactions that are crucial to slowing
down the bar.

The halo density profile also plays a key role in the amount of
friction. Unlike in this work, Athanassoula (2003) did not use a
Plummer halo profile (see her equation 22). In a power-law profile
where ρ∝r−α with α < 0.5, after a rapid dynamical friction phase at
the beginning of the simulation, the rotating perturber experiences
hardly any friction (Read et al. 2006). As another example for the
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significance of the mass profile, we refer the reader to the model
‘LHH’ (a responsive Hernquist halo model) in Ghafourian, Roshan
& Abbassi (2020). The evolution of the pattern speed in this model is
completely different from other models in the sense that the friction
disappears for a relatively long time, even though all the models start
from almost the same initial equilibrium state. The reasons for this
difference is comprehensively explored in Ghafourian et al. (2020).

The distribution function of the halo particles also has a serious
impact on the bar instability (Sellwood 2016). This means that the
initial distribution function would indirectly influence the magnitude
of the dynamical friction. In addition, the dynamical friction force on
a moving perturber generally depends on the size of the host system.
The truncation radius of our haloes is generally larger than used in
Athanassoula (2003), since this work typically used 15 disc scale
lengths whereas our LPH models use 24. We note that artificially
truncated CDM haloes are not allowed in the �CDM model, so
numerical experiments with CDM haloes that have such small radii
are not physical.

Since our models have a baryonic surface density similar to the
MW, they can be compared to the results of Widrow et al. (2008),
who conducted 25 N-body simulations of MW-like galaxies. Their
Fig. 19 shows that nearly all their models do have a strong bar that
substantially slows down to a similar extent regardless of Q, which
they varied over the range 1–2. This is similar to our results in Fig. 27.

Our results are also consistent with the work of Klypin et al.
(2009), who considered models with a range of Q with corresponding
changes to the disc scale height. Those authors were careful to
ensure the initial conditions were as realistic as possible for �CDM
cosmology, and to use a high time resolution (see their Sections 3.2
and 4.2, respectively). The main result of their work was that galaxies
in dynamically hotter discs end up with longer bars that have a lower
pattern speed and higher R parameter (see their table 2).

This contrasts with the M33 model of Sellwood et al. (2019), in
which raising Q to 2 suppressed the bar instability (see their fig. 5).
This could be due to their use of a sub-maximal disc (see their fig. 2),
as required in �CDM due to the low baryonic surface density and
thus low acceleration. The combined effect of a dominant DM halo
and an overheated disc might be able to suppress the bar, even if the
latter alone cannot. The bar instability is also affected by the initial
thickness of the disc, which was doubled in section 4.3 of Sellwood
et al. (2019) to suppress the instability. However, we do not increase
the initial vertical scale height. The subsequent evolution of the disc
rms thickness is also similar in all our LPH models (Fig. 26), so it may
be that our discs are thinner than in Sellwood et al. (2019). Another
difference is that we have not implemented any gas component,
though the discussion in their Section 3.2 suggests that this is not too
crucial for a galaxy like M33.

The fact that our initial conditions are designed for consistency
with the RAR (Section 3.3) might also underlie why our LPH
model yields slow bars even though some previous galaxy sim-
ulations in the CDM context obtained fast bars for the maximal
discs that we consider (Athanassoula, Machado & Rodionov 2013;
Athanassoula 2014). Several problems have been identified with
their conclusions (Sellwood & Debattista 2014), but the most
important issue might be related to the halo properties and whether
these are truly what one expects in the �CDM paradigm. Since
we use a very similar algorithm to that used by Debattista &
Sellwood (2000), it is quite likely that this is the main rea-
son for our simulations yielding slow bars for maximal discs.
Ultimately, cosmological hydrodynamical simulations of �CDM
must be used to check whether this model is consistent with the
observed distribution of R. We are currently investigating this

using simulations other than EAGLE (Roshan et al., in prepara-
tion).

Due to the complex combination of underlying parameters that
play a role in dynamical friction, the comparison between different
simulations should be done with care. It seems that future work is still
required to have a better understanding of how initial random motions
affect the pattern speed of a stellar bar. An important constraint is
that the statistical distribution of the initial conditions should follow
from the cosmological model.

5.5 Relation to cosmological simulations

To fully understand how galaxies would behave in any theory, it
is necessary to account for other processes not included in our
simulations, which ultimately requires the cosmological context. Gas
accretion from surrounding regions can rejuvenate the bar, whose
strength could also be raised substantially by interactions with other
galaxies (Peschken & Łokas 2019). These processes are beyond
the scope of our isolated N-body simulations, but we none the less
consider their possible impact.

