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Abstract: Three isomeric (benzyloxythienyl)oxazolines 9, 11 and 13 have been prepared and are
found, upon treatment with a strong base, to undergo either Wittig rearrangement or intramolecular
attack of the benzylic anion on the oxazoline function to give products derived from cleavage of
the initially formed 3-aminothienofuran products. This pattern of reactivity is directly linked to
the distance between the two reactive groups as determined by X-ray diffraction, with the greatest
distance in 11 leading to exclusive Wittig rearrangement, the shortest distance in 13 giving exclusively
cyclisation-derived products, and the intermediate distance in 9 leading to both processes being
observed. The corresponding N-butyl amides were also obtained in two cases and one of these
undergoes efficient Wittig rearrangement leading to a thieno[2,3-c]pyrrolone product.

Keywords: oxazoline; Wittig rearrangement; thiophene; thieno[2,3-c]pyrrolone; X-ray structure

1. Introduction

Some time ago we described the reaction of 2-(2-benzyloxyphenyl)oxazoline 1 with a
strong base to give either the 3-aminobenzofuran product 2 resulting from intramolecular
nucleophilic ring-opening of the oxazoline by the benzyl anion, or the oxazoline 3 in which
the benzyloxy group has undergone a Wittig rearrangement (Scheme 1) [1]. Heterocycle
formation by cyclisation of an aryloxy carbanion onto an ortho functional group is rather
uncommon but formation of 3-aminobenzofurans by the so-called Gewald reaction of ben-
zonitriles provides one example [2]. Similarly, although the Wittig rearrangement has been
known for almost a century [3], it is not commonly used in synthesis and a recent review
shows rather limited developments over the last 20 years [4]. While the aminobenzofuran
formation could be optimised by using 3.3 equiv. of Schlosser’s base (n-BuLi/t-BuOK) and
applied to a number of substituted examples [1], the Wittig rearrangement process was
not so favourable and, under optimal conditions of 2.2 equiv. butyllithium (n-BuLi) in
THF, an isolated yield of just 29% was obtained. As will shortly be reported elsewhere, the
N-butyl amide group is a more effective promoter of the Wittig rearrangement and treating
compound 4 with 3.3 equiv. n-BuLi in THF gives almost entirely the rearranged product 5,
conveniently isolated as the phthalide 6 after acid-mediated cyclisation in 90% yield. How-
ever in the latter study, simply changing to the N,N-diisopropyl amide 7 and treating with
2.2 equiv. n-BuLi in toluene again resulted in cyclisation to give the 3-aminobenzofuran 8.
It is clear from these studies that there is a delicate balance between Wittig rearrangement
of the benzyloxy group without affecting the adjacent activating group, and interaction of
the two groups with the formation of a furan ring.
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Scheme 1. Competition between Wittig rearrangement and cyclisation in benzene-based systems. 

In contrast to the symmetrical benzene ring, the different adjacent positions on a het-
erocycle such as thiophene are not equivalent and so a more interesting pattern of reac-
tivity can be expected, which would also lead to some unusual and novel heterocyclic 
products. In this paper, we report the synthesis, characterisation and reactivity upon treat-
ment with a strong base, of the three isomeric (benzyloxythienyl)oxazolines 9, 11 and 13 
(Scheme 2) as well as the corresponding (benzyloxythienyl)-N-butylcarboxamides 10, 12 
and 14. As well as examining the pattern of reactivity we were interested to discover 
whether there was any correlation between this and the distance between the two adjacent 
groups as determined by X-ray diffraction. 

 
Scheme 2. The six isomeric thiophene compounds targeted for reactivity studies. 

2. Results 
2.1. Synthesis of 3-Benzyloxy-2-thienyl Systems 9 and 10 

O-Benzylation of the commercially available methyl ester 15 followed by ester hy-
drolysis of 16 gave the carboxylic acid 17 (Scheme 3). This was readily converted into the 
corresponding acid chloride which was reacted immediately with 2-amino-2-methylpro-
pan-1-ol to give the hydroxy amide 18, which was cyclised using thionyl chloride to give 
the target oxazoline 9 in good overall yield. Alternatively, treating acid 17 with thionyl 
chloride followed by an excess of butylamine gave the target amide 10 also in high yield. 

Scheme 1. Competition between Wittig rearrangement and cyclisation in benzene-based systems.

In contrast to the symmetrical benzene ring, the different adjacent positions on a
heterocycle such as thiophene are not equivalent and so a more interesting pattern of
reactivity can be expected, which would also lead to some unusual and novel heterocyclic
products. In this paper, we report the synthesis, characterisation and reactivity upon
treatment with a strong base, of the three isomeric (benzyloxythienyl)oxazolines 9, 11 and
13 (Scheme 2) as well as the corresponding (benzyloxythienyl)-N-butylcarboxamides 10,
12 and 14. As well as examining the pattern of reactivity we were interested to discover
whether there was any correlation between this and the distance between the two adjacent
groups as determined by X-ray diffraction.
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2. Results
2.1. Synthesis of 3-Benzyloxy-2-thienyl Systems 9 and 10

O-Benzylation of the commercially available methyl ester 15 followed by ester hy-
drolysis of 16 gave the carboxylic acid 17 (Scheme 3). This was readily converted into the
corresponding acid chloride which was reacted immediately with 2-amino-2-methylpropan-
1-ol to give the hydroxy amide 18, which was cyclised using thionyl chloride to give the
target oxazoline 9 in good overall yield. Alternatively, treating acid 17 with thionyl chloride
followed by an excess of butylamine gave the target amide 10 also in high yield.
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Scheme 3. Synthesis of 3-benzyloxy-2-thienyl compounds 9 and 10. 

2.2. Reaction 3-Benzyloxy-2-thienyl Systems 9 and 10 with Base 
When compound 9 was subjected to the same conditions used to convert 1 into 2, a 

mixture of two products was formed which were separated by preparative thin-layer 
chromatography (TLC) on alumina and identified as the expected Wittig rearrangement 
product 19, formed in 8% yield, and a second more major product (43%) which was ini-
tially thought to be the expected cyclisation product 21 (Scheme 4). However certain fea-
tures of the spectra were not consistent with this, notably the non-equivalence of the two 
methyl groups and CH2O hydrogens which suggested the presence of a stereogenic cen-
tre. After further evidence from 13C and 2D NMR studies suggested the presence of a 2-
alkylidenethiophen-3(2H)-one structure, and the HRMS result showed the presence of an 
extra oxygen atom as compared to 21, the actual structure was finally confirmed as the 
unusual morpholine-containing thiophenone 20 by X-ray diffraction. 
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The molecular structure of 20 features two independent molecules in the unit cell in 
addition to one molecule each of CH2Cl2 and acetone. The two molecules are actually en-
antiomers and they both take up half chair conformations with the ring oxygen out of the 
plane, the NH in the plane and one methyl axial and one equatorial (Figure 1). Where they 
differ is that one has phenyl axial and OH equatorial while for the other it is the opposite 
way round. 

Scheme 3. Synthesis of 3-benzyloxy-2-thienyl compounds 9 and 10.

2.2. Reaction 3-Benzyloxy-2-thienyl Systems 9 and 10 with Base

When compound 9 was subjected to the same conditions used to convert 1 into 2,
a mixture of two products was formed which were separated by preparative thin-layer
chromatography (TLC) on alumina and identified as the expected Wittig rearrangement
product 19, formed in 8% yield, and a second more major product (43%) which was
initially thought to be the expected cyclisation product 21 (Scheme 4). However certain
features of the spectra were not consistent with this, notably the non-equivalence of the
two methyl groups and CH2O hydrogens which suggested the presence of a stereogenic
centre. After further evidence from 13C and 2D NMR studies suggested the presence of a
2-alkylidenethiophen-3(2H)-one structure, and the HRMS result showed the presence of
an extra oxygen atom as compared to 21, the actual structure was finally confirmed as the
unusual morpholine-containing thiophenone 20 by X-ray diffraction.
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Scheme 4. Reaction of oxazoline 9 with n-BuLi/t-BuOK.

The molecular structure of 20 features two independent molecules in the unit cell in
addition to one molecule each of CH2Cl2 and acetone. The two molecules are actually
enantiomers and they both take up half chair conformations with the ring oxygen out of the
plane, the NH in the plane and one methyl axial and one equatorial (Figure 1). Where they
differ is that one has phenyl axial and OH equatorial while for the other it is the opposite
way round.

In the crystal, there is hydrogen bonding both intramolecularly between the NH and
C=O and intermolecularly between C=O and OH; in terms of the Etter–Bernstein graph-set
descriptors [5] C1

1(7) [S(6)]. The intermolecular interaction involves the two enantiomeric
molecules alternating and the pattern is shown schematically in Figure 2 with parameters
in Table 1.
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Table 1. Hydrogen bonding parameters for 20 (Å, °). 

D—H…A D—H H…A D…A D—H…A 
O(7)–H(7)…O(23) 0.98(7) 1.61(7) 2.592(6) 177(7) 
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Once the structure of 20 was clear, its formation could be rationalised as shown in 
Scheme 4 by initial cyclisation of 9 to give the thieno[3,2-b]furan product 21 and hydrolysis 
of this on the alumina with opening of the furan ring to give 22, which in its thiophen-3-
one tautomeric form can be oxidised by air to form the favourable fully conjugated ene-
dione structure 24, which then cyclises to form the cyclic hemiketal 20. It should be noted 
that compound 20 was found to be quite unstable and although it was isolated in small 
amount with sufficient purity for identification, further attempts at purification resulted 
in decomposition. As described in a recent review [6], thiophene-based o-quinomethane 
analogues have a rich and varied chemistry, however, the formation of such a structure 
by hydrolysis then oxidation of a thieno[3,2-b]furan is unprecedented. 

