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In brief

Tuong et al. generated a single-cell

transcriptomic map of the human

prostate immune landscape in health and

show how this is perturbed in cancer.

They identify a prostate-specific

macrophage population that helps

maintain tissue zinc and is associated

with better outcomes in cancer.
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SUMMARY
The prostate gland produces prostatic fluid, high in zinc and citrate and essential for themaintenance of sper-
matozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant met-
astatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform
an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched
androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes.
We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally
perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage
population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced in-
flammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of
the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting
beneficial antitumor functions.
INTRODUCTION

The prostate gland is critical for human reproduction, generating

prostatic fluid that is high in zinc and citrate. This forms an essen-

tial component of seminal fluid that is required for the mainte-

nance of spermatozoa (Costello and Franklin, 2016). Prostatic

acini are comprised of an outer basal cell layerand inner layers

of secretory luminal epithelial (LE) cells; as well as neuroendo-

crine, stromal, immune, endothelial, and nerve cells (Shen and

Abate-Shen, 2010, Henry et al., 2018). Prostate cancer is a major

cause of cancer-related mortality and morbidity in men (Ferlay

et al., 2015) and is characterized by a reduction in zinc and citrate

concentration in both glandular tissue and prostatic fluid (Cost-

ello and Franklin, 2016). Cancer cells display a luminal pheno-

type but the cellular origin of prostate cancer is debated with
Ce
This is an open access article und
lineage tracing studies in mice indicating that they may arise

from both basal and luminal cells (Choi et al., 2012, Wang

et al., 2013, Wang et al., 2014).

There is limited informationon thenatureandcompositionof the

tissue-resident immune cell compartment in the healthy human

prostate (Shen andAbate-Shen, 2010,Henry et al., 2018). Howev-

er, several tumor-associated immune cell subsets have been re-

ported, including T and B lymphocytes, regulatory T cells, mono-

cytes, macrophages, dendritic cells (DCs), and natural killer (NK)

cells (Hussein et al., 2009, Solinas et al., 2017), some of which

correlate with a worse prognosis—for example, regulatory

T cells (Davidsson et al., 2013) and CD163-positive M2 macro-

phages (Erlandsson et al., 2019).

Prostate cancer is classified according to the ISUP Grade

Group system (Epstein et al., 2016) and the Gleason Grading
ll Reports 37, 110132, December 21, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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System, based on the extent to which tissue architecture and

cellular morphology are disrupted, with higher scores associ-

ated with more aggressive tumor growth and worse outcomes.

While primary localized disease has a generally good prog-

nosis, men with locally advanced and metastatic disease

have much worse 10-year survival rates (Gnanapragasam

et al., 2016). Androgen deprivation therapy is the mainstay of

treatment for de novo metastatic prostate cancer, but a propor-

tion of patients progress to castration-resistant disease,

although the mechanisms underpinning this are unclear (Wat-

son et al., 2015). Immune checkpoint blockade with antibodies

against cytotoxic-T-lymphocyte-associated protein 4 (CTLA4)

or programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) has

been used in these patients, but results have largely been

disappointing (Kwon et al., 2014, Beer et al., 2017), consistent

with reports that less than a third of tumors show evidence of

PD1 or PDL1 expression (Haffner et al., 2018). Therefore, there

is an urgent need to better understand tissue immunity in the

healthy prostate and the nature of its perturbation in prostate

cancer to inform future therapeutic strategies. Here, we applied

single-cell RNA sequencing (scRNaseq) to paired human pros-

tate biopsies collected at the time of cancer diagnosis, to

comprehensively profile the cellular landscape of normal hu-

man prostate and to determine how this becomes disrupted

in cancer. We validated our findings using flow cytometry,

immunofluorescence microscopy, spatial transcriptomics; and

by cross-species studies of mouse prostate specimens.

RESULTS

Single-cell landscape of healthy prostate and prostate
cancer
We performed scRNaseq on paired cancer biopsy and adjacent

normal prostate tissue in n = 10 subjects aged 50–72 years of

age (Figure 1A, Table S1) generating data on 15,492 cells post-

QC. We identified 14 cell clusters (Figure 1B), all of which con-

tained cells from both normal and cancer biopsies (Figures 1C

and S1A). This included immune cells, endothelial cells, fibro-

blasts, as well as several epithelial cell subtypes (Figure 1B),

that were annotated based on canonical marker expression

and comparison with a previously published scRNA seq dataset

of young, healthy human prostate tissue (Henry et al., 2018) (Fig-

ures 1D and S1B).

Immune cell clusters included mononuclear phagocytes

(MNPs), mast cells, NK cells, B cells, and T cells (Figure 1D)

that were present in both normal and cancer samples with similar
Figure 1. Single-cell RNA sequencing reveals immune and epithelial c

(A) Schematic describing experimental set-up for 10x genomic single-cell RNase

(B) UMAP of 15,492 cells post-QC from all prostate samples.

(C) UMAP of embedding density of source of samples (normal—green to blue gr

(D) Violin plot of canonical marker genes for each cell types found in prostate. G

(E) Patient demographics displayed as a color-coded heatmap and stacked bar

(F) Quantification of absolute cells counts by flow cytometry per 0.5mg of normal

are a combination of n = 6 donors with each dot representing an individual dono

(G) Quantification of absolute cells counts by flow cytometry per murine prostate lo

(n = 3 biological replicates). Abbreviations: MNP—mononuclear phagocyte; DC—

natural killer (H) Confocal imaging of CD3, CD4 and CD8 in human normal and tu

CD31 in normal murine prostate. Scale bars, 100 mm. See also Figure S1 and Ta
frequency (Figure 1E). We used flow cytometric analysis and

confocal imaging to validate the presence of the major immune

cell subsets in normal prostate tissue in human, and performed

a cross-species comparison in mice, using a CD45 antibody

administered intravenously premortem to label intravascular

cells and confirm bona fide tissue residency (Figures 1F, 1G,

1H, 1I, S1C, S1D, and S1E). Together, these data show that

the healthy prostate has a rich immune landscape dominated

by T cells and MNPs, and that these cells persist in prostate

cancer.

Distinct subset of luminal epithelial cells enriched in
cancer
Among nonimmune cell clusters, we identified basal, hillock, and

club cell clusters, as noted in previous single cell analyses of hu-

man prostate (Henry et al., 2018, Karthaus et al., 2020), but in

contrast to published data, we found two distinct clusters of cy-

tokeratin-8+ luminal epithelial (LE) cells, rather than a single LE

cell population (Figure 2A). The two LE cell populations were pre-

sent in normal prostate and prostate cancer samples and were

transcriptionally distinct with one cluster expressing high levels

of KLK3 (encoding kallikrein related peptidase 3—also known

as prostate-specific antigen [PSA]), KLK2, and KLK4 (annotated

as LE-KLK3)—and the second cluster expressing high levels of

KLK4 and little KLK3 (annotated as LE-KLK4) (Figure 2B). Cells

with a high degree of transcriptional similarity to LE-KLK4 were

confirmed to be present in the previously published healthy pros-

tate dataset generated from three organs donors aged 18–31

years of age (Henry et al., 2018; Figure S2A), but the limited num-

ber of LE-KLK4 cells in this dataset did not enable their identifi-

cation as a distinct subset in the previously published analysis

(Henry et al., 2018). Similarly, examination of previously pub-

lished prostate cancer single-cell datasets (Karthaus et al.,

2020, Chen et al., 2021, Crowley et al., 2020) also identified cells

with high transcriptional similarity to LE-KLK3 and LE-KLK4 (Fig-

ures S2B–S2D). LE-KLK3 demonstrated enrichment for several

immune pathways, including ‘TNFa via NFKB signaling’, ‘IL6-

JAK-STAT3 signaling’ ‘interferon gamma response’, as well as

‘androgen and estrogen response’, with LE-KLK4 showing

some enrichment for ‘Myc target’ genes suggestive of prolifera-

tive activity (Figure 2C). Furthermore, a subset of LE-KLK4 cells

enriched for a prostate tumor-associated proliferation ‘Polaris’

signature (Figure S3A) and included cells with a G2/M cell-cycle

profile (Figure S1A). In keeping with the high expression of

‘androgen response’ pathway genes in LE-KLK3, the gene en-

coding the androgen receptor (AR) was also highly expressed
ell heterogeneity in paired normal-cancer samples

q of matched tumor-normal prostate samples from n = 10 patients.

adient, top; tumor—orange to red gradient, bottom).

ene expression values per cell are standardized to a range from 0 to 10.

charts of single-cell cell type proportions.

and malignant human prostatic tissue for the indicated immune subsets. Data

r.

be for the indicated immune subsets. Each dot represents an individual mouse

dendritic cell; ILC—innate-like lymphoid cell; PMN—polymorphonuclear; NK

mor prostate. Scale bars, 50 mm. (I) Confocal imaging of CD3, CD8, F4/80 and

ble S1.
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Figure 2. Androgen-receptor-negative prostate luminal epithelial cell type

(A) UMAP expression plot of keratin genes in prostate cells. Increasing color gradient from purple, blue, green to yellow corresponds to increasing (standardized)

expression value.