The amount of DM required in standard gravity is essentially
fixed by the observational requirement for galaxies to lie on the
empirical RAR (Lelli et al. 2017). This is probably why although
it may be possible to get fast bars in a �CDM context (Fragkoudi
et al. 2021), doing so causes tension with other constraints such as
the stellar mass fraction inferred from abundance matching. Sitting
on the RAR implies following the BTFR, which relates the baryonic
mass Mb to the asymptotic velocity vf according to a power law of
the form Mb∝vf

k, with k observationally very near to 4 (McGaugh
& Schombert 2015; Lelli et al. 2019). This is the expected value
in MOND (equation 2). The value of k in Auriga falls below the
observed value (fig. 11 of Grand et al. 2017). Consequently, at lower
masses (and lower vf), the baryonic mass will be larger than for
galaxies on the observed BTFR. In a conventional gravity context,
this would imply a lower amount of DM, which would reduce
dynamical friction on the bar. This is highly relevant to the bar speed
problem highlighted here since many of the galaxies used to obtain
R empirically (listed in Table 2) come from the study of Guo et al.
(2019). This reaches down to vf ≈ 100 km s−1, as is evident using
circular velocities estimated from both Jeans anisotropic modelling
and spatially resolved H α emission line measurements that show
‘the average of the outer flat regions’ (see their fig. 15). However,
the Auriga galaxies all have vf � 160 km s−1 (fig. 11 of Grand et al.
2017). Comparing their table 1 to the absolute r-band magnitudes
shown in fig. 1 of Guo et al. (2019) paints a consistent picture –
the observational sample in Guo et al. (2019) reaches less massive
galaxies than Auriga. Since less massive galaxies generally require a
higher DM fraction in �CDM, the real challenge for this paradigm is
to get fast bars at such low vf while still sitting on the RAR. Indeed,
�CDM should reproduce ‘fast bars across the Hubble sequence’
(Aguerri et al. 2015), not just at the high mass end.

A reasonable fraction of strongly barred galaxies is required to
reproduce observations (Laurikainen & Salo 2002; Garcia-Gómez
et al. 2017). Our simulated bars are rather weak (Fig. 13), with the
more reliable higher resolution runs indicating that the weakest bars
occur in LPH for t < 4 Gyr. However, strong bars are quite common
in cosmological �CDM simulations (Blázquez-Calero et al. 2020).
This is no doubt related to processes like those mentioned above
which are not included in our LPH model. These processes would also
operate in extended gravity theories. Consequently, it is not presently
clear whether the low bar strength in e.g. our isolated MOND model
is a problem for MOND in general, or an issue that will be resolved
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with a cosmological simulation. Further work is required to address
this issue, perhaps building on the MOND cosmology discussed in
Haslbauer et al. (2020).

The evolution of the R parameter in our LPH model broadly
agrees with that in the EAGLE cosmological simulation of �CDM
(Fig. 20). Intuitively, this makes sense because the bar is like a normal
mode in the disc, so external perturbations can change its amplitude
but not its frequency. This suggests that our idealized LPH model
captures the essence of the bar speed problem faced by �CDM,
which we estimated to be at the 8σ level based on our analysis of
results published elsewhere (Section 4.6). We can therefore postulate
that the R parameter would remain similar in our extended gravity
models if moving to a more advanced cosmological simulation. If
this is correct, then these models would provide a good explanation
for the observed distribution of R (Fig. 21).

It is difficult to draw strong conclusions about the bar strengths
given the significant differences between �CDM cosmological
simulations and our idealized LPH model, which are both trying
to represent �CDM. The similarity in bar strengths between �CDM
and extended gravity theories (Fig. 13) suggests that this is not a very
promising way to distinguish them. On the other hand, the significant
differences between LPH and extended gravity theories suggests the
distribution of the R parameter is a more promising test (Fig. 20).
This is especially true given the similar population mean R and
its rising trend between LPH and EAGLE, which suggests that our
results are reliable with respect to the distribution ofR. In this regard,
we conclude that the properties of galactic bars are likely better
explained if galaxies lack CDM and obey non-Newtonian gravity, but
this conclusion still needs to be checked by means of self-consistent
cosmological simulations. These may reveal problems such as the
bars being too weak, though it is important for a viable theory to
sometimes produce a weak bar (as demonstrated in a hydrodynamical
MOND simulation of M33; Banik et al. 2020). Their model may be
quite realistic as gas accretion may have been slowed down by M33
lying within the virial radius of M31, while a past pericentre (even if
not very close) could have removed most of M33’s satellites (Patel
et al. 2018). Moreover, the external gravitational field from M31 was
included in section 4 of Banik et al. (2020), which in MOND has a
non-trivial effect beyond just moving M33 as a whole.