We now turned to the N-butyl amide 10 and found a much simpler pattern of reac-
tivity. Treatment of 10 with n-BuLi under the standard conditions developed in the ben-
zene series, resulted in exclusive Wittig rearrangement to give secondary alcohol 25 which 
could be characterised spectroscopically but was converted for isolation into the stable 
thieno[2,3-c]pyrrolone product 26 by treatment with p-toluenesulfonic acid in boiling tol-
uene (Scheme 5) [7]. This method was also used to obtain stable cyclic products in the 
benzene-based systems, however, note that while 5 and analogues cyclise to lactones 6 
with loss of butylamine, here we have a loss of water to form the lactam in excellent yield. 
The synthesis and chemistry of thieno[c]pyrrolones and their dihydro analogues has been 
recently reviewed [8]. 
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Figure 1. Conformations of the two enantiomeric molecules of 20 in the crystal.
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Table 1. Hydrogen bonding parameters for 20 (Å, ◦).

D—H...A D—H H...A D...A D—H...A

O(7)–H(7)...O(23) 0.98(7) 1.61(7) 2.592(6) 177(7)
N(9)–H(9)...O(3) 0.98(6) 1.74(7) 2.649(6) 153(7)

O(27)–H(27)...O(3) 0.98(5) 1.72(5) 2.694(6) 173(6)
N(29)–H(29)...O(23) 0.98(5) 1.70(5) 2.584(6) 147(5)

Once the structure of 20 was clear, its formation could be rationalised as shown in
Scheme 4 by initial cyclisation of 9 to give the thieno[3,2-b]furan product 21 and hydrolysis
of this on the alumina with opening of the furan ring to give 22, which in its thiophen-3-one
tautomeric form can be oxidised by air to form the favourable fully conjugated ene-dione
structure 24, which then cyclises to form the cyclic hemiketal 20. It should be noted
that compound 20 was found to be quite unstable and although it was isolated in small
amount with sufficient purity for identification, further attempts at purification resulted
in decomposition. As described in a recent review [6], thiophene-based o-quinomethane
analogues have a rich and varied chemistry, however, the formation of such a structure by
hydrolysis then oxidation of a thieno[3,2-b]furan is unprecedented.

We now turned to the N-butyl amide 10 and found a much simpler pattern of reactivity.
Treatment of 10 with n-BuLi under the standard conditions developed in the benzene
series, resulted in exclusive Wittig rearrangement to give secondary alcohol 25 which
could be characterised spectroscopically but was converted for isolation into the stable
thieno[2,3-c]pyrrolone product 26 by treatment with p-toluenesulfonic acid in boiling
toluene (Scheme 5) [7]. This method was also used to obtain stable cyclic products in the
benzene-based systems, however, note that while 5 and analogues cyclise to lactones 6
with loss of butylamine, here we have a loss of water to form the lactam in excellent yield.
The synthesis and chemistry of thieno[c]pyrrolones and their dihydro analogues has been
recently reviewed [8].

Since such fused-ring heterocycles are rather uncommon we took the chance to deter-
mine the X-ray structure of compound 26 (Scheme 5). Only one previous X-ray structure of
a compound with this ring system appears to have been published, that of the compound
with butyl replaced by quinolin-8-yl [9], but the molecular dimensions are very similar.
Interestingly the tert-butyl amide 27 isomeric with 25 has been prepared by ortho-directed
metalation of N-tert-butylthiophene-2-carboxamide with n-BuLi followed by reaction with
benzaldehyde [10].
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Scheme 5. Reaction of 10 with n-BuLi to give 25 and 26 and structure of an analogous product 27.

2.3. Synthesis of 2-Benzyloxy-3-thienyl Systems 11 and 12

Entry to this system was gained by starting with the 3-thienyloxazoline 28 and intro-
ducing oxygen functionality at the 2-position by lithiation and treatment with
bis(trimethylsilyl) peroxide (Scheme 6). As we have described in detail elsewhere [11],
the resulting product had the 3-(oxazolidin-2-ylidene)thiophen-2-one structure 29 which
exhibited an interesting and varied pattern of reactivity. However, for the present purpose,
it could be cleanly O-benzylated in moderate yield to give the desired compound 11.
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Scheme 6. Synthesis of oxazoline 11.

As described below, attempted application of a similar method to the formation of
the amide 12 failed since lithiation of the corresponding N-butyl amide 32 followed by
treatment with bis(trimethylsilyl) peroxide instead gave the silyl compound 33.

2.4. Reaction of 2-Benzyloxy-3-thienyl Systems 11 and 12 with Base

Treatment of oxazoline 11 with n-BuLi under the standard conditions developed for
ring closure of 1 to give 2 gave exclusively the Wittig rearrangement product 30 in good
yield (Scheme 7).
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Scheme 7. Wittig rearrangement of oxazoline 11.

Although attempts to prepare the amide 12 by lithiation and bis(trimethylsilyl) per-
oxide treatment failed, instead giving the new silane 33 (Scheme 8), the expected Wittig
rearrangement product from 12, compound 34, was prepared by lithiation and benzalde-
hyde treatment of 32. It was not isolated, however, the reaction product was directly treated
with p-toluenesulfonic acid giving the thieno[2,3-c]pyrrolone [8] product 35 isomeric with
26 together with a low yield of the oxidation product 36. This last product showed extra
signals in the 13C NMR spectrum due to amide rotamers (Supplementary Materials).
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2.5. Synthesis of 4-Benzyloxy-3-thienyl Systems 13 and 14

Synthesis of the required compounds in this series was more challenging since suitably
substituted thiophene starting materials are not commercially available. Instead, we had
to resort to a ring-synthesis of a thiophene with the desired functionality in place. This
started from the sulfide-containing diester 37 prepared by conjugate addition of methyl
thioglycolate to methyl acrylate [12], which underwent base-induced ring closure [13] to
give compound 38 in low yield (Scheme 9). Aromatisation of this was achieved using
sulfuryl chloride [14] to give the thiophene ester 39. Conversion of this into the required
benzyl ether 41 proved to be more difficult than expected. Simple alkylation using benzyl
bromide and either potassium carbonate or sodium hydride resulted in polymerisation
and reaction with phenyldiazomethane [15] also failed.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 18 
 

 

treated with p-toluenesulfonic acid giving the thieno[2,3-c]pyrrolone [8] product 35 iso-
meric with 26 together with a low yield of the oxidation product 36. This last product 
showed extra signals in the 13C NMR spectrum due to amide rotamers (Supplementary 
Materials). 

 
Scheme 8. Formation and cyclisation of secondary alcohol 34. 

2.5. Synthesis of 4-Benzyloxy-3-thienyl Systems 13 and 14 
Synthesis of the required compounds in this series was more challenging since suit-

ably substituted thiophene starting materials are not commercially available. Instead, we 
had to resort to a ring-synthesis of a thiophene with the desired functionality in place. 
This started from the sulfide-containing diester 37 prepared by conjugate addition of me-
thyl thioglycolate to methyl acrylate [12], which underwent base-induced ring closure [13] 
to give compound 38 in low yield (Scheme 9). Aromatisation of this was achieved using 
sulfuryl chloride [14] to give the thiophene ester 39. Conversion of this into the required 
benzyl ether 41 proved to be more difficult than expected. Simple alkylation using benzyl 
bromide and either potassium carbonate or sodium hydride resulted in polymerisation 
and reaction with phenyldiazomethane [15] also failed. 

 
Scheme 9. Synthesis of 4-benyloxy-3-thienyl compounds 13 and 14. 

Following a literature report that reaction of the 4-acetoxy compound 40 with ethanol 
and sulfuric acid gave the 4-ethoxy compound [15], this compound was prepared by re-
action of 38 with isopropenyl acetate followed by sulfuryl chloride, but the treatment of 

Scheme 9. Synthesis of 4-benyloxy-3-thienyl compounds 13 and 14.

Following a literature report that reaction of the 4-acetoxy compound 40 with ethanol
and sulfuric acid gave the 4-ethoxy compound [15], this compound was prepared by
reaction of 38 with isopropenyl acetate followed by sulfuryl chloride, but the treatment
of this with benzyl alcohol and sulfuric acid again resulted in polymerisation. Access
to 41 was finally achieved, albeit in low yield, by resorting to treatment with benzyl
bromide in the presence of silver oxide in a process reminiscent of the Purdie–Irvine
method for methylation of sugars developed in St Andrews over 100 years ago [16]. With
the key intermediate 41 in hand, the remaining synthetic steps proceeded without incident:
hydrolysis gave the acid 42 which was converted into its acid chloride and then reacted
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either with 2-amino-2-methylpropan-1-ol to give amide 43 which was cyclised with thionyl
chloride to oxazoline 13, or with butylamine to directly afford the amide 14.

2.6. Reaction of 4-Benzyloxy-3-thienyl Systems 13 and 14 with Base

Treatment of oxazoline 13 with 3.3 equiv. of Schlosser’s base gave largely unreacted
starting material, however, increasing this to 4.4 equiv. did give a reaction and after chro-
matographic purification, the 4-benzoyloxy-3-thienyl amide 45 was isolated in moderate
yield (Scheme 10). This is evidently formed by air oxidation of the expected cyclisation
product, the 3-aminothieno[3,4-b]furan 44. As shown in our previous work [1], such
ring-fused 3-aminofuran products are susceptible to oxidative ring-cleavage.
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Scheme 10. Base-induced cyclisation and oxidative ring opening of 13.

