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Abstract: Urinary tract infection (UTI) develops after a pathogen adheres to the inner lining of
the urinary tract. Cases of UTIs are predominantly caused by several Gram-negative bacteria and
account for high morbidity in the clinical and community settings. Of greater concern are the strains
carrying antimicrobial resistance (AMR)-conferring genes. The gravity of a UTI is also determined by
a spectrum of other virulence factors. This study represents a pilot project to investigate the burden
of AMR among uropathogens in East Africa. We examined bacterial samples isolated in 2017–2018
from in- and out-patients in Kenya (KY) and Uganda (UG) that presented with clinical symptoms of
UTI. We reconstructed the evolutionary history of the strains, investigated their population structure,
and performed comparative analysis their pangenome contents. We found 55 Escherichia coli and 19
Klebsiella pneumoniae strains confirmed uropathogenic following screening for the prevalence of UTI
virulence genes including fimH, iutA, feoA/B/C, mrkD, and foc. We identified 18 different sequence
types in E. coli population while all K. pneumoniae strains belong to ST11. The most prevalent E. coli
sequence types were ST131 (26%), ST335/1193 (10%), and ST10 (6%). Diverse plasmid types were
observed in both collections such as Incompatibility (IncF/IncH/IncQ1/IncX4) and Col groups.
Pangenome analysis of each set revealed a total of 2862 and 3464 genes comprised the core genome
of E. coli and K. pneumoniae population, respectively. Among these are acquired AMR determinants
including fluoroquinolone resistance-conferring genes aac(3)-Ib-cr and other significant genes: aad,
tet, sul1, sul2, and cat, which are associated with aminoglycoside, tetracycline, sulfonamide, and
chloramphenicol resistance, respectively. Accessory genomes of both species collections were detected
several β-lactamase genes, blaCTX-M, blaTEM and blaOXA, or blaNDM. Overall, 93% are multi-drug
resistant in the E. coli collection while 100% of the K. pneumoniae strains contained genes that are
associated with resistance to three or more antibiotic classes. Our findings illustrate the abundant
acquired resistome and virulome repertoire in uropathogenic E. coli and K. pneumoniae, which are
mainly disseminated via clonal and horizontal transfer, circulating in the East African region. We
further demonstrate here that routine genomic surveillance is necessary for high-resolution bacterial
epidemiology of these important AMR pathogens.
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1. Introduction

Antimicrobial resistance (AMR) has raised alarms as a global health threat. AMR is
often fueled by misuse and abuse of antibiotics including self-medication [1,2] and unre-
stricted access to antimicrobial drugs [3–5], and is further accelerated by industrialization,
poor waste disposal, and poor hygiene levels. AMR pathogens are frequently detected in
food, clinical, and environmental settings in East Africa. Despite facing broad challenges,
significant efforts have recently been put in place to curb AMR in East African countries.
For instance, Kenya (KY) has adapted the National Action Plan that incorporates One
Health measures to prevent AMR and is highly supported by multiple governmental poli-
cies (NAPCAR 2017) [6]. Similarly, an extensive evaluation of the AMR situation in Uganda
(UG) was assessed by the Uganda National Academy of Sciences (UNAS) supported by
the Global Antibiotic Resistance Partnership (GARP)-Uganda (UNAS 2015) [7]. High
prevalence of multi-drug resistant bacteria particularly extended-spectrum beta-lactamase
(ESBL)-producing strains is significantly recorded in both countries.

Urinary tract infection (UTI) develops after a pathogen’s adherence to the inner
lining of the urinary tract. UTIs occur among patients of all age groups and account for
high morbidity in the clinical and community settings [8]. Following binding within the
urinary tract, uropathogens either cause asymptomatic or commensal connection or severe
disease. About 1% of the population have asymptomatic bacteriuria (ABU), wherein a
pathogen (≥105 cfu mL−1) inhabits the tract without eliciting mucosal host response [9,10].
Infections in the lower urinary tract region (e.g., cystitis) are recognized by symptoms such
as dysuria. Successful virulent strains can induce pyelonephritis where rapid immune
response is mobilized via cytokine secretion and influx of immune cells. UTIs are either
uncomplicated or complicated. Uncomplicated UTI cases are usually observed in patients
who are otherwise healthy, while complicated UTIs are diagnosed in compromised patients
(e.g., if they have anatomical or functional anomalies in their urinary tract or are under long-
term catheterization) [11] Treatment of these complicated UTI cases is often confounded by
AMR uropathogens usually caused by Gram-negative bacteria [12]. Uncomplicated UTIs
are frequently caused by uropathogenic Escherichia coli (E. coli (UPEC)) while complicated
cases might be caused by several pathogens such as Proteus mirabilis, Providencia stuartii,
Morganella morganii, Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa [8].
Recurrent UTI cases are also common, particularly when urinary tract anomalies linger, or
treatment failed to kill resistant bacteria [13], leading to more severe type of infections. Due
to the lack of active investigation of UTI cases in East Africa, particularly in the community,
access to accurate data can be challenging.

An increasing number of studies have employed whole genome sequencing (WGS)
and analyses for disease surveillance in both hospital and community settings [14–16].
The high-resolution genotyping that WGS provides allows one to investigate and describe
the population structure and evolutionary history of the isolates, as well as tracing their
spread. Outbreaks have been robustly detected and described using high-throughput
methodologies designed for bacterial pathogens [17–20]. Comprehensive AMR gene
databases and prediction tools are also available that help assess AMR gene content in
whole genomes with high accuracy [21].

