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1. Introduction 8 

Gross domestic product (GDP) has increased ten-fold in China during the last two decades, quality of 9 

life for most of the Chinese population has greatly improved, and their life expectancy has substantially 10 

increased as well (Ebenstein et al., 2015). However, the environmental effects of economic 11 

development have been a concern to the government and the public (Zhang et al., 2010). Industrial 12 

manufacturing is a major source of pollutants, contributing to harmful materials in air, water, soil and 13 

food. Among these, air pollution (AP) has attracted a great deal of attention, as most Chinese cities 14 

experience air pollution levels above national air quality standards (Wang et al., 2014). The association 15 

between AP and poor health is well established. Specifically, studies have found a strong association 16 

between exposure to air pollution and reduced life expectancy (Ebenstein et al., 2015), higher levels of 17 

respiratory mortality (Richardson et al., 2011), chronic diseases such as chronic obstructive pulmonary 18 

disease (COPD) (Liu et al., 2018; Wang et al., 2018), mental health (Signoretta et al., 2019; Zhong et 19 

al., 2017), cognitive health (Zhang et al., 2018), functional health (Sun and Gu, 2008), and self-rated 20 

health (Charafeddine and Boden, 2008).  21 

Alongside rising pollution levels, the population of China is ageing rapidly. Projections from the United 22 

Nations predict that the proportion of Chinese elderly people aged 65 years and over will more than 23 

double in the next 30 years, increasing from 12% in 2020 to 27% of the total population in 2050 (Fang 24 

et al., 2015; United Nations, 2019). The proportion of the oldest old (those over 80 years) in the Chinese 25 
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population is projected to quadruple by 2050 (United Nations, 2019). Along with extended lifespan 26 

typically comes an expansion of physical and cognitive disability (Zeng et al., 2017). As elsewhere, 27 

among the elderly population in China there is a high prevalence of co-morbid chronic diseases and 28 

multimorbidity (Gu et al., 2017; Lei et al., 2014). Therefore, an adequate assessment of elderly health 29 

must go beyond the single-disease model and take account of multiple co-morbid conditions.  30 

Studies focussing on the Chinese elderly population largely confirm the links found between AP and 31 

health, demonstrating a link between AP and individual chronic diseases, such as COPD (Wang et al., 32 

2018), heart diseases (Bai et al., 2019), diabetes (C. Liu et al., 2016) and cardiovascular diseases (CVD) 33 

factors like hypertension (Liu et al., 2017; Yang et al., 2018). Therefore, it seems likely that air pollution 34 

influences elderly health through multiple disease pathways. In this study, we focus on frailty as a multi-35 

dimensional measure of increased health vulnerability in the elderly population (Fried et al., 2001; 36 

Walston et al., 2006). A recent meta-analysis across 13 cohorts suggested that increased frailty is 37 

strongly associated with increased mortality (Kojima et al., 2018). Compared with younger adults, the 38 

elderly are expected to be more vulnerable to air pollution due to their increased levels of frailty 39 

(Fougère et al., 2015), in part because exposure to air pollution will exacerbate existing frailty through 40 

many disease mechanisms. There have, however, been only a limited number of studies on air pollution 41 

and frailty in elderly populations (García-Esquinas and Rodríguez-Artalejo, 2017). One study has 42 

demonstrated that increased air pollution was associated with increased frailty incidence after 43 

myocardial infarction (MI) (Myers et al., 2013), and others suggest that frailty moderates associations 44 

between air pollution and lung function (Eckel et al., 2012) and adverse events after MI (Gerber et al., 45 

2014). 46 

The overall aim of this study is to investigate the contribution of long- and short-term exposure to AP 47 

on frailty incidence among the elderly in China. We advance previous studies in a number of ways. 48 

First, to our knowledge this is the first study of the relationship between AP and frailty (a multi-49 

dimensional health indicator) in the elderly population, whose need for social and medical care leads to 50 

important policy implications. Second, we use longitudinal data on frailty, linked to longitudinal 51 

information on air pollution, to understand the association between air pollution and changes in frailty 52 
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over time. Third, we make use of this longitudinal data to distinguish the impact of long-term exposure 53 

to AP from short-term fluctuations. This may be important as short-term fluctuations can impact 54 

different disease pathways (Xiao et al., 2016). Finally, this study contributes to the literature by 55 

exploring potential heterogeneities by age, sex, socioeconomic status, interview time, and regional 56 

factors such as GDP per capita.  57 

2. Methods  58 

2.1 Study population 59 

The data used in this study are from the 6th and 7th waves (2011 and 2014) of the Chinese Longitudinal 60 

Healthy Longevity Survey (CLHLS 2011 & 2014). CLHLS started in 1998 and although initially 61 

sampled older adults aged 85+, this was expanded to those aged 65+ from 2002. The survey collects 62 

personal and family information, self-reports of functional health, lifestyle, diet, psychological health 63 

and home care, as well as measures of cognitive health (according to a set of tests about memory, 64 

calculation, recall and language). To allow purposive over-sampling of the older population, the 65 

strategy of CLHLS is to randomly select some residential areas and then to interview some centenarians 66 

(aged over 100) who are living in those areas. The second step is to interview randomly a nonagenarian 67 

(aged over 90), an octogenarian (aged over 80) and a respondent aged 65-79, whose residential 68 

addresses are close to the centenarians’ home. This strategy can ensure that the proportion of 69 

centenarians is similar to respondents who are aged over 80 or 90. 70 

In 2011, the full CLHLS sample size was 9,765. Between 2011 and 2014, 3,699 respondents (37.9%) 71 

attrited due to death (29.5%) or non-specified reasons (8.4%). In 2014, the CLHLS added a refreshment 72 

sample of 1,126 new respondents (making the 2014 sample N=7,192). In the longitudinal data 2011-73 

