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Abstract

The role of X-ray based electron spectroscopies in determining chemical, electronic

and magnetic properties of solids has been well known for several decades. A powerful

approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and

angle of photoelectrons emitted from a sample surface are measured. This provides

a direct measurement of the electronic band structure of crystalline solids. Moreover,

it yields powerful insights into the electronic interactions at play within a material,

and into the control of spin, charge and orbital degrees of freedom; central pillars of

future solid state science. With strong recent focus on research of lower-dimensional

materials and modified electronic behaviour at surfaces and interfaces, angle-resolved

photoelectron spectroscopy has become a core technique in the study of quantum ma-
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terials. In this review, we provide an introduction to the technique. Through exam-

ples from several topical materials systems, including topological insulators, transition

metal dichalcogenides, and transition metal oxides, we highlight the types of informa-

tion which can be obtained. We show how the combination of angle, spin, time and

depth-resolved experiments are able to reveal ‘hidden’ spectral features, connected to

semiconducting, metallic and magnetic properties of solids, as well as underlining the

importance of dimensional effects in quantum materials.
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1 Introduction

1.1 Quantum Materials and Photoemission

The collective behaviour of electrons in condensed matter is one of the central topics of

modern science and technology. Collective quantum phenomena in materials arise from

the interplay between quantum mechanics and interactions in many-particle systems — i.e.

cooperative behaviours that cannot be predicted from the properties of individual electrons.

In recent years, the study of emergent properties revealed a wealth of new systems, no

longer restricted to those with strong electronic correlation, and a new definition has become

necessary; ‘quantum materials’ provides such a definition.

The search for new states of matter is a central challenge at the intersection of basic

and applied science, and a crucial crossroad for technological innovation. The last decades

have seen staggering advances in the synthesis, growth and characterization of new quantum

materials. The rapid progress in graphene synthesis and the methodologies developed in

the growth of ultrathin layers, for example, has led to widespread exploration of an ever-

increasing array of two-dimensional (2D) quantum systems. Single layers of transition metal

dichalcogenides (TMDs) can be stacked together to create an almost arbitrarily-complex

array of new “meta-materials” with highly-tuneable material properties.1–4 Quintuple-layer

semiconductors, long-since known as excellent thermoelectrics, turn out to host a non-trivial

topological order in their bulk - so called topological insulators – giving rise to new types

of surface states.5 Spin-orbit coupling plays an important role in such systems, but has

emerged more broadly as a source of exotic quantum phenomena in materials containing

high-Z atoms, from Rashba effects in chalcogenides and halides6 to spin-orbit assisted Mott

insulating states in iridates.7,8 Meanwhile, creating heterostructures from transition-metal

oxides – something long-since exploited in the fabrication of semiconductor devices – opens

powerful new opportunities to tune and tailor strongly-correlated phases of matter.9,10 More

generally, almost any physical property changes at the surface or interface of a solid. The
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broken/lowered symmetry with respect to the 3D environment plays a crucial role not only

in modifying many of the fundamental interactions, but also in generating new effects not

present in their 3D-volume counterpart, providing substantial opportunity for controlling

quantum electronic states.

The ability to directly measure the electronic structure is an essential prerequisite to

understanding, creating, and ultimately designing new quantum materials, be it in bulk

form, as few-layer heterostructures, or with modified surface properties. Only few analytical

techniques can provide this information, and photoelectron spectroscopy (PES) is certainly

among the most widespread utilised worldwide. It has been widely applied in the study

of topological solids, magnetic and spintronic materials, correlated solids, 2D materials and

more (Figure 1(a)). In this review, we will briefly describe photoelectron (or photoemission)

spectroscopy and its relevant aspects, focusing in particular on specific selected results on

quantum materials obtained via valence band and angle-resolved photoemission spectroscopy

(ARPES), including spin-resolved ARPES. As a technique, it can span a remarkably wide

range of energy scales (Figure 1(c)) - from the keV scale, to provide information on chemical

composition, core-level binding energies, and charge states, through the eV scale to provide

insight on valence orbital states and band dispersions, through the meV scale to yield insight

on many-particle interactions, energy gaps, and the detailed fermiology of materials. The

importance of ARPES in the analysis of quantum materials is often focussed on the later set,

at energy scales comparable to the relevant interactions which are at play. In many cases

competing and co-existing interactions, all on an energy scale of a few to tens or hundreds of

meV occur, which is now accessible to ARPES measurements performed with high energy and

angular resolution. Moreover, when dealing with dimensionality effects, energy-dependent

measurements, as well as comparison with model calculations, may disentangle the 1D, 2D,

3D (or hybrid) character of electronic states.

The literature devoted to PES and ARPES is vast, and many outstanding books and

review papers are already available on this subject, where the reader may find detailed
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Figure 1: Panel (a): Principle of a photoemission experiment. Panel (b) Energetics and
scheme of the energy level in the photoemission process. Panel (c) survey spectrum of a
La0.67Sr0.33MnO3 sample. Top axis in kinetic energy and bottom axis in binding energy,
following equation 1. Peaks and symmetry of the core line are indicated. In the insets,
from left to right: 2p core level of Mn, measured with circular polarized light (left and right
circular), showing the magnetic dichroic difference; Map of the fermi surface of LSMO; spin
resolved photoemission spectra of the valence band with minority (black curve) and majority
(green curve) intensities, defining spin unbalance in a ferromagnetic system
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insights, theory, and use examples of the technique.11–19 Here, we intend to focus on the use

of ARPES to study quantum material properties of interest at the intersection of materials

physics and materials chemistry. Our review has the following structure: we begin by giving

a brief historical introduction and a summary of the relevant parameters of a photoemission

experiment. We introduce angular-resolved photoemission, both from the experimental and

theoretical point of view, as the door to access k-resolved information of solids. We will

then present selected examples devoted to quantum materials. Finally, we will provide some

insights into current trends and the open challenges and perspectives of the field.

2 Basics of PES and ARPES

2.1 Historical background

Photoelectron spectroscopy (PES) is based on the photoelectric effect, building on the Nobel

prize winning work of Albert Einstein (1921, for ‘his services to Theoretical physics, and es-

pecially his discovery of the law of the photoelectric effect’); Robert Andrew Millikan (1923,

for ‘his (experimental) work on the elementary charge of electricity and the photoelectric

effect’; and Kai Manne Borje Siegbhan (1981, for ‘his contribution to the development of

high-resolution electron spectroscopy’). In the Nobel archive for 1981 one reads that ‘elec-

tron spectroscopy had become a practical means of determining what the energies of the

electrons were when originally trapped in the material’.20 The demonstration that the elec-

tronic binding energy of a core level depends upon the chemical environment of the atom

in a solid is generally credited to Siegbahn, although a ‘chemical shift’ was first measured

by Harold Roper Robinson in 1930.21 Siegbahn’s work led to the acronym ESCA (Electron

Spectroscopy for Chemical Analysis).22,23 His experiments involved X-ray excitation, hence

the alternative acronym XPS (X-ray photoelectron spectroscopy). In parallel with the work

on XPS, W.E. Spicer and others developed the photoemission technique using lower energy

excitation in the vacuum ultraviolet, particularly using rare gas discharge lamps. Later the
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energy range between the two techniques was bridged using the tunable radiation available

from synchrotrons. Initially this work was parasitic on the high energy physics experiments

that provided the driver for construction of synchrotrons, but second generation and later

synchrotrons were dedicated to production of synchrotron radiation. Nowadays, PES is used

in thousands of laboratories worldwide, both in-house and at large scale synchrotron fa-

cilities, and is considered one of the most important and direct techniques to address the

structural, electronic and magnetic properties of solids.

2.2 Principles of Photoelectron Spectroscopy

The direct link between the kinetic energy (Ekin) of the photoelectron emitted from a solid

and the energy of the photon absorbed hv, was first proposed by A. Einstein in the following

equation:24

hν = EB + Ekin + Φ (1)

where hν is the energy of the absorbed photon (with h the Planck’s constant), Ekin is the

kinetic energy of the emitted photoelectron measured in the detector (i.e. an electron energy

analyzer), EB is the binding energy relative to the Fermi level (or, more generally related to

the last occupied electronic state), and Φ is the work function of the material, corresponding

to the energy barrier the electrons must overcame to escape out of the solid (typically < 5

eV).25 This simple formula explains why PES is of widespread use in solid-state science: the

energetics (Figure 1(b)) gives i) a direct relationship between the measured kinetic energy

of a photoelectron and its binding energy inside the solid, i.e. defines PES as a chemical

sensitive technique, and ii) an immediate and straightforward definition of initial and final

states of the photoemission process, contrasted with other techniques able to probe the

electronic structure of matter using indirect or mixed measures of electronic states, like

optical techniques. Historically, PES was widely applied to molecules in the gas phase, but

in the present contribution we will focus on solids, in particular quantum materials.26
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A typical experimental set up and schematic energy level diagram are shown in Figure

1(a), along with a PES spectrum of La0.67Sr0.33MnO3 (Figure 1(c)), where one notices

sharp peaks superimposed on a background of secondary electrons. Well-defined peaks, the

so-called primary electron peaks, correspond to core level lines from deep electronic states

(different symmetries of the corresponding electronic orbitals are labeled in Figure1(c));

the background of secondary electrons corresponds to electrons having ’lost’ information

via multiple scattering on their travel through the solid. Information about the electronic,

structural and magnetic properties of the ground state of a solid is obtained by analysis

of core level structure, including intensities, energy shifts and satellite structure associated

with local or collective excitations. Variations with parameteres such as temperature, light

polarisation and electric or magnetic fields are also important and all may be compared

with theoeretical calculations. Furthermore, angle scanned experiments of core level peaks

from the basis of X-ray photoelectron diffraction spectroscopy, where important structural

information can be acquired.12 Core level PES, with both acronyms XPS and ESCA defined

above, has been enormously successful in disentangling oxidation states in , for example,

mixed-valence compounds and bonding character (covalency and/or ionicity) of complex

systems and of heterostructures11–13,27

2.3 Description and modelling of the ARPES process

On the high kinetic energy (low binding energy) side of the spectrum in Figure 1(c), the

valence band contains information on the extended states in the solid. By measuring the

intensity of photoelectrons as a function of their kinetic energy and emission angle, ARPES

gives access to the electron-removal spectral function, naturally defined in the crystal momen-

tum space. From the theoretical point of view, excellent reviews are already available,13,14

and so we will only briefly recall here the main steps of the ARPES process, and how they

are usually modeled. The photoemission can be described as an optical transition from

an N-electron state to an ionized (N-1)-electron state (both characterized by many-body
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wave-functions with appropriate boundary conditions at the surface) and including a propa-

gating plane-wave in vacuum (with a finite amplitude in the crystal, therefore providing some

overlap with the initial state). This so-called “one-step model” (which includes scattering

processes subsequent to the photoemission event) is quite complex from both the formalism

and the simulation point of view, so it will not be discussed in detail here (we refer the

interested reader to Ref.28). Rather, we recall a simpler and widely adopted scheme, i.e. the

so-called “three-step model”, in which the process is subdivided in three steps (Figure2):

i) Optical excitation, which includes all the information on the material’s underlying

electronic structure; this can be described as a vertical transition in the reduced zone scheme

(kf - ki = 0) or, equivalently, by involving a reciprocal-lattice vector G in the extended zone

scheme (kf - ki = G);

ii) Transport to the surface, which can be modelled as an effective mean free path of an

electron that reaches the surface without any scattering event, i.e. conserving energy and

momentum;

iii) Transmission through the surface and escape in the vacuum, which depends on the

energy of the excited electron and on the material’s work function.

In what follows, we will describe in closer detail the first step. The calculation of the

transition probability ωfi for an optical excitation from the N-electron ground-state ΨN
i to

one of the possible final states ΨN
f is based on Fermi’s golden rule:

ωfi =
2π

h̄
| < ΨN

f |Hint|ΨN
i > |2 δ(EN

f − EN
i − hν) (2)

where EN
i = EN−1

i − Ek
B and EN

f = EN−1
f + Ekin denote the N-particle initial and

final state energies, respectively, and Ek
B is the binding energy of the photoelectron with

momentum k and kinetic energy Ekin.

Within the so-called “dipole approximation” (valid for typical photon energies in the

ultra-violet range, where the photon wavelength is much larger than atomic dimensions),
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Figure 2: Kinematics of the photoemission process within the three step model: Optical (vertical) transition
(left panel), the momentum conservation being possibly assisted by the G vector in the reduced zone scheme);
the photoelectron travels to the surface and the final state in vacuum is assumed to be free-electron-like (right
panel). Quantities related to the photoemission energetics are also reported (see text).

the interaction Hamiltonian can be written as:

Hint =
e

mc
A · p (3)

where p denotes the electronic momentum operator and A denotes the electromagnetic

vector potential. By further adopting the “sudden approximation” (i.e. implying that the

photoemission process is sudden or, in other words, that the electron is instantaneously

removed and relaxation processes are neglected), the final state can be factorised into an

antisymmetric product of the (single particle) photoelectron state φf and the Slater deter-

minant for the (N-1)-particle system, ΨN−1
f . In parallel, the initial state can be written as

an antisymmetric product of a one-particle state φk
i and the antisymmetric state for the
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(N-1)-particle system ΨN−1
i . The photoelectron intensity can therefore be written as:

I(k, E) ∝
∑
f,i

f(E)|Mk
f,i|2 A(k, E) δ(ki − kf + G) δ(εf + EN−1

f + E − EN
I − hν) (4)

where the one-electron transition matrix elements are denoted as Mk
f,i ∝< φk

f |A · p|φk
i > and

f(E) is the Fermi-Dirac distribution. A(k, E) is the one-particle spectral function taking into

account the excitation spectrum of the (N-1)-electrons and can be expressed as a Lorentzian

of the proper self-energy Σ(k, E) = Σ′(k, E) + i Σ′′(k, E)

A(k, E) = − 1

π

Σ′′(k, E)

[E − εi − Σ′(k, E)]2 + [Σ′′(k, E)]2
(5)

For “uncorrelated” systems (|Σ(k, E)| → 0), the spectral function reduces to a δ func-

tion in energy and the observed quasiparticle energies coincide with the initial one-electron

ground-state εi. On the other hand, when strong correlations are present, the quasiparticle

energy is renormalized and there is an energy broadening (i.e. finite lifetime) due to many-

body interactions. The spectral function can therefore be seen, in the first case, as a direct

probe for the band-structure and, in the second case, as an investigation tool for correlation

effects.