The reaction of the corresponding N-butyl amide 14 with n-BuLi under the conditions
required for Wittig rearrangement gave largely unreacted starting material and the only
new products isolated in low yield after chromatographic purification (Scheme 11) were
the 2,3,4-trisubstituted thiophene 46 together with the debenzylated compound 47 which
was found to exist in solution as a mixture with the thiophen-3(2H)-one tautomer 47a (see
Section 3). It seems likely that the products have resulted from the intermolecular reaction
between two carbanions derived from 14 but in view of their very low yield this process
was not investigated further. Products 45, 46 and 47 which were isolated in low amounts
following one or two stages of chromatography were found to decompose upon attempted
further purification.
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Scheme 11. Reaction of amide 14 with strong base.

To summarise the reactivity of the isomeric systems, oxazoline 11 underwent exclusive
Wittig rearrangement and oxazoline 13 gave products derived from cyclisation, while for 9
Wittig rearrangement was observed as a minor process with the major product derived from
cyclisation. The N-butyl amides gave a less complete picture with 10 undergoing exclusive
Wittig rearrangement in high yield, 12 not being available for investigation (although its
expected Wittig rearrangement product was obtained by other means), and 14 remaining
largely unreacted under the conditions. In the case of the three isomeric oxazolines, each
compound was obtained as good quality crystals suitable for X-ray diffraction and so it
was decided to determine their molecular structures to examine whether there might be
a direct link between the distance between the benzyloxy and oxazoline groups and the
observed reactivity. All three compounds gave structures with the monoclinic P21/c space
group and these are shown in a similar orientation in Figure 3.

For the intramolecular cyclisation to compete with Wittig rearrangement, the key
distance is that between benzyloxy carbanionic carbon and C-2 of the oxazoline. Since
the benzyloxy groups have rotated to place this carbon pointing away from the oxazoline
in each case, the benzyloxy oxygen is taken as a reference point and it can be seen that
the molecular geometry correlates well with the observed reactivity. Thus, for 11, the
benzyloxy group is too far away (3.046(1) Å) for cyclisation and we observe exclusively



Molecules 2021, 26, 7690 8 of 17

a Wittig rearrangement, for 13 the benzyloxy group is much closer (2.945(1) Å) and only
products derived from cyclisation are observed, while in 9 we have an intermediate
situation (3.006(3) Å) and mainly cyclisation-derived products are observed but with
a little Wittig rearrangement.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 18 
 

 

groups and the observed reactivity. All three compounds gave structures with the mono-
clinic P21/c space group and these are shown in a similar orientation in Figure 3. 

   
9 11 13 

Figure 3. Molecular structures of 9, 11 and 13 showing angles (°) and benzyloxy O to oxazoline C(2) distance (Å). 

For the intramolecular cyclisation to compete with Wittig rearrangement, the key dis-
tance is that between benzyloxy carbanionic carbon and C-2 of the oxazoline. Since the 
benzyloxy groups have rotated to place this carbon pointing away from the oxazoline in 
each case, the benzyloxy oxygen is taken as a reference point and it can be seen that the 
molecular geometry correlates well with the observed reactivity. Thus, for 11, the ben-
zyloxy group is too far away (3.046(1) Å) for cyclisation and we observe exclusively a 
Wittig rearrangement, for 13 the benzyloxy group is much closer (2.945(1) Å) and only 
products derived from cyclisation are observed, while in 9 we have an intermediate situ-
ation (3.006(3) Å) and mainly cyclisation-derived products are observed but with a little 
Wittig rearrangement. 

3. Experimental 
3.1. General Experimental Details 

NMR spectra were recorded on solutions in CDCl3 unless otherwise stated using 
Bruker instruments and chemical shifts are given in ppm to high frequency from Me4Si 
with coupling constants J in Hz. IR spectra were recorded using the ATR technique on a 
Shimadzu IRAffinity 1S instrument. The ionisation method used for high-resolution mass 
spectra is noted in each case. Column chromatography was carried out using silica gel of 
40–63 mm particle size and preparative TLC was carried out using 1.0 mm layers of Merck 
alumina 60G containing 0.5% Woelm fluorescent green indicator on glass plates. Melting 
points were recorded on a Gallenkamp 50W melting point apparatus or a Reichert hot-
stage microscope. 

3.2. Preparation and Reactions of 3-Benzyloxy-2-thienyl Systems 
3.2.1. Methyl 3-(Benzyloxy)thiophene-2-carboxylate 16 

A literature procedure [17] was modified as follows: benzyl bromide (11.9 cm3, 17.11 
g, 0.100 mol) was added to a stirred mixture of methyl 3-hydroxythiophene-2-carboxylate 
15 (15.85 g, 0.100 mol) and potassium carbonate (27.60 g, 0.200 mol) in acetone (50 cm3) 
and the reaction mixture was heated at reflux for 18 h. After cooling to rt, the inorganic 
salts were removed by filtration and the filtrate was concentrated in vacuo. The residue 
was dissolved in CH2Cl2 (150 cm3) and washed with water (100 cm3) before being dried 
and evaporated. The crude residue was recrystallised (aq. MeOH) to give 16 (18.94 g, 76%) 
as pale yellow crystals; mp 69–72 °C; (lit. [17] 66–67 °C); δH (500 MHz) 7.46–7.44 (2H, m, 
Ph), 7.39–7.35 (2H, m, Ph), 7.35 (1H, d, J 5.5, 5-H), 7.32–7.29 (1H, m, Ph), 6.82 (1H, d, J 5.5, 

Figure 3. Molecular structures of 9, 11 and 13 showing angles (◦) and benzyloxy O to oxazoline C(2) distance (Å).

3. Experimental
3.1. General Experimental Details

NMR spectra were recorded on solutions in CDCl3 unless otherwise stated using
Bruker instruments and chemical shifts are given in ppm to high frequency from Me4Si
with coupling constants J in Hz. IR spectra were recorded using the ATR technique on a
Shimadzu IRAffinity 1S instrument. The ionisation method used for high-resolution mass
spectra is noted in each case. Column chromatography was carried out using silica gel
of 40–63 mm particle size and preparative TLC was carried out using 1.0 mm layers of
Merck alumina 60G containing 0.5% Woelm fluorescent green indicator on glass plates.
Melting points were recorded on a Gallenkamp 50W melting point apparatus or a Reichert
hot-stage microscope.

3.2. Preparation and Reactions of 3-Benzyloxy-2-thienyl Systems
3.2.1. Methyl 3-(Benzyloxy)thiophene-2-carboxylate 16

A literature procedure [17] was modified as follows: benzyl bromide (11.9 cm3, 17.11 g,
0.100 mol) was added to a stirred mixture of methyl 3-hydroxythiophene-2-carboxylate
15 (15.85 g, 0.100 mol) and potassium carbonate (27.60 g, 0.200 mol) in acetone (50 cm3)
and the reaction mixture was heated at reflux for 18 h. After cooling to rt, the inorganic
salts were removed by filtration and the filtrate was concentrated in vacuo. The residue
was dissolved in CH2Cl2 (150 cm3) and washed with water (100 cm3) before being dried
and evaporated. The crude residue was recrystallised (aq. MeOH) to give 16 (18.94 g, 76%)
as pale yellow crystals; mp 69–72 ◦C; (lit. [17] 66–67 ◦C); δH (500 MHz) 7.46–7.44 (2H, m,
Ph), 7.39–7.35 (2H, m, Ph), 7.35 (1H, d, J 5.5, 5-H), 7.32–7.29 (1H, m, Ph), 6.82 (1H, d, J 5.5,
4-H), 5.24 (2H, s, CH2) and 3.85 (3H, s, CH3); δC (125 MHz) 162.1 (C), 160.8 (C), 136.4 (C),
130.4 (CH), 128.6 (2CH), 127.9 (CH), 126.8 (2CH), 117.5 (CH), 110.4 (C), 73.2 (CH2) and 51.6
(CH3). The 1H NMR spectral data were in accordance with those previously reported [17].
13C NMR data are reported for the first time.

3.2.2. 3-(Benzyloxy)thiophene-2-carboxylic Acid 17

Following a literature procedure [17], a mixture of methyl 3-(benzyloxy)thiophene-
2-carboxylate 16 (18.40 g, 74.1 mmol) and sodium hydroxide (5.99 g, 0.150 mol) in water
(150 cm3) was heated at reflux for 2.5 h. After cooling to rt, the aqueous layer was washed
with CH2Cl2 (2 × 50 cm3) before being acidified to pH 1 by the addition of 2 M HCl. The
resultant suspension was extracted with CH2Cl2 (2 × 100 cm3) and the combined organic
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layers were dried and evaporated. The crude residue was recrystallised (aq. MeOH) to
give 17 (15.07 g, 87%) as tan-coloured crystals; mp 122–125 ◦C; (lit. [17] 125–126 ◦C); δH
(400 MHz, CD3SOCD3) 12.49 (1H, br s, CO2H), 7.74 (1H, d, J 5.6, 5-H), 7.48–7.45 (2H, m,
Ph), 7.41–7.37 (2H, m, Ph), 7.35–7.30 (1H, m, Ph), 7.14 (1H, d, J 5.6, 4-H) and 5.25 (2H, s,
CH2); δC (100 MHz, CD3SOCD3) 162.4 (C), 160.1 (C), 136.8 (C), 131.2 (CH), 128.4 (2CH),
127.9 (CH), 127.3 (2CH), 118.5 (Ar CH), 110.5 (C) and 72.4 (CH2). The 1H NMR spectral
data were in accordance with those previously reported [17]. 13C NMR data are reported
for the first time.