(B) UMAP of normal prostate sample cells. Expression of kallikrein genes marking luminal epithelial cell types, including luminal cell type, is presented as a

heatmap where cells with no expression (0 expression) are colored gray and increasing expression is colored according to increasing gradient from purple, blue,

green to yellow. (C) Pre-rankedGSEAof hallmark gene sets between normal KLK3+ versus KLK4+ LE clusters. Pathwayswith FDR< 0.25 are colored frompurple,

blue, green to yellow according to decreasing FDR value. Grey circles indicate pathways that attained p < 0.05 and FDR > 0.25. Size of circles indicate the

significance (signed -log10(p value)).

(D) Mean expression dot plot of gene encoding androgen receptor (AR). Expression values are scaled from 0 to 1. Size of circles indicate percentage of cells

expressing the gene and increasing color gradient from purple, blue, green to yellow corresponds to increasing (standardized) expression value.

(E) Immunohistochemistry images of KLK3, KLK4 and KRT5 in prostate tissue. Images are sourced from the Human protein atlas (https://www.proteinatlas.org).

See also Figures S2–S3.
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in this cluster, with little AR expression in LE-KLK4 (Figure 2D).

Protein atlas data demonstrated the presence of KLK4+ cells be-

tween KLK5+ basal cells and KLK3+ cells adjacent to the lumen

(Figure 2E). Colocalization of LE-KLK3 and LE-KLK4 cells was

also confirmed in a previously published spatial transcriptomics

dataset (Berglund et al., 2018; Figure S3B). The closer spatial

proximity of LE-KLK3 to the lumen compared with LE-KLK4 is

consistent with the transcriptional enrichment in immune de-

fense genes observed in LE-KLK3, as these cells present an

interface with the external environment and potential pathogen

challenge.
4 Cell Reports 37, 110132, December 21, 2021
Zinc transporter-expressing prostate-specific
macrophage population
We next consideredMNPs in the human prostate in isolation and

integrated scRNaseq data from MNPs in a published normal

prostate dataset (Henry et al., 2018; Figure S4A). We found six

distinct clusters of MNPs that exhibited transcriptional profiles

consistent with their identity as monocytes (Mono), conventional

DCs (cDCs), proliferating macrophages (MAC-cycling), and

macrophages (MAC1, MAC2 and MAC-MT) (Figures 3A, S4B,

and S4C). Two major subsets of cDCs are recognized, cDC1

and cDC2. cDC1 express XCR1 and cross-present antigens to

https://www.proteinatlas.org
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CD8 T cells, while cDC2 express CD1c and activate CD4 T cells

(Guilliams et al., 2014). In our dataset, we did not find two distinct

DC clusters, but both CD1C positive and negative cells were

evident within the DC cluster (Figure S4B). Two of the three

macrophage populations were transcriptionally similar (MAC1

andMAC2) (Figure 3B), whileMAC-MT cells formed a completely

distinct cluster (Figure 3A) and expressed high levels of the met-

allothionein family genes (Figure 3B), encoding cysteine-rich

proteins that bind divalent heavy metal ions and are involved in

the cellular transport, storage, and metabolism of metal ions

(Miles et al., 2000). High expression of metallothioneins has

been noted in prostate cancer (Wei et al., 2008, Wang et al.,

2018), but theMAC-MT cluster contained cells from both our da-

taset and that generated from normal, young human prostate tis-

sue (Henry et al., 2018; Figure S4C), confirming that these cells

exist in healthy prostate tissue in homeostasis. We also validated

the presence of MAC-MT in the three other published scRNaseq

datasets of both normal prostate and prostate cancer (Figures

3C and S4D).

Spatially, MAC-MT cell signatures colocalized with those of

LE-KLK3 and LE-KLK4 (Figure S4E), and we confirmed the

presence of an MT1+ CD68+ macrophage population in human

prostate using both RNA scope and immunofluorescencemicro-

scopy, which were localized adjacent to luminal regions (Fig-

ure 3D). Zinc accumulation is controlled by two families of zinc

transporters, the SLC39 (Zrt- and Irt-like proteins [ZIP]) that in-

crease intracellular zinc, and the SLC30 (ZnT) proteins that lower

zinc cellular levels (Liuzzi and Cousins, 2004). Interestingly,

among prostateMNPs, theMAC-MT subset expressed the high-

est level of the zinc transporter genes, SLC39A8 (ZIP-8) and

SLC30A1 (ZNT-1) (Figure 3E). MAC-MT cells were unique to

the prostate, with no transcriptionally similar cells identified in

other human organs (Figure S4F). Together, these data suggest

that MAC-MT represent a prostate-specific macrophage subset,

adapted to residency within the high zinc environment (Costello

and Franklin, 2016).

Tissuemacrophages arise prenatally from yolk sac (YS) or fetal

liver progenitors, but are variably replaced postnatally by mono-

cyte precursors that adopt tissue-specific transcriptional profiles
Figure 3. Immune landscape of the prostate includes a prostate-speci

(A) UMAP of 793 cells in myeloid compartment after integration of myeloid/MNP

(B) Mean expression dot plot of top five significant marker genes for eachmyeloid

0.05 was considered statistically significant. Size of circles indicate percentage

corresponds to increasing expression value.

(C) UMAP plot of predicted MNP clusters in prostate cancer single cell data from

(D) (top) Representative RNAscope images of probes targeting MT1 family genes

that are marked by both probes in sub-panels i and ii. Scale bar, 20 mm. (bottom)

section labeled for metallothionein (a-MT)/isotype control (yellow), HLA-DR (cya

colocalization of a-MT with HLA-DR and/or CD206 labeling. Scale bars, 50 mm.

(E) Mean expression dot plot of Zinc transporter genes for each myeloid cluster.

color gradient from white to red corresponds to increasing expression value.

(F) Heatmap of mean AUCell enrichment of F4/80hi/lo gene sets, corresponding to

value is scaled from 0 to 1 and presented as an increasing gradient from black,

(G) Representative immunofluorescence microscopy images of cross sections o

(yellow) and phalloidin. Scale bars, 120 mm.

(H) Cell counts per gram of prostate for rat IgG2a isotype or anti-Csf1r antibody (Ab

(p > 0.05) (Two-way ANOVA with Tukey’s multiple correction).

(I) Zinc concentration of anterior prostate lobe, liver lobe, and kidney frommalemic

(shown is representative quantification from one of two independent experiment
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(Ginhoux and Guilliams, 2016, Mass et al., 2016). All three

macrophage clusters in human prostate showed transcriptional

similarity to YS-derived macrophages (Schulz et al., 2012), as

did the proliferating macrophage cluster, but MAC2 also en-

riched for the monocyte-derived macrophage signature (Fig-

ure 3F). Therefore, MAC1 andMAC-MTmay represent prenatally

seeded macrophage subsets, while MAC2 may be monocyte-

derived, subsequently taking up a tissue-macrophage transcrip-

tional signature. In keeping with this, mouse prostate contained

both F4/80highCD11blo and F4/80loCD11bhigh macrophage sub-

sets, (Figure S5A) identified as YS and hematopoetic stem cell

(HSC)-derived subsets, respectively, in murine fate-mapping

studies (Schulz et al., 2012). An analysis of a murine prostate

scRNaseq dataset (Karthaus et al., 2020) also confirmed the

presence of macrophage clusters with enrichment for both YS-

and monocyte-derived macrophage signatures (Figure S5B).

Anatomically, F4/80high macrophages were located among

luminal epithelial cells in mouse prostate (Figure 3G). Expression

of zinc transporters and metallothionein genes was also evident

in mouse prostate macrophages, particularly F4/80hi cells en-

riching for the YS-derived macrophage signature (Figures S5C

and S5D).

We therefore hypothesized that these prostate macrophages

may contribute to zinc homeostasis in the organ. To test this,

we used an anti-Csf1r antibody which effectively depleted pros-

tatemacrophages, particularly the F4/80hi subset (Figure 3G, 3H,

S5E, and S5F). This led to a significant reduction in prostate zinc

concentration (Figure 3I), showing that prostate macrophages

play a role in maintaining tissue zinc levels. The tissue zinc con-

centration in other organs was unaffected by macrophage

depletion (Figures 3I and S5F), indicating this is a prostate spe-

cific macrophage function.

Lymphoid immune landscape of human prostate
The lymphoid compartment of normal prostate included CD4

and CD8 T cells, two subsets of NK cells (CD16+ and CD16neg)

and B cells (Figures 4A and 4B). Further analysis indicated the

presence of naive, tissue-resident memory, and regulatory

CD4 T cells, as well as cytotoxic and tissue-resident memory
fic macrophage subset enriched in metallothionein transcripts

cells from n = 10 patients with Henry et al. myeloid/MNP cells.

cluster. Marker genes were identified usingWilcoxon rank sum test and p adj <

of cells expressing the gene and increasing color gradient from white to red

(Karthaus et al., 2020, Chen et al., 2021, Crowley et al., 2020).