2014, restricting the sample to individuals living in cities with AP monitoring stations results in a 74 

sample of 7,986 respondents (11,620 observations), living in 123 cities. Missingness on the frailty 75 

indicators reduces the number of respondents to 6,943 (9,749 observations). We use listwise deletion 76 

for missingness on other predictors (career is missing 4% and all other predictors are less than 1% 77 

missing). This leaves 6,570 individuals (9,132 observations) from 123 cities in our longitudinal analysis 78 
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and sample of 4,284 from 117 cities in our cross-sectional analysis (only 2014). In the sensitivity 79 

analysis where we use geographically weighted regression (GWR) to predict air pollution data, the 80 

analytical sample is 8,644 respondents (12,743 observations), living in 174 cities. 81 

Note that we made corrections to approximately 5% of sample by amending inconsistent reports of 82 

gender, education and pre-retirement careers by drawing on data from earlier waves of the survey. All 83 

results in the main body of this study are based on the complete case analysis, and GWR data is used to 84 

conduct sensitivity analysis in the Supplementary material Table S8/12/13. 85 

2.2 Frailty index  86 

To capture an individual’s cumulative health deficits most studies calculate the frailty index by a 87 

standard comprehensive geriatric assessment (Cesari et al., 2014; Jones et al., 2004). Following the 88 

established studies, Gu et al (2009) defined a frailty index using 39 indicators of various dimensions of 89 

self-reported health status, cognitive functioning, disability, hearing and visual ability, depression, heart 90 

rhythm, and numerous chronic diseases that were collected in the 2002 CLHLS. They validated the 91 

measure, demonstrating strong associations with subsequent 3-year mortality (Gu et al., 2009). Based 92 

on this research, we constructed the frailty index as an unweighted count of the number of deficits. We 93 

excluded 2 of the 39 original indicators (bedsores and duodenal ulcer) because they are missing over 94 

10% in CLHLS 2011 and 2014, had low prevalence of “yes”, and high prevalence of reports of 95 

“unknown”. We also exclude interviewer-rated health, as its answers may be biased by the researcher 96 

effect. Nevertheless, Gu et al (2009) suggested that so long as a reasonable number of indicators from 97 

each dimension are included, the index will be robust. There are 36 components of the frailty index 98 

including limitations in activities daily living (ADL), limitations in instrumental activities daily living 99 

(IADL), functional limitations, cognitive health, self-rated health, hearing, vision, heart rhythm, 100 

psychological disorders, number of serious illnesses in the past two years and multiple chronic diseases 101 

(hypertension, diabetes, tuberculosis, heart diseases, stroke, bronchitis/asthma, cancer, arthritis and 102 

Parkinson’s disease). In the CLHLS, cognitive functioning was measured by a Chinese version of the 103 

Mini-Mental State Examination (MMSE) with a total score of 30, and respondents with a score of 23 104 
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or lower were considered as cognitively impaired in this paper (Yang and Gu, 2016). All of the 105 

components are listed in Supplementary Table S2. Each indicator is recorded as binary except the 106 

number of serious illnesses in the past two years (which contains 0 for no illness, 1 for one illness and 107 

2 for two or more illnesses), self-reported whether the respondent ever had a diagnosis. The frailty index 108 

then sums the 36 indicators listed above and consequently ranges from 0 to 37. 109 

2.3 Air Quality Index (AQI) 110 

This study uses air quality data from the Ministry of Ecology and Environment of China provided for 111 

each city for each day for the period from 1st January 2000 to 31st December 2014. The measure of air 112 

pollution is the air quality index (AQI), which is calculated based on hourly readings of a set of air 113 

pollutants (PM2.5, PM10, SO2, NO2, O3, CO). Higher values of AQI mean more polluted air. AQI is 114 

a standardised indicator for air pollution, which has been reported as the local air quality evaluation in 115 

21 nations (Cochran et al., 1992). The association of AQI with the public health burden is used to 116 

quantify the negative impacts attributable to air pollution (Stieb et al., 2005), and the validity of using 117 

the AQI to assess health impacts of air pollution has been established (Li et al., 2015). We chose AQI 118 

as the indicator for air pollution as ambient air consists of an amalgamation of  numerous gaseous or 119 

solid substances, which prevents isolation of the health effects of individual pollutants (Fougère et al., 120 

2015). The Ministry of Ecology and Environment of China provides more AQI values than other air 121 

pollutants records before 2013, although there are still missing values for AQI. In this study, if AQI is 122 

missing, but the records of air pollutants (which are the components of AQI) are available (accounting 123 

for 5% of daily records), we computed it using a method provided by Ministry of Ecology and 124 

Environment of China (2012). This computation of AQI is a piecewise linear function of the pollutant 125 

concentration, using single air pollutants to calculate the individual air quality index (IAQI). 126 

𝑰𝑨𝑸𝑰𝒑 =
𝐼𝐴𝑄𝐼"# −	𝐼𝐴𝑄𝐼$%
𝐵𝑃"# −	𝐵𝑃$%

,𝐶& −	𝐵𝑃$%. + 𝐼𝐴𝑄𝐼$%	, (1) 
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where IAQIP is the individual air quality index of the pollutant of P; Cp is the pollutant concentration; 127 

BPHi is the concentration cut-point over Cp; BPLo is the concentration cut-point below Cp; IAQIHi is the 128 

index cut-point corresponding to BPHi; IAQILo is the index cut-point corresponding to BPLo. 129 

𝐴𝑄𝐼 = max 	{𝐼𝐴𝑄𝐼', 	𝐼𝐴𝑄𝐼(, 𝐼𝐴𝑄𝐼), … , 𝐼𝐴𝑄𝐼*} (2) 

We take the value of AQI as the highest value in the list of calculated IAQIs from different pollutants. 130 

AQI data is available hourly. For each city, we use the daily average AQI.  131 

This study follows the bulk of the research in  defining long-term exposure as more than one-year of 132 

exposure (R. Liu et al., 2016; Ma et al., 2016). However, this operationalisation is not unique, and we 133 

also analysed longer periods of exposure (2-year and 3-year) in the Supplementary material (cross-134 

sectional analysis in Table S4 and S5, longitudinal analysis in Table S9 and S10) to test the robustness 135 

of the estimates.  136 

Note that the CLHLS does not provide the exact names of cities but it provides some community 137 

information, like population size, administrative area, and GDP. The community information provided 138 

in the CLHLS can be used to identify the city of residence in the CLHLS dataset via cross-referencing 139 

to Tabulation in the 2010 Population Census of China by County (National Bureau of Statistics of China, 140 