Here, we used WGS to investigate the prevalence of acquired AMR-conferring genes
in E. coli and K. pneumoniae isolated from urine samples taken from patients in rural areas
of KY and UG that presented UTI-like symptoms. Our analysis of AMR determinants was
limited to those associated with the pan genome and mutation in core genes responsible
for antibiotic resistance were not investigated. We further explored their phylogenetic
relationships of the isolates collected with other currently circulating African and global
strains. This study represents a pilot project of the HATUA consortium. HATUA stands
for Holistic Approach to Unravel Antibiotic Resistance in East Africa and the team is
comprised of researchers from different disciplines that aim to tackle the main drivers of
AMR among uropathogens in East Africa.
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2. Methods
2.1. Study Design and Patient Recruitment

A total of N = 150 bacterial isolates were obtained from patients in KY (n = 91)
and UG (n = 59) presenting UTI-like symptoms, as part of a larger study. Ethical Re-
view Board of University of St Andrews ethical approval, Approval code MD14548 and
KY (KEMRI/SERU/P00112/3865) approved verbal consent taken from all the patients.
Important patient data such as name, age, gender, location was recorded, and unique
identification number were assigned to each patient.

2.2. Library Preparation and Whole Genome Sequencing

Bacterial genomic DNA for the isolates were extracted using the QIAxtractor (Qiagen,
Valencia, CA, USA) according to the manufacturer’s instructions. Library preparation
was conducted according to the Illumina protocol and sequenced (96-plex) on an Illumina
MiSeq platform (Illumina, San Diego, CA, USA) using 250 bp paired-end reads.

2.3. Read Library Quality Control, Mapping and De Novo Genome Assembly

Illumina MiSeq read libraries were rid of sequencing adapters and ambiguous bases
using Fastp [22]. Sets that passed the quality filtering were de novo assembled using
Unicycler v4.6 [23] pipeline in normal mode to merge contigs.

The read libraries were mapped to reference sequences using SMALT v7.6 (http:
//www.sanger.ac.uk/resources/software/SMALT/ (accessed on 18 December 2019) [24]
and the resulting SAM files were converted to BAM format, sorted and PCR duplicates
removed using SAMtools v1.19 [25]. Strain TOP52_1721_U1 [26] was used the reference
genome for the K. pneumoniae samples while the strain EC958 [27] was employed as the
reference sequence for the E. coli population.

2.4. Species Identification, Sero- and Sequence Typing, Genome Annotation and Screening for UTI
Virulence/AMR Genes

Prediction of bacterial species was carried out by uploading the assemblies on Pathogen-
Watch website (https://pathogen.watch (accessed on 31 October 2019)) [28], which runs
Speciator (https://gitlab.com/cgps/mash-speciator (accessed on 31 October 2019)) for
its species assignment. Speciator employs Mash [29] to identify the most identical strain
(≥90% identity) in a reference collection of complete genomes found in the NCBI RefSeq
database (https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 31 October 2019)) [30]. The
strains are then grouped according to their species designation and were screened for UTI
pathogen determinants. Multi-locus sequence typing was performed by running SRST2
v.0.2.0 [31] based on the Achtman scheme [32] for E. coli and Pasteur [33] for K. pneumoniae
isolates. Antigenic (O polysaccharide and H flagellin) profiles of E. coli samples were identi-
fied by employing Serotypefinder v.2.0 (https://cge.cbs.dtu.dk/services/SerotypeFinder/
(accessed on 13 December 2019)) [34] at 85% ID threshold and 60% minimum length.

Genome composition of the draft assemblies was assessed using Prokka v.1.10 [35]
Acquired AMR genes were identified by aligning the genome sequences to the 2158 gene
homolog subset of the Comprehensive Antibiotic Resistance Database (CARD) v. 3.0.8
(https://card.mcmaster.ca/ (accessed on 08 November 2019)) [36] and BacWGSTdb 2.0 [37]
Clustering based on the distribution of AMR genes among isolates was drawn using
Phandango v.1.3.0 [38]. Plasmid and replicon typing was carried out by comparing the
genomes against the PlasmidFinder database v. 2.1.1 [39] at 99% identity threshold.

2.5. Bacterial Sample Collection and Antimicrobial Susceptibility Testing

To determine concordance between the AMR gene content and sample phenotype,
antibiotic susceptibility testing and phenotypic detections of ESBL were performed by disc
diffusion methods on a subset of n = 16 isolates from KY. The tests were carried out accord-
ing to CLSI (2016) guidelines [40]. Isolates were examined for the insusceptibility to 9 differ-
ent classes of antibiotics including Penicillin (ampicillin (AMP)), Penicillin + β-lactamase

http://www.sanger.ac.uk/resources/software/SMALT/
http://www.sanger.ac.uk/resources/software/SMALT/
https://pathogen.watch
https://gitlab.com/cgps/mash-speciator
https://www.ncbi.nlm.nih.gov/refseq/
https://cge.cbs.dtu.dk/services/SerotypeFinder/
https://card.mcmaster.ca/
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inhibitors (ampicillin-clavulanic acid (AMC)), Chloramphenicol (Chloramphenicol (CHL)),
Sulfonamide (Trimethoprim-sulfamethoxazole (SXT)) and Quinolones (nalidixic acid (NA)),
and Fluoroquinolone (Ciprofloxacin (CIP)). Resistance to ESBL Cephalosphorins was also
assessed by testing the strains with Ceftriaxone (CRO), Ceftazidime (CAZ), cefotaxime
(CTX), and Cefepime (FEP) (Supplementary Table S1).

2.6. Phylogenetic Reconstruction

Phylogenetic relationships and sequence variations between the samples were deter-
mined by constructing phylogenetic trees based on their chromosomal single-nucleotide
polymorphism (SNP)s. Mobile genetic elements (MGEs) were further excluded using an
internal script. Non-recombinant SNPs were determined using ClonalframeML v. 1.12 [41]
and were used to create a maximum-likelihood midpoint-rooted phylogeny using RAxML
v8.0.19 [42] using a General Time Reversible + gamma (GTR + G) substitution model with
100 bootstraps. Phylogenies were visualized using iToL (https://itol.embl.de/ (accessed
on 20 January 2020)) [43] and FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/
(accessed on 20 January 2020)) [44].