As for step iii) above, we remark that in ARPES the emission direction of the photoelec-

tron is well-defined and its momentum can therefore be derived from the kinetic energy and

the emission angle. Furthermore, for photon wave-vectors in the UV-range, one can neglect

the momentum transfer from the photons to the photo-electrons. When passing through the

surface, the in-plane momentum is conserved and the momentum parallel to the surface can

be expressed by:

p‖ = h̄k‖ =
√

2mEkin sin θ (6)

(note that p‖ is equal to the parallel component of the electrons within the solid in the

extended zone scheme). On the other hand, due to the state’s finite extension along the
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surface normal and consequent loss of translational symmetry, the out-of-plane momentum

k⊥ is not a good quantum number and the perpendicular component of the crystal momen-

tum is not conserved. Therefore, in order to determine the out-of-plane momentum, one

needs additional approximations, such as assuming a free-electron final state with energy

dispersion given by:

Ef (k) =
h̄2(k‖

2 + k2
⊥)

2m
− E0 (7)

where E0 denotes the bottom of the valence band (cfr Figure 2). In turn one obtains

p⊥ = h̄k⊥ =
√

2m(Ekincos2θ + V0) (8)

where Ef = Ekin +V0, V0 = |E0|+ Φ is the inner potential, taking into account the potential

step along the surface normal (Φ being the work-function). V0 can be evaluated by fitting

the experimentally measured k⊥ periodicity to the extension of the Brillouin zone in the

perpendicular direction.

2.4 Spectrometers: past and present

Although the merits of PES and ARPES have been known since the 70s, the power of the

ARPES technique and the amount of information derived from photoemission experiments

has increased in parallel with improvements in the technical performance of electron spec-

trometers. The geometry of an ARPES experiment is shown in Figure 3a. Photons are

incident on the sample, which is mounted on an in-vacuum goniometer. As evident from

Eqns. 1 and 7, both the kinetic energy distribution and the emission angle of the photoemit-

ted electrons must be determined. The former is typically achieved by use of an electrostatic

hemispherical analyser, although other designs, such as time-of-flight systems, are popu-

lar for certain experiments. Traditionally, a spectrometer with a small angular acceptance

would be utilised, and either the sample would be rotated relative to the spectrometer, or the

whole spectrometer would be mounted in the sample vacuum chamber and rotated around
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Figure 3: ARPES geometry and example data. (a) Geometry and main experimental pa-
rameter varied/scanned in an ARPES experiment. Reproduced with permission from ref.29

Copyright 2018 AIP publishing; (b) A collection of angle-resolved spectra measured for differ-
ent emission angles from a Si(111) surface. Reprinted with permission from ref.30 Copyright
1979 AVS publishing; (c) Fermi surface mapping of Be(0001) single crystal measured in the
so called scanned mode, using horizontal and vertical polarization light (as indicated by the
arrows). (d) Data “cube” of the low energy electronic structure of PtCoO2, showing the
range of electronic structure features that can be accessed from such a data set. Adapted
with permission from ref.31 Copyright 2017 Springer Nature.

the sample position on its own goniometer.

Rotating the sample or analyser about one axis and measuring a spectrum (intensity

vs. kinetic energy at fixed photon energy) for each angular point allows building up an

overview of the momentum-dependent dispersions of the band structure of the material

along a particular direction in momentum-space (Figure 3b). Remotely controlled scan-
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ning instruments have been developed since the 1990s, with landmark papers by several

groups.32–35 This enabled a large set of spectra to be taken along a high symmetry direc-

tion, which could then be assembled into a so-called carpet allowing better visualisation

of the electronic structrure.32,33 Alternatively, measuring a high number of angular points

(up to 10000) homogeneously distributed over the hemisphere above the sample, by coor-

dinating polar and azimuth movements with precision as high as 0.001 degree, allowed the

measurement of a projected Fermi surface with an average acquisition time of 12 hours (see

Figure 3c). The late 1980s saw an evolution from single-channel (1D) detectors to so-called

’multidimensional acquisition’ modes, where multiple spectra covering a range of emission

angles and kinetic energy values can be recorded simultaneously. This capability was widely

exploited in the study of high Tc superconductors,15 and is a core feature of most modern

ARPES setups. Typically, a slice of the angular distribution is measured along a direction

set by an entrance slit of the hemispherical analyser (Figure 3a). The sample is rotated

azimuthally to align the desired direction parallel to the entrance slit in order to measure

a dispersion (carpet), while it can be scanned perpendicular to this in order to map the

Fermi surface (Figure 3c). Moreover, at large scale facilities one may access full control of

light polarization (linear and circular), a feature often exploited to determine the symmetry

of the electronic states (see Figure 3c and Annex A). A high-precision sample manipulator,

capable of achieving low sample temperatures and operating in ultra-high vacuum, is thus

a crucial part of any photoemission setup,36 while some spectrometers also allow the possi-

bility to tune the angular acceptance range further using electrostatic deflectors. With such

setups, it is now possible to acquire on the order of 108 data points in just a few hours,

providing a three-dimensional (E vs. kx vs. ky) dataset of the electronic structure of a ma-

terial (Figure 3d). As well as providing a detailed overview of the electronic structure of

a material, this enables new quantitative analysis, allowing, for example, extracting Fermi

surfaces, carrier densities, and effective masses in good agreement with ultra-precise bulk

probes such as de Hass van Alphen measurements,37 and performing quantitative analysis
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to extract quasiparticle lifetimes and detailed insights on the many-body interactions at play

(see Figure 3d and Section 2.3).

2.5 Use of light polarization in ARPES: symmetry of electronic

states

Figure 4: 1st Brillouin Zone of anatase TiO2 Fermi surfaces measured with hv= 46 eV and
with all the photon polarisations: LH linear horizontal, LV linear vertical, CR circular right
CL circular left. Panel ALL shows the sum of all the four Fermi surfaces, mediating the
symmetry-related lack of intensity typical of electronic states with dxy orbital character.
Sketch of the geometry of the experiment with a dxy orbital relative to light polarization,
and of symmetry selection rules. Both the light polarisation vectors and the orbital possess
well-defined parity with respect to the yz and xz mirror planes. Top right: sketch of the
(1x4)(4x1) reconstruction at the surface of anatase TiO2. Adapted with permission from
Ref38 Copyright 2001 American Physical Society and from Ref.39 Copyright 2020 American
Physical Society.
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The use of polarized light, and the important information one may extract from polar-

ization dependent ARPES, is explained in Figure 4, where a plot in kx and ky, cut at the

Fermi energy is shown for a thin film of anatase TiO2. This generate a Fermi surface map

(see Figure 3a,d). Figure 4 shows the Fermi contours measured in the 1st Brillouin zone

while varying the light polarisation at hν = 46 eV. The bright circle centred at the Γ point

corresponds to a parabolic dispersion. In addition, several replica of this Fermi pocket are

evident displaced along both the kx and ky directions. In anatase TiO2, a (4× 1)− (1× 4)

reconstruction is observed,39–41 and a sketch of this rearrangement of the surface is shown

in the figure. The origin of such reconstruction has been proposed, and experimentally con-

firmed, to arise from a structural reorganisation able to release the large surface stress of

the unreconstructed anatase surface.38 This observation differs from other transition metal

oxide systems that display various surface reconstructions for small changes in the density

of the oxygen vacancies.42,43

The uneven distribution of the measured PES intensity between different replica bands

reflects the weak nature of the periodic potential associated with the (4 × 1) − (1 × 4)

reconstruction of Ti atoms at the anatase(100) surface.38 Meanwhile, the angular asymmetry

within a pocket is a result of the symmetry of the electronic states, in this case of the t2g

orbitals arising from Ti 3d states close to the Fermi level. This is a result of the one-electron

transition matrix element in Eqn. 4. Figure 4 describes the resulting mutual relationship

between light polarization, the electronic orbitals and the geometry of the experiment. In

particular, symmetry-related selection rules indicate that the 2DEG state of anatase has a

dxy orbital character. The sample is probed along the Γ - X direction, aligned with the

analyser slit. Two orthogonal mirror planes are therefore identified: the xz plane (defined

by the analyser slit and the surface normal) and the yz plane, which contains the photon

beam and the surface normal. In this geometry, the linear horizontal polarisation (LH) has

odd mirror symmetry with respect to the xz plane, whilst the vertical polarisation (LV) has

even symmetry. Let us now consider the symmetries of the t2g orbitals (i.e. dxy , dyz and dxz
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) with respect to such a plane: the dyz has even parity, while both dxy and dxz possess odd

symmetry. Thus, from panel b) of Figure 4 one can readily exclude dyz orbital character,

as photoemission intensity for ky = 0 Å−1 should appear when excited with LV polarisation

(even symmetry of the final state). On the other hand, switching to LH polarisation the

spectral intensity vanishes for kx = 0 Å−1 (panel a ). LH has even parity under reflection

about the yz plane. The measured photoemitted final state has to be even with respect

to both the xz and yz planes, namely it should have dxz orbital character (even symmetry

under reflection with respect to yz plane). Thus, the orbital character of the 2DEG is dyz, as

expected from the degeneracy-lifting of the t2g caused by the tetragonal unit cell structure

of anatase. This result is consistent with the reported literature both for anatase44–46 and

for other transition metal oxides.47,48

2.6 Spin-resolved ARPES

The objective of performing a PES experiment with all the relevant information at hand, the

all-in-one experiment, cannot be reached without spin-detection. The spin information is in

principle preserved during the photoemission process, and the full vectorial determination

of the spin direction in a band, together with the presence or absence of magnetic orders, is

important both for fundamental reasons and for future application. In the case of quantum

materials, prominent examples are: i) the spin-orbit driven spin-momentum locking of the

band structure in topological insulators, a property that cannot be measured without a spin-

resolved technique,49 and ii) the layer-dependent spin-orbital texture of the topological state

spanning across a quintuple layer in TIs, producing a complex in-plane and out-of-plane

spin texture.50 While both high-energy and high-momentum resolution of photoelectrons

have become widely available thanks to the advances in electrostatic analyzers, as described

in the previous section, the full vectorial determination of the spin of the photoelectrons

has been limited for decades by poor statistics. For example, spin discrimination based

on spin-orbit (Mott-) scattering suffers from a the low cross-section, resulting in a poor
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figure of merit for spin-resolved analysis (typically 10−3/10−4).51 The strong reduction of

intensity as compared to a conventional ARPES experiment led to a requirement to use

significantly relaxed energy resolution, limiting for many years spin resolved PES experiments

to mostly core level lines and/or to valence band studies, not k-resolved, of ferromagnetic

systems. The explosion of quantum materials research, and in general the interest on systems

where the spin texture is not solely driven by purely magnetic interaction, as the case of

Rashba and topological systems, revamped the technological development related to spin-

ARPES. Optimized Mott-scattering systems and spin-polarised electron diffraction setups

were developed,52,53 and low energy scattering on ferromagnetic targets (V-LEED) have

successfully demonstrated an intensity gain of several order of magnitudes, making possible

data acquisition of adequate statistics with comparable energy and momentum resolution

with respect to the non-spin-resolved spectra.54–58 Recently, multidimensional spin-ARPES

has been demonstrated, where imaging techniques combined with multichannel intensity

detection in a time of flight detector allows one to measure 4D arrays of data.59

3 Comparison between ARPES and density functional

theory

First–principles approaches, such as Density Functional Theory (DFT),61–65 represent one

of the most widely adopted methodologies to explore materials’ band structures from a the-

oretical perspective. In a nutshell, DFT simplifies the (otherwise unsolvable) many-electron

problem into a set of manageable independent-particle equations, the so called Kohn-Sham

equations (see62), and allows the ab-initio calculation of a material band-structure. However,

the comparison between ARPES and DFT shows many different challenges, as schematically

represented in Figure 5. On the experimental side, intrinsic limits exist, related to the appa-

ratus resolution and the sample quality. Furthermore, as discussed above, commonly adopted

models for ARPES imply several different approximations (sudden approximation, three-step
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Figure 5: Comparison between ARPES and DFT: Strengths and limitations. Central band–structure
adapted with permission from Ref.60 Copyright 2014 Springer Nature.

model, etc). In this respect, we remark that recent theoretical developments concern the ex-

plicit evaluation of matrix elements (often assumed to be otherwise constant or interpreted

in terms of the simple symmetry-based selection rules discussed above) and their explicit

dependence on the photon polarization, resulting in important modulation of the theoretical

spectra.66 We also note that Moser in Ref.67 proposed an expression of the ARPES spec-

tral weight of a given Bloch band as determined by the Fourier transform of its associated

Wannier function (therefore providing information on the electronic wave function, including

local orbital symmetry) multiplied by a polarization-dependent factor, enforcing the dipole

selection rules (giving rise to geometric effects, such as circular dichroism). Although the

formalism used by Moser is based on the three-step model and on a single-particle picture,

the proposed photoemission intensity was found to work well in many different systems

(including graphene, iridates and other complex oxides).