(magenta) and CD68 (yellow). ‘L’ indicates lumen. Arrows point to single cells

Representative immunofluorescence microscopy images of a human prostate

n), CD206 (purple) and DAPI (blue). White arrows point to structure displaying

Size of circles indicate percentage of cells expressing the gene and increasing

yolk sac (YS) versus hematopoetic stem-cell (HSC) lineage. Row enrichment

gray, yellow to orange which corresponds to increasing enrichment score.

f mouse prostate labeled for F4/80 (green), MHCII (red), CD11b (blue), CD31

) treatedmale mice. N = 5 per group. ****p < 0.0001; n.s denotes not significant

e treatedwith either rat IgG2a isotype control or anti-Csf1r Ab. N = 6 per group.

s). *p < 0.05; n.s. not significant (Mann-Whitney test). See also Figures S4–S5.
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CD8 T-cell clusters (Figures 4A, 4B, and S6A) (Kumar et al., 2017)

(Mackay et al., 2013) (Szabo et al., 2019). We categorized the B

cells according to CD27 (a marker of memory B cells) and IGHD

(a marker of naive B cells) expression and observed that �30%

and 10% of B cells were memory (CD27+IGHD-) and naive

(CD27-IGHD+), respectively, with the remaining fraction mature

non-naive B cells (Figures 4C and S6B). The majority of IGHM-

expressing cells were CD27+ IgM memory cells, and there

were also some class-switched B cells, with only a handful of

BLIMP1-expressing plasma cells observed (Figure S6B). In the

mouse prostate, extravascular naive and non-naive B cells

were also evident adjacent to luminal epithelial cells (Figure 4D).

The identification of two subsets of NK cells in normal pros-

tate is consistent with previous descriptions of NK cells in

blood and other organs; the majority of peripheral blood NK

cells are CD56dimCD16+, with a small subset of

CD56brightCD16neg NK cells, termed tissue-resident NK cells

that are also present in spleen, uterus, and liver (Shi et al.,

2011, Cuff et al., 2016). Functionally, these CD16neg tissue-resi-

dent NK cells differ from conventional CD16+ NK cells, with

reduced or altered cytotoxicity and prominent cytokine and

chemokine production (Fauriat et al., 2010). In the prostate,

CD16+ NK cells had a higher expression of genes associated

with NK cell activation compared to CD16neg NK cells, with sig-

nificant enrichment of NK cell cytotoxicity and activation gene

sets (Narni-Mancinelli et al., 2012; Figure 4E). In addition,

CD16neg NK cells showed enrichment for a universal lympho-

cyte tissue-residency signature (Mackay et al., 2016; Figure 4E),

confirming that this subset represents tissue-resident NK cells

and extending the list of tissues in which these cells have been

identified in homeostasis (Dogra et al., 2020). The presence of

CD16+ and CD16- subsets of NK cell was confirmed in an in-

dependent normal prostate single-cell dataset (Figure S6C),

and NK cells were also evident in normal mouse prostate sam-

ples (Figure 4F).

Immune perturbation in prostate cancer
We next sought to determine how prostate tissue immune cells

were perturbed in cancer. Although there was no significant dif-

ference in immune cell number in prostate cancer samples (Fig-

ure 1E), several transcriptional differences in immune cells were

evident; Antigen presentation and processing pathway genes

were significantly reduced in prostate MNPs in cancer samples

compared with normal prostate (Figure 5A), consistent with a
Figure 4. Lymphoid single-cell landscape of normal prostate and pros

(A) UMAP of 1694 lymphoid cells from n = 7 patients. Expression of marker ge

activation (CD69) and cytolytic molecule (GZMA) are shown as a heatmap where

orange to yellow.

(B) Dot plot of top five significant marker genes for each lymphoid clusters. Mar

considered statistically significant. Size of circles indicate percentage of cells exp

to increasing expression value.

(C) Pie chart showing proportion of cells expressing markers for (left) memory (CD

constant gene expression.

(D) Confocal imaging of CD19, IgG and CD31 in normal murine prostate section.

(E) (Top) Volcano plot showing top 15 significant DEGs between NK CD16pos and

NK cell gene sets (KEGG and GO) and lymphocyte tissue residency gene sets f

(Mann-Whitney test). Position of asterisks indicate the group with higher express

(F) Confocal imaging of NKp46, MHCII, F4/80 and CD31 in normal murine prosta
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widespread attenuation of CD4 T cell activation, a process crit-

ical for the generation of antitumor adaptive immune responses.

In line with this, the expression of many co-activating receptors

was higher in normal prostate MNPs compared with those in

prostate cancer, the exception being MAC-MT, which showed

higher expression of a subset of co-activating receptors in tumor

samples, including CD40 (Figures 5B and S7A). There was

increased expression of inhibitory PDL1 in MAC1 and DCs in tu-

mor (Figure 5C and S7A), little PDL1 expression in non-immune

–tumor cells, but some PDL2 expression detectable in tumor fi-

broblasts and endothelial cells (Figures 5C, S7A, and S7B). In

naive/Tcm CD4 T cells, there was reduced expression of CD28,

ICOS, and OX40 in tumor compared with normal, with little

PD1 expression and reduced CTLA4 expression in tumor

T cells (Figures 5C and S7A). Overall, in the lymphoid compart-

ment, immune-related GO term geneswere downregulated in tu-

mor-associated lymphocyte subsets (Figure S7C), and there

was significant enrichment for exhaustion signature genes in

cytotoxic CD8 T cells (Figure 5D). Interestingly, in NK cells, we

observed a significant enrichment of the ‘cytokine-cytokine re-

ceptor interaction’ gene set in the CD16neg NK cell subset in tu-

mor compared to normal (Figure 5E) and the leading-edge genes

included several chemokine transcripts related to DC recruit-

ment, including CCL5, XCL1, and XCL2 (Figure 5F). Spatial tran-

scriptomic analysis of prostate cancer confirmed colocalization

of the CD16neg NK cell signature and CCL5 transcripts (Fig-

ure 5G). This suggests that the CD16neg resident-like NK cells

in the prostate may promote the recruitment of tumor antigen

cross-presenting cDC1, with potential beneficial anti-tumor ef-

fects, as described in melanoma, breast, and colon cancer

(Böttcher et al., 2018).

Analysis of predicted MAC-MT interactions with other immune

cells based on receptor-ligand expression using CellPhoneDB

(Vento-Tormo et al., 2018) demonstrated thatMAC-MTwithin tu-

mor samples had increased expression of the gene encoding

BAFF (TNFSF13B) with the potential to support BAFF-R-ex-

pressing B cells (Figures 5H and S7D). BAFF protein expression

was evident in prostate adenocarcinoma samples (Figure S7E)

and BAFF staining colocalized with MHCII staining, marking

MNPs (Figure 5I-J). In contrast, analysis of immune-fibroblast in-

teractions highlighted CXCL12 expression by fibroblasts, with

the potential to recruit CXCR3/4-expressing CD8 T cells and

MNPs that was reduced in tumor (Figure 5K). LE-KLK3 and LE-

KLK4 both expressed macrophage inhibitory factor (MIF), a
tate cancer

nes for NK cells (FCGR3A, GNLY), CD8 T cells (CD8B), tissue residency and

gray indicates no expression and increasing expression is colored from purple,

ker genes were identified using Wilcoxon rank sum test and p adj < 0.05 was

ressing the gene and increasing color gradient from white to blue corresponds

27+IGHD-), naive (IGHD+CD27-), non-naive (remainder) and (right) heavy gene

Scale bars, 50 mm.

NKCD16neg (normal only). (Bottom) Violin plots of gene set testing (AUCell) for

rom (Mackay et al., 2016). Significance is denoted by **p < 0.01; ***p < 0.001

ion.

te section. Scale bars, 35 mm. See also Figure S6.
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macrophage survival, activation and recruiting factor (Gregory

et al., 2006), with its receptor CD74 expressed by all prostate

MNPs, and this interaction was attenuated in cancer samples

(Figure 5L). LE-KLK4 also expressed RPS19, with monocyte-re-

cruiting activity (Yamamoto, 2007), and this too was reduced in

tumor samples (Figures 5L and S7F).

In summary, these data indicate widespread immune tran-

scriptional perturbation in prostate cancer, with reduced antigen

presentation gene expression in MNP subsets, increased

expression of exhaustion-associated genes in CD8 T cells, and

reduced expression of immune-recruiting and activating chemo-

kines and cytokines by fibroblast and epithelial cells in prostate

cancer. However, in contrast, CD16neg NK cells in tumor had

increased expression of cDC1-recruiting chemokines and

MAC-MT higher expression of the B cell survival factor BAFF,

both with potential beneficial antitumor effects.

MAC-MT in tumor associated with improved outcomes
To further probe the effect of the tumor microenvironment on

MNPs, we compared GO term enrichment in normal and tumor

MNPs. This analysis showed attenuated expression of all path-

ways enriched in homeostasis in every MNP subset except for

MAC-MT (Figure S8A). Indeed, metallothionein genes were

increased in tumor-associated MAC-MT compared with those in

normal prostate (Figures 6A and S8B). SLC30A1 expression was

increased and SLC39A8 decreased in MAC-MT cells in cancer

compared to non-tumor samples (Figure 6B), the overall effect

of which may be to increase zinc efflux, potentially counteracting

the knowndecreased zinc concentration associatedwith prostate

cancer.

Transcriptional alignment of healthy prostate MNPs with hu-

man macrophages activated with a variety of stimuli (Xue et al.,

2014) demonstrated that MAC2 enriched for inflammatory

LPS- and IFNg-stimulated M1-like macrophage signatures,

as well as IL4 and glucocorticoid-stimulated macrophage sig-
Figure 5. Perturbed immune cell transcriptomes and cellular interactio

(A) Violin plot of gene module score of GO term corresponding to antigen processi

was performed between normal and tumor for each cluster and p < 0.05 was co

(B) Pie chart of co-activating and co-inhibitory DEGs between normal (light col

sections indicate genes that were that were upregulated in tumor versus normal a

fold change). Grey sections indicate < 1.25 log2 fold change.