2.7. Pangenome Analyses

The resulting annotation files from Prokka v.1.10 [35] were used as the basis for
generating a pangenome for each species set. This step was completed by running Roary
v3.11.2 [45] with a 100% BLAST v2.6.0 identity threshold using the MAFFT v7.3 setting [46].
Pangenome outputs were also used to assess the accessory genome composition of each
bacterial population and as basis for reconstructing core genome phylogenies.

3. Results
3.1. Patient and Bacterial Strain Profiles

From the total of N = 150 strains, we collected from urine samples of patients, n = 81
were identified as E. coli and n = 19 were K. pneumoniae. The respondents were either to be
admitted or visiting rural hospitals in KY and from clinics in the countryside of UG.

3.2. Genomic and Pangenomic Characterization Confirmed the Virulence Factors Present in
Uropathogenic E. coli and K. pneumoniae

A subset (n = 55) from the total n = 81 E. coli and all n = 19 K. pneumoniae were confirmed
uropathogenic following a thorough characterization of their pangenome contents. One
thousand one hundred forty-four (1144) and 3464 core genes were found across the strains
in E. coli and K. pneumoniae populations, respectively. These include known UTI virulence
markers that are responsible for urinary tract (mucosal) surface binding (type 1 fimbrial
adhesin-coding fimH) and colonization (mrkD; K. pneumoniae only), iron (Fe(2+)) transport
(feoA/B/C), enterobactin synthase production (entB), formate transport (focA), cell division
(zapA), succinate-acetate/proton symport (satP), anaerobic sulfatase-maturation (chuR;
found in 100% and 95% of E. coli and K. pneumoniae, respectively). Other important
virulence genes were also found, albeit not conserved among all the isolates: iutA (ferric
aerobactin receptor: 44.6% in E. coli, 10% in K. pneumoniae), papA (fimbrial major pilin
protein: E. coli only (41%)), papD (import of P pilus subunits into the periplasm: 44.6% in
E. coli, 10% in K. pneumoniae), hlyE (hemolysin E: 80.4% in E. coli, 10% in K. pneumoniae), fyuA
(pesticin receptor: 73.2% in E. coli, 15% in K. pneumoniae), kpsT (polysialic acid transport
ATP-binding protein: E. coli only (26.8%)) and pic (serine protease pic autotransporter:
E. coli only (5.4%); Table 1).

https://itol.embl.de/
http://tree.bio.ed.ac.uk/software/figtree/
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Table 1. UTI virulence marker genes present in the pangenome of N = 55 E. coli and N = 19 K. pneumoniae isolates (including
the reference genomes for each species collection). Proportion of the samples containing the gene are shown in count of
strains with gene over the total strains and % values.

Gene Protein Product Strain Count and % in
E. coli Collection

Strain Count and % in
K. pneumoniae Collection

fimH Type 1 fimbrin D-mannose specific adhesin 56/56 (100) 20/20 (100)
feoA/B/C Fe(2+) transport protein A/B/C 56/56 (100) 20/20 (100)

entB Enterobactin synthase component B 56/56 (100) 20/20 (100)
focA Formate transporter 56/56 (100) 20/20 (100)
zapA Cell division protein 56/56 (100) 20/20 (100)
satP Succinate-acetate/proton symporter 56/56 (100) 20/20 (100)
chuR Anaerobic sulfatase-maturating enzyme 56/56 (100) 19/20 (95)
mrkD Type 3 fimbrial adhesin 0 20/20 (100)
hlyE Hemolysin E 45/56 (80.4) 2/20 (10)
fyuA Pesticin receptor 41/56 (73.2) 3/20 (15)
iutA Ferric aerobactin receptor 25/56 (44.6) 2/20 (10)
papD Import of P pilus subunits into the periplasm 26/56 (46.4) 2/20 (10)
papA Fimbrial major pilin protein 23/56 (41.1) 0
kpsT Polysialic acid transport ATP-binding protein 15/56 (26.8) 0
pic Serine protease pic autotransporter 3/56 (5.4) 0

3.3. Prevalence of AMR Genes in E. coli and K. pneumoniae Uropathogens from KY and UG

All n = 55 E. coli and n = 19 K. pneumoniae isolates harbored type 1 fimbrin. Among
the UPEC, fimH30 was the most common allele, followed by fimH41; n = 4/55 samples had
type fimH22 and n = 2/55 singleton were found with fimH22.