On the ab–initio side, we recall (see61–65) that DFT is a single-particle ground–state
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theory and requires approximations for the exchange–correlation potential, which, depending

on the system, may be valid or not. For example, in materials with relevant many–body

effects and strong electronic correlations, DFT may result in an inaccurate description of the

band structure. Furthermore, being a ground–state theory, DFT cannot rigorously describe

excitations. In this respect, since ARPES probes occupied electronic states, well–known DFT

failures concerning, for example, the energy-gap and excited electronic states do not result in

dramatic effects when comparing DFT results and photoemission data. The effects of band-

dispersion in the k-space direction corresponding to that perpendicular to the sample surface

in real space can be well explored in ARPES by changing the photon energy (see Eq. 8) and

can be compared to the corresponding calculated band structures. An example of the latter

(sometimes referred to as “projected band structure”, i.e. ideally projected on the surface

plane) is reported in Figure 6 a) (for convenience, the specific case of IrO2
68 is reported

here, though all the following arguments remain clearly valid for any material). Stronger

signals are obtained in the case when bands do not disperse much in the k⊥ direction. This

behaviour is also reflected in the spectral function (cfr Eq. 5), reported in Figure 6 b), which

allows for an easier comparison with ARPES spectra. A further development is the explicit

DFT simulation of surfaces (both in terms of band structures and of spectral functions for

semi-infinite slabs69,70). In the simulated results, one can easily identify the surface states,

since they often appear in energy regions which are otherwise forbidden in the corresponding

bulk. Their surface character can be further explored by expanding the electronic states as

a linear combination of atomic orbitals and calculating the weight that these states show

on different atoms. For surface states, a large weight on the surface atoms is obtained.

The bulk–vs-surface character of different electronic states can be cross-checked in ARPES,

by exploring the dispersion as a function of photon energy, the changes being rather small

(large) for localized surface (dispersive bulk) states.
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Figure 6: Example of DFT calculations to be compared with ARPES: the case of IrO2(110)
surfaces. a) Bulk band structure along directions parallel to Γ-X and corresponding to
different kz (i.e. different points along Γ-Z, cfr inset of the Brillouin zone in lower left
part). b) Bulk spectral function; c) Surface spectral function. Panels b) and c) adapted with
permission from Ref.68 Copyright 2018 American Physical Society.

4 Depth-dependent information in photoemission

4.1 Bulk sensitivity and HAXPES

An important experimental aspect of PES concerns its probing depth. As considered in

step 2 of the photoemission process in Section 2.3, we are typically interested in the signal

from photoexcited electrons which have traveled to the surface without undergoing scat-

tering events. For valence band photoemission using, for instance, ultra-violet light, the

corresponding electron inelastic mean free path is between 5 Å and 10 Å. This makes the

technique extremely surface sensitive. This surface sensitivity is of utmost importance for

studying few-layer systems and, in general, for surface and interface effects, with some se-

lected examples reported in the following sections. Care must, however, be taken when

interpreting photoemission data to consider its surface sensitivity. In some strongly corre-

lated materials, for example, a larger electron correlation has been observed in the bulk as

compared to the surface, in contrast to what one would expect from simple coordination
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arguments.71–76 It is important to emphasise that the problem of surface sensitivity cannot

be solved even by having the sample as a single crystal with a perfect surface termination.

The surface will always have an electronic structure different from that of the bulk, and this

is especially true for strongly correlated systems since small variations of the coordination

of atoms with localised 3d, 4f or 5f valence orbitals will already have a big impact on their

narrow bands: a different Madelung potential or a different hybridization strength due to the

reduced coordination at the surface results in a vastly different electronic structure. More-

over, at the surface the orbital occupation of the 3d shell in early transition oxides is altered,

with the major consequence that the surface may induce insulating behavior in marginally

metallic materials, or allow the formation of metallic surfaces on insulating solids. These

effects are well-documented in perovskites, where in addition electrostatic instability associ-

ated with polar surfaces may lead to major atomic or electronic reconstruction, or possibly

both.31,71,72 Finally, the fact that, due to the surface sensitivity of the technique, k⊥ is not a

good quantum number (see Section 2.3), photoemission intrinsically has a poor resolution

in the out-of-plane direction. For two-dimensional electronic states, this does not cause a

problem. However, for three-dimensional states, which disperse in the out-of-plane direction,

this leads to a significant broadening of the measured spectral features, which will be seen

further below.

The use of synchrotron radiation allows the photon energy, and hence the kinetic energy

of outgoing photoelectrons, to be varied. This in turn allows the surface sensitivity in an

experiment to be tuned. The inelastic mean free paths of the photoexcited electrons are

largely thought to follow a so-called “universal curve” (see Figure 1). For a comprehensive

review of the different definitions of escape depth and depth information in photoemission,

we draw the readers attention to the landmark papers from Tanuma and Powell.77,78 In

particular, the semi-empirical model by Tanuma, Powell and Penn (TPP-model) is an accu-

rate way to estimate the inelastic mean free path of photoelectrons.77,79 When the incident

photons excite electrons to kinetic energies close to the minimum in the universal curve (in
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the range between 10 eV and 500 eV), maximal surface sensitivity is achieved with effective

probing depths on the order of only 10 Å. To perform an experiment that provides bulk

sensitive information, the electron kinetic energies must be either well below or well above

the minimum shown in Figure 7). According to experiments and calculations the probing

depth in PES experiments increases dramatically at very low electrons energy, and in recent

years, laser-based PES experiments in this energy range (hν below 7 eV) demonstrate sub-

meV energy resolution, access to high angular resolution and a probing depth well above

the nanometer range.80,81 For low kinetic energies, however, the probing depth is strongly

dependent both upon the material and the proper selection of the excitation energy due to

final state effects;82 moreover, core level lines are not accessible. The high brilliance of last

generation synchrotron radiation beamlines made possible in recent years to explore the high

energy side of the curve in Figure 7. Increasing the photon energy invariably reduces the

photoelectron intensity due to reductions of the cross section in the photoemission process,

implying that experiments on the high energy side of the universal curve are always ’photon

hungry’.76

Paying the price of both a limited energy resolution (on the order of 50-100 meV) and

the loss of k-resolved information, electron kinetic energies above 3 keV could be explored

via hard x-ray PES (HAXPES),71 featuring a probing depth up to 20 nm, i.e. much higher

bulk sensitivity and access to buried layers for practically any heterostructure or device.83

The pre-war experiments conducted by Robinson typically used hard transition metal Kα

excitation, as did early experiments from Siegbahn’s group. However, the modern era in

HAXPES began with Pianetta and Lindau in 1974,84 and this field has been revived in

the last two decades by exploiting the high flux (up to 1013 photons/second at the sample)

available at synchrotrons sources.71 Looking at the valence band, the experimental density of

states (DOS) measured in the HAXPES regime can be reliably compared to those generated

by a variety of calculation methods, and provides relevant information about the difference

between bulk and surface electronic properties.11 Since the surface contribution to the total
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Figure 7: The so-called universal curve of photoelectron mean free path in a solid vs. their
kinetic energy, extracted from ref;77 the two highlighted zones show where bulk information
could be obtained. the zone at high kinetic energy, i.e. above 3 keV, correspond to the
HAXPES regime;reproduced with permission from ref.76 Copyright 2012 Elsevier

photoelectron flux in a HAXPES experiment is typically < 5% of the total PES signal,85

valence band HAXPES reveals valuable information in particular when applied to strongly

correlated systems, where uncertainties due to surface preparation and/or enrichment or

depletion of oxygen at the surface, hence change of the valency, have been a strong limitation

to a detailed comprehension of correlated oxides.71–76

4.2 Use of cross sections in HAXPES

A further important aspect of HAXPES is that the pattern of relative photoionization cross

sections differs markedly from those found at lower photon energy. Extensive calculations

for most elements of the periodic table have revealed that all photoionization cross sections

decrease with increasing photon energy above 1000 eV, but the variation is not the same

for all orbitals.88–90 The cross sections depend on matrix elements between the final state

wavefunction and that for the initial state. Final state wavefunctions are basically free-
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Figure 8: Panel (a),(b),(c):Valence band photoemission spectra of PbO2 measured at different
photon energies; the increase of the feature close to the Fermi energy when entering the
HAXPES regime is highlighted (red points). (d) The bandstructure of PbO2 calculated
with an HSE06 hybrid functional. The position of the charge neutrality level is indicated
by the dashed green line. Adapted with permission from ref.86 Copyright 2011 American
Physical Society. (e) and (f): Calculation of full and partial density of states for PbO2.
panels (a),(b),(c),(e) and (f); adapted with permission from ref,87 Copyright 2007 American
Physical Society.

electron waves, perturbed by the atomic potential of the ionized atom. As the photoelectron

kinetic energy increases and the free-electron wavelength decreases, the dipole intensity is
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quickly exhausted when the initial state wavefunction shows smooth variation, as for O 2p,

transition metal 3d or lanthanide 4f orbitals. By contrast orbitals with a high principal

quantum number n and low angular momentum l have a number n-1-l of radial nodes: the

short period oscillation of the radial wavefunction close to the nucleus ensures that the dipole

intensity drops off much less quickly with increasing photon energy than for orbitals with no

radial nodes.11,88–90 These effects are nicely illustrated by valence band HAXPES of PbO2.
91

This is a highly covalent compound in which both the conduction band ( (identified as i

in the DFT DOS in Figure8e) and states at the bottom of the valence band ((identified as

III in the same panel e) have significant Pb 6s character). It is seen that both of these

features increase in intensity relative to band II - which relates to states of more pure O

2p character - in the experimental spectra on increasing the photon energy (the partially

occupied conduction band has been subject to a x15 expansion in the experimental spectra).

Moreover these spectra explain why PbO2 is a metallic material. The issue is whether the

conduction band crosses the top of the oxygen 2p valence band or if there is a small but

well-defined bandgap and conduction band states are occupied due to electrons donated by

oxygen vacancies. The HAXPES measurements are clearcut in demonstrating that a partially

occupied conduction band sits above the main oxygen 2p valence band, in agreement with

both hybrid DFT calculations and neutron diffraction measurements which reveal a high

level of oxygen deficiency.86 These conclusions are however at variance with more recent

theoretical results that suggest that there is indeed band crossing and that PbO2 can be

regarded as a ‘three dimensional Dirac semi-metal’.92,93 However, there are no experiments

to support this viewpoint.

4.3 Angular resolved HAXPES

Although the extension of valence band HAXPES to the angular resolved mode (a technique

termed HARPES) is conceptually simple, a number of technical challenges and physical ef-

fects must be taken into account when increasing the kinetic energy of the photoelectrons.
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Figure 9: HARPES results from GaAs (left) and 3% Mn doped GaAs (right). EDC maps are
plotted vs. Θ angle of the analyser detector, Θdet . Top panels (a, b) fully relativistic one-step
theory calculation, including matrix element effects. Bottom panels (c, d). Experimental
HARPES valence band (VB) mapping, measured at 20 Kelvin and at 3.2 keV of photon
energy. Smearing of the band features in the Mn doped GaAs results is clearly observed,
as due to a modified long-range translational order induced by the Mn impurities. Adapted
with permission from ref Ref94 Copyright 2012 Springer Nature.

Some (often important) limitations with respect to the powerful achievements of low energy

ARPES are unavoidable, such as: (i) loss of angular resolution, due to the increase of the

wave vector kF of the electron momentum in the final state, with a consequent Brillouin

zone broadening, (ii) the effect of phonon creation and annihilation related to Debye-Waller

effects, that is again a source of broadening in photoemission spectra, (iii) an observed shift

of the photoemission lines as due to the ’recoil’ effect arising from momentum conserva-

tion, an effect particularly relevant in light elements. A detailed description of these effects

is found in refs.94–96 Despite these limitations, when care is taken to account for and/or

minimise these effects, HARPES can still provide direct measurements of the k-resolved

electronic band structures of solids (Figure 9). Such measurements prove to be particularly

useful in the analysis of systems where standard sputtering/annealing surface-preparation

procedures destroy structural periodicity, or when chemical etching affects the stoichiometry,
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and in general where the composition and structure of the first layers are not representa-

tive of the bulk properties, as often happens in strongly correlated materials, buried/capped

heterostructures, and systems doped above the solubility limit, where the distribution of

dopants is uneven at the surface.11,76

A clear example of the application of HARPES comes from results obtained in the di-

luted ferromagnetic semiconductor (Ga,Mn)As, shown in Figure 9. HARPES band mapping

from non-doped GaAs and 3% Mn-doped GaAs are compared to one-step fully relativistic

calculation including matrix-element effects, normalised to minimize X-ray Photoelectron

Diffraction effects.94 Panels c,d in Figure 9 show how a single HARPES detector image en-

compasses several cross-sections of the Brillouin zone, namely three times repeated across

Γ-K/U-X-K/U-Γ. Comparison between experimental and theoretical results in Figure 9

confirm that the smearing of the band features in Mn-doped GaAs has its origin in Mn

impurities, following modification of the long range translational order, and allows a study

of the hybridization effects between Mn and the host GaAs. The origin of Mn-induced ferro-

magnetism in (Ga,Mn)As has been long debated with two opposite mechanisms: hole doping

and p-d exchange model on one side, corresponding to strong hybridization on Mn in the

host GaAs band, and the so called impurity model on the other side, where Mn induced

states, well separated in energy, form above the valence band maximum leading to double-

exchange ferromagnetism.97 Further analysis suggest that the Mn-derived impurity band is

merged with the GaAs valence band, thus reconciling the two interpretations, and showing

that both the mechanism are active.94,95,98

Such an approach has subsequently been applied to other materials, exploiting the fact

that information depths as large as 4 nm with a chemical sensitivity down to 2% can be

achieved, a sensitivity that promises a large number of applications.99–101 It is important to

underline that phonon smearing will always be present to some degree, implying that lower

photon energies should be preferred for high resolution ARPES analysis as is the case for

the results shown below. It should be mentioned, however, that the extension to the high
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kinetic energy region of ARPES will increase the diversity brought from ARPES to the tools

for studying the electronic structure of solids.