Turning to the case of �CDM, a somewhat promising aspect of
our LPH models is that the bars are sometimes strong. This may
be due to interactions, but our results in Fig. 13 suggest that it
could also arise in an isolated model if evolved for a long time
due to bar–halo angular momentum exchange (bottom panel of
Fig. 12, see also Athanassoula & Misiriotis 2002). In addition to
causing tension with isolated galaxies like M33 with a weak bar
(Sellwood et al. 2019), it is precisely this bar–halo interaction
which causes the bar to slow down (Fig. 17), making R � 1
and leading to strong tension with observations. If �CDM is the
correct description of nature, some way should be found for the
‘clock’ to be ‘reset’ to avoid a similar fate in real galaxies. This
would prevent the increasing bar strength at late times evident in
Fig. 13, so strongly barred galaxies should be understood in some
other way. We note that since such ‘reset’ events are presumably
caused by interactions and these are already included in cosmological
simulations like EAGLE and Illustris, it is not at all clear why they
would be much more frequent in a more realistic representation
of �CDM. Rather, our results suggest that the problem it faces
with regards to the R parameter is a fundamental consequence of
having a live CDM halo, with the problem reproduced quite well
in our idealized LPH simulation as it includes dynamical friction
on the bar. As discussed in Section 5.4.1, this conclusion relies on

choosing halo properties consistent with the observed rotation curves
of galaxies, since otherwise one can always address the pattern speed
problem by reducing the amount of DM and the resulting dynamical
friction.

5.6 Broader implications

As shown in Section 4.6, the properties of galactic bars are hard
to reconcile with the latest cosmological simulations in a �CDM
context. This is linked to the significant dynamical friction that a
bar experiences when embedded in a live halo. Therefore, the slow
bar problem is a generic failure of CDM-based models, as already
reported in the literature (e.g. Algorry et al. 2017; Peschken & Łokas
2019). Our results indicate that galaxies formed in the EAGLE
simulations are strongly excluded observationally on the basis of
their bar statistics.

If similar statistics are recovered by other realizations of the
�CDM paradigm, then any successes that it achieves on other
scales should be viewed as a coincidence – after all, an incorrect
model with adjustable parameters can always be expected to match
some observables. More generously, such successes can be viewed
as a sign of partial correctness but with some fundamental missing
ingredient(s), especially on galaxy scales. As an example, let us
note that the CMB anisotropies, primordial nucleosynthesis, and
cosmic expansion rate history can be explained in a MOND-based
model with an additional collision-less matter component (e.g. sterile
neutrinos) for much the same reasons as in �CDM (Angus 2009;
Haslbauer et al. 2020).

Another hybrid model is superfluid DM, where galaxies have
DM haloes but dynamical friction is strongly suppressed for objects
moving through the DM halo at subsonic velocities (Berezhiani et al.
2019). Our results suggest that such models could also work with
regards to bar pattern speeds. However, it is less clear how the Local
Group satellite planes would be explained in this scenario – the
superfluid core for an MW-like galaxy is expected to have a radius of
only ≈75 kpc (equation 18 of Berezhiani & Khoury 2016), with more
recent estimates also yielding similar values (Hossenfelder & Mistele
2020). This is smaller than the radial extent of the MW satellite plane
(Pawlowski & Kroupa 2020; Santos-Santos, Domı́nguez-Tenreiro &
Pawlowski 2020). If its members are tidal dwarfs (as required to
explain their overall anisotropy), then any members � 75 kpc away
would have extremely small internal velocity dispersions by virtue of
lying outside the superfluid core. This would contradict the observed
high dispersions (McGaugh & Wolf 2010). A similar problem would
arise around M31 since its satellites also have super-Newtonian
velocity dispersions if they lack DM (McGaugh & Milgrom 2013),
which is very likely for the 15 satellites which delineate a thin plane
(Ibata et al. 2013; Sohn et al. 2020).