2010). Specifically, we used the population size of a county/district in 2010 to match it to county/district 141 

names, as population size is unique for each county/district; these match perfectly. It is then a simple 142 

step to locate the city of residence when county/district names are clear, because the county/district is 143 

the secondary administrative area within the city in China. After matching, we inserted the cities names 144 

into our dataset and then use these names to link the CHLHS dataset to the AQI data.  145 

Due to the limited number of air quality monitoring stations before 2013 in China, over 30% of CLHLS 146 

cities was missing air pollution data (details in the Supplementary material Table S3). Therefore, spatial 147 

interpolation for AQI is necessary for this study as a sensitivity analysis. This study used the GWR to 148 

interpolate the missing AQI data, which can include more information compared with the traditional 149 

interpolation method. GWR characterized the distribution of daily AQI well with the cross-validation 150 

(R2) of 1235.13 (0.379), compared with R2 (0.249) in global regression (details in Supplementary 151 
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material Table S1). We also examined the residuals from the GWR (comparing actual and predicted 152 

values), by plotting these on a histogram and Q-Q plot, which are normally distributed shown in the 153 

Supplementary material Figure S1. 154 

2.4 Z-score of AQI 155 

There is some research suggesting that some the components of our frailty index are related to long-156 

term air pollution exposure (Ranft et al., 2009), while other components are related to both long-term 157 

and short-term exposure (Brunekreef and Holgate, 2002; Dauchet et al., 2018). For example, the 158 

associations between exposure to air pollution and ADLs, IADLs, and cognitive impairment, which 159 

stem from the degeneration of biological functions,  have been examined (Kampa and Castanas, 2008). 160 

Results suggest cumulative exposure has a more significant effect (Brunekreef and Holgate, 2002). 161 

However, short-term exposure to air pollution can lead to some chronic diseases (e.g., bronchitis, stroke) 162 

because air pollutants can lead to acute inflammatory responses induced in the respiratory, 163 

cardiovascular and blood circulation system (Brunekreef and Holgate, 2002; Scheers et al., 2018). 164 

Therefore, this is another reason for adjusting the short-term exposure in our models.  165 

However, the literature is inconsistent in terms of defining short-term exposure. Daily exposure is 166 

mostly measured as the short-term exposure but there is little evidence showing that daily exposure 167 

effectively captures short-term exposure effects. Thus, this study calculated averages of AQI over a day, 168 

week, month and quarter to account for shorter-term exposure and weekly z-score is the main short-169 

term fluctuation in our analysis as it has been found that there is an association between weekly 170 

exposure to air pollution and human health (Karakatsani et al., 2017). We use the z-score to capture 171 

short-term exposure calculated as: 172 

𝑧_𝑠𝑐𝑜𝑟𝑒 =
𝑀𝑒𝑎𝑛+,%-. −𝑀𝑒𝑎𝑛/%*0

𝑆𝐷/%*0
 (3) 

Note that the z-score is a relative indicator capturing the relative deviation of the short-term average 173 

from the long-term background level. Compared with a similar study that used absolute values of short- 174 

and long-term exposure to air pollution simultaneously (Zhang et al., 2018), using the z-score for this 175 

study is to decrease the collinearity between them and is beneficial to take into consideration the 176 
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interactive effects. For example, we hypothesize that a spike in air pollution from a higher level of long-177 

term exposure may have different health effects than the same spike (in absolute terms) from a lower 178 

level of exposure. Also, the z-score including the variation of long-term AQI can capture the exposure 179 

to air pollution better. 180 

In measuring short- and long-term exposure to air pollution, we used the interview date as the end of 181 

duration of exposure and then calculate the mean of AQI for the respective period prior to the interview 182 

date: one week (7 days), one month (30 days), one quarter (90 days), previous one year (365 days), 183 

previous two year (730 days), previous three year (1,095 days) for this study. The advantage of this 184 

measure is that it can capture the comparable value for exposure to air pollution. As the interview dates 185 

for respondents are different, the exposure window is respondent-specific and dynamic. Figure 1 uses 186 

the 1-year exposure to show how the measure works for three exemplary respondents A, B and C. 187 

 188 

 189 

 190 

 191 

 192 

Fig. 1. Hypothetical example of how 1-year exposure to air pollution is calculated 193 

2.5 AQI category  194 

In order to distinguish the long-term effects and short-term effects of exposure clearly, in some models 195 

the long-term AQI measurements are adjusted for short-term exposures. As for long-term exposure, 196 

there are four categories of AQI according to national air quality standards. Considering the cumulative 197 

effects of air pollution on health, the concentration cut-point or threshold, of China’s AQI is set at the 198 

National Ambient Air Quality Standards (NAAQS) (Ruggieri and Plaia, 2012). The standardising 199 

transformation separates the AQI into five categories: good (0 - 50), moderate (51 - 100), unhealthy 200 

(101 - 150), very unhealthy (151 - 200) and hazardous (200+ ). Different from the NAAQS’s standard, 201 

the AQI category in this study is adjusted into four groups because its distribution is skewed, and there 202 

…
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Note: A, B, and C mean three respondents interviewed at different dates. 
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are few respondents living in the most polluted area. The detailed index value of categories is shown in 203 

Table 1 below. 204 

Table 1 Sub-index of the Air Quality Index (AQI) in China 205 

AQI categories AQI 1 
Good  

AQI 2 
Moderate 

AQI 3 
Unhealthy 

AQI 4 
Very unhealthy 

Index value 0-50 51-75 76-100 101- 
 206 

2.6 Change in AQI variable  207 

We also generated a new variable at the city level for change or stability of AQI category between 208 

waves. For example, based on the AQI categories above, if one respondent resided in a city with AQI 209 