We further detected multiple acquired AMR-conferring elements in the genomes of
the two species collections. Alignment of the sequences against CARD v.3.0.7 with 98–100%
identity revealed that the n = 55 E. coli (n = 31 from KY, n = 24 from UG) were detected with
the ciprofloxacin-conferring gene, marA. Majority (n = 47/55) were also aminoglycoside
resistant and harbors either aadA or aac(6′)-Ib/(3′)-Ib alleles or both. Only n = 11/55 were
not detected with resistant genes for ESBL cephalosphorins. Of the n = 44/55 that produce
ESBLs, n = 10/44 had blaCTX-M (allele type 15 or 88), n = 24/44 had blaTEM (type 30/2/220)
and n = 9/44 had blaOXA-1/140 and n = 2/44 (both from UG) had all 3 ESBL genes. Sulfon-
amide resistance genes were widely observed, n = 39 had either sul1 only, sul2 only or sul3
only, or both sul1 and sul2. Tetracycline resistance gene, tet(A) was present in n = 34 of 55.
Twenty-four (N = 24/55) contained macrolide resistance-conferring mphA, n = 9/55 (n = 6
from KY, n = 3 from UG) harbored catB3 and were chloramphenicol resistant. Ninety-five
percent (95%, n = 52/55) had at least one gene that codes for efflux pump proteins with
n = 4/55 having yojI-pmrF-emrR-bacA-acrS/B/E-msbA-evgA-kdpE-mdtP-eptA cassette and
n = 1/55 containing a mixture of yojI, pmrF, emrR, bacA, acrS/B/E, msbA, evgA, kdpE, mdtP,
eptA, emtK, cpxA (Tables 2 and 3). Two KY isolates (71 and 72) were found to have the
fluoroquinolone resistance-conferring gene aac(3′)-Ib-cr while its variant aac(6′)-Ib-cr was
present in UG isolates BN19, BN38 and BN44 (Supplementary Figure S1a).
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Table 2. Genomic characteristics of uropathogenic E. coli strains isolated in this study for acquired AMR-associated genes and plasmid replicon types. Asterisk (*) next to the O antigen
type means undefined; NF means not found; ‘Yes’ means the strain is either ESBL-producing or MDR; and ‘No’ means the sample is either non-ESBL or non-MDR.

Sample
Name Serotype

Sequenc
Type

Pasteur
AMR

Phenotype fimH Aminoglycosides Macrolide Ciplrofloxacin
β-Lactamase

Inhibitors/ESBL
Cephalosporins

Phenicols Fluoroquinolones Quinolone Sulfonamide Tetracycline
Folate

Pathway
Inhibitors

Antibiotic Ef-
fulx/Regulation ESBL MDR Plasmid

Replicon

5 O25:H4 131
AMP, CTX,
CHL, SXT,
CIP, NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 gadW Yes Yes IncFIA,

IncFII

6 O25:H4 131
AMP, CTX,
CRO, CHL,

SXT, CIP,
NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 gadW Yes Yes IncFIA,

IncFII

7 O*:H5 1193
CRO, CHL,

SXT, CIP,
NA

H41 aac(3)-Ib,
aadA17 mphA marA blaTEM-220 NF NF NF NF NF NF bacA, tolC, evgA Yes Yes

IncQ1,
IncFIA,
Col156,

Col(BS512)

8 O75:H5 1193
AMP, FOX,
SXT, CIP,

NA
H41 aac(3)-Ib,

aadA17 mphA marA blaTEM-220 NF NF NF NF NF NF bacA, tolC, evgA Yes Yes
IncFIA,
IncQ1,

Col(BS512),
Col156

9 O6:H1 73
AMP, FOX,
SXT, CIP,

NA
H30 NF NF marA NF NF NF NF NF NF NF mexB No No IncX1

10 O6:H1 73 AMP, CTX H30 NF NF marA NF NF NF NF NF NF NF acrB No No NF

11 O25:H4 131
AMP, CTX,
CRO, CHL,

SXT, CIP,
NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) NF acrB, gadW,

pmrF Yes Yes
IncFIA,
IncFII,
Col156

12 O25:H4 131
AMP, CTX,
CRO, SXT,
CIP, NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) NF acrB, gadW,

pmrF Yes Yes
IncFIA,
IncFII,
Col156

13 O55:H7 335 AMP, SXT,
NA H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 evgA, cpxA,

gadW Yes Yes IncQ1

14 O55:H7 335 AMP, SXT,
NA H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 evgA, cpxA Yes Yes IncQ1

15 O55:H7 335 AMP, CTX,
SXT, NA H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 evgA, cpxA Yes Yes IncQ1

16 O55:H7 335 AMP, SXT,
NA H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 evgA, cpxA Yes Yes IncQ1

20 O25:H4 131
AMP, CTX,
FOX, SXT,
CIP, NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 acrB, gadW Yes Yes

IncFIA,
IncFII,
Col156

21 O75:H5 1193
AMP, FOX,
SXT, CIP,

NA
H41 aac(3)-Ib mphA marA blaTEM-220 NF NF NF NF NF dfrA17 evgA, tolC, bacA Yes Yes

IncQ1,
IncFIA,
Col156,

Col(BS512)

23 O25:H4 131

AMP, CTX,
CRO, CAZ,
FEP, CHL,
SXT, CIP,

NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 acrB, gadW Yes Yes

IncFIA,
IncFII,
Col156

24 O25:H4 131
AMP, CTX,
CRO, SXT,
CIP, NA

H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 acrB, gadW Yes Yes

IncFIA,
IncFII,
Col156

60 O*:H5 1193 ND H41 aac(3)-Ib,
aadA5 mphA marA blaTEM-220 NF NF NF NF NF dfrA17 acrS, bacA, tolC Yes Yes

IncQ1,
IncFIA,
Col156,

Col(BS512)

63 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 gadW Yes Yes

IncFII,
Col156,
IncFIA

64 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1, sul2 tet(A) dfrA17 gadW Yes Yes

IncFIA,
IncFII,
Col156

67 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-15/88 ,

blaOXA-1/140
catB3 NF NF sul1 tet(A) dfrA17 acrS, gadW Yes Yes IncFIA

68 O89:H4 44 ND H54 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-15/88 ,

blaOXA-1/140
catB3 NF NF sul1 tet(A) dfrA17 acrS, gadW Yes Yes IncFIA,

IncFII
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Table 2. Cont.