3.2.3. 3-(Benzyloxy)-N-(1-hydroxy-2-methylpropan-2-yl)thiophene-2-carboxamide 18

Oxalyl chloride (3.0 cm3, 4.50 g, 35.5 mmol) was added to a suspension of
3-(benzyloxy)thiophene-2-carboxylic acid 17 (4.00 g, 17.1 mmol) and in Et2O (25 cm3)
and the mixture was stirred for 18 h. Evaporation gave 3-(benzyloxy)thiophene-2-carbonyl
chloride as a brown oil which was used without further purification.

A solution of 3-(benzyloxy)thiophene-2-carbonyl chloride (assuming 17.1 mmol) in
CH2Cl2 (40 cm3) was added dropwise to a solution of 2-amino-2-methylpropan-1-ol (3.10 g,
34.8 mmol) in CH2Cl2 (40 cm3) stirred at 0 ◦C. After the addition, the mixture was allowed
to warm to rt and stirred for 18 h before being poured into water. The organic layer was
separated and the aqueous layer was extracted with CH2Cl2 (2 × 20 cm3). The combined
organic layers were washed successively with 2M HCl, 2M NaOH and water before being
dried and evaporated to give 18 (5.14 g, 99%) as a pale yellow solid which was used without
further purification; mp 112–115 ◦C; νmax/cm–1 3358, 3065, 2968, 1626, 1531, 1425, 1240,
1057, 777, 704 and 600; δH (500 MHz) 7.43–7.40 (6H, m, NH and Ph), 7.41 (1H, d, J 5.5, 5-H),
6.93 (1H, d, J 5.5, 4-H), 5.18 (2H, s, OCH2Ph), 3.58 (2H, s, CH2OH) and 1.19 (6H, s, CH3); δC
(125 MHz) 162.5 (C), 155.3 (C), 135.2 (C), 129.2 (CH), 129.0 (CH), 128.8 (2CH), 128.0 (2CH),
117.6 (C), 116.2 (CH), 74.1 (CH2), 70.9 (CH2), 56.3 (CMe2) and 24.8 (2CH3); HRMS (NSI+):
found 306.1150. C16H20NO3S (M + H) requires 306.1158.

3.2.4. 2-(3-(Benzyloxy)thiophen-2-yl)-4,4-dimethyl-4,5-dihydrooxazole 9

Thionyl chloride (1.4 cm3, 2.28 g, 19.2 mmol) was added to a solution of 3-(benzyloxy)-
N-(1-hydroxy-2-methylpropan-2-yl)thiophene-2-carboxamide 18 (4.71 g, 15.4 mmol) in
CH2Cl2 (50 cm3) and the mixture was stirred at room temperature for 18 h. The mixture
was washed with 2M NaOH and water before being dried and evaporated to give 9 (4.01 g,
90%) as a pale brown oil which solidified on standing as a tan-coloured solid; mp 65–68 ◦C;
νmax/cm–1 3080, 2965, 1632, 1545, 1260, 1231, 1200, 1069, 1026, 766 and 745; δH (500 MHz)
7.45–7.42 (2H, m, Ph), 7.37–7.33 (2H, m, Ph), 7.31–7.27 (1H, m, Ph), 7.24 (1H, d, J 5.5, 5-H),
6.78 (1H, d, J 5.5, 4-H), 5.24 (2H, s, OCH2Ph), 4.09 (2H, s, OCH2) and 1.38 (6H, s, CH3)
δC (125 MHz) 157.6 (C), 157.3 (C), 136.8 (C), 128.4 (2CH), 127.8 (2CH), 126.9 (2CH), 118.1
(CH), 108.9 (C), 79.2 (CH2), 73.4 (CH2), 67.1 (CMe2) and 28.3 (2CH3); HRMS (ESI+): found
288.1047. C16H18NO2S (M + H) requires 288.1053.

3.2.5. 3-(Benzyloxy)-N-butylthiophene-2-carboxamide 10

Thionyl chloride (2.5 cm3, 4.08 g, 34.3 mmol) was added to a suspension of 3-
(benzyloxy)thiophene-2-carboxylic acid 17 (4.00 g, 17.1 mmol) in toluene (30 cm3) and the
mixture was heated under reflux for 3 h. After cooling to room temperature, the mixture
was evaporated to give 3-(benzyloxy)thiophene-2-carbonyl chloride as a brown oil which
was used without further purification.

A solution of 3-(benzyloxy)thiophene-2-carbonyl chloride (assuming 17.1 mmol) in
toluene (30 cm3) was added dropwise to a solution of n-butylamine (5.1 cm3, 3.77 g,
51.6 mmol) in toluene (10 cm3) stirred at 0 ◦C. Once the addition was complete, the reaction
mixture was allowed to warm to room temperature over 1 h before being poured into
water. The organic layer was separated and washed with 2M NaOH and brine, dried and
evaporated to give, after purification by column chromatography (SiO2, Et2O/hexane 7:3),
at Rf 0.65, 10 (4.49 g, 91%) as an orange oil; νmax/cm–1 3364, 2961, 1628, 1558, 1435, 1364,
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1310, 1074, 976, 773 and 606; δH (500 MHz) 7.43–7.38 (5H, m, Ph), 7.36 (1H, d, J 5.5, 5-H),
7.19 (1H, br s, NH), 6.89 (1H, d, J 5.5, 4-H), 5.19 (2H, s, OCH2), 3.36 (2H, td, J 7.0, 5.5, NCH2),
1.47–1.41 (2H, m, NCH2CH2), 1.28–1.20 (2H, m, CH2CH3) and 0.85 (3H, t, J 7.5, CH3); δC
(125 MHz) 161.7 (C), 154.9 (C), 135.6 (C), 128.84 (2CH), 128.76 (CH), 128.5 (CH), 127.7 (2CH),
118.1 (C), 116.2 (CH), 73.9 (OCH2), 38.9 (NCH2), 31.5 (CH2), 20.0 (CH2) and 13.7 (CH3);
HRMS (ESI+): found 312.1017. C16H19NaNO2S (M + Na) requires 312.1029.

3.2.6. (2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)thiophen-3-yl)(phenyl)methanol 19 and
(E)-2-(2-Hydroxy-5,5-dimethyl-2-phenylmorpholin-3-ylidene)thiophen-3(2H)-one 20

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexanes, 0.66 cm3, 1.65 mmol)
was added to a stirred mixture of 2-(3-(benzyloxy)thiophen-2-yl)-4,4-dimethyl-4,5-
dihydrooxazole 9 (0.1440 g, 0.50 mmol) and potassium tert-butoxide (0.1850 g, 1.65 mmol)
in dry THF (5 cm3). The mixture was stirred at rt for 2 h before being quenched by the
addition of saturated aq. NH4Cl and extracted with Et2O (3 × 10 cm3). The combined
extracts were dried and evaporated to give, after purification by preparative TLC (Al2O3,
Et2O/hexane 7:3), at Rf 0.65, 19 (12 mg, 8%) as an orange oil; δH (400 MHz) 7.42–7.38 (2H,
m, Ph), 7.34–7.30 (3H, m, ArH and Ph), 7.28–7.23 (1H, m, Ph), 6.71 (1H, d, J 5.2, ArH), 6.02
(1H, s, CHOH), 4.11 and 4.09 (2H, AB pattern, J 8.2, CH2), 1.40 (3H, s, CH3) and 1.27 (3H,
s, CH3); δC (125 MHz) 158.6 (C), 150.4 (C), 142.8 (C), 130.1 (CH), 128.2 (CH), 128.0 (2CH),
127.1 (CH), 126.5 (2CH), 124.7 (C), 79.5 (CH2), 70.9 (CHOH), 68.1 (CMe2), 28.3 (CH3) and
28.1 (CH3). The 1H NMR spectral data were consistent with those previously reported [18].
13C NMR data are reported for the first time.

This was followed by a second fraction, at Rf 0.15, to give 20 (64.5 mg, 42%) in slightly
impure form as brown crystals; mp 103–105 ◦C; νmax/cm–1 1582, 1537, 1449, 1317, 1260,
1221, 1067, 768, 698 and 669; δH (400 MHz, CD3COCD3) 7.65–7.62 (2H, m, Ph), 7.52 (1H, d, J
5.6, 5-H), 7.40–7.35 (3H, m, Ph), 6.32 (1H, d, J 5.6, 4-H), 4.12 and 3.69 (2H, AB pattern, J 11.6,
CH2), 3.06 (2H, br s, OH and NH), 1.53 (3H, s, CH3) and 1.39 (3H, s, CH3); δC (125 MHz,
CD3COCD3) 182.1 (C=O), 162.7 (C)), 141.5 (C), 138.5 (CH), 129.5 (CH), 128.6 (2CH), 127.6
(2CH), 122.1 (CH), 103.5 (C), 95.0 (C), 68.3 (CH2), 51.4 (CMe2), 26.8 (CH3) and 26.5 (CH3);
HRMS (NSI+): found 304.1004. C16H18NO3S (M + H) requires 304.1002.