5 Example materials systems

With the aforementioned capability to probe all the relevant quantum degrees of freedom of

the solid, and in particular with its ability to directly probe the momentum-resolved elec-

tronic structure and many-body interactions in solids, ARPES has become established as

a key probe in the study of quantum materials. We discuss in this section several charac-

teristic examples from materials families and systems that have been particularly intensely

studied in recent years. We note that this is not intended as a comprehensive review into the

materials physics and chemistry of these systems, but rather as a representative viewpoint

of the types of measurements that have proved valuable in the study of such materials, and

of the forms of insights that can be gained from these.

5.1 Spin–orbit materials: non-trivial topology and Rashba effects

During the last decade, spin-orbit coupling (SOC) has played an increasingly crucial role in

condensed matter physics, thanks to its relevance as a rich microscopic mechanism from the

fundamental point of view and as a driving force for innovative spintronic applications on

the technological side. The SOC, a relativistic “atomic–like” interaction, links the orbital

angular momentum l and the spin angular momentum s, i.e. Hsoc ∝ 1
r
dV
dr

l · s (where V

labels the potential and dV
dr

its radial derivative).

The spin–orbit interaction is relevant for many phenomena, both in the realm of mag-

netic and non–magnetic materials. For the sake of brevity, we will touch here only on two

classes of compounds where ARPES has been crucial in determining their properties: topo-

logical insulators (TI) and “bulk” Rashba materials. Both classes show emergent phenom-

ena, where common probes based on transport give much less direct evidence compared to
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surface-sensitive spin- and angle-resolved photoemission spectroscopy. While many reviews

are available in the literature, focused on topological insulators102–104 probed by ARPES,105

we will limit ourselves to recalling the most basic features of TI and the first pioneering

ARPES results on this class of materials.49,106,107 Similarly, we will review “bulk” Rashba

materials only in terms of the first photoelectron spectroscopy measurements published in

the literature.

5.1.1 Topological insulators

Topological insulators (TI)102,103 in three dimensions are insulators in their bulk phase,

though hosting metallic surface states (SS), labelled as “Dirac cones”. The SS are protected

by the non–trivial topology of the bulk electronic wave functions, whose connection to the SS

is often referred to as “bulk-boundary correspondence”. As long as the topological protection

holds, the metallic surface states will never disappear; their robustness can therefore be

exploited in spintronic devices, in addition to being a characteristic feature of a novel state

of quantum matter. Indeed, TI are part of the so–called “Dirac materials”, i.e. compounds

where the relativistic SOC is so relevant that the Dirac equation is the appropriate one to

be solved and to describe the electronic structure of the system. Dirac materials constitute

an ever-expanding class of compounds, including, among others, Weyl semimetals,108 Dirac

semimetals,109,110 crystalline topological insulators,111,112 etc.

In was theoretically predicted113,114 in TI that a large SOC drives the “inversion” of

bulk conduction and valence bands, i.e. around high-symmetry points, bands with orbital

character typical of the conduction (valence) states lie below (above) the Fermi level, or

equivalently they are occupied (empty). This band inversion was recognized to be key for

realizing a strong 3D TI phase, characterized by deriving topological invariants for a time–

reversal–invariant band insulator. Without going into details on topological invariants (we

refer the interested reader to Ref.102,104,115,116 for Berry phases/connection, etc), the latter are

essentially integrals over the Brillouin zone of quantities related to electronic wave–functions

31



and eigenvalues, that are stable with respect to continuous (i.e. adiabatic) changes of certain

parameters.

A distinctive feature of TI is the spin–momentum locking of the gapless linearly–dispersing

Dirac-cone SS, i.e. the spin–texture winds circularly around a constant–energy contour in

momentum space. In other words, the surface of a 3D TI allows the electron to move in any

direction, but once the direction of electronic motion is set, then the spin-direction is uniquely

fixed (and viceversa). In closer detail, states at the surface of spin-orbit coupled materials

can split into singly-degenerate levels, due to surface–induced inversion symmetry breaking.

However, as required by Kramers’ theorem, the splitting must vanish at the time–reversal

invariant momenta (TRIM) in the 2D surface Brillouin Zone. When connecting two TRIM

in the same BZ, the Fermi energy inside the bulk gap will cross these single–degenerate SS

either an even or an odd number of times,113,114 leading to topologically trivial or non-trivial

case, respectively. In other words, a non-trivial Z2 topological number in a 3D TI requires

the surface to show a Fermi surface pocket enclosing TRIM with non-zero π geometrical

Berry phase (i.e. odd, as opposed to an even multiple of π).

ARPES played a crucial role in breakthrough discoveries in the whole field of Dirac

materials, as it allows measurement of the surface state Fermi surface, (i.e. the number

of Fermi pockets enclosing the Kramers points) and the related spin-texture. For example,

by means of spin-ARPES on TI one can show that the SS carry a geometrical Berry phase

with chiral properties, at variance with conventional surface electronic structure of spin-orbit

metals (such as gold), where the Berry phase is zero. Indeed, the whole field of TI had a

boost since the first pioneering experimental ARPES data became available,49,106,107,117 as

recalled below. In addition, one can exploit the dependence of the matrix elements on the

light helicity in materials with strong SOC to probe the spin-texture. For example, the

difference in photoemission intensity between left- and right–circularly polarized light (i.e.

at the basis of circular dichroism) allowed one to obtain results in TI consistent with what

was theoretically predicted.118
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Figure 10: Photoemission data for Bi2Se3 and Bi2Te3. a) High-resolution ARPES of Bi2Se3(111) (measured
with incident photon energy of 22 eV near the Γ-point along the Γ–M Γ-K directions). b) DFT band structure:
Bulk band projections represented by the shaded areas. The band-structure calculated with (without) SOC
is presented in blue (green). Surface states with SOC (without SOC) are shown in red (black). c) ARPES
measurements of band dispersions for Bi2Te3 along K-Γ-K (top) and M-Γ-M (bottom) directions. The bulk
band dispersions are labeled as BCB and BVB, whereas the sharp V-shape dispersion comes from the surface
state band (SSB). d) Photon energy-dependent FS maps. e) Tetradymitetype crystal structure of Bi2X3 (X
= Se, Te), with typical layered structure and quintuple–layer stacking. Also shown is the bulk and surface
Brillouin zone. f,g) ARPES intensity map at EF of the (111) surface of tuned stoichiometric Bi2−δCaδSe3
and of Bi2Te3 (b). Red arrows denote the direction of spin projection around the Fermi surface. h,i) ARPES
dispersion of Bi2−δCaδSe3 and of Bi2Te3 (b) along the kx cut. The dotted red lines are guides to the eye.
The shaded regions are projections of the bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111)
surface. j) Measured y component of spin-polarization along the Γ-M direction at an energy -20 meV, which
only cuts through the surface states. Inset, schematic of the cut direction. k) Measured x (red triangles)
and z (black circles) components of spin-polarization. Panels a) and b) adapted with permission from Ref.49

Copyright 2009 Springer Nature; panels c), d) and e) adapted with permission from Ref.,107 Copyright 2009
American Association for the Advancement of Science (AAAS); panels f)-k) adapted from Ref.106 Copyright
2009 Springer Nature
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Although the first explored example of TI was BixSb1−x,
117,119 its complex surface struc-

ture and spectra, along with the small band gap, hindered the clear identification of topo-

logical phenomena at high temperatures. However, a search was launched towards TI with

larger band-gaps and simpler surface electronic structures, which led to the identification

of bismuth–based chalcogenides (layered-compounds with hexagonal symmetry and charac-

teristic quintuple–layer structure) as TI prototypes. In that materials class, less–stringent

conditions (i.e. observation of topologically non-trivial behaviour at room temperature and

without magnetic fields for bare surfaces) really boosted the field of quantum topological

matter. Indeed, the spin momentum locking, the non-trivial π Berry phase and the ro-

bustness of TI features with respect to perturbation (i.e. non–magnetic disorder) were all

demonstrated in landmark papers (49,106,107) on Bi–based chalcogenides, some of the results

being summarized in Figure 10. In Figure 10 a) a clear Dirac cone along the Γ −M and

Γ−K directions is evident for Bi2Se3,
49 which well compares with the corresponding band

structure calculated by first–principles (Figure 10 b). DFT well shows the effect of SOC,

inducing both the band–inversion for the bulk case and the Dirac cone for the surface case

(cfr Figure 10 c). This is an example of a weakly correlated material, so that the agreement

between ARPES and DFT is indeed very good.

The case of Bi2Te3,
107 a well–studied material known for its thermoelectric properties,

has allowed the exploration of chemical trends upon anion substitution (Se vs Te), leading to

a smaller band gap, a significant deviation from a linear Dirac cone and a hexagonal warping

potential, driving the change from a circular to star-shaped surface constant-energy maps

(cfr Figure 10 c)-d), where the apex of the V-shape dispersion shows the Dirac point). In

Figure 10 d), the shape of the inner Fermi surface (FS) strongly depends on photon energy,

indicating a large out-of-plane dispersion and thus a strong bulk nature of these states,

whereas the non-varying shape of the outer star-shaped FS with changing photon energy

confirms its surface state origin. These findings also highlight the power of synchrotron–

based photon–energy–dependent ARPES measurements, further strengthened - if available
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- by the combination of ARPES performed with vacuum ultraviolet and soft- X-ray light.

The robustness of the Dirac cone upon chemical disorder is shown in Figure 10 f) and h),

where spin-resolved ARPES based on Mott detectors is reported for Ca-doped Bi2Se3.
106 In

fact, often, Bi2Se3, as grown, is a doped semiconductor, with n-type character (i.e. chemical

potential within the bulk conduction band) caused by Se vacancies.120 In order to move

the Fermi level within the band gap, Bi2Se3 can be doped with small Ca concentrations,

compensating for the anion vacancies. The measured spin–polarization along x, y, z in Bi2Te3

(cfr Figure 10 j)-k)) show a clear polarization signal (i.e. equal magnitude but opposite signs)

along the y-direction, whereas it vanishes along x and z directions. This is consistent with

the spin–momentum locking: each momentum along the surface has a well-defined single spin

state at the Fermi level, with the spin direction rotating as the momentum moves around

the Fermi surface, leading to a non–trivial π Berry phase.49,106,107

Due to limited space, only pioneering data were reported here for topological insulators.

However, we conclude this section by noting that research on quantum topological matter

is one of the most active fields in condensed matter physics nowadays, with many research

lines being pursued (from topological magnets to Kondo TI, from topological crystalline

insulators to topological superconductivity, etc).112,121–123

5.1.2 Rashba materials

Let us start this section by briefly recalling: i) spin splitting effects in materials’ band struc-

ture, in terms of symmetry properties and ii) what the Rashba effect (RE)124–126 is related

to (see Figure 11). In the presence of Space Inversion Symmetry (SIS) and Time-Reversal

Symmetry (TRS), each eigenstate, for every k-point in the Brillouin Zone, is doubly degen-

erate for spin (or, equivalently there are no spin splitting effects, cfr Figure 11 a). When

TRS is kept but SIS is broken in a polar fashion (such as at surfaces, interfaces with two–

dimensional-electron–gas, bulk materials with polar axis, etc), there is a potential asymmetry

(or, equivalently, an electric field E0). In the relativistic approach and by means of Lorenz
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transformations, an electron travelling with a certain velocity (or momentum k) will see

the electric field as a magnetic field, which its spin will then couple to, via a Zeeman–like

interaction. As such, the carrier will be subject to the so–called “Rashba interaction”,124,125

producing - even in non–magnetic compounds - a spin-splitting of the eigenstates: at a cer-

tain k-point, the eigenvalues will be different for up– and down–spins. However, the splitting

will be opposite at opposite momentum -k, so that no net magnetic moment arises in total

(i.e. the Rashba is a k–dependent spin–splitting). The Rashba interaction is usually mod-

eled with a linear–term in momentum, thereby producing an opposite shift of the parabolic

band structure for opposite spins (cfr Figure 11 b), where the relevant parameters of the

RE - ER, kR and αR - are graphically explained). Neglecting terms at orders higher–than–

linear, in RE the spin is perpendicular to both electric field and momentum, leading to

spin–momentum locking (similar to TI). In case a material, in addition to showing a polar

axis, also shows switchable polarization (i.e. the material is ferroelectric), then an additional

functionality emerges:127,128 the spin–polarization can be switched as the ferroelectric polar-

ization is switched (cfr Figure 11 c), thereby leading to the class of FerroElectric Rashba

Semiconductors (FERSC), that will be briefly discussed below.