1 in 2011 but that city had AQI 2 level in 2014, the change of AQI is categorized as ‘AQI 1-2’; however, 210 

if a respondent was recorded as living in a city with AQI 1 in both waves, the change of AQI is 211 

categorized as ‘AQI 1-1’. In the data we analysed, we find that all of cities with AQI 1 in 2011 remain 212 

the AQI 1 in 2014; for the cities with AQI 2 in 2011, 21.55% cities remain AQI 2, but 66.17% cities 213 

experience AQI 3 and 12.28% cities are with AQI 4 in 2014. However, most cities with AQI 3 in 2011 214 

record AQI 4 (84.37%) in 2014, while 10.66% cities remain, and 4.97% cities move down to AQI 2.  215 

2.7 Additional covariates  216 

We also include a set of control variables that may confound or explain the association between air 217 

pollution and later-life health. First, the demographic variables include sex, age and age squared (as 218 

continuous measures). Marital status comprises three categories: married and living with their spouse, 219 

widowed and single (including separate, never married and divorced respondents). The second set of 220 

covariates capture socioeconomic status: education, self-rated economic status and pre-retirement 221 

career. The education variable in CLHLS is recorded by years of education; however, as more than 50% 222 

of respondents are without schooling experience, the education variable is divided into two categories: 223 

no schooling or some education. Self-rated economic status was collected using the question “How do 224 

you rate your economic status compared with others in your local area?” as a 5-point scale (very rich, 225 

rich, so so, poor, very poor). Due to small variation of this variable, we combine rich and very rich to 226 
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“rich” and poor and very poor into “poor,” thus self-rated economic status has three categories: rich, 227 

median and poor. Pre-retirement career is based on self-reports of primary job and includes two 228 

categories: white collar (including industrial, governmental, commercial and military personnel) and 229 

blue collar (including self-rated employed and agricultural personnel, houseworkers and people who 230 

never had paid employment). Some area-level confounding factors are also included: natural logarithm 231 

of population density, natural logarithm of GDP per capita, both of which are based on the annual city-232 

level information. 233 

2.8 Statistical Models 234 

To estimate the effects of air pollution on health, we test the association between AQI values and 235 

incidence rate of frailty. We start with the cross-sectional analysis using the CLHLS 2014, as this one 236 

wave provides more observations linked with AQI data. This allows us to explore the associations of 237 

exposure to air pollution with frailty with less missing data. As frailty is a count variable, we use 238 

multilevel random-intercept Poisson regression models. Individuals are nested within cities, and the air 239 

pollution data, population density, and GDP per capita are city-level predictors. We next conduct a 240 

three-level longitudinal analysis based on both CLHLS 2011 and 2014, where person-waves are nested 241 

in persons, which are nested in cities. The benefit of the longitudinal analysis is that it reduces 242 

confounding from unobserved heterogeneity at both the city and individual level.  243 

Additionally, to assess whether change in AP between 2011 and 2014 was associated with frailty change 244 

between 2011 and 2014, we also fitted another set of random-effects models with Poisson distribution, 245 

which we fitted on a balanced dataset where everyone took part in both waves. No one in our data had 246 

moved cities between 2011 and 2014. We generated a new variable at the city level for change or 247 

stability of AQI category between waves. We fitted the random-effects model using this ‘change in 248 

AQI’ variable instead of the main AQI variable, including all of the same covariates, and including a 249 

time fixed effect (see Table 5). 250 
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3. Results  251 

Descriptive statistics for the 4,746 CLHLS sample respondents in 2011 and 4,284 in 2014 are presented 252 

in Table 2. This shows that there are some differences in the sample characteristics between the two 253 

waves of CLHLS. As could be expected with an ageing sample, the frailty score goes up between 2011 254 

and 2014, while the proportions male, educated and blue-collar respondents are relatively stable. The 255 

proportion of cities recording ‘unhealthy’ and ‘very unhealthy’ AQI scores increased over time.  256 

Table 2 Sample characteristics for analysis sample created from CLHLS, Ministry of Ecology and 257 

Environment of China, and Yearbooks 2011 & 2014 258 

 2011 2014 
 Mean ± SD N (%) Mean ± SD N (%) 
Individual Level     
Variables from CLHLS     
Frailty Score 7.43 ± 5.54  7.22 ± 5.60  
Sex (%)     
Male  2,214 (45.65)  2,024 (47.25) 
Female  2,532 (54.35)  2,260 (52.75) 
Age     
65-74  1,040 (21.91)  737 (17.20) 
75-84  1,321 (27.83)  1,469 (34.29) 
85-94  1,372 (28.91)  1,256 (29.32) 
95-104  1,013 (21.34)  822 (19.19) 
Education (%)     
Educated  2,541 (53.54)  2,335 (54.51) 
No schooling  2,205 (46.46)  1,949 (45.49) 
Pre-retirement career (%)     
White-collar  1,223 (25.77)  877 (20.47) 
Blue-collar  3,523 (74.23)  3,407 (79.53) 
Marital status (%)     
Married  1,889 (39.80)  1,712 (39.96) 
Single  131 (2.76)  116 (2.71) 
Widowed  3,153 (57.44)  2,456 (57.33) 
Self-rated economic position (%)     
Rich/Very-rich  869 (18.31)  725 (16.92) 
Median  3,271 (68.92)  3,113 (72.67) 
Poor/Very poor  606 (12.77)  446 (10.41) 
Total N  4,746   4,284 
     
City Level     
Variables from MEE     
AQI (1-year mean) (%)     
Good (AQI = 1)  204 (4.30)  479 (11.18) 
Moderate (AQI = 2)  3,743 (78.87)  1,011 (23.60) 
Unhealthy (AQI = 3)  799 (16.84)  1,999 (46.66) 
Very unhealthy (AQI = 4)  -  795 (18.56) 
AQI Z-score (1-year)     
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Daily Z-score -0.40 ± 0.66   -0.06 ± 0.65  
Weekly Z-score -0.41 ± 0.44   -0.08 ± 0.47  
Monthly Z-score -0.41 ± 0.33   -0.04 ± 0.29  
Quarterly Z-score -0.25 ± 0.32   0.09 ± 0.25  
Variables from Yearbooks     
Logarithm of GDP 10.87 ± 0.41   10.97 ± 0.52  
Logarithm of population density 6.39 ± 0.51   6.32 ± 0.54  
Number of cities  77   117 
Note: Variables in CLHLS are individual level; variables from Ministry of Ecology and Environment of China, and 
variables from yearbooks are city-level. 
 

