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Recent years have seen an explosion of theoretical and empirical interest in
the role that kin selection plays in shaping patterns of sexual conflict, with a
particular focus on male harming traits. However, this work has focused
solely on autosomal genes, and as such it remains unclear how demography
modulates the evolution of male harm loci occurring in other portions of the
genome, such as sex chromosomes and cytoplasmic elements. To investigate
this, we extend existing models of sexual conflict for application to these
different modes of inheritance. We first analyse the general case, revealing
how sex-specific relatedness, reproductive value and the intensity of local
competition combine to determine the potential for male harm. We then
analyse a series of demographically explicit models, to assess how dispersal,
overlapping generations, reproductive skew and the mechanism of
population regulation affect sexual conflict across the genome, and drive
conflict between nuclear and cytoplasmic genes. We then explore the effects
of sex biases in these demographic parameters, showing how they may drive
further conflicts between autosomes and sex chromosomes. Finally, we
outline how different crossing schemes may be used to identify signatures
of these intragenomic conflicts.
1. Introduction
Sexual conflict [1–4] and kin selection [5–9] represent central strands of evol-
utionary biology, and recent years have seen an explosion of interest in the
connection and interplay between the two [10–30]. Much of the theoretical
attention that has been devoted to this topic has focused on how the incentive
for male harm (i.e. traits that increase a male’s mating success at the expense of
the females with whom he interacts) may be curbed by relatedness between
mates and between mate competitors, in a range of ecologically and demo-
graphically explicit population settings [24–29]. These theoretical predictions
have motivated a growing body of empirical work on a diversity of organisms
including flies [12–15,30], chickens [16], mites [17,18] and beetles [19–21,23].

However, this body of theory has focused on autosomal inheritance and has
not considered how ecological and demographic factors shape sexual conflict
across the rest of the genome. With recent interest in the evolution of sexual con-
flict on sex chromosomes [31] and an improving understanding of the molecular
basis of harming traits [32], extending this theory to consider how kin selection
may differentially mould male harm with respect to non-autosomal portions of
the genome is crucial for guiding and interpreting future empirical work. In
addition to providing an array of further comparative predictions for populations
that differ with respect to ecological and demographic factors, this new theory
would also yield comparative predictions at an intragenomic level, which is a par-
ticularly powerful approach as within-individual comparisons naturally control
for variation in a diversity of confounding factors [33].

To investigate this, we adapt previous models of sexual conflict [24,26,28] for
application to autosomal, sex chromosomal and cytoplasmic inheritance. Our
analysis encompasses bothmale (XY and XO) and female (ZWand ZO) heteroga-
metic systems, and therefore we investigate the possibility of male harm loci
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occurring on X, Y and Z chromosomes. With respect to cyto-
plasmic factors, we consider the full range from strictly
maternal to strictly paternal inheritance.We first provide a gen-
eral overview, showing how sex-specific relatedness,
reproductive value and the intensity of kin competition com-
bine to determine the potential for male harm. We next
analyse a series of ecologically, demographically and geneti-
cally explicit models [34,35], revealing how dispersal,
overlapping generations, reproductive skew and the mechan-
ism of population regulation modulate sexual conflict across
different parts of the genome, and ignite intragenomic conflicts
between nuclear and cytoplasmic genes. We then explore the
effects of sex biases in these demographic factors, showing
how they may drive further intragenomic conflicts between
autosomes and sex chromosomes. Finally, we discuss how
these theoretical predictions can be tested empirically, includ-
ing how different crossing schemes may be used to identify
signatures of intragenomic conflict.
288:20212237
2. Reproductive value, relatedness and intensity
of kin competition modulate the potential for
harm

Different portions of the genome flow between the sexes in
different ways. These different patterns of transmission may
consequently generate differences both in the reproductive
values of males and females (i.e. the fraction of the ancestry
that flows through them [36–38]), and in their relatedness to
same-sex and opposite-sex patchmates. Such differences may
therefore alter the value that males place upon their different
social partners and thus modulate the evolutionary potential
for male harm. To investigate the consequences of different
modes of genetic transmission, we follow previous models of
sexual conflict [24,26,28], considering a population subdivided
into patches with the following life cycle: (1) nf adult female
and nm adult males reside on each patch, (2) males compete to
mate with the females on their patch, (3) females produce
broods of offspring, (4) adultmales and females die, (5) juveniles
compete for breeding spots, with a proportion a of the resulting
competition occurring against natal patchmates, and (6) success-
ful juveniles then become adults, starting the life cycle anew. A
full description of the life cycle is given in the electronic sup-
plementary material, figure S1.