Although the RE was heavily investigated for surfaces of heavy metals by means of

ARPES,129–132 the situation shown in Figure 11 b) is by symmetry allowed in every system,

provided a polar axis is present. Indeed, a breakthrough discovery for RE was achieved in

BiTeI,133 the first bulk material where a sizeable RE was reported. BiTeI is characterized

by a trigonal layered structure, with Bi, Te, and I planes stacked along the z direction.

In the pioneering work of Ishizaka et al.133 a very large Rashba effect was detected (cfr

Figure 11 a)-c), from measurements of both band dispersions and constant energy maps,

from ARPES and spin-resolved ARPES. In all cases, the picture was consistent with mostly

“bulk”–derived Rashba states with kR = 0.052 Å−1, ER = 0.1 eV and αR = 3.8 eV/Å. These

parameters were among the largest ever measured for Rashba effects.

BiTeI was later reported to show an “ambipolar” behaviour in terms of carrier doping:134
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Figure 11: Rashba effect in polar systems and in Ferroelectrics. a) Spin degeneracy in systems where
both TRS and SIS are kept (simple free-electron model for band–structure). Upper (lower) part shows a 3D
view (2D cut). b) Polar systems, where SIS is lost but TRS is kept: the joint presence of SOC and electric
field lead to the RE. Upper (lower) part shows a 3D (2D) view. The common parameters to quantify the
RE are shown: Rashba momentum offset kR (i.e. difference in reciprocal space between the k–point where
the energy minimum occurs with respect to the high-symmetry k-point) and RE energy difference ER (i.e.
difference in energies between the conduction band minimum and the energy where the two spin-split bands
cross). The Rashba coefficient is defined as: αR = 2ER/kR. Arrows on the constant energy cuts represent
the spin-texture [i.e. with clockwise (counterclockwise) circulation for the inner (outer) branch]. c) RE in
FERSC (SIS broken, TRS kept): ferroelectric polarization (see vertical red arrow) switches the spin-texture
(see opposite circulation for spin-textures in upper and lower parts).
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Figure 12: Rashba Effects in BiTeI. a) Spin polarization of Rashba-split bands. Markers tracking the
band dispersions overlaid on the ARPES intensity image. Red (blue) markers represent the “spin-up”
(“spin-down”) components. b) Fermi-surface map. Green markers show the peak positions of momentum
distribution curve at EF . c) ARPES image of the Rashba-split conduction bands (hν = 21.2 eV). The
right small panels show the band contour images as functions of kx and ky at certain binding energies. d)
ARPES dispersion for a Te-terminated surface along Γ-K measured at 93 eV and T = 40 K, compared to e)
projected–slab DFT band structure. f) and g) show corresponding plots for the I-terminated surface. The
size of the red (green) symbols in e) [in g)] is proportional to the contribution of the surface Te (I) atoms.
The continuum of bulk states is shown in blue. In (e) and (g) only projection amplitudes larger than 0.1 are
shown. Panels a),b) and c) adapted with permission from Ref.,133Copyright 2011 Springer Nature; panels
d)-h) reproduced with permission from Ref.,134 Copyright 2012 American Physical Society.

upon control of the ionic surface termination (Te vs I), the chemical potential could be

placed in either the conduction or the valence band. In both cases, a giant spin splitting

at the Fermi level was observed, arising mostly from surface states, though even bulk states

contributed to the signal. Indeed, in Figure 12 d) a split parabolic band crossing the Fermi

level is evident. The measured Rashba parameters were reported to be ER = 0.32 eV and

kR = 0.055 Å−1, the RE occurring close to the BZ center Γ. The measured RE for BiTeI

was therefore one magnitude larger than for the prototypical metal surfaces129–132 and for

systems showing a two–dimensional electron–gas.135

The comparison between ARPES and the first-principles band structure [cfr Figure 12

e)] for BiTeI slabs was found to be very good.134 The calculations showed, in particular,

that both surface and the bulk states are strongly split by SOC and that the most evident

spin-split state is localized in the topmost bilayer, with partial overlap to conduction band

states showing a smaller kR. When moving to the I-terminated surface,134 the picture was
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reported to be qualitatively and quantitatively different: electron pockets were replaced by

hole pockets from a spin-split state (labeled as SSI in Figure 11 f) with a strong weight on the

surface I atoms and a large momentum offset (kR ∼ 0.2 Å−1). A precise determination was

found to be difficult, due to the top of the band located in energy above EF , highlighting

the p-type character of the I-terminated surface and therefore confirming the ambipolar

behaviour in BiTeI.134 Subsequent studies also showed how the spin-splitting of the electronic

states in BiTeI is accompanied by the development of momentum-dependent orbital textures,

demonstrated via variable light polarisation measurements, and again in good agreement

with the conclusions of density-functional calculations.136

After BiTeI, another important step was taken in 2013, when GeTe was put forward127,128

as an important bulk material with strong RE. GeTe is a ferroelectric semiconductor showing

extremely large Curie temperature (TC = 720 K), space group R3m, i.e. rhombohedrally–

distorted rocksalt structure and ferroelectric polarization along the [111] axis.139 Ab–initio

simulations127 predicted not only GeTe to show a huge RE (with kR = 0.09 Å−1, ER ∼ 0,2

eV and αR = 4.8 eV/Å, parameters even larger than BiTeI), but also that the spin-texture

could be reversed upon polarization switching (i.e. applying an opposite electric field). GeTe

was therefore considered as a prototypical material of the FERSC class. Soon after the DFT

predictions, an experimental confirmation was published:138 epitaxial (111) GeTe thin films

were deposited on Si(111) by means of Molecular Beam Epitaxy140 and confirmed to be

ferroelectric via piezo-force microscopy,138 with ferroelectric polarization pointing outwards

the surface. ARPES measurements (with and without spin–resolution)138,141 clearly showed

Rashba–like valence bands (cfr Figure 13). The spectra show a marked p-type behaviour,

with large concentration of holes arising from easily–created Ge vacancies. The theory-

experiments comparison allowed to disentangle surface states and bulk bands [cfr Figure 13

e)-f)-g)-h)] and to conclude that GeTe shows a giant RE both for surface and bulk bands.

Finally, the spin texture measurements138 revealed spins directed predominantly perpen-

dicular to the corresponding momentum, consistent with DFT predictions for an outward
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Figure 13: Rashba effects in GeTe. a) GeTe Brillouin zone. The direction corresponding to polarization,
the related perpendicular plane and the relevant A-Z-U directions are highlighted. b) Surface Brillouin
zone (green hexagon) and projection of the hexagonal face of the bulk Brillouin zone (red hexagon). c)
ARPES data along Γ-K (ZA) at photon energy hν = 20 eV. d) Same as (c) along Γ-M (ZU). e) Same as
(c) with overlaid DFT-calculated bulk bands (full lines labeled Bi, left side of the panel) and surface bands
(dashed/dotted lines labeled Si, right side of the panel) from the relaxed slab calculation. f) Same as (e)
along Γ-M (ZU), partly using two-dimensions curvature representation137 (see inset). g,h) Photoelectron
intensity distribution in the (kx, ky) plane at EF with overlaid DFT–calculated (g) surface states and (h)
bulk states (dots) along the high symmetry directions. Reproduced with permission from Ref.,138 Copyright
2016 Wiley-VCH.
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Figure 14: Transition-metal dichalcogenides. (a) Top and side view crystal structures of the
2H, 1T, and 1T’ polymorphs of TMDs. Only one of two layers within the bulk unit cell is
shown for the 2H structure. (b) Schematic evolution of electronic structure across the series,
dominated by the varying occupation of d-states located between the bonding (σ) and anti-
bonding (σ′) chalcogen-derived bands. D3d and D3h refer to the point group of the transition-
metal site in a trigonal prismatic or trigonal antiprismatic (approximating to octahedral) co-
ordination within a monolayer geometry. (c) Wide variety of materials properties that are
realised for different transition-metal choices across the MX2 series. Panels (a,c) adapted with
permission from Ref.,142 copyright 2017 Springer Nature; panel(b) adapted with permission
from Ref.,143 Copyright 2013 Springer Nature.

polarization and reinforcing the overall picture of a huge RE.

5.2 Transition-metal dichalcogenides

The transition-metal dichalcogenides (TMDs, Figure 14) host a rich and diverse structural

chemistry based on a large number of polytypes, and a wide range of electronic behaviours.142

In the 2H structure adopted by d1 and d2 dichalcogenides of group 5 and 6 and typified by

MoS2, the chalcogen X atoms form hexagonal layers stacked in a sequence AA BB AA
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etc. The metal atoms M (conventionally represented by lower case letters in the chemical

literature, although this convention is not used in many recent publications) occupy sites

with trigonal D3h symmetry between the AA or BB layers and the unit cell contains two

MX2 units, the overall ordering running AbA BaB in 2H1 and AcA BcB in 2H2. The

structural variant 3R has an anion sequence AA BB CC and a cation sequence bca. The

alternative single layer 1T structure (usually referred to as the CdI2 structure in the chemical

literature) again involves hexagonal chalcogen layers, but now stacked in a sequence AB AB.

This gives overall hexagonal close packing of the anions in three dimensions. The cations

occupy trigonal antiprismatic c sites of D3d symmetry between the AB planes, approximating

to Oh locally and so the overall stacking sequence is AcB AcB. The cations therefore form

1D columns, thus allowing the possibility of metal-metal bonding as in the distorted 1T ′

structure. The M-X bonds are predominantly covalent, while those between neighbouring

MX2 layers are predominantly van der Waals in character.

As shown schematically in Figure 14, the essentially octahedral ligand field in the 1T

structure splits the d levels into a lower 3-fold degenerate t2g band derived from dxy, dxz, and

dyz orbitals and a 2-fold degenerate eg band composed of dz2 and dx2−y2 orbitals: lowering the

symmetry to D3d further splits t2g into a1g+eg (although this splitting is expected to be very

small and is ignored in the schematic energy level diagram of Figure 14), while the upper

eg manifold remains unsplit. In a D3h coordination environment a different 1:2:2 splitting

pattern is found with an orbital sequence a
′
1 (dz2), e

′
(dxy,dx2−y2), and e

′′
(dxz, dyz). Note

that Figure 14 assumes that the metal d bands all lie above bonding chalcogen-derived p

bands. As will be discussed below, this is not always the case and the possibility of band

overlap adds an extra level of complexity to unravelling the electronic structure of these

materials.

The chalcogen site is normally occupied by one of S, Se, or Te, although alloys and in

some cases ordered layer-by-layer combinations of different chalcogens can be created.144

The transition-metal site can be filled by a wide array of different elements, leading to a
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rich and diverse materials chemistry in this system. Broadly classified by their d-electron

occupation (Figure 14b),143 these systems range from metals to semiconductors, and are

found to exhibit a host of exotic physical properties including superconductivity, charge-

density wave order, and non-trivial band topology (Figure 14c).142,143,145–155 The layered

nature of the crystal structure allows them to be cleaved easily, enabling preparation of flat

and clean surfaces. As such, the TMDs have provided ideal systems for study using angle-

resolved photoemission, which has in turn played a crucial role in elucidating the electronic

structure and interacting states in such systems. Moreover, being easy to exfoliate even

down to the single-layer limit, TMDs form the parent compounds for a wide range of 2D

materials beyond graphene.142,143,145 They have thus become prototypical systems in which

to test the rapidly-developing capabilities of spatially-resolved, so-called “nano-ARPES”

experiments. In this section, we will discuss some of the insights that can be gained into

this rich materials system by ARPES studies, including those which exploit spin-, spatial-,

or temporal- resolution.

5.2.1 Chemical trends

As introduced above, a significant number of the TMDs are semiconducting (Figure 14).

ARPES provides direct access only to the occupied electronic states, and as such can be

used to directly probe the momentum-space location and structure of the uppermost valence

bands in the system. Moreover, via some form of chemical doping, it can yield similar

information regarding the bottom of the conduction band, placing constraints on band gap

sizes and, importantly, resolving the direct or indirect nature of such semiconducting band

gaps, and chemical trends of these.

As an example, we show in Figure 15, ARPES measurements of the group-IV chalco-

genides TiS2, TiSe2, and TiTe2. Within an ionic picture, the chalcogen would be expected in

a 2− charge state, rendering the Ti in a 4+ state and a nominal 3d0 configuration. This simple

picture would suggest that these systems are semiconductors, with a valence band derived
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Figure 15: Band structure evolution across the TiX2 series. ARPES measurements showing
the electronic structure of (a) TiS2 , (b) TiSe2 and (c) TiTe2. Reproduced with permission:
panel (a) from Ref.156 and panel (c) from Ref.,157 both under Creative Commons Interna-
tional License, panel (b) from Ref.158)

from chalcogenide p-orbital states and an empty Ti 3d-derived conduction band. Transport

measurements, however, typically indicate temperature-dependent resistivities indicative of a

metallic state across the family of TiX2 systems,159–162 which called into question the nature

of the ground state in these systems.