3.2.7. N-Butyl-3-(hydroxy(phenyl)methyl)thiophene-2-carboxamide 25 and
5-Butyl-4-phenyl-4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-one 26

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexanes, 6.6 cm3, 16.5 mmol)
was added dropwise to a stirred solution of 3-(benzyloxy)-N-butylthiophene-2-carboxamide
10 (1.45 g, 5.01 mmol) in dry THF (50 cm3). After stirring at room temperature for 2 h, the
reaction mixture was quenched by the addition of saturated aq. NH4Cl and extracted with
Et2O (3 × 30 cm3). The combined organic extracts were washed with NaOH and water
before being dried and evaporated to give 25 as a pale brown oil which was used without
further purification; νmax/cm–1 3256, 3086, 2957, 2930, 1612, 1545, 1450, 1302, 1026, 698 and
669; δH (400 MHz) 7.37–7.29 (4H, m, Ph), 7.27–7.23 (1H, m, Ph), 7.21 (1H, d, J 5.0, 5-H), 6.96
(1H, t, J 5.6, NH), 6.71 (1H, d, J 5.0, 4-H), 6.02 (1H, s, CHOH), 5.87 (1H, br s, OH), 3.30 (2H,
td, J 7.2, 5.6, NCH2), 1.52–1.45 (2H, m, NCH2CH2), 1.35–1.26 (2H, m, CH2CH3) and 0.89
(3H, t, J 7.2, CH3); δC (75 MHz) 163.1 (C=O), 147.8 (C), 142.3 (C), 133.4 (C), 130.4 (CH), 128.2
(2CH), 127.3 (CH), 126.7 (CH), 126.2 (2CH), 70.9 (CHOH), 39.9 (NCH2), 31.3 (CH2), 20.0
(CH2) and 13.7 (CH3); HRMS (ESI+): found 312.1023. C16H19NaNO2S (M + Na) requires
312.1029.

A mixture of N-butyl-3-(hydroxy(phenyl)methyl)thiophene-2-carboxamide 25 (assum-
ing 5.01 mmol) and p-toluenesulfonic acid monohydrate (1.90 g, 9.99 mmol) in toluene
(50 cm3) was heated at reflux for 1 h. After cooling to room temperature, the reaction
mixture was washed with water (50 cm3), 2 M NaOH (50 cm3) and brine (50 cm3) before
being dried and evaporated. The crude residue was purified by filtration through a silica
plug (Et2O) to give 26 (1.26 g, 93%) as a tan-coloured solid; mp 90–93 ◦C; νmax/cm–1 2955,
1668, 1441, 1398, 1310, 1069, 781, 743, 698 and 637; δH (400 MHz) 7.55 (1H, d, J 4.8, 5-H),
7.38–7.32 (3H, m, Ph), 7.16–7.13 (2H, m, Ph), 6.79 (1H, d, J 4.8, 4-H), 5.39 (1H, s, CHPh), 3.84
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(1H, dt, J 14.4, 7.8, NCH), 2.86–2.79 (1H, m, NCH), 1.54–1.46 (2H, m, NCH2CH2), 1.34–1.24
(2H, m, CH2CH3) and 0.88 (3H, t, J 7.2, CH3); δC (125 MHz) 164.4 (C=O), 155.7 (C), 136.0 (C),
134.8 (C), 134.5 (CH), 129.0 (2CH), 128.6 (CH), 127.3 (2CH), 120.7 (CH), 62.9 (CHPh), 40.3
(NCH2), 30.6 (CH2), 19.9 (CH2) and 13.7 (CH3); HRMS (NSI+): found 272.1103. C16H18NOS
(M + H) requires 272.1104.

3.3. Preparation and Reactions of 2-Benzyloxy-3-thienyl Systems
3.3.1. Attempted Cyclisation of 2-(2-(Benzyloxy)thiophen-3-yl)-4,4-dimethyl-4,5-
dihydrooxazole 11

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexanes, 0.66 cm3, 1.65 mmol)
was added to a stirred mixture of 2-(2-(benzyloxy)thiophen-3-yl)-4,4-dimethyl-4,5-
dihydrooxazole 11 [11] (0.1437 g, 0.50 mmol) and potassium tert-butoxide (0.1875 g,
1.67 mmol) in dry THF (5 cm3). The mixture was stirred at rt for 2 h before being quenched
by the addition of saturated aq. NH4Cl and extracted with Et2O (3 × 10 cm3). The com-
bined extracts were dried and evaporated to give, after purification by preparative TLC
(Al2O3, Et2O/hexane 1:1), at Rf 0.50, (3-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)thiophen-2-
yl)(phenyl)methanol 30 (96.7 mg, 67%) as an orange oil; νmax/cm–1 3177, 2965, 1636, 1535,
1452, 1288, 1194, 1148, 974 and 698; δH (500 MHz) 8.04 (1H, br s, OH), 7.49 (2H, d, J 7.0, Ph),
7.36–7.28 (4H, m, ArH and Ph), 7.06 (1H, d, J 5.0, ArH), 6.10 (1H, s, CHOH), 4.09 and 4.06
(2H, AB pattern, J 6.8, CH2), 1.38 (3H, s, CH3) and 1.28 (3H, s, CH3); δC (125 MHz) 159.6
(C), 153.7 (C), 141.8 (C), 128.6 (CH), 127.9 (2CH), 127.7 (CH), 126.8 (2CH), 125.5 (C), 123.2
(CH), 79.0 (CH2), 69.5 (CHOH), 67.3 (4ry, CMe2), 28.5 (CH3) and 28.1 (CH3); HRMS (NSI+):
found 288.1052. C16H18NO2S (M + H) requires 288.1053.

3.3.2. N-Butylthiophene-3-carboxamide 32

Oxalyl chloride (2.0 cm3, 3.00 g, 23.6 mmol) was added to a solution of thiophene-3-
carboxylic acid 31 (2.52 g, 19.7 mmol) in CH2Cl2 (30 cm3) and the mixture was stirred for
18 h. Evaporation gave thiophene-3-carbonyl chloride as a pale-yellow solid which was
used immediately without further purification.

A solution of thiophene-3-carbonyl chloride (assuming 19.7 mmol) in toluene (30 cm3)
was added dropwise to a solution of n-butylamine (5.8 cm3, 4.29 g, 58.7 mmol) in toluene
(30 cm3) stirred at 0 ◦C. Once the addition was complete, the reaction mixture was allowed
to warm to rt over 1 h before being poured into water. The organic layer was separated
and washed with 2M NaOH and brine, dried and evaporated to give, after recrystallisation
(EtOAc/hexane), 32 (2.54 g, 70%) as colourless crystals; mp 66–68 ◦C; (lit. [19] 53–55 ◦C);
νmax/cm–1 3253, 3085, 2921, 1617, 1555, 1301, 1220, 1127, 881, 831, 741 and 707; δH (500 MHz)
7.84 (1H, dd, J 3.0, 1.5, ArH), 7.37 (1H, dd, J 5.0, 1.5, ArH), 7.33 (1H, dd, J 5.0, 3.0, ArH), 6.02
(1H, br s, NH), 3.43 (2H, td, J 7.0, 6.0, NCH2), 1.62–1.56 (2H, m, NCH2CH2), 1.44–1.37 (2H,
m, CH2CH3) and 0.95 (3H, t, J 7.5, CH3). The 1H NMR spectral data were in accordance
with those previously reported [19]. IR data are reported for the first time.

3.3.3. N-Butyl-2-(trimethylsilyl)thiophene-3-carboxamide 33

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexane, 5.2 cm3, 13.0 mmol)
was added dropwise to a stirred −78 ◦C solution of N-butylthiophene-3-carboxamide 32
(1.10 g, 6.00 mmol) in dry THF (30 cm3). After stirring at −78 ◦C for 5 min, the reaction
mixture was allowed to warm to rt for 1 h, before being cooled to −78 ◦C and treated
with bis(trimethylsilyl) peroxide (1.28 g, 7.18 mmol). The reaction mixture was allowed
to warm to rt over 18 h before being poured into sat. aq. NH4Cl (100 cm3) and extracted
with Et2O (3 × 50 cm3). The combined organic extracts were dried and evaporated and
the crude residue was purified by column chromatography (SiO2, Et2O/hexane 3:2) to
give, at Rf 0.90, 33 (0.32 g, 21%) as tan-coloured crystals; mp 86–89 ◦C; νmax/cm–1 3285,
2957, 1620, 1558, 1402, 1296, 1240, 1005, 833, 746, 704 and 604; δH (500 MHz) 7.50 (1H, d,
J 5.0, ArH), 7.29 (1H, d, J 5.0, ArH), 5.94 (1H, br s, NH), 3.41 (2H, td, J 7.0, 6.0, NCH2),
1.61–1.55 (2H, m, NCH2CH2), 1.43–1.36 (2H, m, CH2CH3), 0.94 (3H, t, J 7.5, CH2CH3) and
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0.39 (9H, s, SiMe3); δC (125 MHz) 164.6 (C=O), 145.7 (C), 143.0 (C), 130.2 (CH), 126.9 (CH),
39.6 (NCH2), 31.7 (CH2), 20.1 (CH2), 13.8 (CH3) and 0.0 (SiMe3); HRMS (NSI+): found
256.1184. C12H22NOSSi (M + H) requires 256.1186.

3.3.4. 5-Butyl-6-phenyl-5,6-dihydro-4H-thieno[2,3-c]pyrrol-4-one 35 and
2-Benzoyl-N-butylthiophene-3-carboxamide 36

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexane, 4.2 cm3, 10.5 mmol)
was added dropwise to a stirred −78 ◦C solution of N-butylthiophene-3-carboxamide 32
(0.9158 g, 5.00 mmol) in dry THF (50 cm3). After stirring at −78 ◦C for 5 min, the reaction
mixture was allowed to warm to rt for 1 h before benzaldehyde (0.57 cm3, 0.60 g, 5.61 mmol)
was added and stirring was continued for 18 h. The reaction mixture was poured into
sat. aq. NH4Cl (100 cm3) and extracted with Et2O (3 × 50 cm3) and the combined organic
layers were dried and evaporated.