Note that the superfluid core size depends only weakly on galaxy
mass once the theoretical parameters are fixed, so these results are
rather robust. Moreover, a purely baryonic satellite whose eccentric
orbit crosses the boundary of the superfluid core would have its
internal gravity decrease (increase) by a very large factor when going
out (in) through this boundary, likely leading to tidal disruption after
a few orbits. This could be circumvented by altering the theoretical
parameters to allow for larger superfluid cores, but it is not clear
whether this is possible given constraints from other scales, e.g.
galaxy clusters (Hodson et al. 2017). In general, the MW and M31
satellite planes are more naturally understood in a MOND context
as arising from a past MW-M31 flyby, which is required in MOND
(Zhao et al. 2013) and likely reproduces the observed orientations
(Banik, O’Ryan & Zhao 2018a; Bı́lek et al. 2018).
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6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we used high-resolution N-body simulations to compare
the dynamics of numerical galaxy models evolving in the context of
four different gravity theories. Specifically, we constructed models
in MOND, NLG, and MOG, and compared their evolution to the
standard live DM model (LPH). Furthermore, we constructed a model
with a rigid DM halo (RHH). The main purpose of this study is to find
a way to discriminate between DM and extended gravity, especially
by considering the bar. To explicitly quantify the angular speed of the
stellar bar in our models, we measured R (equation 24) at different
times. The decreasing pattern speed in the LPH model appears as an
increasing R. Using the definition that R > 1.4 indicates a slow bar,
the LPH model predicts slow bars, whilst all the extended gravity
models studied in this paper lead to fast bars. Nearly all current
measurements favour fast bars (Debattista & Sellwood 2000; Corsini
2011; Aguerri et al. 2015; Cuomo et al. 2019; Guo et al. 2019). Our
main findings can be summarized as follows:

(i) In the EAGLE implementation of �CDM, the average value of
R in present-day barred spiral galaxies is ≈3, whereas observations
show ≈1. By considering galaxies as having a lognormal distribution
ofRwith some intrinsic dispersion, we show that the observationally
inferred parameters differ from EAGLE at 7.96σ significance (Sec-
tion 4.6). If confirmed in other suites of simulations (e.g. Peschken
& Łokas 2019), this very serious discrepancy would rule out the
�CDM paradigm as currently understood.

(ii) The discrepancy could probably be alleviated by any of our
explored extended gravity models without CDM (Fig. 20). This is due
to there being no effective dynamical friction in such models, causing
the bar angular speed to remain constant with time. In the DM model,
dynamical friction between halo particles and the bar (Fig. 12) causes
the pattern speed to undergo a clear decline with time (Fig. 17), even
if the disc is initialized with a higher Toomre parameter (Section 5.4).
But in extended gravity, there is no mechanism to remove angular
momentum from the disc. This fact is directly responsible for the fast
bars in all studied extended gravity models, including those which
use a different disc surface density profile to the exponential law used
here (Ghafourian et al. 2020).

(iii) The bar growth rate is higher in MOND and NLG compared
to the DM model, so the bar instability happens much earlier. Con-
sequently, one may conclude that discs are globally more unstable
in these theories. This is well understood analytically in the case of
MOND (Milgrom 1989; Banik et al. 2018b), and is related to the
phantom DM disc (Fig. 3).

(iv) All extended gravity models predict weaker bars at the end of
the simulations, though the bar spends a short time in the strong bar
regime. Strong bars are frequently seen in real spiral galaxies (e.g.
Laurikainen & Salo 2002; Garcia-Gómez et al. 2017). Therefore, this
result may be a problem for extended gravity. However, encounters
with other galaxies and more realistic simulations including gas
accretion in a cosmological context are required to reach a reliable
decision on the viability of extended gravity models (Section 5.5).
This work is currently under way for MOND (Wittenburg et al., in
preparation).

(v) The buckling instability happens earlier in the MOND model.
Furthermore, all extended gravity models predict a smaller thickness
for the inner parts of galactic discs compared to the DM case, though
this is only marginally true for MOND (Fig. 16). It seems that
resonances in the vertical direction happen more violently in the
presence of a DM halo, even if they take longer to develop. This is
related to disc–halo angular momentum exchange (Fig. 12) and the
fact that disc self-gravity is very weak in �CDM compared to models

with a completely self-gravitating disc. These differences are related
to the weaker peanuts in extended gravity models, which may well
lead to the weaker bars we obtain – stronger peanuts seem to appear
in the presence of stronger bars (Martinez-Valpuesta & Athanassoula
2008). This means that the properties of the effective phantom DM
halo in these models are significantly different from the DM model
(Section 2.4), leading to a different velocity dispersion at large radii.
One consequence of stronger self-gravity is a thinner disc at fixed σ z,
or equivalently larger σ z at fixed thickness. Observational evidence
for the latter was found by Das et al. (2020). We also mention that
only NLG has strong flaring in the outskirts in the more reliable 5
million particle models.