(C) Mean expression dot plot of costimulatory/coinhibitory molecules. Increasing e

epithelial/stromal) or white to blue (T/NK/B cell) corresponding to increasing expre

(D) Violin plot of gene set test (AUCell) results in CD8 cytotoxic T cell cluster fo

Significance is denoted by *p < 0.05 (Mann-Whitney test).

(E) GSEA of KEGG pathways for NK CD16neg tumor versus normal. Statistically s

(F) Mean expression dot plot of leading edge genes in cytokine-cytokine receptor

plotted.

(G) (Top) Expression of CCL5 and prediction/label transfer score of NK CD16neg

correlation of CCL5 with NK CD16neg cells in prostate cancer visium data. Only

gradient from white to red.

(H) CellPhoneDB receptor-ligand interaction analysis between B cell and myeloid

(I) Representative immunofluorescence confocal microscopy of BAFF and HLA-D

(J–L) (J) Expression of TNFSF13B and prediction/label transfer score of MAC-MT c

data. Only positive correlations are plotted; increasing value of correlation is sho

analysis between (K) fibroblasts and T cell clusters, and fibroblast and myeloid cl

tumor). The order of the receptor-ligand interactions corresponds to the order of

expressing molecule B. Size of circles and color gradient corresponds to the rece

values. Significant interactions (p < 0.05) are highlighted in red. See also Figure S
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natures (Figure 6C). MAC1 showed little enrichment for any

signatures except for the glucocorticoid-stimulated macro-

phage signature, while MAC-MT were completely distinct, en-

riching for TNF-, IL10-, and fatty acid–stimulated macrophage

signatures (Figure 6C). In contrast to normal prostate, MNPs in

tumor tissue demonstrated a global reduction in most macro-

phage activation signatures, consistent with a broad immune-

suppressive effect of the tumor environment (Figure 6C).

However, the remarkable exception to this tumor-associated

suppression was the MAC-MT subset, which showed a signif-

icant increase in the expression in IFNg-, TNF-, and fatty acid–

stimulated macrophage gene signatures (Figure 6C). We

observed an increase in cholesterol homeostasis pathway

genes (Hallmarks, Figure S8C) and linoleic acid (a fatty acid)

metabolism pathway genes (KEGG, Figure 6D) in prostate

cancer–associated LE-KLK4 cells, raising the possibility that

the fatty acid response gene enrichment in MAC-MT cells

may arise due to fatty acid generation by local LE-KLK4 cells.

Of note, increased fatty acid production from de novo lipogen-

esis has been described in prostate cancer (Rossi et al., 2003)

and inhibition of lipogenesis reduced cancer growth in vitro

(Zadra et al., 2014).

STRING analysis of leading-edge genes (Figure S8D) in these

macrophageactivationsignatures, showed that fatty acid stimula-

tion genes upregulated in MAC-MT in tumor were dominated by

metallothionine genes, while inflammatory stimulation genes

included several chemokines (CXCL9, CXCL10; Figures 6E and

6F). CD8 cytotoxic T cells were the principle immune cell subset

expressingCXCR3, the receptor for thesechemokines (Figure6F),

suggesting that MAC-MT activation may promote CD8 T cell

recruitment to tumors (Figure S8E). Consistent with this, some/

many CD8 T cells were located adjacent to MNPs (Figure 6G)

and spatial transcriptomic analysis of prostate cancer confirmed

colocalization of the MAC-MT signature with CXCL9/10 and with

CD8 T cells (Figure 6H).
ns in prostate tumor
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Given the pro-inflammatory transcriptional profile of MAC-MT

cells, we hypothesized that they may have an antitumor effect,

promoting anti-cancer immune responses and counteracting

cancer-associated perturbations in zinc concentration. In keep-

ing with this, cellular deconvolution (Figure S9A) of The Cancer

Genome Atlas (TCGA) data (Figure S9B) indicated that prostate

cancer biopsies with higher MAC-MT enrichment had a lower

Gleason score (Figure S9C) and improved disease-free survival

(Figure 6I; Table S2). No other individual immune cell subset

signature had prognostic significance in this dataset, although

the limited number of samples with a high CD16neg NK cell signa-

ture precluded a robust analysis of the prognostic association of

these cells (Figure S9C).

DISCUSSION

Our single-cell analysis of the human prostate delivered several

remarkable findings; our sample processing protocol enriched

for immune cells enabling us to deliver the most comprehensive

overview of the immune landscape of normal human prostate to

date. Our prostate immune cell atlas delineates a range of innate

and adaptive immune cells, with several CD4 andCD8 T cell sub-

sets, two subsets of NK cells, and a prostate-specific macro-

phage subset, which we designated MAC-MT. The latter subset

was transcriptionally similar to YS-derivedmurinemacrophages,

consistent with the conclusion that they may be prenatally

seeded, although transcriptional profile does not definitively

prove ontogeny. They also expressed high levels of metallothio-

nein and zinc transporter genes, suggesting that they could

contribute to zinc homeostasis in the prostate. To test this hy-

pothesis, we depleted prostate macrophages in mice, and

confirmed a reduction in tissue zinc levels. In prostatic epithelial

cells, the high zinc concentration acts to inhibit mitochondrial

aconitase, truncating the Krebs cycle to generate citrate which

is secreted into prostatic fluid maintaining spermatozoa (Cost-

ello and Franklin, 2016). The bioenergetic consequence of this

is a reduction in ATP generation; therefore, aerobic glycolysis

is increased in prostatic epithelium (Costello and Franklin,
Figure 6. MT1-expressingmacrophages in tumor have increasedmetal

with improved tumor event-free survival

(A) Violin plots show genes than achieved a p adj < 0.05 after statistical analyses

where expression is higher (orange = tumor).

(B) Mean expression dot plot of metal ion transport genes in MAC-MT cluster sepa

of cells expressing the genes and color indicates which group (normal or tumor)

(C) Heatmap of mean AUCell enrichment of 27 macrophage-stimulation signatu

presented as a gradient from purple, blue, green to yellow.

(D) GSEA of KEGG pathways in tumor versus normal for LE-KLK4. Pathways were

red line). Size of circles indicate normalized enrichment score (NES) and colors

yellow as significance values decreases.

(E) String-DB analysis of leading edge genes from selected pathways enriched in

(F) Mean expression dot plot of CCL5, CXCL9, CXCL10 in MNP clusters and CX

pressing the genes and increasing expression (scaled from 0 to 1) corresponds

(G) Representative immunofluorescence confocal microscopy of CD8 and HLA-D

(H) Expression of CXCL9 andCXCL10 and prediction/label transfer scores ofMAC

Spatial correlation of CXCL9 and CXCL10 with MAC-MT or MAC-MT with CD8

plotted; increasing value of correlation is shown as a gradient from white to red.

(I) Kaplan-Meier survival curve for TCGA-PRAD disease free index with deconvol

low (red, bottom 25%) of deconvolved score. Statistical analysis was performed w

Figures S8–S9 and Table S2.
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2016). MAC-MT also enriched for glycolysis genes and may

therefore directly contribute to prostate zinc and citrate via a

similar mechanism, although we did not explore this in the cur-

rent study. Of note, this homeostatic role of MAC-MT in main-

taining prostate zinc adds to other examples of prenatally

seeded tissue macrophages that contribute to organ physiology

and function; for example, in the heart, a subset of macrophages

act to buffer calcium ions within the conducting system (Huls-

mans et al., 2017), and in the intestine, muscularis macrophages

regulate the steady-state peristaltic activity of the colon (Muller

et al., 2014).

In prostate cancer, the concentration of both citrate and zinc

are markedly decreased (Franklin et al., 2005). We found that

in prostate cancer, MAC-MT markedly increased the expression

of the zinc efflux transporter SLC30A1, which may represent a

mechanism to counteract the disrupted zinc transport present

in tumor luminal epithelial cells. MAC-MT were also largely resis-

tant to the immunosuppressive effect of the tumor environment.

In fact, they become transcriptionally more inflammatory, ex-

pressing the B cell survival factor BAFF and lymphocyte-recruit-

ing chemokines. Our analyses suggest that this responsemay be

driven by the metabolic changes observed in KLK4 cells in tu-

mor, namely the production of fatty acids. This increase in fatty

acid metabolism has been previously described in prostate can-

cer (Rossi et al., 2003). We found that MAC-MT in tumor showed

a transcriptional profile similar to that observed in macrophages

stimulated with fatty acids. Remarkably, enrichment of theMAC-

MT signature in prostate cancer biopsies was associated with

improved disease-free survival, supporting the conclusion that

their pro-inflammatory effects could be beneficial in the context

of prostate cancer. The effects of MAC-MT enrichment are in

contrast to previous studies investigating MNPs in prostate

cancer which have associated the presence of myeloid-derived

suppressor cells (Brusa et al., 2013) and CD163-positive M2

macrophages (Erlandsson et al., 2019) with worse survival, and

emphasize the value of scRNA seq in delineating distinct cell

subsets with important transcriptional and functional differences

(Montoro et al., 2018). Our data have translational relevance as
lothionein and pro-inflammatory gene expression and are associated

with Wilcoxon Rank Sum Tests. Color of adjusted p value indicates the group

rated by normal (N) or tumor (T) in rows. Size of circle indicates the percentage

expresses higher (dark red) levels of the genes.

res split by normal or tumor. Row expression value is scaled from 0 to 1 and

considered statistically significant if p value < 0.05 (marked by vertical dashed

indicate if pathways achieved FDR < 0.25 starting from purple, blue, green to

tumor MAC-MT.