The residue was dissolved in toluene (100 cm3) and treated with p-toluenesulfonic
acid monohydrate (1.90 g, 9.99 mmol) before being heated at reflux for 1 h. After cooling to
rt, the reaction mixture was washed with water (50 cm3), 2 M NaOH (50 cm3) and brine
(50 cm3) before being dried and evaporated. The crude residue was purified by column
chromatography (SiO2, Et2O/hexane 3:2) to give, at Rf 0.50, 35 (0.3223 g, 24%) as a pale
yellow solid; mp 96–98 ◦C; νmax/cm–1 2953, 1668, 1454, 1412, 1375, 1308, 1267, 1070, 760,
700 and 575; δH (400 MHz) 7.40–7.34 (4H, m, ArH), 7.27 (1H, d, J 4.8, ArH), 7.17–7.13 (2H,
m, ArH), 5.51 (1H, s, CHPh), 3.84 (1H, dt, J 14.0, 8.0, NCH), 2.81 (1H, ddd, J 14.0, 7.6, 6.4,
NC), 1.53–1.45 (2H, m, NCH2CH2), 1.35–1.24 (2H, m, CH2CH3) and 0.88 (3H, t, J 7.4, CH3);
δC (125 MHz) 165.1 (C=O), 155.0 (C), 139.8 (C), 136.7 (C), 130.2 (CH), 129.2 (2CH), 129.0
(CH), 127.3 (2CH), 120.1 (CH), 62.9 (CHPh), 40.3 (NCH2), 30.7 (CH2), 20.0 (CH2) and 13.7
(CH3); HRMS (ASAP+): found 272.1115. C16H18NOS (M + H) requires 272.1104.

This was followed by a second fraction to give, at Rf 0.30, 36 (0.1817 g, 13%) as an
orange oil; νmax/cm–1 3277, 2957, 2870, 1630, 1549, 1449, 1406, 1279, 847 and 691; δH
(400 MHz) 8.65 (1H, br s, NH), 7.84–7.81 (2H, m, Ph), 7.75 (1H, d, J 5.0, ArH), 7.64–7.60 (1H,
m, Ph), 7.55 (1H, d, J 5.0, ArH), 7.51–7.46 (2H, m, Ph), 3.33 (2H, td, J 7.2, 5.6, NCH2), 1.56–1.49
(2H, m, NCH2CH2), 1.42–1.33 (2H, m, CH2CH3) and 0.92 (3H, t, J 7.4, CH3); δC (100 MHz,
signals for major amide rotamer only) 190.6 (COPh), 162.5 (CONHBu), 142.6 (C), 138.8 (C),
138.1 (C), 133.3 (CH), 132.8 (CH), 130.4 (CH), 129.8 (2CH), 128.3 (2CH), 39.7 (NCH2), 31.2
(CH2), 20.2 (CH2) and 13.7 (CH3); HRMS (NSI+): found 288.1052. C16H18NO2S (M + H)
requires 288.1053.

3.4. Preparation and Reactions of 4-Benzyloxy-3-thienyl Systems
3.4.1. Methyl 3-((2-Methoxy-2-oxoethyl)thio)propanoate 37

Following a literature procedure [12], methyl acrylate (18.37 g, 0.213 mol) was added
dropwise to a stirred mixture of methyl thioglycolate (21.18 g, 0.200 mol) and piperidine
(0.2 cm3, 0.17 g, 2.02 mmol). Once approximately half of the methyl acrylate had been
added, further piperidine (0.2 cm3, 0.17 g, 2.02 mmol) was added. Once the addition
was complete, the reaction mixture was heated at 80 ◦C for 30 min. After cooling to
rt, the reaction mixture was diluted with Et2O (150 cm3) and washed with water (5 ×
50 cm3) before being dried and evaporated to give 37 (37.12 g, 97%) as a pale yellow oil
which was used without further purification; δH (400 MHz) 3.75 (3H, s, CH3), 3.71 (3H, s,
CH3), 3.26 (2H, s, MeO2CCH2S), 2.92 (2H, t, J 7.2, SCH2CH2CO2Me) and 2.66 (2H, t, J 7.2,
SCH2CH2CO2Me); δC (100 MHz) 172.0 (C=O), 170.7 (C=O), 52.4 (CH3), 51.8 (CH3), 34.1
(CH2), 33.4 (CH2) and 27.5 (CH2). The 1H NMR spectral data were in accordance with
those previously reported [11]. 13C NMR data are reported for the first time.

3.4.2. Methyl 4-Oxotetrahydrothiophene-3-carboxylate 38

Following a literature procedure [13], sodium methoxide was prepared by the addition
of sodium (12.51 g, 0.544 mol) in small portions to methanol (90 cm3). Once the sodium
had fully dissolved, a solution of methyl 3-((2-methoxy-2-oxoethyl)thio)propanoate 37
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(37.12 g, 0.193 mol) in methanol (30 cm3) was added dropwise and the reaction mixture
was heated at reflux for 1 h. After cooling to rt, the reaction mixture was poured into a
mixture of crushed ice (400 g) and conc. HCl (100 cm3) before being extracted with CH2Cl2
(2 × 300 cm3). The combined organic layers were washed with sat. aq. NaHCO3 (250 cm3)
before being dried and evaporated. The crude residue was purified by distillation to give
38 (11.69 g, 38%) as a colourless oil which partially crystallised on standing; bp 103 ◦C/4.9
Torr; (lit. [20] 109 ◦C/4 Torr).

3.4.3. Methyl 4-Hydroxythiophene-3-carboxylate 39

Following a literature procedure [14], sulfuryl chloride (9.7 cm3, 16.15 g, 0.120 mol)
was added dropwise to a stirred 0 ◦C solution of methyl 4-oxotetrahydrothiophene-3-
carboxylate 973 (17.41 g, 0.109 mol) in CH2Cl2 (110 cm3) over a period of 1 h. The reaction
mixture was stirred at 0 ◦C for 30 min before being washed with sat. aq. NaHCO3 (150 cm3)
and water (3 × 50 cm3). The organic layer was dried and evaporated to give after filtration
through a silica plug (Et2O), 39 (12.93 g, 75%) as a light brown low-melting solid; δH
(300 MHz) 8.72 (1H, s, OH), 7.90 (1H, d, J 3.6, ArH), 6.39 (1H, d, J 3.6, ArH) and 3.92 (3H, s,
CH3); δC (125 MHz) 165.4 (C=O), 155.3 (C–O), 131.0 (CH), 119.0 (C), 100.0 (CH) and 51.8
(CH3). The 1H NMR spectral data were in accordance with those previously reported [15].
13C NMR data are reported for the first time.

3.4.4. Methyl 4-Acetoxythiophene-3-carboxylate 40

Following a literature procedure [15], a mixture of methyl 4-oxotetrahydrothiophene-
3-carboxylate 38 (30.80 g, 0.192 mol) and p-toluenesulfonic acid monohydrate (0.19 g,
1.00 mmol) in isopropenyl acetate (70 cm3) was heated at reflux for 18 h. After cool-
ing to rt, the reaction mixture was concentrated in vacuo to give methyl 4-acetoxy-2,5-
dihydrothiophene-3-carboxylate as a dark brown oil which was used without further
purification.

Following a literature procedure [15], sulfuryl chloride (19.5 cm3, 32.47 g, 0.241 mol)
was added dropwise to a stirred −25 ◦C solution of methyl 4-acetoxy-2,5-dihydrothiophene-
3-carboxylate (assuming 0.192 mol) in CH2Cl2 (80 cm3) over a period of 1 h. The reaction
mixture was allowed to warm to rt for 18 h before being evaporated to give 40 (19.10 g,
50%) as a dark brown oil which was used without further purification; δH (500 MHz) 8.07
(1H, d, J 3.8, ArH), 6.98 (1H, d, J 3.8, ArH), 3.83 (3H, s, OCH3) and 2.33 (3H, s, COCH3).
The 1H NMR spectral data were in accordance with those previously reported [15].

3.4.5. Silver(I) Oxide

A solution of sodium hydroxide (14.61 g, 0.365 mol) in water (440 cm3) was added
dropwise to a stirred solution of silver nitrate (60.00 g, 0.353 mol) in water (110 cm3).
Once the addition was complete, the precipitate was collected by filtration and washed
with water until the washings were neutral before being dried in vacuo to give the title
compound (39.60 g, 97%) as a brown solid which was stored in the dark and used without
further purification.