Within this life cycle, we focus on a harming trait, expressed
exclusively by males. This trait increases the relative competi-
tiveness of its bearer (step 2), but decreases the fecundity of
the females in his patch (step 3). Possible examples of such be-
haviour include male harassment, toxic ejaculates and mating
plugs [4]. We determine the conditions under which natural
selection favours an increase in the level of this harming trait,
using the kin-selection approach of Taylor & Frank [39]. This
approach analyses how the relative fitness of a focal
individual is altered by both small changes in their own trait
value and by correlated changes in the trait values of their
social partners, with changes in relative fitness weighted by
the reproductive value appropriate to their class [38] and the
mode of inheritance exhibited by the focal locus [7,40]. See
the electronic supplementary material, §1 for full details. This
approach assumes weak selection and additivity, and as such
it may be less informative for those alleles whose selective
effects are particularly strong or highly non-additive. Applying
this methodology, we find that the condition for increase is
given by

B[(cm!f þ cm!m)(1� rmm)]� C[(1� af)(cf!f rmf þ cm!f rmm)

þ(1� am)(cf!mrmf þ cm!mrmm)] . 0,

ð2:1Þ
whereB is the scaledmarginal benefit of increased competitive-
ness enjoyed by the focal individual male; C is the scaled
marginal cost of this harm upon the fecundity of the individual
females with whom he interacts; rij is the coefficient of genetic
relatedness [5,7] between a sex-i individual and a sex-j individ-
ual drawn at random (with replacement) from the same patch
(i.e. whole-group relatedness [41,42]); ci→j is the class reproduc-
tive value [36–38] associated with gene-flow from sex-i parents
to sex-j offspring; ai is the intensity of kin competition, i.e. the
probability that sex-i juvenile natal patchmates compete with
one another for breeding spots (equivalent to the ‘spatial
scale of density-dependent competition’ from [7]); and f and
m indicate female and male, respectively.

Inspecting the left-hand side of condition (2.1), we can iso-
late the distinct selective effects of male harm, and the
weightings placed upon them. The first portion captures the
inclusive-fitness effect of increased mating success. This
includes the direct benefit enjoyed by the focal male from
increased mating success B, weighted by the reproductive
value he accrues through his daughters cm→f and sons cm→m,
minus the concomitant loss of siring success by the average
male on his patch (including himself) − B, weighted by his
relatedness to them rmm and the reproductive value they
would have accrued through their daughters cm→f and sons
cm→m. The second portion captures the inclusive-fitness effect
of increased male harm upon female fecundity. This includes
the loss of fecundity of female patchmates –C, weighted by
the focal male’s relatedness to these females rmf and the repro-
ductive value they would have accrued through their
daughters cf→f and sons cf→m, and also the concomitant loss
of fecundity of male patchmates who would have sired these
lost offspring –C, weighted by the focal male’s relatedness to
these males rmm and the reproductive value they would have
accrued through their daughters cm→f and sons cm→m, with
these losses of fecundity being defrayed to the extent af and
am that competition for resources occurs among female and
male natal patchmates, respectively.

We may rewrite condition (2.1) in the form C/B <H,
where the dimensionless quantity H defines the ‘potential
for male harm’ [28,43] and is given by:

H¼ (cm!fþcm!m)(1�rmm)
(1�af)(cf!f rmfþcm!f rmm)þ(1�am)(cf!mrmfþcm!mrmm)

:

ð2:2Þ

The potential for harm summarizes the role of ecology,
demography and transmission genetics in modulating the evol-
ution of male harm, separate from the role of the more-
contingent fecundity cost and benefit, providing a generaliz-
ation of equation A6 in [28]. A larger potential for male harm
means that harm is more likely to be favoured and, if favoured,
is expected to be elaborated to a greater degree. Inspecting
equation (2.2), we can see that: increasing relatedness (i.e.
higher rmf and/or rmm) will typically decrease the potential for
male harm; increasing the intensity of kin competition (i.e.
higher af and/or am) will typically increase the potential for
male harm, and increasing male reproductive value (i.e.
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Figure 1. Demography modulates the potential for harm H differently across the genome. (a) Demographic factors modulate harm differently between nuclear
(N: autosomes, X, Y, Z) and cytoplasmic genes (C), with differences dependent on the extent of paternal transmission λ. In panels (ii–iv), d = 0.5. (b) Sex differences
in demographic parameters such as (i) dispersal (df = 0.5), (ii) survival rate (lf = 0.5), (iii) reproductive skew (γf = 0.5) and (iv) population regulation (sf = 0.5),
uncouple the interests of nuclear genes with respect to male harm. In panels (ii–iv) df = dm= 0.5. Across all panels n = 5. Full methods to recreate these plots can
be found in the electronic supplementary material, §2. (Online version in colour.)
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higher cm→f and/or cm→m) will typically increase the potential
for male harm while increasing female reproductive value (i.e.
higher cf→f and/or cf→m) will typically decrease the potential
for male harm.

Treatingreproductivevalue, relatedness andkin competition
as open parameters is useful for conceptualizing the higher-level
forces shaping male harm, and generating comparative results
that apply across a wide range of settings [7,34,35]. However,
many specific ecological, demographic and genetic factors of
interest will modulate several of these parameters simul-
taneously. For example, assumptions about which genetic
party controls the trait, and thus the underlying transmission
genetics, will shape both relatedness and reproductive value,
and dispersal patterns will alter both relatedness and the inten-
sity of kin competition. To understand how such concrete
ecological, demographic and genetic factors will impact upon
male harm, we now move from this ‘open’, more general
model to a series of ‘closed’, ecologically, demographically and
genetically explicit ones [34,35], in which the intensity of kin
competition, relatedness coefficients and reproductive values
emerge as functions of populationprocesses, life cycle and trans-
mission genetics. Specifically, we now investigate howdispersal,
overlapping generations, reproductive skewand themechanism
of population regulation impact the potential for male harm
across different parts of the genome.
3. Population viscosity drives conflict between
nuclear and cytoplasmic genes

We first investigate how limited dispersal modulates the
potential for male harm by considering that a fraction 1− d
of juvenile males and females remain on their natal patch,
while a fraction d disperse to other patches, prior to both
mating and reproduction (step 5). Lower dispersal increases
relatedness between social partners (higher r), but also
increases the intensity of competition between their offspring
(higher a) [7,41]. For autosomes, as well as X, Y and Z
chromosomes, we find that these two effects cancel exactly,
such that the potential for male harm is completely indepen-
dent of the dispersal rate and indeed is given by H = n− 1
across all of these genetic systems, where n is the number
of males on the patch (figure 1a(i)). That the potential for
male harm is the same for autosomes and sex chromosomes
under full dispersal (d = 1) recovers Andrés & Morrow’s
[44] result that there is no intragenomic conflict between
these different portions of the genome in the absence of kin
selection. Moreover, the invariance of the potential for male
harm with respect to dispersal rate was shown previously
for autosomes by Rankin [24] and Faria et al. [26]. Here we
have shown that this invariance extends to the sex chromo-
somes such that, under the full range of dispersal rates (0≤
d≤ 1), there is no intragenomic conflict with respect to male
harm between the autosomes and sex chromosomes.

However, we find that this invariance does not extend to
cytoplasmic elements (figure 1a(i); electronic supplementary
material, §2.4). Assuming homoplasmy (i.e. that an individ-
ual’s cytoplasmic factors are clonally related), and denoting
the probability that a cytoplasmic gene is paternally inherited
by λ (analogous to the approach of [45]), then we find that
this cancellation of increased local competition and increased
relatedness only holds in the extremes of strict matrilineal
(λ = 0), exact biparental (λ = 0.5) or strict patrilineal (λ = 1)
inheritance. Outwith these three cases, the rate of dispersal
modulates the potential for harm (figure 1a(ii)), and thus
intragenomic conflicts can arise between cytoplasmic and
nuclear genes. Under incompletely matrilineally biased
inheritance (0 < λ < 0.5), lower dispersal is associated with
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reduced potential for harm, and thus such cytoplasmic
elements favour lower levels of harm than do nuclear ones.
By contrast, under incompletely patrilineally biased inheri-
tance (0.5 < λ < 1), lower dispersal is associated with
increased potential for harm, such that these elements
favour a higher level of harm than do nuclear genes, although
in this case the magnitude of the conflict is much smaller.
ing.org/journal/rspb
Proc.R.Soc.B

288:20212237
4. Further demographic factors shape relatedness
and kin competition

Above we have shown that, for the various nuclear genes
investigated (autosomes, X, Y and Z), limiting the rate of dis-
persal has no impact upon the potential for harm, owing to
theway in which the effect of increased relatedness is perfectly
offset by the effect of increased competition. In natural
populations, other demographic factors will also typically be
present in conjunction with limited dispersal, and together
these may shift the balance between relatedness and kin com-
petition, consequently modulating the potential for harm. To
investigate this, we consider three further factors: overlapping
generations, reproductive skew and soft selection (see elec-
tronic supplementary material, §2.1–4 for details).