CR3 in lymphoid clusters. Size of circle indicates the percentage of cells ex-

to increasing color gradient from purple, blue, green to yellow.

R in human prostate tumor section. Scale bars, 10 mm.

-MT andCD8 cytotoxic cells in visium data of tumor prostate sections. (Bottom)

cytotoxic cells in prostate cancer visium data. Only positive correlations are

ved MAC-MT score. Samples were categorised into high (black, top 25%) and

ith log rank test and p < 0.05 was considered statistically significant. See also
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the antitumor effects of MAC-MT could potentially be harnessed

as an immunotherapeutic strategy in advanced progressive

prostate cancer.

We also identified a tissue-resident CD16neg NK cell subset in

normal prostate. These cells showed increased expression of

CCL5, XCL1, and XCL2 in prostate cancer, with the potential

to recruit cDC1. This is reminiscent of a recent study in mice

showing that NK cells in implanted melanomas, breast, and co-

lon cancers played a critical role in recruiting cDC1 via the pro-

duction of CCL5 and XCL1, with important antitumor effects

(Böttcher et al., 2018). cDC1 express XCR1 (Dorner et al.,

2009), as well as CCR1 and CCR5, both of which bind CCL5

(McColl, 2002) and have antitumor functions; they can attract

and activate tumor-specific CD8 T cells (Spranger et al., 2017)

(Broz et al., 2014), and internalize and transport tumor antigens

to lymph nodes, where they may cross-prime CD8 T cells (Rob-

erts et al., 2016). The potential importance of NK cells in

antitumor responses in prostate cancer has been suggested

by previous studies associating lower numbers of peripheral

blood NK cells, particularly CD16neg NK cells (Koo et al., 2013),

or reduced activation capacity of circulating NK cells, with a

higher risk of prostate cancer on biopsy (Vidal et al., 2019). NK

cells within prostate cancer tissue have not been well studied,

but enumeration via immunohistochemical staining indicated

an association with a lower risk of disease progression (Gannon

et al., 2009), and there is one previous flow cytometric assess-

ment of prostate tumor NK cells, demonstrating an enrichment

of the CD56bright subset, relative to blood (Pasero et al., 2016).

Our study confirms the presence of a tissue-resident CD56bright

CD16neg NK cell subset in the prostate in health and in cancer,

and provides a transcriptional assessment of these cells,

revealing a potentially important antitumor function in cDC1

recruitment.

To date, metastatic prostate cancer has shown variable

responsiveness to checkpoint blockade (Kwon et al., 2014,

Beer et al., 2017). Evaluation of PD-L1 expression in prostate

cancer previously identified its presence in less than 10% of

primary cancer and up to a third of metastatic cancers (Haffner

et al., 2018). Our analysis enabled simultaneous assessment of

all PD1/2 ligands and receptors across cell types. PDL1 was

expression was upregulated in tumor MAC2 and DCs, and

we identified de novo PDL2 expression in tumor samples, sug-

gesting that this may be a more relevant therapeutic target in

prostate cancer than PDL1. This is consistent with a recent

analysis of bulk RNA seq data from prostate cancer biopsies

that found an increase in PDL2 transcripts compared with

normal tissue, and that higher PDL2 expression was associ-

ated with worse outcomes (Zhao et al., 2019). Our analysis

enabled the specific identification of tumor fibroblasts and

endothelial cells as key expressors of this immunoinhibitory

molecule.

Aside from tissue-resident immune cells, we also identified a

subset of luminal epithelial cells that lack expression of AR that

may interact metabolically with the prostate-specific MAC-MT.

Our dataset delineates several cell-specific markers that should

be investigated for their utility as biomarkers for the early identi-

fication of this cell subset to assess their contributions to devel-

opment of castration-resistant disease.
In summary, we define the immune cell landscape in normal

human prostate and describe its perturbation in cancer. Our

study revealed the presence of a prostate-specific macrophage

subset, marked by high expression of metallothionein genes

that, in contrast to other MNP subsets, increases inflammatory

gene expression in cancer with potential beneficial prognostic

effects.

Limitations of the study
While our study used a tissue processing strategy that enriched

for immune cells on n = 10 paired normal and prostate cancer

samples and successfully created a single-cell prostate immune

atlas, there are several limitations; the patients recruited to our

study had predominantly moderate prostate cancer and did

not receive androgen deprivation therapy, in contrast to the other

prostate cancer single-cell datasets which primarily consist of

samples frommore advanced disease. Furthermore, we discov-

ered a metallothionein- expressing, zinc-regulating macrophage

(MAC-MT) population, the MAC-MT gene signature was associ-

ated with improved outcomes, and experimental depletion in

mice showed that prostate macrophages contribute to zinc ho-

meostasis in normal prostate. However, further work is needed

to investigate the role of these macrophages in the context of

prostate cancer.
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Antibodies

anti-human CD14 (FITC) Invitrogen Cat#11-0419-42; clone 61D3; RRID: AB_10597597

anti-human CD45 (APC-eFluor780) eBioscience Cat#47-0459-42; clone HI30; RRID: AB_1944368

anti-human CD19 (eFluor450) eBioscience Cat#48-0199-42; clone HIB19; RRID: AB_1272053

anti-human CD3 (BV785) BioLegend Cat#317330; clone OKT3; RRID: AB_2563507

anti-human CD8 (PE) BioLegend Cat#300908; clone HIT8a; RRID: AB_314112

anti-human CD16 (PE-Cyanine7) Invitrogen Cat#25-0168-42; clone CB16; RRID: AB_10714839

anti-mouse Ly-6G/Ly-6C (Gr1) (FITC) BioLegend Cat#108406; clone RB6-8C5; RRID: AB_313371

anti-mouse CD11b (PerCP-Cy5.5) eBioscience Cat#45-0112-82; clone M1/70; RRID: AB_953558

anti-mouse CD3e (APC) eBioscience Cat#17-0031-82; clone 145-2C11; RRID: AB_469315

anti-mouse CD19 (APC) BioLegend Cat#152410; clone 1D3; RRID: AB_2629839

anti-mouse CD45 (APC-eFluor780) Invitrogen Cat#47-0451-82; clone 30-F11; RRID: AB_1548781

anti-mouse I-A/I-E (Pacific Blue) BioLegend Cat#107620; clone M5/114.15.2; RRID: AB_493527

anti-mouse CD11c (PE) BioLegend Cat#117308; clone N418; RRID: AB_313777

anti-mouse F4/80 (PE-Cyanine7) Invitrogen Cat#25-4801-82; clone BM8; AB_469653

anti-mouse CD4 (FITC) eBioscience Cat#11-0041-82; clone GK1.5; RRID: AB_464892

anti-mouse NK1.1 (Pacific Blue) BioLegend Cat#108722; clone PK136; RRID: AB_2132712

anti-mouse CD8a (BV785) BioLegend Cat#100750; clone 53-6.7; RRID: AB_2562610

anti-mouse NKp46 (PE/Dazzle) BioLegend Cat#137630; clone 29A1.4; RRID: AB_2616666

anti-mouse CD3 (PE-Cyanine7) BD PharMingen Cat#560591; clone 17A2; RRID: AB_1727462

anti-mouse Ly-6G/Ly-6C (Gr-1) (APC) BioLegend Cat#108412; clone RB6-8C5; RRID: AB_313377

anti-mouse CSF1R BioXCell Cat#BE0213; clone AFS98; RRID: AB_2687699

Rat IgG2a isotype control BioXCell Cat#BE0089; clone 2A3; RRID: AB_1107769

anti-human HLA-DR (AF647) Abcam Cat#ab20181; clone TAL 1B5; RRID: AB_445401

anti-human CD206 (PE/Dazzle) BioLegend Cat#321130; clone 15-2; RRID: AB_2616867

anti-human MT1 Abcam Cat#ab12228; clone UC1MT; RRID: AB_298949

anti-human CD3 (AF488) BioLegend Cat#300415; clone UCHT1; RRID: AB_389310

anti-human BAFF (polyclonal rabbit) Bioss Cat#bs-2431R; RRID: AB_10855666

Mouse IgG1 kappa monoclonal isotype

control

Abcam Cat#ab170190; clone 15-6E10A7; RRID: AB_2736870

Goat anti-mouse IgG secondary

(FITC, polyclonal)

Invitrogen Cat#31569; RRID: AB_228306

anti-mouse CD31 (AF594) BioLegend Cat#102520; clone MEC13.3; RRID: AB_2563319

anti-mouse F4/80 (AF647) Abcam Cat#ab204467; clone F4/80; RRID: AB_2810932

anti-mouse CD19 (AF594) BioLegend Cat#115552; clone 6D5; RRID: AB_2563459

anti-mouse IgD (AF488) BioLegend Cat#405718; clone 11-26c.2a; RRID: AB_10730619

anti-mouse NKp46 (PE) eBioscience Cat#12-3351-82; clone 29A1.4; RRID: AB_1210743

anti-mouse CD8 (FITC) eBioscience Cat#11-0081-82; clone 53-6.7; RRID: AB_464915

anti-mouse CD3 (Pacific Blue) BioLegend Cat#100214; clone 17A2; RRID: AB_493645

Flash Phalloidin 488 BioLegend Cat#424201

Hoechst 33258 Biotium Cat#40044

DAPI (in mounting medium) Invitrogen Cat#00-4959-52

LIVE/DEAD Aqua Invitrogen Cat#L34957

(Continued on next page)
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Reagent or resource Source Identifier