The results from the cross-sectional analysis are shown in Table 3 (in the Supplementary material Table 259 

S6 shows more results from different combinations between long-term exposure and z-score). Model 1 260 

includes all the covariates and the 1-year AQI exposure mean as the long-term measure. Model 2 adds 261 

the weekly z-score to adjust for short-term AQI exposure. Model 3 includes an interaction term between 262 

long- and short-term exposure. Overall, the results suggest that long-term AQI exposure is more 263 

significantly associated with frailty than short-term weekly exposures. The results from Model 1 show 264 

that, compared with those exposed to the AQI 1 (good air quality), the estimated effect of exposure to 265 

AQI 4 (very unhealthy air quality) is to increase the incidence rate, and therefore the expected score of 266 

frailty index in a year period, by about 12.6% higher, a result significant at the 10% level. In addition, 267 

Model 1 also shows that each extra year of age is associated with an estimated 3.9% increase in the 268 

incidence rate and the incidence-rate ratio for a 10-year increase in age is estimated as 1.03910 = 1.466, 269 

corresponding to a 46.6% increase in the score of frailty index, holding other covariates constant. The 270 

estimates also suggest that having some education vs. none is associated with reduced incidence rate 271 

(over 5%) and that the frailty incidence rate increases by 23.7% for females relative to males, controlling 272 

for the other variables. Similarly, the estimates of self-rated reported economic status show the higher 273 

incidence rate of frailty among those with lower economic status. For example, frailty incidence rate 274 

increases by 41.4% for respondents with poor self-rated economic status, compared with rich 275 

respondents. However, compared with respondents who held blue-collar jobs before retirement, those 276 

who had white-collar jobs have higher incident rate, 1.235 (95% CI: 1.196, 1.276), of being frail. We 277 

tested whether the impact of air pollution varied by socio-economic status by including interaction 278 

terms between sociodemographic factors and exposure to air pollution (results show in the 279 

Supplementary material Table S7) but there are no significant effects. 280 
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Table 3 Incidence rate ratio (95% Confidence Intervals) and random-effect parameters of cross-sectional 281 

impact of 1-year and weekly exposure to air pollution on frailty among Chinese elderly, CLHLS 2014 282 

 Model 1 Model 2 Model 3 
VARIABLES Long-term Model 1 + short-term Model 2 + Long- # short-

term 
Long-term (1-year) (ref: AQI 1(good))   
AQI 2 (Moderate) 1.109* 1.113* 1.130** 
 (1.012 - 1.215) (1.015 - 1.219) (1.032 - 1.237) 
AQI 3 (Unhealthy) 1.052 1.071 1.104# 
 (0.943 - 1.175) (0.960 - 1.196) (0.991 - 1.231) 
AQI 4 (Very unhealthy) 1.126# 1.140* 1.144* 
 (0.991 - 1.279) (1.004 - 1.295) (1.011 - 1.295) 
Short-term    
z-score (Weekly)  1.040* 0.947 
  (1.006 - 1.076) (0.882 - 1.018) 
Interaction terms (ref: weekly z-score # AQI 1)  
Weekly z-score # AQI 2   1.283*** 
   (1.160 - 1.418) 
Weekly z-score # AQI 3   1.114* 
   (1.020 - 1.216) 
Weekly z-score # AQI 4    0.962 
   (0.859 - 1.077) 
Female (ref: Male) 1.146*** 1.147*** 1.146*** 
 (1.114 - 1.178) (1.115 - 1.179) (1.115 - 1.179) 
Age 1.039*** 1.038*** 1.036*** 
 (1.020 - 1.058) (1.020 - 1.057) (1.017 - 1.055) 
Age # Age 1.000 1.000 1.000 
 (1.000 - 1.000) (1.000 - 1.000) (1.000 - 1.000) 
Educated 0.935*** 0.935*** 0.933*** 
(ref: no schooling) (0.907 - 0.963) (0.908 - 0.963) (0.906 - 0.961) 
Career 1.235*** 1.234*** 1.234*** 
(ref: Blue-collar) (1.196 - 1.276) (1.194 - 1.274) (1.195 - 1.275) 
Self-rated economic (ref: Rich)   
Median 1.076*** 1.077*** 1.078*** 
 (1.042 - 1.111) (1.043 - 1.112) (1.044 - 1.113) 
Poor 1.411*** 1.412*** 1.414*** 
 (1.351 - 1.474) (1.352 - 1.475) (1.354 - 1.477) 
Marriage (ref: Married)    
Single  1.071# 1.069# 1.068# 
 (0.991 - 1.156) (0.990 - 1.154) (0.989 - 1.153) 
Widowed 1.024 1.022 1.020 
 (0.994 - 1.055) (0.992 - 1.053) (0.990 - 1.051) 
Logarithm of GDP 1.037 1.033 1.017 
 (0.954 - 1.128) (0.951 - 1.123) (0.939 - 1.102) 
Logarithm of 0.997 1.004 0.994 
Population density (0.922 - 1.077) (0.930 - 1.085) (0.923 - 1.071) 
Constant 0.208** 0.206** 0.280* 
 (0.0648 - 0.668) (0.0647 - 0.657) (0.0896 - 0.877) 
Random-effect parameters   
Between-city Variance 0.035*** 0.034*** 0.030*** 
 (0.021 - 0.049) (0.020 - 0.048) (0.018 - 0.043) 
    
Observations (Individual) 4,194 4,194 4,194 
Number of cities 112 112 112 
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Note:  
1. City-level variables include AQI, z-score, logarithm of GDP per capita, logarithm of population density; 
2. *** p<0.001, ** p<0.01, * p<0.05, # p<0.1 

In Model 2, when the short-term exposure term (weekly z-score) is included, the effect of long-term 283 

exposure is strengthened in effect size and significance, that is those living in cities with a longer-term 284 