3.4.6. Methyl 4-(Benzyloxy)thiophene-3-carboxylate 41

A mixture of methyl 4-hydroxythiophene-3-carboxylate 39 (12.91 g, 81.6 mmol), sil-
ver(I) oxide (28.40 g, 0.123 mol) and benzyl bromide (10.7 cm3, 15.39 g, 90.0 mmol) in
CH2Cl2 (500 cm3) was heated at reflux for 3 d. After cooling to rt, the reaction mixture was
filtered and evaporated and the crude residue was purified by column chromatography
(SiO2, Et2O/hexane 1:1) to give, at Rf 0.90, 983 (5.47 g, 27%) as a red oil; νmax/cm–1 3113,
2949, 1726, 1541, 1449, 1265, 1082, 770 and 698; δH (500 MHz) 8.01 (1H, d, J 3.5, ArH), 7.48
(2H, d, J 7.5, Ph), 7.38 (2H, t, J 7.5, Ph), 7.31 (1H, t, J 7.5, Ph), 6.31 (1H, d, J 3.5, ArH), 5.13
(2H, s, CH2) and 3.86 (3H, s, CH3); δC (125 MHz) 162.2 (C=O), 156.1 (C–O), 136.5 (C), 133.2
(CH), 128.5 (2CH), 127.8 (CH), 126.8 (2CH), 123.7 (C), 99.9 (CH), 72.3 (CH2) and 51.6 (CH3);
HRMS (ESI+): found 271.0393. C13H12NaO3S (M + Na) requires 271.0399.
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3.4.7. 4-(Benzyloxy)thiophene-3-carboxylic Acid 42

A mixture of methyl 4-(benzyloxy)thiophene-3-carboxylate 41 (5.17 g, 20.8 mmol) and
sodium hydroxide (1.74 g, 43.5 mmol) in water (45 cm3) was heated at reflux for 18 h.
After cooling to rt, the reaction mixture was washed with CH2Cl2 (30 cm3) before being
adjusted to pH 1 by the addition of 2 M HCl and extracted with CH2Cl2 (2 × 50 cm3).
The combined organic extracts were dried and evaporated to give, after recrystallisation
(PhMe), 42 (3.08 g, 63%) as brown crystals; mp 101–105 ◦C; νmax/cm–1 3123, 1667, 1537,
1447, 1285, 1196, 1088, 880 and 764; δH (500 MHz) 9.96 (1H, br s, CO2H), 8.21 (1H, d, J 3.5,
ArH), 7.45–7.37 (5H, m, Ph), 6.48 (1H, d, J 3.5, ArH) and 5.20 (2H, s, CH2); δC (125 MHz)
164.7 (C=O), 155.0 (C–O), 135.5 (C), 135.2 (CH), 128.6 (2CH), 128.3 CH), 127.2 (2CH), 122.7
(C), 100.4 (CH) and 72.9 (CH2); HRMS (ESI+): found 257.0239. C12H10NaO3S (M + Na)
requires 257.0243.

3.4.8. 4-(Benzyloxy)-N-(1-hydroxy-2-methylpropan-2-yl)thiophene-3-carboxamide 43

Thionyl chloride (0.31 cm3, 0.51 g, 4.25 mmol) was added to a suspension of 4-
(benzyloxy)thiophene-3-carboxylic acid 42 (0.50 g, 2.13 mmol) in toluene (5 cm3) and
the mixture was heated under reflux for 3 h. After cooling to rt, the mixture was evap-
orated to give 4-(benzyloxy)thiophene-3-carbonyl chloride as a red oil which was used
immediately without further purification.

A solution of 4-(benzyloxy)thiophene-3-carbonyl chloride (assuming 2.13 mmol) in
CH2Cl2 (30 cm3) was added dropwise to a solution of 2-amino-2-methylpropan-1-ol (0.41 g,
4.60 mmol) in CH2Cl2 (10 cm3) stirred at 0 ◦C. After the addition, the mixture was allowed
to warm to rt and stirred for 18 h before being poured into water. The organic layer was
separated and the aqueous layer extracted with CH2Cl2 (2 × 20 cm3). The combined
organic layers were washed successively with 2M HCl, 2M NaOH and water before being
dried and evaporated to give 43 (0.60 g, 92%) as a pale-yellow solid which was used
without further purification; mp 90–92 ◦C; νmax/cm–1 3366, 2970, 1628, 1560, 1435, 1364,
1310, 1074, 976 and 606; δH (400 MHz) 8.07 (1H, d, J 3.6, ArH), 7.65 (1H, br s, NH), 7.46–7.37
(5H, m, Ph), 6.46 (1H, d, J 3.6, ArH), 5.22 (1H, br s, OH), 5.08 (2H, s, OCH2Ph), 3.57 (2H, s,
CH2OH) and 1.16 (6H, s, CH3); δC (100 MHz) 162.1 (C=O), 153.1 (C–O), 135.1 (C), 131.9
(CH), 128.8 (CH), 128.7 (2CH), 128.1 (2CH), 126.6 (C), 99.7 (CH), 73.2 (CH2), 70.7 (CH2), 56.0
(CMe2) and 24.5 (2CH3); HRMS (NSI+): found 306.1150. C16H20NO3S (M + H) requires
306.1158.

3.4.9. 2-(4-(Benzyloxy)thiophen-3-yl)-4,4-dimethyl-4,5-dihydrooxazole 13

Thionyl chloride (0.15 cm3, 0.24 g, 2.06 mmol) was added to a solution of 4-(benzyloxy)-
N-(1-hydroxy-2-methylpropan-2-yl)thiophene-3-carboxamide 43 (0.50 g, 1.64 mmol) in
CH2Cl2 (20 cm3) and the mixture was stirred at rt for 18 h. The mixture was washed
with 2M NaOH and water before being dried and evaporated to give, after purification
by column chromatography (SiO2, Et2O/hexane 3:2), at Rf 0.40, 13 (0.41 g, 87%) as a pale
yellow solid; mp 77–80 ◦C; νmax/cm–1 2965, 1651, 1535, 1449, 1371, 1211, 1194, 1042, 733
and 698; δH (400 MHz) 7.79 (1H, d, J 3.6, ArH), 7.47 (2H, d, J 7.6, Ph), 7.36 (2H, t, J 7.4, Ph),
7.29 (1H, t, J 7.2, Ph), 6.30 (1H, d, J 3.6, ArH), 5.16 (2H, s, OCH2Ph), 4.05 (2H, s, OCH2)
and 1.39 (6H, s, CH3); δC (100 MHz) 157.2 (C), 155.3 (C), 136.9 (C), 129.1 (CH), 128.4 (2CH),
127.6 CH), 126.7 (2CH), 121.6 (C), 100.3 (CH), 78.5 (OCH2), 72.4 (OCH2), 67.5 (CMe2) and
28.4 (2CH3); HRMS (ESI+): found 288.1047. C16H18NO2S (M + H) requires 288.1053.

3.4.10. 4-((1-Hydroxy-2-methylpropan-2-yl)carbamoyl)thiophen-3-yl Benzoate 45

Under a nitrogen atmosphere, n-butyllithium (2.5 M in hexanes, 0.88 cm3, 2.20 mmol)
was added to a stirred mixture of 2-(4-(benzyloxy)thiophen-3-yl)-4,4-dimethyl-4,5-
dihydrooxazole 13 (0.1443 g, 0.50 mmol) and potassium tert-butoxide (0.2485 g, 2.21 mmol)
in dry THF (5 cm3). The mixture was stirred at rt for 2 h before being quenched by the
addition of saturated aq. NH4Cl and extracted with Et2O (3 × 10 cm3). The combined
extracts were dried and evaporated to give, after purification by preparative TLC (Al2O3,
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Et2O/hexane 1:1), at Rf 0.35, 45 (55.8 mg, 35%) in slightly impure form as a brown oil;
νmax/cm–1 3335, 2972, 1744, 1638, 1545, 1450, 1246, 1177, 1047, 908, 766 and 700; δH
(400 MHz) 8.19–8.16 (2H, m, Ph), 7.99 (1H, d, J 3.6, ArH), 7.71–7.67 (1H, m, Ph), 7.55 (2H, t,
J 7.8, Ph), 7.34 (1H, d, J 3.6, ArH), 6.61 (1H, br s, NH), 4.58 (1H, br s, OH), 3.59 (2H, s, CH2)
and 1.24 (6H, s, CH3); δC (125 MHz) 163.7 (CO), 162.2 (CO), 143.2 (C), 134.4 (CH), 130.0
(2CH), 129.9 (CH), 129.3 (C), 128.9 (2CH), 128.4 (C), 113.7 (CH), 69.9 (OCH2), 56.3 (CMe2)
and 24.6 (2CH3); HRMS (NSI+): found 320.0953. C16H18NO4S (M + H) requires 320.0951.

3.4.11. 4-(Benzyloxy)-N-butylthiophene-3-carboxamide 14

Thionyl chloride (1.0 cm3, 1.63 g, 13.7 mmol) was added to a suspension of 4-
(benzyloxy)thiophene-3-carboxylic acid 42 (1.50 g, 6.40 mmol) in toluene (15 cm3) and the
mixture was heated under reflux for 3 h. After cooling to rt, the mixture was evaporated to
give 4-(benzyloxy)thiophene-3-carbonyl chloride as a red oil which was used immediately
without further purification.

A solution of 4-(benzyloxy)thiophene-3-carbonyl chloride (assuming 6.40 mmol) in
toluene (30 cm3) was added dropwise to a solution of n-butylamine (1.9 cm3, 1.41 g,
19.2 mmol) in toluene (10 cm3) stirred at 0 ◦C. Once the addition was complete, the reaction
mixture was allowed to warm to rt over 1 h before being poured into water. The organic
layer was separated and washed with 2M NaOH and brine, dried and evaporated to give,
after purification by column chromatography (SiO2, Et2O/hexane 3:2), at Rf 0.50, 14 (1.24 g,
67%) as a tan-coloured solid; mp 51–53 ◦C; νmax/cm–1 3385, 3111, 2970, 1630, 1557, 1435,
1364, 1265, 1184, 1074, 988, 714 and 579; δH (400 MHz) 8.10 (1H, d, J 3.6, ArH), 7.45–7.37
(6H, m, NH and Ph), 6.43 (1H, d, J 3.6, ArH), 5.10 (2H, s, OCH2), 3.34 (2H, td, J 6.8, 5.6,
NCH2), 1.45–1.38 (2H, m, NCH2CH2), 1.25–1.15 (2H, m, CH2CH3) and 0.81 (3H, t, J 7.2,
CH3); δC (100 MHz) 161.5 (C=O), 153.5 (C–O), 135.5 (C), 131.5 (CH), 128.8 (2CH), 128.7
(CH), 127.9 (2CH), 127.1 (C), 99.5 (CH), 73.1 (OCH2), 38.7 (NCH2), 31.3 (CH2), 20.0 (CH2)
and 13.7 (CH3); HRMS (NSI+): found 290.1207. C16H20NO2S (M + H) requires 290.1209.