(vi) Galactic discs in extended gravity evolve to a larger radius
than discs in the DM model initialized with the same baryonic content
(Section 4.2). Combined with the above-mentioned findings, it seems
that extended gravity models predict different morphologies for spiral
galaxies. Future cosmological simulations in extended gravity should
prove this claim.

(vii) Extended gravity models host more density waves propagat-
ing on the disc surface, especially in MOND (Fig. 14).

Another important point is that bars sometimes appear to be
ultrafast. Indeed, Guo et al. (2019) found some cases with ultrafast
bars, suggesting this may be consistent with observations. However,
it is not expected theoretically (Contopoulos 1980). Following Hilmi
et al. (2020), we found that apparently ultrafast bars arise due to
bar-spiral arm alignment causing an overestimation of the bar length
(Section 5.3). We addressed this issue by focusing on minima in the
derived bar length, which undergoes short-term oscillations as the
bar moves into and out of alignment with the spiral arms (Fig. 23).
This showed that our MOND model stays in the fast bar regime until
the end of the simulation, and is not really ultrafast (Fig. 22).

Bar length oscillations due to the existence of different density
waves should also affect real observations. In other words, ultrafast
bars reported in the literature may not really be ultrafast (Hilmi et al.
2020). However, since the observational sample with reliable R
measurements is already small, it would be very difficult to consider
only those galaxies which are at a minimum in their bar length.
Thus, we do not apply this procedure in our statistical comparison,
which for consistency uses all time-steps where R can be reliably
determined (Section 4.6). Fig. 24 shows that our results would not
be much affected by restricting to only those time-steps where Rb is
at a local minimum in time, but the corresponding adjustment on the
observational side is very unclear.

For a direct comparison with real galaxies, the simulations should
include more baryonic physics and feedback. Important progress in
this direction was recently achieved by the M33 model of Banik et al.
(2020) and by Wittenburg et al. (2020), who simulated exponential
disc galaxies forming out of a collapsing gas cloud in MOND.
These isolated simulations are currently being extended to include
the cosmological context based on a plausible MOND cosmology
(Angus 2009; Haslbauer et al. 2020).

As our final remark in this paper, let us reiterate that there are
serious differences in the evolution of galactic discs with the same
baryonic content and rotation curve depending on whether they are
held together partly by DM particles or the detectable baryons alone
in extended gravity. These deviations may help us to discriminate
between DM and extended gravity theories. As far as theR parameter
is concerned, our results suggest a strong preference for the latter –
the EAGLE cosmological simulation in the �CDM context is in
8σ disagreement with observations (see also Algorry et al. 2017;
Peschken & Łokas 2019), while models where galaxies lack DM
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seem to fare much better due to the lack of dynamical friction on the
bar (Fig. 20). However, the absence of strong bars in our extended
gravity models is not a satisfactory feature, an aspect which is better
reproduced in our low-resolution LPH model (though see Sellwood
et al. 2019; Banik et al. 2020). This could be due to the idealized
nature of our simulations, which lack processes like gas accretion and
galaxy interactions that work to strengthen bars (Section 5.5). For
the high-resolution LPH model, the strong bar appears at t > 4 Gyr.
To better assess which model is more consistent with observations,
all the above-mentioned results in our extended gravity models
should be carefully recovered in realistic galactic hydrodynamical
simulations in a CDM-free context, and then compared with relevant
observations. In addition, the EAGLE simulations are not the only
realizations of the �CDM paradigm, so the bar statistics should be
carefully investigated in other suites of simulations (e.g. at least one
very fast bar formed in the simulation of Hilmi et al. 2020). The
Illustris suite (Vogelsberger et al. 2014) would be well suited to this,
with existing results suggesting that bars are slow here too (Peschken
& Łokas 2019). If these results continue to hold and it turns out that
the �CDM paradigm must be replaced, then we must also bear other
constraints in mind when deciding what the replacement should be
(Section 5.6). Such considerations must be done in an open-minded
manner befitting the quest for the fundamental laws governing our
Universe.
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A132
Garma-Oehmichen L., Cano-Dı́az M., Hernández-Toledo H., Aquino-Ortı́z