Sample
Name Serotype

Sequenc
Type

Pasteur
AMR

Phenotype fimH Aminoglycosides Macrolide Ciplrofloxacin
β-Lactamase

Inhibitors/ESBL
Cephalosporins

Phenicols Fluoroquinolones Quinolone Sulfonamide Tetracycline
Folate

Pathway
Inhibitors

Antibiotic Ef-
fulx/Regulation ESBL MDR Plasmid

Replicon

71 O25:H4 131 ND H30 aadA5 NF marA blaCTX-M-15/88 ,
blaOXA-1/140

catB3 aac(3)-Ib-cr QnrB2 sul1 tet(A) dfrA17 gadW Yes Yes
IncFIA,
IncFII,
IncY

72 O25:H4 131 ND H30 aadA5 NF marA blaCTX-M-15/88 ,
blaOXA-1/140

catB3 aac(3)-Ib-cr NF sul2 NF dfrA14 gadW Yes Yes IncFIA,
IncFII

73 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-15/88 ,

blaOXA-1/140
catB3 NF NF sul1 tet(A) dfrA17 acrS, gadW Yes Yes IncFIA,

IncFII

74 O*:H6 648 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-15/88 ,

blaOXA-1/140
catB3 NF NF sul1 tet(A) dfrA17 acrS, gadW Yes Yes IncFIA,

IncFII

87 O*:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1 tet(A) dfrA17 gadW Yes Yes IncFIA,

IncFII

97 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul1 tet(A) dfrA17 gadW Yes Yes

IncFIA,
IncFII,
Col156

102 O*:H7 335 ND H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 cpXxA, evgA Yes Yes IncQ1

103 O25:H4 131 ND H30 aac(3)-Ib,
aadA5 mphA marA blaCTX-M-27/99 NF NF NF sul2 tet(A) dfrA17 NF Yes Yes

IncFIA,
IncFII,
Col156

105 O55:H7 335 ND H30 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 cpxA, evgA, acrB Yes Yes IncQ1

106 O*:H5 1193 ND H41 aac(3)-Ib mphA marA blaTEM-220 NF NF NF NF NF dfrA17 evgA, tolC,
mphA Yes Yes

IncQ1,
IncFIA,
Col156

BN1 O75:H5 1193 ND H41 aac(3)-Ib mphA marA blaTEM-220 NF NF NF NF NF dfrA17 bacA, tolC, evgA Yes Yes IncQ1,
IncFIA

BN12 O*:H9 410 ND H41 aadA9,
aac(3)-Ib mphA marA blaTEM-220 NF NF NF NF NF dfrA17 emrR Yes Yes IncQ1,

IncFIA

BN19 O25:H4 131 ND H30
aadA5,

aac(3)-Ib,
aac(3)-Iic/d/e

NF marA
blaTEM-220 ,
blaCTX-M-15 ,

blaOXA-1 ,
blaOXA-140

catB3 aac(6′)-Ib-cr NF sul1, sul2 NF NF kdpE, gadW Yes Yes IncFIA,
IncFII

BN2 O156:H7 NF ND H22 aac(3)-Ib NF marA NF NF NF NF sul1 tet(A) dfrA17 NF No Yes Col

BN20 O89:H9 10 ND H54 aadA9,
aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA1

mdtP, msbA,
acrB, baeS/R,

yojI
Yes Yes IncQ1

BN25 O6:H11 48 ND H41 aadA5,
aac(3)-Ib NF marA NF NF NF NF sul2 NF dfrA17

yojI, pmrF, emrR,
bacA, acrS/B/E,

msbA, evgA,
kdpE, mdtP, eptA

No Yes IncHI2A

BN26 O9:H19 162* ND H30 NF NF marA NF NF NF NF NF tet(A) NF emrR, mdtA No Yes NF

BN27 O*:H2 165 ND H54
aac(6′)-Ib7,
aac(3)-Ib,

aadA9
NF marA blaTEM-220 NF NF qnrS1 sul3 tet(A) NF

tolC, mdtO,
msbA, acrB,

baeS/R, acrD,
gadX, evgA,

pmrF

Yes Yes NF

BN3 O18:H49 212 ND H30
aac(6′)-Ib7,
aac(3)-Ib,

aadA9
NF marA NF NF NF NF sul1 tet(A) dfrA15 emrR No Yes NF

BN37 O8:H17 10 ND H41 aac(3)-Ib,
aadA5 NF marA blaTEM-220 NF NF NF sul2 tet(A) dfrA15

yojI, pmrF, emrR,
bacA, acrS/B/E,

msbA, evgA,
kdpE, mdtP, eptA

Yes Yes IncFIA,
IncFII

BN38 O89:H10 617 ND H41 NF NF marA blaCTX-M-15/88 ,
blaOXA-1/140

catB3 aac(6′)-Ib-cr NF sul1, sul2 NF NF
yojI, pmrF, emrR,
bacA, acrS/B/E,

msbA, evgA,
kdpE, mdtP, eptA

Yes Yes IncFIA,
IncFII

BN41 O171:H21 155 ND H30 aac(6′)-Ib7,
aadA9 NF marA blaTEM-220 NF NF NF sul2 tet(A) NF emrR Yes Yes

IncHI1A,
IncHI1B,
IncFIA

BN42 O29:H8 448 ND H30 aadA13,
aac(3)-Ib NF marA blaCTX-M-5 NF NF NF sul2 NF dfrA14 emrR, mphA Yes Yes

IncI,
IncFII,
IncFIA
IncX4

BN43 O*:H4 6161 ND H30 NF NF marA NF NF NF NF sul2 NF dfrA14 baeS No Yes NF
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Table 2. Cont.