Biological samples

Human normal and cancer prostate

tissues

Cambridge University Hospitals NHS

Foundation Trust

N/A

Critical commercial assays

Zinc Assay Kit Abcam Cat#ab102507

Chromium Single Cell 30 Library &

Gel Bead Kit v2

10X Genomics Cat#PN-120237

Chromium Single Cell A Chip Kit,

16 rxns

10X Genomics Cat#PN-1000009

Chromium i7 Multiplex Kit, 96 rxns 10X Genomics Cat#PN-120262

RNAscope� 2.5 LS Multiplex Reagent

Kit

Advanced Cell Diagnostics Cat#322800

RNAscope� LS 4-Plex Ancillary Kit

Multiplex Reagent Kit

Advanced Cell Diagnostics Cat#322830

RNAscope� 2.5 LS Probe- Hs-CD68-C2 Advanced Cell Diagnostics Cat#560598-C2

RNAscope� 2.5 LS Probe- Hs-MT1-C3

(custom probe)

Advanced Cell Diagnostics Cat#831088

Deposited data

Matched normal and tumor prostate

scRNaseq data

This paper, European Genome–

Phenome Archive

EGAS00001005787, prostatecellatlas.org

Spatial Gene Expression Dataset by

Space Ranger 1.3.0, Human Prostate

Cancer, Adenocarcinoma with

Invasive Carcinoma (FFPE)

10X Genomics N/A

Prostate Cancer Spatial Transcriptomics

data (L1.2) (Berglund et al., 2018)

European Genome–Phenome Archive EGAS0000100300

Normal human prostate scRNaseq data

(Henry et al., 2018)

GEO GSE120716

Human prostate cancer scRNaseq data

(Chen et al., 2021)

GEO GSE141445

Human prostate cancer scRNaseq data

(Crowley et al., 2020)

GEO GSE150692

Human prostate cancer scRNaseq data

(Karthaus et al., 2020)

https://singlecell.broadinstitute.org/ SCP864

Mouse prostate scRNaseq data

(Karthaus et al., 2020)

GEO, https://singlecell.broadinstitute.org/ GSE146811, SCP859

Human prostate cancer Bulk RNaseq TCGAbiolinks (R/Bioconductor) TCGA-PRAD

Human spleen and lung scRNaseq data

(Madissoon et al., 2019)

Human Cell Atlas Data Portal,

https://www.tissuestabilitycellatlas.org/

N/A

Human kidney scRNaseq data

(Stewart et al., 2019)

Human Cell Atlas Data Portal,

https://www.kidneycellatlas.org/

N/A

Human liver scRNaseq data

(MacParland et al., 2018)

GEO GSE115469

Human heart scRNaseq data

(Wang et al., 2020)

GEO GSE109816

Experimental models: Organisms/strains

Mouse: C57BL/6 (B6) Jackson Laboratories Stock No: 000664

Software and algorithms

seurat CRAN V3.2.3

glmnet CRAN V4.1-2

survival CRAN V2.41-3

(Continued on next page)
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Continued

Reagent or resource Source Identifier

survminer CRAN V0.4.6

pheatmap CRAN V1.0.12

AUCell Bioconductor V1.14.0

fgsea Bioconductor V1.18.0

clusterProfiler Bioconductor V4.0.5

biomaRt Bioconductor V2.48.3

TCGAbiolinks Bioconductor V2.15.3

String-DB https://string-db.org V11

scanpy https://github.com/theislab/scanpy V1.4.5.post2 and V.1.7.2

soupx https://github.com/constantamateur/soupx V1.2.1

scrublet https://github.com/swolock/scrublet V0.2.1

umap https://github.com/lmcinnes/umap V3.10.0

gseapy https://github.com/zqfang/gseapy V0.10.5

stLearn https://github.com/BiomedicalMachine

Learning/stLearn

V0.3.2

CellPhoneDB https://github.com/Teichlab/cellphonedb V2.0.5

MuSiC https://github.com/xuranw/MuSiC V0.1.1

Cellranger 10X Genomics V2.1.0

CASAVA Illumina V1.8.2

FlowJo BD V10
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Menna R.

Clatworthy (mrc38@cam.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The raw single-cell RNA-sequencing data reported in this paper is deposited at the EuropeanGenome-Phenome Archive under

the accession id EGA: EGAS00001005787 with restricted data access control and will be made available by the data access

committee, including the lead contact, upon reasonable request. The count data and single-cell objects are available at www.

prostatecellatlas.org.

d All code used for the study are available at https://github.com/clatworthylab/prostateimmuneatlas.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Fifteen men (50 – 74 years old) undergoing image guided prostate biopsies for suspicion of prostate cancer were enrolled in the DIA-

MOND study (NHS National Research Ethics Service reference 03/018) (CI:Gnanapragasam). All participants had previously

undergone multi-parametric magnetic resonance imaging (mpMRI) of the prostate on a 3T magnet (Discovery MR750, GE Health-

care), using a 32-channel phased array coil. T2-weighted, contrast-enhanced, and diffusion-weighted imaging was acquired using

the LIKERT scoring system according to Prostate Imaging–Reporting and Data System (PI-RADS) guidelines (Barrett et al., 2019).

Only men with a positive MRI were approached and recruited for this study, defined as a PI-RADS score 3 or greater.

Each participant underwent transperineal biopsy under general anesthesia using the Biopsee fusion platform (Medcom, Darm-

stadt, Germany) according to the Ginsburg protocol, with a variable number of biopsies cores taken in order to obtain an appropriate

tissue diagnosis for that individual (Kuru et al., 2013). All targets were defined by radiologists pre-procedure using T2-weighted
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imaging as the primary source images, using Biopsee fusion software. Patient/sample characteristics are summarized in Table S1.

Samples from 5 men were used for sample preparation optimization and remaining 10 were used for sequencing experiments.

Mice
All murine research was conducted under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following

ethical review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB). Mice were housed at Cambridge

Biomedical Services under specific-pathogen-free conditions. Wild-type C57BL/6 male mice aged 8 – 12 weeks were obtained from

Jackson Laboratories (Margate, UK),

METHOD DETAILS

Sample collection
Each participant underwent prostate biopsy with a variable number of biopsies (20-30) cores taken in order to obtain an appropriate

tissue diagnosis. Samples were taken from systematic and targeted biopsies as standard of care. Men were consented to have addi-

tional cores taken from the ‘‘Target’’ (area where cancer was suspected on theMRI) and from an ‘‘off-target’’ area to provide a normal

prostate tissue comparator. The number of biopsies taken from both areas ranged from 1 to 6 additional cores. Biopsies were placed

into phosphate buffered saline and placed on ice immediately.

Tissue disaggregation of human tissue
Prostate tissue was received in ice cold PBS, minced into approximately 5 mm3 pieces and digested for 20min at 37�Cwith agitation

in a digestion solution containing 32.5 mg/mL Liberase TM and 50 mg/mL DNase in RPMI. Following incubation samples were passed

through a 100 mm cell strainer using a 1 mL syringe plunger and washed by centrifugation with PBS. Live cells were enriched using a

Dead Cell Removal kit (Miltenyi Biotec) as per manufactures instructions. This was followed by a 44% Percoll density-gradient for

30 min at room temperature. Enriched live cells were washed and counted using a haemocytometer with trypan blue. Cells were

then blocked with human FcR block (Miltenyi Biotech) prior to surface staining for flow cytometry. Cell counts per gram were calcu-

lated with the addition of 123count eBeads.

Single-cell sequencing
10X Chromium Chip Single-cell library generation and preparation were performed on the single-cell suspension according to 10X

Chromium 30 solution (V2 kit) as per manufacturer’s instructions with an aim to capture 5000-10000 cells/channel. Sequencing was

performed at the Cancer Research UK Cambridge Institute on the Illumina HiSeq4000 platform.

Following sequencing BCL files were demutiplexed to Fastq files using CASAVA. Subsequently splitting to single cells and map-

ping and quantification of genes was carried out using Cellranger software package (10X genomics). This generated count tables of

unique molecular identifiers (UMI) for each gene per droplet.

Tissue disaggregation of murine tissue
The left and right anterior prostate lobes were harvested from mice and minced into approximately 15 mm3 pieces. Samples were

digested for 20 min at room temperature in a digestion solution containing 0.1 M HEPES, 32.5 mg/mL Liberase TM and 50 mg/mL

DNase in RPMI. Following incubation samples were passed through a 100 mm cell strainer using a 1 mL syringe plunger, washed

by centrifugation with PBS and blocked with 50:50 mix of normal mouse and rat serum prior to staining. Cell counts per organ /

gram of tissue were calculated with the addition of 123count eBeads (Invitrogen).