Figure 15a shows how in TiS2 the metallic transport derives from unintentional electron

doping in the system.156 ARPES measurements show a highly dispersive set of states at the

Brillouin zone centre, which can be attributed to the p-orbital states of S. The band top of

these states is almost 1 eV below the Fermi level. At the M-point (centre of the Brillouin

zone face), a barely-occupied band is visible at the Fermi level. This has a much flatter

dispersion, indicating a heavier effective mass, and can be assigned as the bottom of the

Ti d-derived conduction band. While this is nominally unoccupied, unintentional doping

leads to a partial occupation of these states and hence metallic transport. Fundamentally,

however, the ARPES measurements indicate that this system should be considered as an

indirect band-gap semiconductor, with conduction and valence band extrema located at
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different k-space locations. In TiTe2, on the other hand, the Te-derived valence band width

can be expected to be larger due to the larger Te 5p-orbitals as compared to the S 3p-orbitals

in TiS2, while the lower electronegativity of Te will promote d-p charge transfer.163 ARPES

measurements of TiTe2 (e.g. Figure 15c, Ref.157) indicate that this causes the top of the

Te 5p-orbital derived manifold to be moved above the bottom of the Ti 3d-derived states.

The top of the valence band thus moves above the Fermi level, while the conduction band

minimum is now intrinsically located below the Fermi level, and the system is thus best

described as a semimetal, where the metallic transport is now truly intrinsic.

The Se-based member of the family is an interesting case. From the chemical trends

evident from the S- and Te-based systems, it is not clear if the system would be nominally

semiconducting as in TiS2, or semimetallic as in TiTe2. The presence of unintentional doped

carriers and the indirect nature of the band gap in TiS2 precludes both transport and opti-

cal spectroscopy from providing an unambiguous answer to this question. In fact, ARPES

measurements indicate that TiSe2 lies right on the borderline between the two cases, with

previous ARPES measurements concluding results ranging from an indirect band gap of

150 meV to a band overlap of 70 meV..158,164–168 Recent measurements using photon ener-

gies chosen to probe the true high-symmetry points of the three-dimensional Brillouin zone

(see Figure 15b) show that there is in fact a small but non-vanishing indirect band gap

of 74 ± 8 meV at room temperature,158 and indeed the proximity of TiSe2 to a zero-gap

semiconductor has caused significant interest in TiSe2 as a possible host of a so-called ex-

citonic insulator phase.169 As for TiS2, unintentional doping leads to a finite occupation of

the conduction band, and hence metallic transport at low temperature, while temperature-

dependent chemical potential variations, leading to changes in electron and hole populations,

complicate the interpretation of transport at elevated temperatures.162

Rather than metallicity arising from unintentional doping, the group-V TMDs would be

expected to be robust electrical conductors, with the transition metal in a nominal d1 metallic

configuration (Figure 14(b)). Resistivity measurements of 2H-NbSe2 and 2H-TaSe2 indeed
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Figure 16: (a) Fermi surface of 2H-TaSe2 above (top) and below (bottom) the CDW transi-
tion, showing the induced Fermi surface reconstruction. Reproduced with permission from
ref.,148 Copyright 2008 American Physical Society. (b) Fermi surface of 2H-NbSe2 measured
using ARPES. The underlying momentum-dependent spectral gaps (∆), superconducting
(SC) coherent spectral weight, mass enhancement parameter from electron-phonon coupling
(λ) and the contributions to the bare susceptibility [χ0(q0)] are indicated, as extracted from
detailed analysis of temperature-dependent ARPES data discussed in Ref.170 Reproduced
with permission from Ref.170 Copyright 2012 American Physical Society.

show metallic temperature-dependence.171 With cooling, both systems transition first into a

charge density-wave state and then become superconducting below a transition temperature

of 7.3 K and ≈ 0.2 K, respectively. As such, they have generated intense interest as systems

in which to probe the co-existence or competition of superconductivity and charge-order.

ARPES has played a crucial role in such studies. Figure 16, for example, shows the evolution

of the Fermi surface of 2H-TaSe2 upon cooling through the CDW transition temperature.

2H-TaSe2 exhibits an incommensurate CDW at a temperature of 122 K, followed by a lock-in

transition to a commensurate 3× 3 CDW at 90 K.171 The multi-band nature of the normal-

state Fermi surface is immediately clear. Its momentum-space structure does not show

large parallel sections of the form that are often assumed to trigger a CDW transition via a
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Peierls-like mechanism. Yet, a clear and strong Fermi surface reconstruction is evident below

TCDW, with a momentum-space periodicity reflecting the 3 × 3 real-space ordering. There

has been extensive investigation into whether nesting hot spots can explain the origin of the

transition, with recent studies favoring a momentum-dependent electron-phonon coupling as

the key driver of the phase transition.172–175

The superconducting transition temperature of 2H-TaSe2 is too low to be accessible in

an ARPES experiment. In 2H-NbSe2, on the other hand, the superconducting transition

temperature is higher, but the CDW temperature is lower. The energy-scale of the corre-

sponding CDW gaps opened at the Fermi level is thus smaller than in TaSe2. In a tour de

force experiment performed at 1 K (which is at the lowest currently-available temperature

for performing ARPES), Rahn et al.170 were able to resolve the full momentum-space gap

structure of both the superconducting and CDW gaps and the k-dependent electron-phonon

coupling strength. A summary of their results, extracted from extensive temperature and

momentum-dependent ARPES investigations, is shown in Figure 16b. Of particular impor-

tance, these highlight a key role of momentum-space anisotropy: the CDW and supercon-

ductivity both lead to a gapping of the Fermi surface. It is evident from the upper panel in

Fig. 16b, however, that the CDW gap (the gaps that open of larger magnitude) is localised in

isolated momentum-space regions. This thus leaves most of the Fermi surface ‘available’ for

superconductivity, helping to explain the relatively high superconducting Tc in this system.

ARPES has also played a valuable role in helping to explain where systems deviate from

the expected chemical trends shown in Figure 14(b). For example, from the simple crystal

field arguments introduced above, the group-VII TMDs would be expected to be metallic.

In contrast, systems such as ReS2 and ReSe2 are known to be semiconductors. For these

material, the formation of Re-Re metal-metal bonds as discussed earlier leads to a distortion

of the 1T structure178,179 and formation of zigzag Re chains. ARPES measurements shown in

Figure 17a indicate the influence of this pronounced structural distortion on the electronic

structure.176,180,181 As well as becoming gapped, and thus semiconducting, the electronic
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structure now becomes strongly 2-fold symmetric. Quasi-1D dispersions reflect a much higher

probability of electron hopping along the Re-Re chain direction than between the chains.

This in turn, helps to explain the extremely anisotropic optical and electronic transport

properties of these systems.182,183

In the opposite sense, in the simplest picture, 1T group X systems such as PtSe2 and

PdTe2 should be non-metallic with a completely filled t2g band arising from the 5d6 con-

figuration. In contrast, as seen for PtSe2 in Figure 17c,d, dispersive states cross the Fermi

level.177 From comparison with DFT calculations, which show excellent agreement with the

measured electronic structure, these can be assigned as having dominantly Se 4p oribtal

character. There is strong hybridisation, but the transition-metal states do not play the ma-

jor role at the Fermi level; rather the nominally bonding and anti-bonding branches of the
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chalcogen p-states overlap, leading to a semi-metal state. While typically it is the transition-

metal d states of the TMDs which receive the most attention, the p-states can also thus play

an important role in the materials physics and chemistry of the TMDs, and we will return

to this point when discussing topological phases below.

5.2.2 Dimensional-crossovers

For the group-VI TMDs in the 2H polytype, the Fermi level sits in a gap of the crystal

field-split Mo/W d-electron states, between a′1 and e′ bands. As expected, these systems

are therefore semiconducting (Figure 14). However, they exhibit a particularly interesting

evolution of the band gap as a function of changing material thickness. In the bulk, they

are known to exhibit only weak photoluminescence, as a result of the indirect nature of

their fundamental band gap. A marked increase in luminescence efficiency is, however,

observed when they are thinned to a single layer (one MX2 unit) in thickness, which has

been attributed as resulting from a crossover to a band gap which is direct in momentum

space.149,184

ARPES can again give fundamental insights into the origins of this behaviour. Figure 18a

shows the measured electronic structure of bulk WSe2 along the Γ-K direction of the surface-

projected Brillouin zone (Brillouin zone centre to corner).60 The uppermost valence bands

have a multi-valley structure, with local maxima present at different locations in momentum

space. At the Brillouin zone corners (K and its time-reversed partner, K′), a pair of sharp

bands are visible, vertically shifted in energy by around 500 meV. Approaching the Brillouin

zone centre, these bands disperse towards each other, before evolving into another band

maximum at the Γ point, albeit with a spectral weight distribution in the ARPES which is

significantly broader than at the Brillouin zone corners. This reflects an intrinsic difference

in the dimensionality of the uppermost valence states at different locations throughout the

Brillouin zone, as evident in the DFT calculations also shown in Figure 18a. The states

at the zone corners show essentially no dispersion with changing value of the out-of-plane
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Figure 18: Thickness-dependent electronic structure of WSe2 and MoSe2. (a) ARPES mea-
surements of the bulk band dispersions of WSe2. The results of DFT calculations are also
shown on the left hand side, with each coloured line reflecting the calculated band dispersion
for a different value of the out-of-plane momentum. Adapted with permission from Ref.60

Copyright 2014 Springer Nature. (b) ARPES measurements of thin-film MoSe2 grown by
molecular-beam epitaxy, as a function of film thickness from 8 layer to monolayer (one ML
= one MoSe2 layer). (c) Corresponding second-derivative analysis of the data shown in
(b), better highlighting the band dispersions. (b,c) Adapted with permission from Ref.185

Copyright 2014 Springer Nature.

momentum (different coloured lines), and so can be considered as two-dimensional. The

states nearer to the zone centre, on the other hand, exhibit large changes in their corre-

sponding calculated band dispersion with changing out-of-plane momentum. This traces

back to a variation in orbital content of the bands throughout the Brillouin zone, with the

states at the zone corners largely derived from the in-plane 5d states of e
′

symmetry (dxy,

dx2−y2),
60 which thus have only weak interlayer hopping and thus limited dispersion. The

zone-centre states, on the other hand, derive from the orbitals whose lobes point out of the

MX2 plane (a1’ dz2) orbitals, thus promoting increased interlayer hopping and a strongly

three-dimensional character of the corresponding electronic states.

These effects also explain the broad appearance of the states at the zone centre in the

measured spectrum shown in Figure 18a. As diucssed above, due to the intrinsic surface
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sensitivity of photoemission, it has a poor resolution in the out-of-plane momentum direction,

thus leading to the broadening evident here for the electronic states which exhibit dispersion

in this direction (i.e. the three-dimensional states). Despite the poor kz resolution, insight on

the out-of-plane dispersions can still be obtained by performing measurements at different

photon energies (Section 2.3), where measurements at different photon energies probe a

Lorentzian distribution of kz values, but whose centre value varies with changing photon

energy. Exploiting this, the above conclusions of dimenisonality of the underlying states

have been validated explicitly, with photon-energy-dependent measurements indicating that

the states at the zone centre and strongly dispersive along kz, and are thus highly three-

dimensional, while those at the Brillouin zone corner exhibit essentially no out-of-plane

dispersion with changing photon energy.60 The latter thus give rise to sharp spectral features

as evident in Figure 18, as the poor out-of-plane resolution has no effect on states which do

not disperse in that direction.

The multiple band extrema, which are close-by in energy and formed from states with dif-

ferent effective electronic dimensionality, underpin the transition between indirect and direct

band gaps with reducing material thickness. In the bulk (Figure 18(a)), the band maximum

at the Γ-point is slightly higher than at the K-points, and thus the valence band maximum is

formed from the three-dimensional states at Γ, with the two-dimensional states at K forming

a secondary local maximum. A similar phenomenon occurs in the conduction bands, with

the conduction band minimum formed by more three-dimensional states, in this case located

away from a high-symmetry point, while two-dimensional states again form secondary band

extrema at the zone-corner K-points. As the material is thinned down towards the monolayer

limit, the states which are already strongly two-dimensional in character (and thus have their

electronic wavefunctions largely localised within single layers of the structure) will be only

little affected. The three-dimensional states, on the other hand, will experience a strong

quantum confinement effect, pushing their band edges to higher energy. This is evident in

measurements of thin MoSe2 films grown by molecular-beam epitaxy (Figure 18b,c, Ref.185).
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As the thickness is reduced, the states near to K remain largely unchanged. In contrast,

those at the Brillouin zone centre are pushed down in energy, with evident quantum well

state creation: instead of a continuum of states there, individual defined states are observed,

with a number corresponding to the number of MX2 layers.

A similar effect can be expected to occur for the conduction bands, again leaving the

lowest-energy states as the two-dimensional states at the K points. Together with the va-

lence band changes, this therefore drives the indirect-to-direct band gap crossover. To con-

firm that this is the case, however, it is necessary to also image the conduction band states.

Besides bulk doping of the system, there are three ways in which this can be achieved. Ex-

ploiting the surface sensitivity of photoemission, a chemical dopant can be added at the

surface, in order to dope the near-surface region of the material. This is commonly achieved

by the deposition of small quantities (sub-monolayer) of alkali-metal atoms at the surface.