Sample
Name Serotype

Sequenc
Type

Pasteur
AMR

Phenotype fimH Aminoglycosides Macrolide Ciplrofloxacin
β-Lactamase

Inhibitors/ESBL
Cephalosporins

Phenicols Fluoroquinolones Quinolone Sulfonamide Tetracycline
Folate

Pathway
Inhibitors

Antibiotic Ef-
fulx/Regulation ESBL MDR Plasmid

Replicon

BN44 O8:H9 410 ND H41 aac(6′)-Ib7,
aadA9 mphA marA

blaCTX-M-5 ,
blaOXA-1 ,

blaTEM-30/220
catB3 aac(6′)-Ib-cr NF NF NF NF emrR Yes Yes IncFIA,

IncQ1

BN47 O89:H9 10 ND H54

acrD/E/F,
aadA9,

aac(3)-Ib,
aac(6′)-Ib7

NF marA blaTEM-220 NF NF NF sul1 NF dfrA1 gadX, tolC,
mdtF/N/O, emrK Yes Yes Col440II,

IncQ1

BN48 O17:H11 NF ND H41 aac(3)-Ib NF marA blaTEM-7/75/177 NF NF NF sul1 NF dfrA7 axyY Yes Yes IncQ1

BN49 O45:H11 10 ND H41 NF NF marA NF NF NF qnrB19 NF NF NF
yojI, pmrF, emrR,
bacA, acrS/B/E,

msbA, evgA,
kdpE, mdtP, eptA

No No Col

BN50 O*:H4 167 ND H30 NF NF marA NF NF NF NF sul2 NF dfrA14 baeS No Yes NF

BN51 O171:H21 6161 ND H30 aac(6′)-Ib7,
aadA9 NF marA blaTEM-220 NF NF NF sul2 tet(A) NF mdtA/B, emrR Yes Yes

IncHI1A,
IncHI1B,
IncFIA

BN55 O185:H8 155 ND H30
acrB, aadA1,

aac(3)-Ib,
aac(6′)-Ib7

NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA1

yojI, pmrF, emrR,
bacA, acrS/B/E,

msbA, evgA,
kdpE, mdtP,
eptA, emtK,

cpxA

Yes Yes IncFIB,
IncQ1

BN56 O*:H7 2163 ND H30 NF NF marA NF NF NF NF NF NF NF emrR, baeS No No NF
BN57 O9:H19 162* ND H30 NF NF marA NF NF NF NF sul2 tet(A) NF mdtA, emrR No Yes NF
BN6 O6:H1 73 ND H22 aac(3)-Ib NF marA blaTEM-220 NF NF NF sul1 tet(A) dfrA7 NF Yes Yes IncFIB

Table 3. Genomic characteristics of uropathogenic K. pneumoniae strains isolated in this study for acquired AMR-associated genes and plasmid replicon types. NF means not found; ‘Yes’
means the strain is either ESBL-producing or MDR; and ‘No’ means the sample is either non-ESBL or non-MDR.

Sample
Name

Sequence
Type

Pasteur
AMR

Phenotype Aminoglycosides Ciplrofloxacin
Penicillins +
β-lactamase
Inhibitors

ESBL
Cephalosporins Phenicols Fluoroquinolones Quinolone Sulfonamide Tetracycline

Folate
Pathway

Inhibitors
Antibiotic Ef-

fulx/Regulation ESBL MDR Plasmid
Replicon

25 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

26 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

27 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

28 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

29 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR
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Table 3. Cont.

Sample
Name

Sequence
Type

Pasteur
AMR

Phenotype Aminoglycosides Ciplrofloxacin
Penicillins +
β-lactamase
Inhibitors

ESBL
Cephalosporins Phenicols Fluoroquinolones Quinolone Sulfonamide Tetracycline