AQI levels of 4 had higher frailty scores compared to those with AQI level 1, accounting for short-term 285 

fluctuations and other covariates. Specifically, compared with exposure to AQI 1, the estimated effect 286 

of exposure to AQI 4 is to increase the incidence rate ratio of frailty index score in a given year period, 287 

by about 14.0% (p=0.02). Despite a positive coefficient for z-score, this is not significant when adding 288 

interaction terms, suggesting that as expected, short-term exposure fluctuations are not associated with 289 

the frailty score. The coefficients for marital status, GDP and population density are not significant.  290 

We might also expect that the effect of short-term fluctuations might vary by the overall background 291 

level of air pollution exposure, and that short-term fluctuations might affect the long-term mean and 292 

then result in biased estimates for long-term exposure. Thus, we added interaction terms between long-293 

term exposure and short-term fluctuations. In Model 3, the interaction effects between weekly z-score 294 

and yearly mean AQI are not always significant, providing no evidence that short-term exposure has a 295 

differential impact on health at different longer-term air pollution levels.  296 

In addition, all three models show the city-level specific random effects also appear significant, 297 

suggesting that a significant amount of variance in frailty can be explained by city-level factors. For 298 

example, in Model 3, the city-level random effects present a residual variance between cities 𝜎!"" = 299 

0.030 with the confidence interval (0.018 - 0.043). The other coefficients (marital status, logarithm of 300 

GDP per capita and logarithm of population density) are not significant at the 5%-level.  301 

In addition, Tables S4 and S5 in the Supplementary material show effects of 2-year and 3-year exposure. 302 

The results are mostly consistent with Table 3 (1-year exposure as the long-term exposure). Results 303 

estimated using data obtained by means of GWR interpolation for the cross-sectional analysis also 304 

supports the above findings (details shown in Supplementary material Table S8), which provide 305 

reassurance that our complete case analysis is not substantially biased. 306 
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Moving to the longitudinal analysis, we present a similar set of models based on the two-wave panel 307 

dataset in Table 4 which model the change in frailty between waves. Results clearly show that long-308 

term (1-year) exposure to air pollution has a positive association with frailty, and poorer air quality is 309 

associated with higher frailty over a 3-year period from 2011 to 2014. Compared with the cross-310 

sectional analysis, the estimates of the frailty score associated with long-term exposure are much bigger 311 

and more significant. Specifically, in Model 3, compared with those exposed to the AQI 1 (good air 312 

quality), the estimated effect of exposure to AQI 4 (very unhealthy air quality) is to increase the 313 

incidence rate, and therefore the expected score of frailty index in a year period, by about 23.3% 314 

(p=0.003). In terms of the weekly z-score, Model 2 shows that the estimated effect of increasing weekly 315 

z-score on frailty is not significant. Similar to the results from the cross-sectional analysis, the 316 

interaction terms in Table 4 do not show consistently significant effects on frailty. In the Supplementary 317 

material, we used 2-year and 3-year periods as the long-term exposure measure and found that long-318 

term effects are significantly associated with frailty but short-term exposure (weekly z-score) and 319 

interaction terms have no significant effects on frailty (details shown in Tables S9-10). The analysis 320 

from GWR data shows there is an association of long-term exposure with frailty score in Table S12. In 321 

addition, in Table 4, gender, age, education, marital status and career are significantly associated with 322 

frailty; but the coefficients of GDP and population density are not significant. 323 

Table 4 Incidence rate ratio (95% Confidence Intervals) and random-effect parameters of longitudinal 324 

impact of 1-year and weekly exposure to air pollution on frailty among Chinese elderly, CLHLS 2011 & 325 

2014 326 

 Model 1 Model 2 Model 3 
VARIABLES Long-term  Model 1+ short-term 

 
Model 2 + Long- # 

short-term  
Long-term (1-year) (ref: AQI 1(good))   
AQI 2 (Moderate) 1.212** 1.218** 1.217** 
 (1.071 - 1.370) (1.077 - 1.377) (1.076 - 1.375) 
AQI 3 (Unhealthy) 1.246*** 1.254*** 1.246*** 
 (1.099 - 1.413) (1.106 - 1.422) (1.099 - 1.413) 
AQI 4 (Very unhealthy) 1.255*** 1.269*** 1.233** 
 (1.098 - 1.434) (1.110 - 1.452) (1.076 - 1.413) 
Short-term  1.023 0.911* 
z-score (Weekly)  (0.994 - 1.054) (0.835 - 0.995) 
Interaction terms    
Weekly z-score # AQI 2   1.148** 
   (1.044 - 1.264) 
Weekly z-score # AQI 3   1.146** 
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   (1.038 - 1.266) 
Weekly z-score # AQI 4   1.054 
   (0.928 - 1.197) 
Female (ref: Male) 1.119*** 1.120*** 1.124*** 
 (1.080 - 1.160) (1.080 - 1.161) (1.084 - 1.165) 
Age 1.025* 1.024* 1.026* 
 (1.002 - 1.047) (1.002 - 1.047) (1.004 - 1.049) 
Age # Age 1.000 1.000 1.000 
 (1.000 - 1.000) (1.000 - 1.000) (1.000 - 1.000) 
Educated 0.929*** 0.930*** 0.933*** 
(ref: no schooling) (0.894 - 0.966) (0.894 - 0.966) (0.897 - 0.969) 
Career 1.159*** 1.159*** 1.161*** 
(ref: Blue-collar) (1.112 - 1.208) (1.112 - 1.208) (1.114 - 1.210) 
Self-rated economic (ref: Rich)   
Median 1.120*** 1.120*** 1.121*** 
 (1.084 - 1.157) (1.084 - 1.158) (1.085 - 1.158) 
Poor 1.398*** 1.398*** 1.400*** 
 (1.335 - 1.464) (1.336 - 1.464) (1.337 - 1.465) 
Marriage (ref: Married)    
Single  1.120** 1.119** 1.119** 
 (1.029 - 1.219) (1.028 - 1.218) (1.028 - 1.218) 
Widowed 1.048** 1.048** 1.047* 
 (1.011 - 1.085) (1.011 - 1.085) (1.010 - 1.084) 
Logarithm of GDP 1.028 1.028 1.029 
 (0.956 - 1.106) (0.955 - 1.106) (0.955 - 1.107) 
Logarithm of 1.018 1.020 1.018 
Population density (0.949 - 1.092) (0.951 - 1.093) (0.949 - 1.091) 
Constant 0.199** 0.199** 0.203** 
 (0.0605 - 0.652) (0.0607 - 0.651) (0.0622 - 0.665) 
Year of 2014 (ref: 2011) 1.081*** 1.071*** 1.069*** 
 (1.042 - 1.121) (1.031 - 1.112) (1.029 - 1.110) 
Random-effect parameters    
Between-city Variance 0.017*** 0.016*** 0.016*** 
 (0.008 - 0.025) (0.008 - 0.025) (0.008 - 0.024) 
Between-individual Variance 0.281*** 0.281*** 0.280*** 
 (0.264 - 0.298) (0.2614 - 0.297) (0.263 - 0.296) 
    