Flow cytometry
After blocking cells were incubated with live/dead cell staining (Live/Dead Aqua 405, Invitrogen) for 15 minutes on ice. Cell surface

staining occurred on ice for 30minutes. All samples were acquired on an LSR 4/5 laser Fortessa (BD) and data analyzed using FlowJo

v10. Human antibody: anti-CD14 FITC (61D3, Invitrogen), anti-CD45 APC-eFluor780 (HI30, eBioscience), anti-CD19 eFluor450

(HIB19, eBioscience), anti-CD3 BV785 (OKT3, BioLegend), anti-CD8 PE (HIT8a, BioLegend), anti-CD16 PE-Cyanine7 (CB16, Invitro-

gen). Murine antibody (myeloid panel): anti-Gr1 FITC (RB6-8C5, BioLegend), anti-CD11b PerCP-Cy5.5 (M1/70, eBioscience), anti-

CD3e APC (145-2C11, eBioscience), anti-CD19 APC (1D3, BioLegend), anti-CD45 APC-eFluor780 (30-F11, Invitrogen), anti-I-A/

I-E Pacific Blue (M5/114.15.2, Biolegend), anti-CD11c PE (N418, BioLegend), anti-F4/80 PE-Cyanine7 (BM8, Invitrogen).Murine anti-

body (lymphoid panel): anti-CD4 FITC (GK1.5, eBioscience), anti-CD19 APC (1D3, BioLegend), anti-CD45 APC-eFluor780 (30-F11,

Invitrogen), anti-NK1.1- Pacific Blue (PK136, BioLegend), anti-CD8aBV785 (53-6.7, BioLegend), anti-NKp46 PE/Dazzle (29A1.4, Bio-

Legend), anti-CD3 PE-Cyanine7 (17A2, BD PharMingen).

Single-cell data analysis and preprocessing
The single-cell data (10X cellranger output) processed with EmptyDrops (Lun et al., 2019) and then corrected for ambient RNA expres-

sion using SoupX (v1.2.1) (Young and Behjati, 2020). Contamination fractions were estimated using the following genes: haemoglobin

genes: HBA1, HBA2 and HBB; immunoglobulin genes: IGKC, IGLC1, IGLC2, IGLC3, IGLC4, IGLC5, IGLC6 and IGLC7; sperm
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genes: STMN1; prostate specific antigen gene: KLK3. SoupX was run with clustering information derived from a generic processing

workflow in Seurat (Stuart et al., 2019). After SoupX, doublet detection was performed using scrublet (v0.2.1) (Wolock et al., 2019)

with adaptations outlined in (Popescu et al., 2019) – Briefly, after scrubletwas performed, the data was iteratively sub-clustered using

standard Seurat-inspired scanpy (v.1.4.5.post2) workflow (Wolf et al., 2018, Stuart et al., 2019) and a median scrublet score for each

sub-cluster was computed. Median absolute deviation (MAD) scoreswere computed from the cluster scrublet scores and a one tailed t

test was performed with Benjamini-Hochberg (BH) correction (Benjamini and Hochberg, 1995) applied and cells with significantly

outlying cluster scrublet scores (BH pval < 0.1) were flagged as potential doublets. The data was then processed using scanpy with

standard quality control steps; cells were filtered if number of genes > 2500 or < 200. Percentage mitochondrial content cut-off was

set at < 30%. Genes were retained if they are expressed by at least 3 cells. Genes counts for each cell were normalized to contain

a total count equal to the median of total counts in cells before normalization. This led to a working dataset of 17,108 cells. We filtered

out 1,616 cells that we could annotate as sperm cells from seminal fluid contamination from a single normal sample before resulting in

the final set of 15,492 cells. Highly variable genes were selected based on the following parameters: minimum and maximum mean

expression are > = 0.0125 and % 3 respectively; minimum dispersion of genes = 0.5. The number of principal components used for

neighborhood graph construction and dimensional reduction was set at 50. Batch correction was performed using bbknnwith patients

as the batch term with all other parameters as per default settings (Pola�nski et al., 2020) (for all cells and for lymphoid analysis). Clus-

teringwas performed using Leiden algorithm (Traag et al., 2019) with resolution set at 1.0 (for all cells) or 0.5 (for myeloid and lymphoid).

Henry et al. (Henry et al., 2018) dataset was identically processed for comparison except that cell type identitieswere used as published

and sub-clustering of leukocytes was performed to extract MNPs after marker gene identification with Wilcoxon Rank Sum tests.

In all caseswhere UniformManifold Approximation and Projection (UMAP; v3.10.0) (McInnes et al., 2018) was used for dimensional

reduction and visualization, the minimum distance was set at 0.3 and all other parameters as per default settings in scanpy.

For integration of MNPs, standard SCTransformworkflow implemented in Seurat (v3.2.3) was used (Hafemeister and Satija, 2019).

Calculation of PCA, UMAP and neighborhood graphs post integration was performed in scanpy using the SCTransform normalized

data. Neighborhood graph graphs were constructed with 10 neighbors. For analysis of lymphoid cells, cells from three patients were

excluded due to low numbers of cells (< 10 cells; D7 and D14) or low-quality information from cells (D6; insufficient cell-cell hetero-

geneity). Further sub-clustering was also performed on NK cells, CD8 T cells and non-CD8 T cells (annotated as CD4 T cells) sepa-

rately to obtain the final lymphoid clusters via specifying the restrict_to option with resolution set at 0.3 in scanpy.

Differential gene testing
Differential gene testing was performed using the Wilcoxon test rank sum test implemented in scanpy’s rank_genes_groupsmodule.

Cell type similarity assessment
We used a logistic regression approach to test for cell type similarity. This is done with L2-regularised logistic regression (ridge

regression) multinomial models with the glmnet R package (Friedman et al., 2010) (i.e., alpha parameter = 0). Models were trained

on normalized gene expression data with 10-fold cross-validation to obtain the appropriate lamda coefficient (lambda.1se; within

1 standard error from best model) for prediction. Gene expression values were standardized in both the training and test sets.

The average of 50 iterations was used for the final score. To determine if predictions were significant, a median prediction probability

score for each cluster was calculated and MAD-outliers were identified using a one-tailed t test. Cells were considered to be signif-

icantly similar if the BH p value was < 0.05 and the probability was > 50%. Re-embedding of each relevant dataset into UMAP or tSNE

space were performed where possible with standard scanpy workflow and cluster identities were used as published. Label transfer

for prostate cancer datasets (Chen et al., 2021, Crowley et al., 2020, Karthaus et al., 2020) was performedwith default ingest protocol

in implemented in scanpy. Pre-processing of these additional datasets were performed as close as possible to the dataset in this

manuscript except for the exclusion of ambient RNA correction due to inavailability of raw data.

Gene set enrichment and pathway analyses
Gene module scores of gene sets used were obtained using scanpy’s score_genes module or AUCell (Aibar et al., 2017). Kruskal-

Wallis test or Mann Whitney U tests were performed to test for significance of enrichment where appropriate using Prism software

(v8). P value < 0.05 were considered as statistically significant. Typically, gene sets were retrieved and used as published in the orig-

inal articles; in cases where murine gene sets were used, murine genes were converted to human orthologs using biomaRt (Durinck

et al., 2009).

Pre-ranked gene set analysis (prGSEA) on hallmark genesets (Liberzon et al., 2015) andmacrophage stimulation genesets (Murray

et al., 2014) were performed with gseapy (https://github.com/zqfang/GSEApy/).

Gene ontology and KEGG pathway analyses were performed using fgsea (Korotkevich et al., 2019) or over-representation analysis

implemented in clusterProfiler (Yu et al., 2012) R package. Genes were pre-ranked according to signed -log10Pvalues for all prGSEA

procedures.

String-DB (v11) analysis was performed using the web browser tool (https://string-db.org/).
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Spatial transcriptomics data analysis
We compared our scRNA-seq analysis with spatial gene expression data generated by spatial transcriptomics protocol (Ståhl et al.,

2016) for prostate cancer tissues (Berglund et al., 2018). The tissues were from radical prostatectomy for a patient with adenocar-

cinoma. We used the tissue section L1.2, which was pathologically annotated as at cancer stage GLEASON score 3+3. For accu-

rately mapping spot expression data to the tissue H&E image, we used spot count matrices with adjusted spot coordinates. The

coordinate adjustment was based on the alignment of the H&E image with the corresponding spot-fluorescent image, where

each spot was detected by Cy3 fluorescence signal. The alignment accounted for manufacturing variation that caused the differ-

ences between expected coordinates and the actual coordinates of spots printed onto the spatial gene-expression slide.

To classify cell-types in each spot, we used the anchor-based data integration method and calculated probabilistic transfer scores

of discrete cell-type labels from cell types information in our reference scRNA-seq data to spot data (Stuart et al., 2019). For each

spot, the class probability of the spot belonging to each of the 12 cell types was calculated. For estimating the abundance of two

cell types in each spot as in the pie chart, we calculate the probability of the spot to be of the cell types of interest and scaled

each value to 1. The script for anchor-based label transferring and for plotting cell type proportion to tissue is available at https://

github.com/BiomedicalMachineLearning/stLearn and described in stLearn package (Pham et al., 2020).