Allowing adults to survive (and maintain their breeding
spots) between generations with probability l (i.e. at step 4 in
the life cycle), we find that an increased rate of survival favours
lower levels of harm (figure 1a(ii)). This occurs because higher
survival increases relatedness between patchmates, butwithout
altering the intensity of kin competition [46]. Consequently, the
relatedness and competition effects of dispersal are decoupled
in the context of overlapping generations, such that limiting
the rate of dispersal leads to higher potential for male harm,
but in away that is exactly equal for autosomes and the various
sex chromosomes. Similarly, we find that reproductive skew
also decreases the potential for male harm (electronic sup-
plementary material, table S2; figure 1a(iii)). If reproduction is
skewed such that a few breeding adults contribute a dispropor-
tionate share of the offspring produced on the patch, then this
will inflate the relatedness among patchmates while leaving
the intensity of kin competition unchanged, thereby reducing
the potential for harm. We integrate skew by defining a par-
ameter γ, such that when γ = 0 all individuals enjoy the same
fecundity under neutrality, while in the extreme of γ = 1, all
juveniles share the same parents. We find that as the degree
of skew increases, the potential for harm is reduced, and by
exactly the same extent for autosomes and sex chromosomes.
Decreasing patch size has a similar effect to increasing related-
ness, reducing potential for harm (electronic supplementary
material, table S2 and figure S2).

Finally, we consider the mechanism by which the popu-
lation is kept constant in size, and the timing of this
regulation step during the life cycle. In particular, we investi-
gate the extent to which it occurs before versus after dispersal
by allowing a proportion s of regulation to occur before the
dispersal phase and a proportion 1− s of regulation after.
Scenarios in which complete regulation occurs before disper-
sal, such that between-patch differences in productivity are
completely abolished, have been described as involving
‘soft selection’ (s = 1), whereas scenarios in which complete
regulation occurs after dispersal, such that different patches
may enjoy differences in productivity, have been described as
involving ‘hard selection’ (s = 0) [47–49]. Up to now, we have
considered only hard selection (s = 0). As we allow the pro-
portion of regulation before dispersal s to increase, so does
the extent of kin competition a, and thus the potential for
harm, with these effects equivalent for autosomes and sex
chromosomes. In the limit of pure soft selection (s = 1),
decreased female fecundity does not alter the net productivity
of the patch, and thus increased harm is always favoured
(H =∞; figure 1a(iv); electronic supplementary material, table
S2). A fuller description of this life cycle, as well as other
approaches to implement the effects of soft selection [50], can
be seen in electronic supplementary material, §2.
5. Sex-biased demography drives intragenomic
conflict between nuclear genes

Previous work has shown that, for autosomal genes, sex-biased
demography may uncouple the balance between relatedness
and kin competition [43,51] and consequently may modulate
the potential for male harm [26]. Moreover, given their sex-
specific inheritance patterns, these effects may be expected to
be manifest differently across autosomes and sex chromosomes,
thereby potentially uncoupling their inclusive-fitness interests
and driving intragenomic conflicts of interest. To investigate
this, we allow for sex biases in the rate of dispersal and survival,
and in the degree of reproductive skew and soft selection.