3.4.12. Attempted [1,2]-Wittig Rearrangement of 4-(Benzyloxy)-N-butylthiophene-3-
carboxamide 14

Under a nitrogen atmosphere, n-butyllithium (2.5 M, 2.7 cm3, 6.75 mmol) was added
dropwise to a stirred solution of 4-(benzyloxy)-N-butylthiophene-3-carboxamide 14
(0.5787 g, 2.00 mmol) in dry THF (20 cm3). After stirring at rt for 2 h, the reaction mixture
was quenched by the addition of saturated aq. NH4Cl and extracted with Et2O (3 × 30 cm3).
The combined organic extracts were washed with NaOH and water before being dried and
evaporated to give, after purification by column chromatography (SiO2, Et2O/hexane 3:2),
at Rf 0.65, 4-(benzyloxy)-N-butyl-2-(hydroxy(phenyl)methyl)thiophene-3-carboxamide 46
(27.8 mg, 4%) in slightly impure form as a tan-coloured solid; mp 74–76 ◦C; νmax/cm–1

3393, 3084, 2930, 2870, 1624, 1557, 1443, 1217, 1173, 1016 and 696; δH (400 MHz) 7.73 (1H,
t, J 5.0, NH), 7.52–7.48 (2H, m, Ph), 7.44–7.30 (8H, m, Ph), 6.77 (1H, br s, OH), 6.26 (1H, s,
ArH), 6.21 (1H, s, CHOH), 5.04 (2H, s, OCH2), 3.41–3.25 (2H, m, NCH2), 1.42–1.35 (2H, m,
NCH2CH2), 1.21–1.12 (2H, m, CH2CH3) and 0.80 (3H, t, J 7.2, CH3); δC (100 MHz) 163.6
(C=O), 155.9 (C), 154.3 (C), 140.9 (C), 135.2 (C), 128.8 (3CH), 128.03 (2CH), 128.01 (2CH),
127.97 (CH), 127.3 (2CH), 121.9 (C), 97.5 (CH), 73.0 (OCH2), 70.8 (CHOH), 39.0 (NCH2),
31.0 (CH2), 19.9 (CH2) and 13.7 (CH3); HRMS (ESI+): found 418.1439. C23H25NaNO3S (M +
Na) requires 418.1447.

This was followed by a second fraction at Rf 0.50 which was further purified by prepar-
ative TLC (SiO2, CH2Cl2) to give, at Rf 0.35 N-butyl-4-hydroxythiophene-3-carboxamide
47 (30.9 mg, 8%) in slightly impure form as a brown oil; νmax/cm–1 3327, 2957, 2930, 1634,
1557, 1441, 1273, 739 and 698; 1H NMR revealed a 3:2 mixture of enol and keto tautomers;
δH (500 MHz, enol tautomer 47) 10.36 (1H, br s, OH), 7.54 (1H, d, J 3.3, ArH), 6.36 (1H, d, J
3.3, ArH), 6.35 (1H, br s, NH), 3.41 (2H, td, J 7.3, 6.0, NCH2), 1.62–1.51 (2H, m, NCH2CH2),
1.44–1.33 (2H, m, CH2CH3) and 0.95 (3H, t, J 7.5, CH3); δC (125 MHz, enol tautomer 47)
165.1 (C=O), 156.1 (C–O), 124.6 (CH), 121.7 (C), 100.1 (CH), 39.1 (NCH2), 31.6 (CH2), 20.08
(CH2) and 13.7 (CH3); δH (500 MHz, keto tautomer 47a) 9.33 (1H, s, CH), 8.06 (1H, br
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s, NH), 3.89 (2H, s, SCH2), 3.36 (2H, td, J 7.0, 6.0, NCH2), 1.62–1.51 (2H, m, NCH2CH2),
1.44–1.33 (2H, m, CH2CH3) and 0.93 (3H, t, J 7.3, CH3); δC (125 MHz, keto tautomer 47a)
199.9 (C=O), 174.7 (CH), 159.9 (CONH), 128.2 (C), 42.7 (SCH2), 38.7 (NCH2), 31.5 (CH2),
20.11 (CH2) and 13.7 (CH3); HRMS (NSI+): found 200.0740. C9H14NO2S (M + H) requires
200.0740.

3.5. X-ray Structure Determination

Data have been deposited at the Cambridge Crystallographic Data Centre as CCDC
2111424 (9), 2111425 (20), 2111426 (11), 2111427 (26) and 2111428 (13). The data can
be obtained free of charge from the Cambridge Crystallographic Data Centre via http:
//www.ccdc.cam.ac.uk/getstructures. In all cases, data were collected on a Rigaku XtaLAB
200 diffractometer using graphite monochromated Mo-Kα radiation, λ = 0.71075 Å and the
structures were solved by direct methods and refined by full-matrix least-squares against
F2 (SHELXL Version 2014/7 [21]).

Compound 20
Slow evaporation of an acetone/CH2Cl2 solution gave tan-coloured crystals suitable

for X-ray structure determination. Crystal data for 20: 2C16H17NO3S•CH2Cl2•Me2CO,
M = 749.76, yellow prism, crystal dimensions 0.10 × 0.10 × 0.10 mm, monoclinic, space
group P21/n, a = 17.4520, b = 9.9840, c = 21.1050 Å, β = 92.3760◦, V = 3674.1899 Å3, Z = 4,
Dc = 1.355 Mg m–3, T = 93 K, R = 0.0929, RW = 0.2464 for 4473 reflections with I > 2σ(I) and
458 variables.

Compound 26
Slow evaporation of a CH2Cl2 solution gave crystals suitable for X-ray structure

determination. Crystal data for 26: C16H17NOS, M = 271.38, colourless needle, crystal
dimensions 0.12 × 0.02 × 0.02 mm, monoclinic, space group P21, a = 8.237(3), b = 5.717(2),
c = 15.097(6) Å, β = 90.539(10)◦, V = 710.9(5) Å3, Z = 2, Dc = 1.268 Mg m–3, T = 93 K,
R = 0.0481, RW = 0.1086 for 2072 reflections with I > 2σ(I) and 172 variables.

Compound 9
Slow evaporation of an MeCN solution gave crystals suitable for X-ray structure deter-

mination. Crystal data for 9: C16H17NO2S, M = 287.38, colourless plate, crystal dimensions
0.10 × 0.10 × 0.01 mm, monoclinic, space group P21/c, a = 15.9970(19), b = 7.5839(6),
c = 12.4523(15) Å, β = 111.010(14)◦, V = 1410.3(3) Å3, Z = 4, Dc = 1.353 Mg m–3, T = 93 K,
R = 0.0584, RW = 0.1406 for 2462 reflections with I > 2σ(I) and 181 variables.

Compound 11
Slow evaporation of a CH2Cl2 solution gave crystals suitable for X-ray structure deter-

mination. Crystal data for 11: C16H17NO2S, M = 287.38, colourless prism, crystal dimen-
sions 0.12 × 0.10 × 0.06 mm, monoclinic, space group P21/c, a = 14.8176(4), b = 8.72450(17),
c = 11.9720(3) Å, β = 113.314(3)◦, V = 1421.32(7) Å3, Z = 4, Dc = 1.343 Mg m–3, T = 93 K,
R = 0.0274, RW = 0.0730 for 2906 reflections with I > 2σ(I) and 181 variables.

Compound 13
Slow evaporation of a toluene solution gave crystals suitable for X-ray structure deter-

mination. Crystal data for 13: C16H17NO2S, M = 287.38, colourless plate, crystal dimen-
sions 0.20 × 0.20 × 0.01 mm, monoclinic, space group P21/c, a = 15.6319(4), b = 8.7152(3),
c = 10.7572(3) Å, β = 93.909(3)◦, V = 1462.10(7) Å3, Z = 4, Dc = 1.305 Mg m–3, T = 296 K,
R = 0.0333, RW = 0.0888 for 2781 reflections with I > 2σ(I) and 181 variables.

4. Conclusions

The three isomeric thienyloxazolines showed a varied and interesting pattern of reac-
tivity with two of them undergoing Wittig rearrangement and two giving products derived
from ring cleavage of an intermediate 3-aminothienofuran. One of the corresponding
thienyl amides also underwent Wittig rearrangement and cyclisation of the product, as
well as an isomeric one obtained by other means, gave two isomeric thienopyrrolones.
The pattern of reactivity in the oxazoline series correlates well with the molecular geom-
etry in the solid state as determined by X-ray diffraction, and the use of this method to

http://www.ccdc.cam.ac.uk/getstructures
http://www.ccdc.cam.ac.uk/getstructures
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explain patterns of competing reactivity between closely similar molecules may be useful
more generally.

Supplementary Materials: The following are available online, Figures S1–S41: NMR spectra of new
compounds. Cif and check-cif files for X-ray structures of 9, 11, 13, 20 and 26.
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