Folate
Pathway

Inhibitors
Antibiotic Ef-

fulx/Regulation ESBL MDR Plasmid
Replicon

30 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

31 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

32 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

33 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

34 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

35 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

36 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

55 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

56 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

89 11 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF blaLEN-4/6

blaSHV-28 ,
blaCTX-M-15 ,
blaOXA-1/140 ,

blaNDM-1

catB3
oqxB,

aac(6′)-Ib-cr
qnrB9 sul2 NF NF NF Yes Yes IncFII,

IncFIB, IncR

90 NF ND aac(6′)-Ib7, aadA9 NF blaLEN-3/4/5/6
blaSHV-28 ,

blaCTX-M-15 ,
blaOXA-1/140

NF NF NF sul1 tet(A) dfrA17

yojI, pmrF,
emrR, bacA,
acrB, msbA,
evgA, kdpE,
mdtP, eptA,
emtK, cpxA

Yes Yes IncN

BN14 0b8e ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

marA blaLEN-3/4/5/6
blaSHV-28 ,

blaCTX-M-15 ,
blaTEM-220

catB3
oqxA/B,

aac(6′)-Ib-cr
qnrB6/17 sul1 tet(B) dfrA27

yojI, pmrF,
emrR, bacA,
acrB, msbA,
evgA, kdpE,
mdtP, eptA,
emtK, cpxA

Yes Yes
IncR, IncFII,
IncFIA, Col,

IncX4

BN16 67b2 ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

marA blaLEN-3/4/5/6 blaCTX-M-15/88 catB3
oqxA/B,

aac(6′)-Ib-cr
qnrB6/17 sul1, sul2 tet(B) dfrA27

yojI, pmrF,
emrR, bacA,
acrB, msbA,
evgA, kdpE,
mdtP, eptA,
emtK, cpxA

Yes Yes
IncR, IncFII,
IncFIA, Col,

IncX4

BN7 6b6f ND
aac(6′)-30/aac(6′)-

Ib’/7/10,
aadA9

NF NF NF NF
oqxA/B,

aac(6′)-Ib-cr
qnrB6/17 NF NF NF NF No Yes IncR
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All n = 19 K. pneumoniae isolates were resistant to aminoglycosides and had either
aac(6′)-30/aac(6′)-Ib’/7/10-aadA9 (n = 10/19) or aac(6′)-Ib7-aadA9 (n = 1/19) combina-
tion. N = 18/19 are potentially sulfonamide insusceptible and contained either sul1 only
(n = 2/19), sul2 only (n = 15/19) or both (n = 1). The β-lactamase blaLEN gene is present in
all but the BN7 strain, with blaLEN-4/6 (n = 15 from KY) or blaLEN-3/4/5/6 alleles. BN7 was
also the only susceptible isolate against ESBL cephalosphorins. The rest are ESBL produc-
ers: n = 15/19 had blaSHV-28, blaCTX-M-15, blaOXA-1/140 and blaNDM-1, n = 1/19 were observed
with the blaSHV-28-CTX-M-15-OXA-1/140 combination and n = 1/19 had blaSHV-28, blaCTX-M-15/88
only. All n = 3 strains from UG had tet(B) and dfrA (17 or 27 allele type); these strains
also contained efflux pump-expressing genes: yojI, pmrF, emrR, bacA, acrB, msbA, evgA,
kdpE, mdtP, eptA, emtK, and cpxA. N = 2/19 (BN14 and BN16 from UG) had ciprofloxacin-
resistance gene, marA. Only the strain 90 from KY was not resistant to phenicols, while the
rest were detected with the cat gene, specifically, catB3 (Table 3; Supplementary Figure S2b).
Overall, 80% of our E. coli uropathogens had ESBL genes (n = 15 strains from UG and
n = 29 from KY) and 93% of these UPEC are MDR, while all the K. pneumoniae isolates are
MDR and only n = 1 out of the total n = 19 (95%) are ESBL.

3.4. Population Structure of KY and UG Uropathogens

The UPEC collection was polyclonal. Eighteen (18) different sequence types were iden-
tified in the UPEC population (Achtman scheme). The most prevalent MLST sequence types
were ST131 (n = 17/55, 31%), ST335 and ST1193 (n = 6/55, 11%) and ST10 (n = 4/55, 7%).
These sequence types were usually associated with UTI cases (Nicolas-Chanoine et al. 2014;
Afset et al. 2008; Yamaji et al. 2018); the globally disseminated ESBL-ST131 stood out to
be the most dominant ST. Other clones were also observed: n = 3 ST73, n = 2 each from
ST155, ST410, ST6161 and ST162, and singletons from ST44, ST48, ST165, ST167, ST212,
ST448, ST617, ST648 and ST2163; n = 2 strains from UG (BN2 and BN48) were unclassified
(Figure 1a, Table 2). E. coli isolates from UG belong to 15 STs and were thus more diverse
compared to those collected from KY, which belong to only 6 STs (Figure 1a, Table 2). This
difference in diversity is consistent with the number of serotypes found in UG relative to
those from KY: Ugandan strains belong to 20 different O:H antigen combinations while the
KYn ones were found to have 9 O:H types.

Fifteen out of nineteen (n = 15/19) K. pneumoniae isolates from KY belong to ST11
(Pasteur scheme); n = 3/19 UG had no defined sequence types (BN14: 0b8e, BN16; 67b2,
BN7: 6b6f) and formed their own clade (Table 3; Figure 1b).

We compared our E. coli samples from the three most prevalent clones, ST131, ST335
and ST10, and our K. pneumoniae strains with previously published genomes listed in
BacWGSTdb 2.0. Based on the metadata of the reference genomes, these strains were
of different geographical origins (country/state) and were mostly isolated from human
hosts and have caused disease (Supplementary Table S2). Computing for the pairwise
SNP distances showed that strain CP023853 is the most closely related genome with our
KY isolates with distances ranging from 910–1489; CP023853 was also sampled from a
UTI patient in Sweden in 2009 (Supplementary Table S2; Supplementary Figure S2a). Our
ST335 collection is solely composed of KY isolates, and all appeared to be genetically
distant to the selected sequences in the database with a minimum of 4700 SNP differences
between the two groups (Supplementary Figure S2a). In contrast, our E. coli ST10 strains
were all from UG. The closest reference isolate was LSBS01 (isolated from a fecal sample;
Supplementary Table S2), which was 2009 and 2070 SNPs apart from BN20 and BN70,
respectively (Supplementary Figure S2a).

Our K. pneumoniae collection, which was dominated by ST11 showed ~3500 SNP
differences from strain 27 from KY while those that had no defined ST (e.g., BN14 and BN
16 from UG) appeared to be most closely related (minimum SNP distances of 3519 and
3255) to the human isolate references LXMM01 and VUBS01, respectively (Supplementary
Table S2; Supplementary Figure S2b).
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Figure 1. Maximum likelihood phylogenies of core genomes of E. coli (a) and K. pneumoniae (b) uropathogens isolated from KY and UG; reference genomes are in red and 
font. The mid-point rooted phylograms was constructed using 2862 and 3464 core genes from E. coli and K. pneumoniae populations, respectively and visualized with iTol. 
The colored strips adjacent to the E. coli phylogeny represent (from left to right) the sequence type (ST), country of origin, type of fimH allele and the ESBL status of each 
strain. The colored rings around the K. pneumoniae phylogenetic tree indicate the ST, country of origin and the ESBL status of each isolate. “Novel*” means the sequence 
type of the sample/s did not match those in the database and may be novel. The scale bar indicates substitutions per site.

Figure 1. Maximum likelihood phylogenies of core genomes of E. coli (a) and K. pneumoniae (b) uropathogens isolated from
KY and UG; reference genomes are in red and font. The mid-point rooted phylograms was constructed using 2862 and 3464
core genes from E. coli and K. pneumoniae populations, respectively and visualized with iTol. The colored strips adjacent to
the E. coli phylogeny represent (from left to right) the sequence type (ST), country of origin, type of fimH allele and the ESBL
status of each strain. The colored rings around the K. pneumoniae phylogenetic tree indicate the ST, country of origin and the
ESBL status of each isolate. “Novel*” means the sequence type of the sample/s did not match those in the database and
may be novel. The scale bar indicates substitutions per site.