Observations (Individual) 8,753 8,753 8,753 
Number of cities  108 108 108 
Note:  
1. City-level variables include AQI, z-score, logarithm of GDP per capita, logarithm of population density; 
2. *** p<0.001, ** p<0.01, * p<0.05, # p<0.1 

 327 

Additionally, to make the analysis above more robust, we run some similar models but use weekly, 328 

monthly and quarterly z-score as the short-term exposure in Table S11. We can see the estimated effect 329 

of exposure to long-term air pollution on frailty slightly rises when the measures of short-term exposure 330 

refer to different periods, from weekly z-score to quarterly z-score; but short-term fluctuations at a week, 331 

a month or a quarter are not significantly associated with frailty even at the 10% level. 332 
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To assess whether long-term exposure to air pollution is associated with a more unfavourable change 333 

in frailty between CLHLS 2011 and 2014, we set up two random-effects models using the type of AQI 334 

change. Table 5 compares the effects of the change in AQI on the frailty index. Model 1 shows that 335 

living in an area where AQI moved from 2 to 3, 2 to 4, or 3 to 4, compared with living in a constant 336 

‘AQI 2’ area, is associated with increased frailty scores. Specifically, in Model 1, with AQI worsening 337 

from 2 to 4, the incidence rate of frailty increases by about 21.4% (p=0.000), compared with a constant 338 

‘AQI 2’. More control variables are added, such as year and other covariates, in Model 2 and Model 3. 339 

When controlling all of covariates in Model 3, we can see respondents living in ‘AQI 1-1’, i.e. a constant 340 

low level of AP, decreases frailty risk by 21.6% (p<0.001), while those living in ‘AQI 3-3’, i.e. a 341 

constant high level, increases the risk by 19.0% (p=0.028), compared with the reference group ‘AQI 2-342 

2’. The same analysis using the GWR-interpolated data shows that the change in AQI is associated with 343 

the change in frailty score (Table S13). 344 

Table 5 Incidence rate ratio (95% Confidence Intervals) of longitudinal impact of 1-year AQI change on 345 

frailty among Chinese elderly from random-effects models, CLHLS 2011 & 2014 346 

 Model 1: Model 2: Model 3: 
VARIABLES Basic Model 1+year  Model 2+covariates 
AQI change type (ref: AQI 2-2)   
AQI 1-1 0.853* 0.835** 0.784*** 
 (0.753 - 0.966) (0.737 - 0.947) (0.698 - 0.880) 
AQI 3-3 1.161# 1.145 1.190* 
 (0.976 - 1.380) (0.963 - 1.362) (1.018 - 1.390) 
AQI 2-3 1.055# 1.056# 1.117*** 
 (0.992 - 1.123) (0.992 - 1.124) (1.057 - 1.181) 
AQI 2-4 1.214*** 1.203*** 1.163*** 
 (1.113 - 1.324) (1.102 - 1.313) (1.075 - 1.259) 
AQI 3-2 0.895 0.872 0.958 
 (0.696 - 1.150) (0.678 - 1.122) (0.769 - 1.195) 
AQI 3-4 1.091* 1.081# 1.090* 
 (1.008 - 1.182) (0.998 - 1.172) (1.013 - 1.173) 
z-score (Weekly) 1.164*** 1.020 1.012 
 (1.129 - 1.200) (0.986 - 1.055) (0.980 - 1.046) 
Observations (Individual) 5,926 5,926 5,926 
Number of cities  73 73 73 
Note:  
1.Model 2 includes time variables; 
2.Model 3 includes control variables at individual level include sex, age, age square, marital status, education, self-rated 
economic, career; City-level variables include AQI, z-score, logarithm of GDP per capita, logarithm of population 
density and year; 
3.  *** p<0.001, ** p<0.01, * p<0.05, # p<0.1 

 347 
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4. Discussion  348 

We conducted cross-sectional and longitudinal analysis among Chinese elderly people based on 349 

CLHLS, a national dataset, linked to air pollution monitoring station data, to investigate the association 350 

between air pollution at the city level and frailty. We also calculated comprehensive measures to assess 351 

and adjust models for long- and short-term AP exposure. We identified that the frailty score among 352 

Chinese elderly 65+ was strongly associated with long-term exposure (1-year) to AP rather than short-353 

term fluctuations, after individual and neighbourhood characteristics are controlled. Moreover, we also 354 

established that living in a city with worsening AP over a three-year period, compared with one where 355 

air pollution was stable, was associated with a higher incident frailty score, suggesting that increasing 356 

air pollution could exacerbate the ageing process.  357 

It is already well established that air pollution has an impact on elderly health in terms of individual 358 

diseases, (Zeng et al., 2010), and others have established that in sub-populations AP is linked to the 359 

development of frailty (Lüscher, 2017; Myers et al., 2013). This is the first study to our knowledge to 360 

establish a longitudinal link between air pollution and frailty in the general elderly population. Previous 361 

research about AP and frailty has not explored the role of long- and short-term exposure. As expected, 362 

due to the chronic nature of many of the indicators in the frailty index, long-term exposure was the 363 

dominant influence. However, this lack of association could also be related to the way health data were 364 

collected. Given a source of health data that captured health shocks more adequately, such as acute 365 

hospital admissions, it is plausible that short-term exposures may influence some components of frailty. 366 