For label transfer of the FFPE visium datasets available from 10X resource page, SCTransform was used to normalize both the

reference (prostate single-cell dataset) and spatial data prior to integration as per instructions for Seurat v3.2.3. Expression values

plotted are SCTransformed normalized values. For calculation of spatial correlation, k = 5 nearest neighborhoods were extracted

from a kNN graph computed from the spatial location of each voxel. Peason’s correlation was then performed on each neighborhood

using the gene expression value and cell type prediction value, followed by averaging across neighborhoods. Correlation values will

not be returned if expression value was not detected in all neighborhoods or expression value was uniform across all voxels. For the

CXCL9 + CXCL10 comparison, the value from Seurat’s AddModuleScore of the two genes was used for computing the correlation.

CellPhoneDB analysis
Normalized expression values from cell types found in this dataset were subjected to CellPhoneDB analysis (v2.0.0) (Efremova et al.,

2020). The minimum threshold was set at 30% and results were considered statistically significant if p < 0.05.

Survival analysis
The Cancer Genome Atlas (TCGA) expression and clinical data for Prostate Adenocarcinoma (PRAD) were downloaded with TCGA-

biolinks (v2.15.3) (Colaprico et al., 2016). Single-cell deconvolution was performed using Multi-subject Single Cell deconvolution R

package (MuSiC, v0.1.1) (Wang et al., 2019) with raw counts as instructed in the package. Disease free survival indices were ex-

tracted from days_to_new_tumor_event contained in the TCGA clinical data; samples without days_to_new_tumor_event entries

were removed. Events were considered if days_to_new_tumor_event_dx was annotated as ‘YES’ and all other samples were

censored. Outcome for events were generally from biochemical evidence of disease but also included distant metastasis, locore-

gional recurrence, primary tumor and ‘not available’. All events were considered regardless of treatment received (radiological or

pharmaceutical). Kaplan-Meier survival analyses were performed using the survival (v2.41-3) and survminer (v0.4.6) R packages

where the deconvolved scores were categorised into a ‘high’ or ‘low’ group, which corresponds to top and bottom 25%MuSiC de-

convolved scores. The results/info are tabulated and summarized in Table S2.

RNA in situ hybridization
Simultaneous detection of human CD68 and MT1 family genes were performed on FFPE sections using Advanced Cell Diagnostics

(ACD) RNAscope� 2.5 LSMultiplex Reagent Kit (Cat No. 322800), RNAscope� LS 4-Plex Ancillary Kit Multiplex Reagent Kit (Cat No.

322830), RNAscope� 2.5 LS Probes (ACD, Hayward, CA, USA) at the histopathology/in situ hybridization core facility at Cancer

Research UK – Cambridge Institute. Because it was not possible to design a specific RNAscope probe for Hs-MT1H due to high ho-

mology to other genes in the MT1 family, we used a probe that recognizes multiple MT1 genes. Briefly, sections were cut at 3 mm

thick, baked for 1 h at 60�C before loading onto a Bond RX instrument (Leica Biosystems). Slides were deparaffinised and rehydrated

on board prior to pre-treatments using Epitope Retrieval Solution 2 (Cat No. AR9640, Leica Biosystems) at 95�C for 15 min, and ACD

Enzyme from the Multiplex Reagent kit at 40�C for 15 min. Probes were visualized using Opal fluorophores (Opal 570 and Opal 650

Akoya Biosciences Cat No. FP1488001KT and FP1496001KT respectively) diluted to 1:1000 using RNAscope LS Multiplex TSA

Buffer. Probe hybridization, signal amplification and detection was performed on the Bond Rx according to the ACD protocol. Slides

were then removed from the Bond Rx and mounted using Prolong Diamond (ThermoFisher Cat No P36965). The slides were imaged

on the AxioScan (Zeiss) to create whole slide images. Images were captured at 40x magnification, with a resolution of 0.25 mm per

pixel. ISH validation was carried out on one slide from the Cambridge 109 Prostate TMA (slide-1), consisting of paired sets of benign

and tumor tissue cores that were collected under PrompT ethics (MREC/01/4/061).

In-vivo macrophage depletion
5-6 C57BL/6 male mice aged 16 weeks received 0.5 mg of depleting anti-CSF1RmAb (BioXCell, clone AFS98) or isotype control (Bio-

XCell, Rat IgG2a) intraperitoneally on day�7, �4 and �2 prior to euthanasia per experiment (n = 2 independent replicates). Following

terminal procedure, kidneys, liver and prostate from each mouse were harvested and divided for either flow cytometry, microscopy or
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zinc quantification. Tissues for flow cytometry was minced finely and digested in RPMI containing 0.1 mg/mL DNase I, 32.5 mg/mL

Liberase TM and 10 mM HEPES for 25 min at room temperature. Organs were then mechanically dissociated through a 70 mm cell

strainer, washed in PBS and red blood cell lysis performed. Single cell suspensions were blocked for 30 min with 50 mL normal mouse

serum in PBS 2% FBS on ice then stained with live/dead fixable aqua (Invitrogen), anti-CD45 APC-eFluor780 (30-F11, eBioscience),

anti-I-A/I-E Pacific Blue (M5/114.15.2, Biolegend), anti-CD11b PerCP-Cy5.5 (M1/70, Invitrogen), anti-F4/80 PE/Cyanine7 (BM8, Invi-

trogen), anti-CD3e APC (145-2C11, Invitrogen), anti-CD19 APC (1D3, eBioscience) and anti-Ly-6G/Ly-6C APC (Rb6-8C5, Biolegend).

Tissue zinc quantification
A single anterior prostate lobe, one kidney and one lobe of the liver per mouse was weighed and homogenized in 300 mL of T-PER

lysis buffer using the Precellys homogenizer system. Samples were then centrifuged at 1500 x g for 10 min to remove contaminating

material and supernatants used for zinc analysis. Zinc levels were analyzed using the Zinc Quantification Kit (ab102507, abcam) as

per the manufacturer’s instructions. Zinc concentration expressed as nmol per gram of tissue.

Immunofluorescence microscopy
Samples were fixed in AntigenFix for 30 min at 4�C, rinsed in PBS for 5 min then transferred into 30% sucrose in PBS for 24 h and

embedded in optimal cutting temperature compound for cutting. 30 mm sections were permeabilised and blocked in blocking buffer

containing 0.1 M TRIS, 0.1% Triton, 1% normal mouse serum, 1% normal rat serum, 1% BSA for 1 h at room temperature. Staining

was performed in blocking buffer for 2 h at room temperature prior to washing in PBS and mounting in Fluoromount-G or Fluoro-

mount-GwithDAPI.When required, a secondary stainingwas performed in blocking buffer for 2 h at room temperature prior towashing

andmounting. Imageswere acquired using a TCSSP8confocalmicroscope and raw imageswere processed using Imaris. Sections for

the human sample were obtained from a 15 mm x 1 mm core needle biopsy as per sample collection described above. Sections for

mouse sample were obtained from cross section of the prostate across the lateral/ventral and dorsal prostate region. Antibodies used

include –mouse:MHC II-Pacific Blue (cloneM5/114.15.2, 1/50 dilution, BioLegend), CD11b-PE (cloneM1/70, 1/50 dilution, Invitrogen),

CD31-AF594 (clone MEC13.3, 1/100 dilution, BioLegend), F4/80-AF647 (clone F4/80, 1/50 dilution, Abcam), CD19-AF594 (clone 6D5,

1/100 dilution, BioLegend), IgD-AF488 (clone 11-26c.2a, 1/50 dilution, Biolegend), NKp46-PE (clone 29A1.4, 1/50 dilution, eBio-

science), CD8-FITC (clone 53-6.7, 1/50 dilution, eBioscience), CD3-Pacific Blue (clone 17A2, 1/50 dilution, BioLegend); human:

HLA-DR-AF647 (clone TAL 1B5, 1/50 dilution, Abcam), CD206-PE Dazzle (clone 15-2, 1/50 dilution, BioLegend), MT1 (clone

UC1MT, 1/50 dilution, Abcam), CD8-PE (clone HIT8a, dilution 1/100, BioLegend), CD3-AF488 (clone UCHT1, dilution 1/100, Bio-

Legend), BAFF (polyclonal rabbit, dilution 1/50, Bioss), Mouse IgG1 kappamonoclonal isotype control (clone 15-6E10A7, 1/50 dilution,

abcam), Goat anti-mouse IgG secondary-FITC (polyclonal, 1/200 dilution, Invitrogen). Dyes: Flash Phalloidin 488 (1/300 dilution, Bio-

Legend), Hoechst 33258 (dilution 1/10 000, cat# 40044, Biotum), DAPI (in mounting medium, cat# 00-4959-52, Invitrogen).

Other data visualization
Results were generated using R packages or python modules and organized as figures using Adobe Illustrator. Combined scatter-

,box-, violin-plots were generated in R using code based on (Allen et al., 2018) and violin plots and dot plots were generated using

plotting modules implemented in scanpy or with R ggplot2-based functions. Heatmaps were generated using pheatmap (v1.0.12) R

package or matplotlib (v3.0.3) modules in python. Bar plots were generated using Prism (v8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed usingGraphPad Prism software, R, or python and have been described in the relevantmethods sec-

tions and figure legends accordingly. In general, unless otherwise specified, non-parametric tests were used and p value after false dis-

covery correction procedures < 0.05were considered statistically significant. Sample sizes for mice experiments can be found in figure

legends.

ADDITIONAL RESOURCES

An interactive version and h5ad files of the single-cell RNaseq data is available at prostatecellatlas.org.
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