3.5. Plasmid Characterization

Genome assemblies of the KY and UG uropathogens were screened for the presence
and type of plasmids using PlasmidFinder v.2.1.1. N = 47/55 in the E. coli collection were
found with at least one plasmid. IncFIA was consistently found in n = 10 had both IncFIA
and IncFII, n = 9 contained IncFIA, IncFII, Col156 types, n = 1 was detected with IncFIA,
IncFII and IncY only or IncI only and IncFII-IncFIA-IncX4 plasmid combinations.

All the samples from the K. pneumoniae collection were found with at least one
plasmid type. IncFII-IncFIB-IncR is the most common combination and is found among
n = 15 isolates, while n = 2/19 was found with IncR, IncFII, IncFIA, Col, and IncX4. Notably,
the strain 90 from KY had the blaCTX-M-1 gene-carrying plasmid IncN and BN7 from UG
had the blaNDM-associated IncR.

4. Discussion

We assessed the prevalence of acquired AMR characteristics among uropathogenic
E. coli and K. pneumoniae circulating in East African region using WGS. We recruited
out-patients that presented UTI-like symptoms from rural areas in KY and UG, which
represents a limitation of our sample collection. The lack of point-of-care diagnostic tool
such as the use of dipstick test also contributed to some difficulties in our screening.
This is evidenced by a high level of contaminants that comprised of strains that do not
contain UTI determinants. Nevertheless, our in silico predictions using whole genome
analysis revealed alarming rates of ESBL-producing and MDR strains in both our UPEC
and K. pneumoniae collections, which reiterates the great necessity for effective interventions
to curb their spread.
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Our results firmly indicate a high diversity among E. coli uropathogens, which was
more evident in samples taken from UG rather than KY. Strains that belong to the same
clonal group had <200 core SNPs from each other. This rich genetic diversity is consistent
with those observed in other isolates collected from rural or semi-rural communities of
low/middle-income countries [47–49]. The widely disseminated UTI-causing clones ST131,
ST335 and ST10 were common among our E. coli strains and dominated our Kenyan
collection. This is unsurprising as these STs are reported to be circulating globally [50–52].
What is remarkable is the detection of emerging clones such as ST1193 and ST617 that were
unusually associated with UTI [53,54] albeit observed in hospital settings. UPEC strains
from UG are even more alarming as they represent higher number of unusual or novel
UTI clones (i.e., ST155, ST448, and ST162) with potentially higher virulence levels [55–57]
compared to those globally-known STs.

Several Klebsiella species were known to have broad-spectrum resistance to common
antibiotics [58]. K. pneumoniae strains particularly those belonging to the hypervirulent
ST11 have been extensively reported to cause severe infections [59,60] and have led to dire
disease outcomes in intensive care units [61]. This K. pneumoniae clone has an alarming
antibiotic resistance profile [62] making it difficult to treat. The dominance of ST11 strains
in our samples that were mainly collected from outpatients suggests the strong presence of
this clinically important bacterial pathogen in the community and pose an apparent threat
to public health.

BlaCTX-M genes were present in 40% of our UPEC collection and in all but one K. pneu-
moniae strain (95%). Notably, the blaCTX-M-15 gene that confers resistance to last-resort
antibiotics was found in high levels in both countries. This gene was detected with other
ESBL determinants, blaTEM and blaOXA-1 in E. coli and with blaNDM in K. pneumoniae, con-
cordant with those in uropathogens found from the Middle East [63] and Asia [64], among
others. Consistent with previous findings in other African regions, tet genes in this study
were also detected alongside ESBL genes blaCTX-M-15, blaOXA-1 and blaTEM in n = 30/55
E. coli and with blaLEN-3/4/5/6 among n = 3/19 K. pneumoniae [65,66] which stipulates
their co-selection and co-transmission in KY and UG. The presence of these genes in the
identified plasmid-associated contigs suggest that the mode of transfer may have been
plasmid-mediated.

5. Conclusions

We underline in this pilot study the high frequency of AMR determinants associated
with resistance to common antibiotic classes among E. coli and Klebsiella pneumoniae in
East Africa, with specific focus on MDR and ESBL-producing strains from KY and UG.
We further demonstrate that routine genomic surveillance is necessary for high-resolution
investigation of bacterial epidemiology especially in less represented regions. Our findings
have significant implications on improving interventions that aim to address the strong
presence of AMR pathogens that cause UTI (particularly in low/middle-income countries).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10121547/s1. Table S1: Metadata of E. coli and K. pneumoniae strains isolated from
urine samples including Antibiotic Sensitivity Test results of n = 16 isolates; Table S2: Comparison of
host niche, disease implication, isolation source, collection year, antimicrobial and virulence gene
contents between three most abundant E. coli clones, ST131, ST335 and ST10 (a) and K. pneumoniae
ST11 (b) strains in our study and selected isolate genomes listed in BacWGSTdb 2.0. ND means
not determined; Figure S1: Distribution of antimicrobial resistance genes (AMRGs; right panel)
among E. coli (a) and K. pneumoniae (b) isolates from our HATUA Pilot collection. Left panel shows
clustering of the strains in a phylogenetic tree according to the presence (green blocks) or absence
(pink blocks) of AMRGs; Figure S2: Pairwise SNP distances in core genome multi-locus sequence
type (cgMLST)-based alleles of the three most abundant E. coli clones, ST131, ST335, and ST10 (a)
and K. pneumoniae ST11 (b) strains in our study and selected isolate genomes listed in BacWGSTdb.
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