We find that sex-biased dispersal (df≠ dm) leads to a diver-
gence between the inclusive-fitness interests of autosomes and
sex chromosomes (figure 1b(i)). Typically, under male-biased
dispersal, the potential for male harm is greatest for X chromo-
somes and lowest for Y chromosomes (HX >HZ >HA >HY).
Conversely, under female-biased dispersal this ranking is
usually reversed (HX <HZ <HA <HY), and across these par-
ameter values the Y chromosome remains invariant with
respect to dispersal. However, this ranking of harm potential
does not hold perfectly across all parameter values. For
example, autosomes have the highest potential for male harm
under high female-dispersal and low male-dispersal regimes.
These complex patterns arise because sex-biased dispersal
alters both the relatedness structure arising through matrilines
and patrilines [27,52], and the intensity of competition experi-
enced by daughters and sons. Owing to the sex-specific
transmission patterns, these effects are felt differently by the
different genomic elements. For instance, when male dispersal
is low, kin competition is intense among sons relative to daugh-
ters, but patrilineal and matrilineal relatedness increase more
evenly. This has a bigger harm-reducing effect for X chromo-
somes which are primarily transmitted through daughters
(and thus experience a lesser increase in kin competition
relative to the increase in relatedness).

Under sex-biased survival (lf≠ lm), we find that sex
chromosomes and autosomes once again diverge in their
inclusive-fitness interests (figure 1b(ii)). With female-biased
survival (lf > lm), relatedness is higher through matrilines than
patrilines; and with male-biased survival (lf < lm), relatedness
is higher through patrilines than matrilines [53]. Higher matri-
lineal relatedness has a greater impact upon those genomic
elements for which a greater fraction are maternally inherited
and thus the potential for harm is highest for Y chromosomes
and lowest for X chromosomes (HY >HZ >HA >HX). The
reverse is true when there is higher patrilineal relatedness,
with harm lowest for Y chromosomes and highest for X
chromosomes (HY <HZ <HA <HX). The same qualitative
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pattern also obtains under sex differences in reproductive skew
(γf≠ γm; figure 1b(iii)). When skew is higher in females (γf > γm)
then there is higher matrilineal relatedness, and thus harm is
highest for Y chromosomes and lowest for X chromosomes
(HY >HZ >HA >HX), and when skew is higher in males (γf <
γm), then there is higher patrilineal relatedness, and thus
harm is lowest for Y chromosomes and highest for X chromo-
somes (HY <HZ <HA <HX). Similarly, sex biases in the
number of breeders shapes relatedness. If there are more
male than female breeders (nf < nm), then relatedness is
higher through matrilines than patrilines, while if there are
more female than male breeders (nf > nm), then relatedness
is higher through patrilines than matrilines, with similar
consequences as before on the potential for harm.

Finally, we find that the inclusive-fitness interests of auto-
somes and sex chromosomes also diverge as a consequence
of sex-biased soft selection (sf≠ sm; figure 1b(iv)). If females
experience a higher degree of soft selection, sf > sm, then kin
competition is more intense among daughters than among
sons. Conversely, if males experience a higher degree of soft
selection, sf < sm, then the reverse obtains. Greater competition
between same-sex relatives promotes harm more for those
elements which achieve relatively higher reproductive value
through that sex. Accordingly,when the degree of soft selection
is greater in females then the potential for harm is lowest for Y
chromosomes and highest for X chromosomes (HY <HZ <
HA <HX), and when the degree of soft selection is greater in
males, then the potential for harm is highest for Y chromo-
somes and lowest for X chromosomes (HY >HZ >HA >HX).
Alongside these potentials for harm, we also analyse an
example with specific male and female fecundity functions in
electronic supplementary material, §4, explicitly solving for
the optimum harm value across different loci (electronic
supplementary material, figures S3–S5).
6. Discussion
Male harming traits have been described across a wide range
of taxa [4], from traumatic insemination of bed bugs [54], and
grasping appendages of water striders [55,56], to proteins in
the ejaculates of flatworms [57], and tomiodonts of painted
turtles [58]. Recent theory has shown how kin selection
may curb the worst excesses of such male harm [24–27,29]
and has been supported empirically in a growing range of
taxa, including arachnids, birds and insects [12–21,23,30].
We have built upon this theory to show how aspects of demo-
graphy may shape the potential for male harm differently
across different parts of the genome, yielding novel predic-
tions as to how intragenomic conflicts may emerge over
such traits, where male harm loci are likely to be enriched,
and how these patterns are expected to vary across different
populations and species.