The associations between frailty and other covariates showed expected links with sex (women have a 367 

higher frailty score than men), education (people with no schooling have a higher frailty score) and SES 368 

(people with lower SES have a higher frailty score). However, it is interesting that respondents with 369 

white-collar jobs before their retirement are much frailer than those who had worked in blue-collar jobs, 370 

which seems to be incompatible with previous findings, because the effects of career should be same to 371 

the effects of education and economic status (Goodman et al., 2011; O’Neill et al., 2003). Explanations 372 

for this contradictory result should consider the social structure in China. Respondents with white-collar 373 
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jobs as their main occupation before retirement typically live in cities because most of them are well-374 

educated or working for government, whereby work opportunities depend on education and political 375 

loyalty before the 1980s in China (Walder, 1995). In addition, urban residents have access to more 376 

ancillary services to acquire health diagnoses than their rural counterparts (Mueser et al., 2001), which 377 

might explain an underestimation of the incidence rate of diseases among rural residents. Popkin et al. 378 

(1995) proposed that urban residents or high-income populations are likely to have higher fat intake 379 

and lower physical activity. There is evidence showing urban adults in China have a higher probability 380 

of being obese (Chen et al., 2011) and having hypertension (Xiaohui Hou, 2008). All of those reasons 381 

can explain the association of white-collar jobs with higher risks of being frail in this study. Note that 382 

all interactions between AP and these socio-demographic factors were insignificant, meaning that the 383 

impact of AP on health is uniform regardless of socio-economic status.  384 

In this study, frailty is positively related to long-term exposure to air pollution rather than short-term 385 

fluctuations. This is partly contrary to what has been found in previous studies, which identified short-386 

term exposure to air pollution are associated with hospitalisation due to cardiovascular and respiratory 387 

diseases (Raza et al., 2018), which are components of our frailty index. For example, Bedada et al. 388 

(2012) found a positive association between short-term exposure to sulphur dioxide and stroke. As 389 

another example, an increase of weekly exposure to ozone was associated with a decrease of 390 

cardiopulmonary function (Karakatsani et al., 2017). However, it is likely that chronic conditions based 391 

on survey self-reports are less sensitive to these recent short-term effects, which could explain why 392 

short-term AP fluctuations were not found to be significant.  393 

This study has not found a consistent interaction effect of long- and short-term exposure on frailty 394 

among Chinese elderly people. However, this finding provides a more solid evidence to examine the 395 

effect of long-term exposure than previous researches. For example, Zhang et al. (2018) recognised that 396 

exploring the impact of exposure to AP on cognitive ability should consider the cumulative and 397 

transitory exposure AP together. However, they neglected the variance of cumulative exposure to AP 398 

and the collinearity between the mean of cumulative exposure and the mean of transitory exposure to 399 
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AP. In this study, using a z-score to operationalize and control short-term exposure to AP more 400 

accurately measures the association between long-term exposure and frailty. 401 

Our study has several methodological advantages over previous studies. First, the linkages of survey 402 

data with air quality data were established using exact interview date and locations, enabling us to 403 

accurately identify temporal trends in air pollution, even if interview dates varied between respondents. 404 

We also used a comprehensive validated frailty index. Moreover, we exploited the available AP data to 405 

measure both the average AQI exposure and the level of AQI short-term fluctuation through the AQI 406 

z-score. Third, the samples in this study were aged 65 and more, a population who are vulnerable to 407 

exposure to air pollution, rarely migrating and moving their residences, hardly changing their 408 

socioeconomic status. Thus, the analysis was more likely to identify associations of exposure to air 409 

when they are unaffected by time varying confounding. Finally, this study used a GWR method to 410 

interpolate missing air pollution data, which provides reassurance as to the robustness of the results, 411 

and that the complete case analysis was not biased. GWR contains more parameters (spatial information 412 

and socioeconomic factors) for interpolation, which improves previous imputation or interpolation 413 

approaches. 414 

Several limitations should be considered in this study. First, our analyses do not include all of the 415 

CLHLS sample, only using 60% respondents due to missing of AQI data, which cannot be nationally 416 

representative. However, robustness checks using GWR to interpolate missing data suggested our 417 

sample did not lead to biased estimates. Second, our AQI data is city-level; however, there is likely to 418 

be variation of AQI within a city. This measure cannot compare the difference between respondents 419 

within the same city, despite using the multilevel modelling in this study. Third, the explanatory variable 420 

is a composite index of AP rather than specific air pollutants (such as PM10, ozone, SO2 etc.), and we 421 

cannot separate the effect of each component of AQI. Nevertheless, numerous studies have used AQI 422 

and found that it is a robust estimate of health risks (Li et al., 2015; Stieb et al., 2005). Fourth, as only 423 

two waves of data are used in this paper, we are unable to truly understand trajectories of frailty (for 424 

that, we need 3 waves, and our linked data are not sufficient). Furthermore, some unmeasured time-425 

variant variables, such as health or social-environmental factors, cannot be ruled out in this study, which 426 
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might affect the relationship we estimated. In addition, we are unable to address survival bias, a 427 

perennial question in epidemiology. Finally, participation bias should be noted as all indicators of frailty 428 

are self-rated, and some people could be suffering from conditions but not diagnosed. Therefore, our 429 

estimations possibly underestimate the level of frailty. 430 

5. Conclusions 431 

This study expands the evidence that long-term exposure to air pollution contribute to higher incidence 432 

of frailty among Chinese elderly people, when controlled for sex, age, self-rated economic status, 433 

education, career, marital status, regional factors (GDP per capita and population density) and interview 434 

time. Moreover, it suggests that worsening air quality may influence poorer frailty trajectories. Further 435 

research is needed using a longer time span of data to understand how the interaction between short- 436 

and long-term exposure to air pollution accumulate to affect elderly health trajectories. Our results 437 

highlight the importance of improving air pollution for successful healthy ageing.  438 
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