Due to their low electronegativity, they will readily be ionized, donating their electrons into

the near-surface region and thus achieving a tuneable electron doping up to on the order of

1014 carriers/cm2 (e.g. Ref.186). In this way, the direct band gap of monolayer MoSe2 and

MoS2 thin films and exfoliated flakes have been confirmed via direct momentum-resolved

ARPES measurements,185,187 and modifications of the electronic structure, such as due to

carrier-mediated band-gap renormalization,186 have been observed. Care must be taken with

this approach, however. The surface alkali atoms act as scattering centres, broadening the

measured spectra. More importantly, they can intercalate into the material, form ordered su-

perstructures, and can induce surface band-bending potentials. While these processes can in

turn induce novel surface chemistry and physics,177,186,188,189 they can substantially compli-

cates the interpretation of such data. Certainly, extreme care must be taken in interpreting

the results of surface alkali-dosing as simply via a rigid shift of the chemical potential.

An alternative to chemical doping is photodoping. By illuminating the sample with

an ultra-short laser pulse of above band-gap radiation, carriers can be optically excited

across the band gap. ARPES measurements can then be performed with a second probe
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Figure 19: ARPES measurements with electrostatic gating. (a) Schematic of a 2D graphene
(left) and WSe2 (right) heterostructure devices used for the ARPES studies. (b) ARPES
measurements of the Dirac cone of graphene from the left device shown in (a), as a function
of applied gate voltage. (c) Measurements of 1 ML and 3 ML WSe2 under an applied gate
voltage of 3.35 V. Adapted with permission from Ref.194 Copyright 2019 Springer Nature.

pulse a short time later, before the photoexcited carriers have relaxed back to the valence

band, allowing access to transiently photodoped states with carrier concentrations on the

order of 1013 cm−2. While energy resolution is necessarily compromised as compared to

ARPES measurements of occupied states, such time-resolved ARPES measurements provide

much more than “just” a view of the nominally unoccupied band structure. By monitoring

the ARPES signal at various time delays, excited state dynamics can be followed with

momentum-space resolution,190–192 while carrier-induced band gap renormalization can be

probed as a function of time delay,193 with the photoemission itself providing a simultaneous

measure of the transient carrier population, electronic temperature and corresponding band

structure changes.

A final method has recently been developed, which employs ARPES measurements si-

multaneously with electrostatic gating of samples (Figure 19).194 Ambipolar doping has been

realised to date for graphene, while for monolayer TMDs, electrical injection of charge carri-
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ers into the conduction band has been achieved up to carrier concentrations of ca. 1013 cm−2.

This is comparable to the carrier densities achieved using optical pumping approaches, al-

though still around an order of magnitude lower than what can be achieved with surface

doping, although it arguably provides a cleaner tuning parameter. As shown in Figure 19b,

a clear electrostatic doping can be achieved using this method, while its application to few-

layer WSe2 provides another confirmation of the indirect-to-direct band gap crossover and

to carrier-mediated band gap renoramlization effects discussed above (Figure 19c), in a de-

vice geometry that is comparable to that employed for measurements using other techniques

(e.g. optical studies).194 While technically challenging, these measurements are now possible

thanks to recent advances in both spatial-focussing of the light spot for ARPES, as well as

the fabrication of device structures from exfoliated flakes. This provides an exciting oppor-

tunity for future studies of in operando devices, and for enabling direct comparisons between

ARPES measurements and other studies on the same device structures.

As well as tuning semiconducting properties, the collective states of TMDs can also be

expected to be sensitive to dimensional effects in the thin limit. Studies have, however,

proved controversial, with varying claims of strengthening or suppression of different corre-

lated orders, and the emergence of new ones, as samples transition from bulk to monolayer.

An interesting example is VSe2. Despite its layered nature, photon energy-dependent soft

X-ray ARPES measurements (Figure 20a) have successfully revealed a significant out-of-

plane dispersion of the dominantly V 3d-electron derived bulk Fermi surface, pointing to

significant interlayer hopping. In bulk form, VSe2 is known to host a weak-coupling charge

density wave order.197,198 The ordering wavevector is again three-dimensional, and has been

associated with a Fermi surface nesting, consistent with the three-dimensional character of

the bulk Fermi surface (Figure 20b). Such a Fermi surface nesting will necessarily be mod-

ified as the system is thinned to the monolayer limit, and its electronic structure becomes

strictly two-dimensional.

ARPES measurements of monolayer epitaxial VSe2 samples196,199,200 have shown how
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Figure 20: Soft X-ray ARPES measurements of bulk VSe2 showing (a) slices through the
bulk Fermi surface and (b) the Fermi surface evolution in the plane of the CDW vector, with
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measurements of MBE-grown monolayer VSe2 at 170 K (top) and 20 K (bottom), indicating
the opening of a CDW gap as shown via energy-distribution curves in (d), and with the
temperature-dependent gap in (e). (c-e) Aadapted with permission from Ref.196 Copyright
(2018) American Chemical Society.

the CDW order not only persists, but is in fact strengthened as compared to the bulk. Fig-

ure 20b shows temperature-dependent measurements indicating the opening of a CDW gap

at an enhanced transition temperature of 145 K, as compared to 110 K in the bulk.196 More

importantly, the energy gaps that open are considerably larger than in the bulk. Moreover,

momentum-resolved measurements show how they extend across the full Brillouin zone, driv-

ing a metal-insulator-like transition. The direct measurements of these energy gaps from the

ARPES allows one to estimate a value of 2∆/kBTc ∼10, which places the CDW in monolayer

VSe2 firmly in the strong-coupling limit. Volume-sensitive probes have claimed the presence

of a robust (room-temperature) ferromagnetic state in monolayer VSe2, triggering much at-

tention.201 This conclusion is not, however, supported by spectroscopic characterisation from

ARPES – which shows an evident lack of the exchange splitting which would be expected

to accompany such ferromagnetism. This conclusion is further supported by a lack of any
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X-ray magnetic circular dichroism, which is an elemental-specific probe of magnetism.196

Indeed, in contast to volumne-based studies, the spectroscopic studies indicates that ferro-

magnetism is not an intrinsic property of stoichiometric VSe2, although it can be induced

via proximity-coupling with a neighbouring ferromagnetic layer.202,203 These results points

to a particular advantage of ARPES and related surface-sensitive spectroscopic probes in

characterising the collective states of 2D materials, where bulk-sensitive probes can more

easily be complicated by extrinsic contamination effects in the substrate which dominate the

volume of the measured sample.

5.2.3 Spin-momentum locking

It is not only for putative magnetic systems that the electron spin plays a crucial role in gov-

erning the properties of TMDs. Indeed, a number of TMD materials host spin-split electronic

states, with the spin locked to the quasiparticle momentum, but with a momentum-space

texture that ensures the system remains overall non-magnetic, similar to the Rashba effects

discussed in Section 5.1.2. The visualisation of such momentum-dependent spin textures

inherently require a probe that is both spin- and momentum-space sensitive. Spin-resolved

ARPES provides exactly this capability, and as such has played a crucial role in uncovering

non-trivial spin textures in TMDs.

An intriguing example is a so-called spin-valley-layer locking.146 As evident in Figure 14a,

a single monolayer of the 2H-type TMDs possesses no centre of inversion symmetry. In such a

non-centrosymmetric environment, spin-orbit coupling will generically induce a momentum-

dependent lifting of the spin-degeneracy of electronic states. For the 4d and 5d transition-

metal based systems, spin-orbit coupling is strong, and significant effects can be expected.

Xiao et al.150 showed how this leads to a pronounced spin-splitting developing particularly

in the valence band states around the Brillouin zone corners in MoS2 and related group-IV

TMDs. At these points, symmetry constrains the spin polarisation to be aligned normal

to the monolayer, with a sign that reverses between neighbouring Brillouin zone corners
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Figure 21: (a) Schematic of spin-valley coupled band-edge electronic structure of monolayer
MoS2 and related group-IV TMDs. Reproduced with permission from Ref.150 (b) Spin-
resolved energy distribution curves measuring the out-of-plane component of the electron spin
at the K and K ′ points of bulk WSe2. (c) The corresponding out-of-plane spin polarisation is
shown together with the in-plane polarisation extracted from complementary measurements.
(b,c) Adapted with permission from Ref.60 Copyright 2014 Springer Nature.

(Figure 21a). This is termed a spin-valley locking, and is thought to underpin a host of novel

optoelectronic properties of monolayer TMDs, including a pronounced circular polarisation

of photoluminescence following photoexcitation,204,205 and a valley Hall effect controlled by

circularly polarised optical excitation.206

Bulk 2H TMDs recover centrosymmetry, with a centre of inversion located between neigh-

bouring MX2 monolayers which are stacked with 180◦ relative rotation. The conventional

expectation is that all spin-orbit driven spin splittings should vanish in this centrosym-

metric environment. Nonetheless, spin-resolved ARPES measurements revealed strongly
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spin-polarised valence band states in bulk 2H-WSe2 (Figure 21b).60 These measurements

revealed a spin structure equivalent to the spin-valley locking expected in monolayer MoS2-

type systems. Not only did this confirm the momentum-space spin texture characteristic of

a spin-valley locking, but additional photon energy-dependent measurements combined with

theoretical calculations indicated that the spin texture reverses from layer to layer in the

crystal, representing a rich intertwining of momentum and real-space spin structures via a

spin-valley-layer locking,146,207 and a novel route by which local inversion symmetry breaking

(i.e. at the level of the point group) is able to generate spin-split electronic states even for a

system with a centrosymmetric space group.208 The observation of such spin-polarised elec-

tronic states by ARPES exploits the extreme surface sensitivity of the technique, allowing

it to be most sensitive to the topmost layer-localised spin structure. Subsequent measure-

ments have utilised this effect to probe the influence of spin-valley coupling on intervalley

relaxation effects using pump-probe ARPES,191 have shown that such spin-valley coupling

can be observed in the monolayer limit,,209 and have shown that a similar spin-valley locking

is present in the Fermi surface sheets of the group V metals,210 where it underpins the sta-

bilisation of an unusual so-called Ising superconducting state which is remarkably resiliant

against application of in-plane magnetic fields.211

As discussed in more detail in Section 5.1.1, momentum-dependent spin textures are also

a characteristic signature of non-trivial topological order via the formation of spin-helical

Dirac cone surface states. A rather general route for generating such states was found for

the 1T and 2H family of TMDs,155,212 as shown in Figure 22. The chalcogen sites of the

TMDs experience a trigonal crystal field. This splits their p-orbital energy levels into a pz

state and a px/y doublet, which is further split by spin-orbit coupling. As there are two atoms

per MX2 unit, bonding and anti-bonding combinations are formed, allowing the possibility

to generate even and odd-parity states. The pz states have their lobes pointing between

the layers, and so naturally experience higher inter-layer hopping than for the px/z states,

leading to a larger out-of-plane dispersion of the pz-derived states. Consequently, as long
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Figure 22: (a) Schematic of influence of bonding, crystal field splitting, spin-orbit coupling
and out-of-plane dispersion of p-orbital states in TMDs, showing the formation of protected
bulk Dirac points and topologically non-trivial inverted band gaps. Reproduced with per-
mission from Ref.212 (b) ARPES measurements and (c) corresponding supercell calculations
from density-functional theory of the occupied electronic structure of PdTe2, showing the
formation of topological surface states within the invertd band gap, and the formation of a
bulk Dirac cone (see inset). (d,e) Spin-resolved EDCs measured along the cuts indicated in
(b), showing the spin texture characteristic of a ladder of topological surface states. (b-d)
Adapted with permission from Ref.155 Copyright 2017 Springer Nature.

as the interlayer hopping is larger than the crystal-field splitting, the pz-derived states will

cross through the px/y pair as a function of out-of-plane momentum.

Photon energy-dependent ARPES measurements have shown how some of these crossings

remain protected, forming three-dimensional bulk Dirac cones, while others hybridise, gener-

ating parity-inverted band gaps which host topological surface states and surface resonances

.155,212–220 An example of this is shown for PdTe2 in Figure 22b), where the above ladder of

topological states is found, in good agreement with density-functional calculations (e.g. Fig-

ure 22c). Spin-resolved ARPES has been utilised to probe the spin texture of the resulting

surface states, to confirm its topological origin (Figure 22d) and to disentangle the complex

surface electronic structure of these systems. This mechanism has been shown to be generic

to the 2H and 1T TMDs,155 and has been experimentally observed in at least 8 separate

TMDs to date. This therefore represents a particularly flexible material system in which to

probe topological physics, and to probe the interplay with the wide variety of other orders
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Figure 23: (a)Schematic of focused laser µ-ARPES setup and (b) real-space µ-ARPES inten-
sity map (scale bar: 100 µm). (c,d) µ-ARPES measurements and extracted band dispersions
(left) and DFT calculations (right) of monolyaer (c) and bilayer (d) 1T’-WTe2. Adapted with
permission from Ref.221 Copyright (2019) American Chemical Society.

which this materials family hosts. Their discovery again reflects the power of utilising the

momentum-space and spin- sensitive probe of ARPES together with state-of-the-art density

functional theory in order to disentangle the underlying origins of the topological behaviour

in solids, and the possibilities to gain chemical control over this.