In particular, we have found that cytoplasmic genes may
favour distinct levels of harm to their nuclear counterparts.
As matrilineal inheritance of both cytoplasmic genes and
other endosymbionts is the norm across the animal and plant
kingdoms [59], our analysis suggests that these elements tend
to favour lower levels of male harm than do nuclear genes, gen-
erating potentially intense intragenomic conflicts over such
traits. One particular arena of conflict may be over sperm com-
petitiveness, as while competitive spermmay provide a benefit
to the focal male, they may also impose fecundity costs for
females, for example through zygote inviability owing to poly-
spermy [60,61]. Given the central role mitochondria play in
sperm physiology, there may be a large scope for conflict in
this context. Indeed, while mitochondrial alleles contributing
to variation in sperm performance are typically assumed to
be the products of drift [62–64] (i.e. ‘mother’s curse’ [65,66]),
in viscous populations such alleles may be positively selected
if they reduce the fitness costs imposed upon interacting
female kin (this is a negative variant of the argument made
by [67]). It also mirrors the evolution of male-killing symbionts
in various arthropod groups [68]; in both cases, alleles which
decrease a male’s fitness may improve the fitness of his
female relatives, by either reducing the extent of male harm or
decreasing the intensity of juvenile competition for resources.

Although matrilineal inheritance is the norm for cyto-
plasmic elements, various exceptions—such as the doubly
uniparental inheritance of bivalve molluscs [69], paternal trans-
mission of mitochondria in cucumbers and sequoias [70] and
paternal transmission of symbionts in mosquitos [71], leafhop-
pers [72] and tsetse flies [73]—provide exciting avenues for
further empirical testing, with non-matrilineally inherited
genes expected to exhibit greater harm than those with strict
matrilineal inheritance. Although the above examples are some-
what speculative, one examplewhichmay bemore amenable to
experimental investigation is the obligate vertically transmitted
rhabdovirus sigma. This is biparentally transmitted in Droso-
phila melanogaster [74], and experiments have shown that
males infectedwith sigma appear to have increasedmating suc-
cess [75], although the mechanism of action and direct cost to
females (if any) is unclear. Given that sigma viruses infect
other arthropods and appear to show similar transmission pat-
terns [76], this systemmay be amenable for comparisons across
different transmission patterns and demographic scenarios, as
well as to experimentalmanipulation of these factors.Moreover,
although we have made a conceptual distinction between
nuclear versus cytoplasmic genes, there are nonetheless nuclear
genes whose inheritance patterns more closely match those of
cytoplasmic factors, and to which our predictions for cyto-
plasmic genes may readily apply. For instance, the germline-
restricted chromosome in zebra finches is maternally trans-
mitted, with rare occurrences of paternal transmission [77,78].
Depending on which tissues such genes are present in, and
the extent of their expression, then these too may have the
potential to modulate male harm and come into conflict with
other genes inhabiting the same nuclei.

We have also shown that while the potential for harm is
constant across the nuclear genes under sex-neutral demogra-
phy, population viscosity in concert with sex-biased
demography generates differences in how male harm loci
evolve onautosomesandsex chromosomes. This shares concep-
tual similarities with how the potential for altruistic behaviour
remains invariant across diploidy and haplodiploidy under
sex-neutral dispersal but diverges under sex-biased dispersal
[41,51,79]. This yields predictions about where male harm loci
should be enriched across the genome, and how such patterns
will depend on both the extent and direction of sex biases in
demography. Currently, these predictions are challenging to
test, as the genetics of many male harm traits is still poorly
understood [32]. As Rowe et al. point out [32], there are cases
where the phenotypic interactions are well understood, but
the genetics is not, and cases where the genetics is well under-
stood, but the phenotypic interactions are not. Nonetheless,
there are an increasing number of examples that span this
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gap, including genes underpinning the morphological aspects
of grasping behaviours in water striders [80,81], metabolic
genes associated with siring success in bulb mites [82–84],
and gamete-recognition proteins in abalone and sea urchins
[85,86]. Alongside these specific examples, there are classes of
male harm traits that may be particularly amenable to large-
scale genetic analysis. For example, sperm fluid proteins
(Sfps) currently represent among the most-successful syntheses
of the genetics and ecology of sexual conflict [87]. Though even
herewe lack detailed knowledge ofwhatmanyof these proteins
do, and whether or not they are definitively involved in sexual
conflict. For instance, while the Drosophila melanogaster seminal
proteome is well-characterized in comparison with many
others, we still only have a good functional understanding of
about 10% of its constituent proteins [88]. As the proteomes
of more species have begun to be characterized, and those
proteomes functionally described, then hopefully these
within-genome comparisons will be increasingly tractable.