E., Valenzuela O., Aguerri J. A. L., Sánchez S. F., Merrifield M., 2020,
MNRAS, 491, 3655

Gentile G., Famaey B., de Blok W. J. G., 2011, A&A, 527, A76
Ghafourian N., Roshan M., 2017, MNRAS, 468, 4450
Ghafourian N., Roshan M., Abbassi S., 2020, ApJ, 895, 13
Ghari A., Famaey B., Laporte C., Haghi H., 2019, A&A, 623, A123
Grand R. J. J. et al., 2017, MNRAS, 467, 179
Green M. A., Moffat J. W., 2019, Phys. Dark Universe, 25, 100323
Guo R., Mao S., Athanassoula E., Li H., Ge J., Long R. J., Merrifield M.,

Masters K., 2019, MNRAS, 482, 1733
Haghi H., Amiri V., Hasani Zonoozi A., Banik I., Kroupa P., Haslbauer M.,

2019, ApJ, 884, L25
Hart R. E., Bamford S. P., Casteels K. R. V., Kruk S. J., Lintott C. J., Masters

K. L., 2017, MNRAS, 468, 1850
Haslbauer M., Dabringhausen J., Kroupa P., Javanmardi B., Banik I., 2019,

A&A, 626, A47
Haslbauer M., Banik I., Kroupa P., 2020, MNRAS, 499, 2845
Hehl F. W., Mashhoon B., 2009a, Phys. Rev. D, 79, 064028
Hehl F. W., Mashhoon B., 2009b, Phys. Lett. B, 673, 279
Hilmi T. et al., 2020, MNRAS, 497, 933
Hockney R. W., Hohl F., 1969, AJ, 74, 1102
Hodson A. O., Zhao H., Khoury J., Famaey B., 2017, A&A, 607, A108
Hohl F., 1971, ApJ, 168, 343
Hoof S., Geringer-Sameth A., Trotta R., 2020, J. Cosmol. Astropart. Phys.,

2, 012
Hopkins P. F. et al., 2018, MNRAS, 480, 800
Hossenfelder S., Mistele T., 2020, MNRAS, 498, 3484
Hui L., Ostriker J. P., Tremaine S., Witten E., 2017, Phys. Rev. D, 95, 043541
Ibata R. A. et al., 2013, Nature, 493, 62
Jamali S., Roshan M., Amendola L., 2018, J. Cosmol. Astropart. Phys., 2018,

048
Jamali S., Roshan M., Amendola L., 2020, Phys. Lett. B, 802, 135238
Jones-Smith K., Abraham R., Kell L., Mathur H., 2018, New J. Phys., 20,

063042
Kahn F. D., Woltjer L., 1959, ApJ, 130, 705
Katz H., McGaugh S., Teuben P., Angus G. W., 2013, ApJ, 772, 10
Keenan R. C., Barger A. J., Cowie L. L., 2013, ApJ, 775, 62
Klypin A., Valenzuela O., Colı́n P., Quinn T., 2009, MNRAS, 398, 1027
Knox R. A., Hawkins M. R. S., Hambly N. C., 1999, MNRAS, 306, 736
Kormendy J., Drory N., Bender R., Cornell M. E., 2010, ApJ, 723, 54
Kroupa P., Theis C., Boily C. M., 2005, A&A, 431, 517
Kroupa P. et al., 2010, A&A, 523, A32
Kroupa P. et al., 2018, Nat. Astron., 2, 925
Laurikainen E., Salo H., 2002, MNRAS, 337, 1118
Lelli F., McGaugh S. S., Schombert J. M., 2016, AJ, 152, 157
Lelli F., McGaugh S. S., Schombert J. M., Pawlowski M. S., 2017, ApJ, 836,

152
Lelli F., McGaugh S. S., Schombert J. M., Desmond H., Katz H., 2019,

MNRAS, 484, 3267
Leroy A. K., Walter F., Brinks E., Bigiel F., de Blok W. J. G., Madore B.,

Thornley M. D., 2008, AJ, 136, 2782
Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511
Li P., Lelli F., McGaugh S., Schombert J., 2018, A&A, 615, A3
Lin C. C., Shu F. H., 1964, ApJ, 140, 646
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