In addition to studies of natural populations, experimental
evolution offers ways to artificially generate particular popu-
lation structures and thereby investigate their effects on male
harm. Previously, such approaches have been used in bulb
mites [17], spider mites [18] and seed beetles [20,23]. While
spider mites are arrhenotokous and lack sex chromosomes,
both bulb mites (XO) and seed beetles (XY) have sex chromo-
somes and therefore may be systems in which the predictions
we have outlined could be most effectively tested. Addition-
ally, as well as manipulating population structures, previous
studies in D. melanogaster have used balancer chromosomes
to manipulate the inheritance patterns experienced by X
chromosomes, enforcing either strictly matrilineal or strictly
patrilineal inheritance (e.g. [89,90]). Accordingly, combined
withmanipulated populations structures, one could effectively
force Y-chromosomal inheritance on the X, and thus partially
control for the historical gene content of these different
chromosomes, as well as enabling experimental exploration
of the intervening parameter space.

Even if individual trait levels are dominated by the interests
of autosomal genes—asmight be expected if they are the largest
genomic faction [91–93]—intragenomic conflicts may still be
expected to escalate and lead to differences in the abundance
of ‘harm-promoting’ and ‘harm-inhibiting’ loci across different
portions of the genome [27,94]. Population crosses can provide
onemethod to identify these signatures of intragenomic conflict,
by creating ‘imbalanced’ genomes with a relative abundance or
paucity of harm-promoting or harm-inhibiting loci (see elec-
tronic supplementary material, §4) [27]. For instance, evidence
of conflicts between maternal-origin and paternal-origin genes
have been found by performing reciprocal crosses in flowering
plants [95–99], mammals [100–102] and insects [103–105]. Simi-
lar approaches may be used to uncover the intragenomic
conflicts we have outlined here. In electronic supplementary
material, figure S6, we present two examples of the phenotypes
predicted for a cross between two populations with an XO sex-
determination system. If these two populations differ in either
the direction or intensity of conflict, then crosses between
them are expected to lead to extreme phenotypes as the delicate
balance between competing genomic factions is disrupted,with
reciprocaldirectionsof cross expected to lead to opposite pheno-
types. Given the extreme phenotypes that are expected to arise
from population crosses, this may be a further mechanism by
which intragenomic conflict contributes to hybrid inviability
and hence speciation [106].
Our analysis has focused on cases where males reduce the
immediate fecundity of interacting females, but population
structure is likely to uncouple the interests of different genomic
factions in relation to awider set of both inter- and intra-sexual
social traits. This may include other forms of male harm, for
example whereby harm reduces longevity and/or future
fecundity or reduces fecundity unevenly across the females in
the group [28,107]. While some of these effects are already
incorporated in our model—for instance, when there is no sur-
vival of females between generations (lf = 0), a reduction in
female reproductive success could be interpreted as owing to
loss of fecundity or alternatively premature death before the
completion of reproductive effort—more generally these differ-
ent assumptions about the ecology of harm will probably alter
results, at least quantitively if not qualitatively. Moreover, we
have only investigated the selective pressures shaping male
harm, and thus have not considered possible coevolutionary
dynamics between male harm and female resistance. Previous
analyses of these coevolutionary processes have typically
focused on autosomal inheritance (e.g. [24,26,27,108,109]) but
the inclusion of other genomic elementsmaywell lead to diver-
gent results, because—aswe have shown—these elementsmay
have distinct evolutionary interests. Coevolutionary dynamics
will therefore probably be sensitive to assumptions about
demography, but also to how control over the phenotype is dis-
persed across the genome and the relative phenotypic power
these genomic elements have in males and females. Recent
theoretical and empirical work in D. melanogaster has shown
that sexually antagonistic coevolution of the sex chromosomes
may also play an important role in speciation [31], and thus we
may expect the intragenomic conflicts that we have outlined
here to further contribute to the origin of species [106].

To conclude, we have shown how ecological and
demographic processes—and, in particular, their sex-specific
aspects—may differentially mould male harm across the var-
ious inheritance systems that coexist within individual
genomes. With differences in the flow of genes from mothers
and fathers to daughters and sons, differences in relatedness
to social partners and the intensity of kin competition may
emerge, igniting conflicts of interest between autosomes,
sex chromosomes and cytoplasmic elements over male
harm. As knowledge of the molecular basis of sexual conflict
grows—from flies and water striders to abalone and sea urch-
ins—these models may help guide the design of future
experiments and aid in the interpretation of data collected
from natural populations.
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