As well as for the 2H and 1T TMDs, the distorted 1T’ structures have been intensely in-

vestigated for their topological properties, as potential hosts of Weyl fermions with so-called

type-II Weyl points.154 Their electronic structure is predicted to show a strong evolution with

materials thickness. Thin-film samples have been investigated by ARPES using a combined
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MBE-ARPES approach,222 but suffer from the occurrence of multiple structural domains

with different orientations within the probing light spot area. Cucchi et al.221 have recently

demonstrated a focussed laser approach, where they are able to resolve separately the elec-

tronic states corresponding to bilayer and monolayer patches of exfoliated and encapsulated

flakes of 1T’-WTe2 (Figure 23). A clear transition is observed from a gapped state in the

monolayer (with weak occupation of the bottom of the conduction band), to a system with

negligible band gap but band splittings characteristic of Rashba-type interactions, repre-

senting a broken inversion symmetry, in the bilayer. Crucially, the observation of such fine

features, particularly around the Fermi level, rely both on the preparation of high-quality

samples with suitable encapsulation, but also the high energy and momentum resolutions

afforded by laser-based µ-ARPES as compared to synchrotron-based approahces for nano-

ARPES. While this is accompanied by limited momentum-space range and poorer spatial

resolution than can be achieved at synchrotrons, such laser-based approaches are likely to

find increasing application in the study of mesoscale systems in the coming years, and to be

expanded to enable, e.g., spin-resolved or time-resolved measurements to also be performed

from small sample regions.

5.3 Transition metal Oxides

Transition metal oxides (TMOs) are a challenge for both chemistry and physics.223–225 Their

extemely rich phase diagrams span across a wide spectrum of magnetic and electronic prop-

erties, and the comparable energy scale of their bandwidth with electron correlations make

them ideal systems to explore the new landscape of quantum material ‘properties on demand’

via advanced parameters of growth (e.g. doping, heterostructures, strain) and methods of

synthesis.226–228 Quantum properties provide many opportunities to engineer unprecedented

electronic states in TMOs, and may lead to novel properties and functionalities. Unravelling

what ultimately drives the electronic and magnetic properties in TMOs is strictly linked to

a direct and detailed measurement of the electronic energy distribution of the metal orbitals.
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Figure 24: Crystal structure of cubic and layered perovskite TMOs. (a) Cubic ABO3 sys-
tems, comprised of alternating stacks of (b) AO and BO2 planes. (c) In the layered A2BO4

structure, perovskite ABO3 blocks are separated by rocksalt AO blocks, with weak bonds be-
tween neighbouring AO planes making this a natural cleavage plane, rendering such systems
particularly suitable for ARPES measurements.

Here PES plays an important role, being (i) a local probe sensitive to the atom environ-

ment, (ii) able to resolve different oxidation states and (iii) able to disentangle and to follow

vs external parameters (e.g. temperature) the presence of mixed valence and electronic

correlation.18,27,229,230

Some of the most common TMOs are based around the parent crystal structure of strictly

cubic ABO3 perovskites (space group Pm−3m), shown in Figure 24. The B cations are 6-

coordinate with the neighbouring oxygen atoms in an octahedral arrangement, while the

larger A cations are 12-coordinate. The structure can alternatively be described in terms of

alternating. BO2 and AO layers. The valencies of A and B, VA and VB, must satisfy a sum

rule VA+VB = 6. When VA = 2 and VB = 4 the AO and BO2 layers are each charge neutral.

Layered perovskite variants exist. For example, the so-called single-layered compound of

general formula A2BO4 involve a layer sequence (AO)(AO)(BO2)(AO)(AO)(BO2) etc., while

intermediate Ruddleston-Popper phases involve both (AO)(AO) bilayers and (AO) monolay-
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ers, thus giving a rich structural diversity. Both distortions or tilting of the octahedron often

occurs, leading to an almost limitless phase diagram with a large number of physical and

chemical properties, spanning from the well known high Tc superconductivity in cuprates

and giant magnetoresistance in manganites to multiferroicity.

The geometrical arrangement, the occupancy of the transition metal 3d orbitals and their

hybridization (or Coulomb repulsion) with p electronic states of oxygen are the main reason

of their diversity. Consequently, the last two decades have seen a huge amount of research

devoted to perovskite-based TMOs, where the limit of the most advanced growth techniques

was pushed forward in producing heterostructures with specific properties. Both characteri-

zation and theoretical analysis were challenged by the two extrema of interpretation: on the

one hand the so called ’ionic-limit’, where hybridization is not considered , and on the other

hand the number of electrons involved in the band and the ability of electrons to travel in

the solid. Photoemission probes the excited state of a solid, i..e the solid in presence of a

hole, and collective effects has been of paramount importance in the understanding of the

complex physics of TMOs, where both cations and anions in their ground state may have

very different valence from their formal oxidation state. A general approach to this area is

provided by the Zaanen, Allen, Sawatzky model, which provides a basis for distinguishing

between metallic and non metallic transition metal perovskites oxides.231,232

5.3.1 In-gap and extended states at Ef

Looking at catalytic properties, the large diversity of observation in TMOs can be often

explained in terms of the behavior of photoexcited carriers both in the bulk and at the surface

of these materials.233–236 In particular the role of oxygen vacancies has been strongly debated

in the last decade.40,45,46,237 In fact, important changes in the electronic structure have been

observed as induced by the chemical doping arising from the formation of oxygen vacancies;

an oxygen vacancy can act as a two electron donor and effects such as the formation of in-gap

defect states, electron accumulation and surface band bending have been linked to vacancies.
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A further relevant observation often found at the surface of TMOs with a large band gap (or

at their interface with other TMOs) is that the introduction of carriers into localized energy

levels within the band gap (e.g. by oxygen vacancies and/or cation off-stoichiometry) often

produces both the stabilization of a dispersive bi-dimensional electron gas (2DEG) at the

surfaces, and the formation of localized non-dispersive states, so called ‘defect’ in-gap (IG)

states.39,45,48,238–241 Starting from the first observation of 2DEG at the LAO/STO interface

and at STO single crystals, a rich variety of such states have been reported both in parent

materials and in engineered heterostructures.47,48,242 Different behavior and character are

found: some analyses reveal that in STO these states are deep-level traps associated with

defects resulting from interstitial oxygen suggesting defect interconversion,41 while other

reports highlight in LAO/STO the importance of acceptors and donors states as well as the

difference between crystalline and amorphous systems.238 It has been now made clear, both

theoretically and experimentally, that understanding and controlling the behavior of oxygen

vacancies and excess electrons is essential to improve performances for future applications.

It is important to mention that the use of tuneable synchrotron radiation in combination

with ARPES provides a valuable tool for disentangling the electronic contribution in the

valence band of oxides. By using resonant PES in the valence band, i.e., measuring the

valence band PES of a system while varying the photon energy across an absorption edge, one

is able to obtain not only information about atoms with a localized vs. delocalized electronic

character, but also to discriminate two oxidation state in the same atomic species, in the

case of mixed valence compounds, i.e. obtain site-selective information.46,243–245 In recent

years, soft X-ray ARPES and resonant ARPES have been developed at large scale facilities;

thanks to the increased flux and energy resolution of modern beamlines, identification of both

itinerant and localized character in TMOs and analysis of buried interface have been possible.

We refer the reader to detailed review papers and books on these specific experimental

methodologies.244

64



)z
(

25 20 15 10 5 0
TiO2 layer

–0.25

–0.20

–0.15

–0.10

–0.05

0.00

E–
E F

 
)Ve(

–0.4 –0.2 0.0 0.2 0.4

k|| (Å–1)

Min

Max

[11][10]

EF

25 20 15 10 5 0
TiO2 layer

–0.2

–0.1

0.0
V(z) (eV)

)z
(

dxz/yz-derived subbands
(out of plane orbitals)

dxy-derived subbands
(in-plane orbitals)

Figure 25: (a) Measured surface electronic structure of a 2DEG formed on the (001) sur-
face of SrTiO3. Reproduced with permission from Ref.246 Copyright 2015 Wiley-VCH. (b)
Corresponding self-consistent tight-binding supercell calculation. The spatial dependence of
the subband wavefunctions along the confinement direction, Ψ(z), reveal a pronounced real-
space orbital ordering as a direct consequence of near-surface band bending (potential shown
in (c)). (b,c) reproduced with permission from Ref.247 Copyright 2014 Springer Nature.

5.3.2 SrTiO3

Due to the surface sensitivity of ARPES, studying the buried 2DEG at the LAO/STO in-

terface is challenging. There have been several pioneering reports, in particular exploiting

resonant enhancement of photoemission from the Ti 3d-orbital states to make it possible to

probe the 2DEG and in-gap states below the LAO top layer.248,249 In addition, the discovery

that the 2DEG can also be formed at the bare SrTiO3 surface,250,251 has also opened possibil-

ities for high-resolution measurements of the electronic structure of the SrTiO3 2DEG states.

Figure 25a shows ARPES measurements of the 2DEG states in a high carrier-density 2DEG

induced by oxygen vacancy creation at a cleaved SrTiO3 surface, with the oxygen vacancies

induced by exposure to the synchrotron beam. Several points of note are immediately ob-

vious from inspection of the measured dispersion. First, multiple electronic states can be

resolved, separated in energy. Secondly, states of very different effective masses are observed,

with ladders of light bands having relatively large bandwidths, and an additional state with

much heavier effective mass being located closer to the Fermi level. All of these features can
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be attributed to the effects of quantum confinement in the near-surface quantum well which

defines the 2DEG (Figure 25c). In a nominal d0 configuration, the unoccupied conduction

band of stoichiometric SrTiO3 is composed of Ti d-orbitals. Apart from very small energetic

splittings due to spin-orbit coupling and the effects of a tetragonal structural distortion, the

three t2g orbitals (dxy, dxz, dyz) are degenerate at the bottom of the conduction band in bulk

SrTiO3. However, when subjected to a near-surface band bending, the states corresponding

to dxz and dyz orbitals whose lobes point out of the plane (i.e. along the confinement direc-

tion) “feel” the effects of the confining potential most pronouncedly, being pushed upwards

in energy relative to the in-plane dxy orbitals (Figure 25b). In contrast, the dxy-derived

states “sit down” in the resulting quantum well, leading to a set of subband states that are

reminiscent of the ladder of quantum well states familiar from semiconductor quantum wells.

The result is a creation of an effective orbital ordering with respect to the bulk system, and

the formation of the complex multi-subband structure of both heavy and light states shown

in Figure 25.

ARPES has been used to identify the orbital character of these states from intensity dif-

ferences arising from transition-matrix element variations when measured using light linearly

polarized in both vertical and horizontal planes,250 finding orbital assignments in line with

the above considerations. Moreover, the ARPES band structure gives a direct measure of

the near-surface carrier density from the area of the corresponding Fermi surfaces; a quan-

tity which is challenging to determine from other measurements given the surface-localised

and multi-band nature of this system, and allows correlating the changes in higher-energy

features (in particular a shift of the valence band to higher energies and the development

of in-gap states) with the formation of the 2DEG states at the Fermi level. This has been

exploited to probe the underlying origin of the 2DEG observed at the surface of SrTiO3.

In particular, with exposure to atomic oxygen, the valence band was observed to shift back

to lower binding energies, the in-gap states to be largely quenched, and the 2DEG states

to vanish. This indicates that the origin of the surface 2DEG is indeed the creation of
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Figure 26: (a) ARPES measurements as a function of increasing surface carrier density of
the surface 2DEG of SrTiO3. (b) Corresponding energy distribution curves showing the
evolution of a satellite structure indicative of polaron formation. (c) Extracted effective
mass and quasiparticle-residue extracted from the ARPES measurements, overlaid on a
schematic phasse diagram of the LAO/STO interface 2DEG system. All panels adapted
with permission from Ref.254 Copyright 2016 Springer Nature.

oxygen vacancies, largely induced by exposure to the synchrotron beam during the ARPES

experiment.246,251–253

Beyond simply identifying the basic band structure of the SrTiO3 2DEG, however,

ARPES also provides valuable insights into the nature of electronic interactions in the result-

ing electron liquid. Already in Figure 25a, a decrease in the slope of the rapidly dispersing

states is evident in the vicinity of the Fermi level (a so-called “kink” in the dispersion). Quan-

titative analysis247 has shown that this arises due to a moderately-strong electron-phonon

coupling. Interestingly, the strength and nature of the electron-phonon coupling changes

markedly with varying carrier density of the 2DEG states.254,255 In the low carrier density

limit (i.e. for 2DEG states corresponding to a smaller surface carrier density), a pronounced

satellite structure is observed in the measured electronic structure (Figure 26a,b, composed

of replica bands separated from the lowest-energy band with a spacing of 100 meV.254–256

This is equal to the longitudinal optical phonon mode frequency, and the form of the satellite

structure indicates the formation of polarons driven by a long-range Fröhlich coupling to a

single phonon mode. Similar replica features have been observed in other transition-metal
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oxides including Sr2TiO4,
257 TiO2,

258 and EuO,259 indicating that they are a likely a generic

feature of lightly-doped polar oxides. With increasing carrier density, the preferential cou-

pling to the single LO mode becomes weaker, and the electron-phonon coupling thus becomes

weaker and more short-ranged, leading to the loss of the defined satellites, and the emergence

of the near-EF “kink” structure disucssed above (Figure 26a,b). First-principles calculations

including electron-phonon coupling have shown how this occurs due to increased screening of

the long-range electron-phonon interaction as the plasma frequencuy becomes greater than

the mode energy of the LO phonon with increasing doping.260 Additional experiments and

calculations on doped EuO have also identified how polaron features can arise due to cou-

pling of the free charge carriers with the plasmon modes of the electron gas themselves,259

and it seems likely that similar features may also be present for the SrTiO3 2DEG, although

they have not been resolved to date.

The determination of the role of these many-body effects on the electronic structure of

the 2DEG provides important insights for interpreting the origin of other physical properties

of the interacting electron system. For example, the 2DEG at the STO/LAO interface is

known to exhibit a dome of superconductivity with increasing carrier doping. Quantita-

tive extraction of the effective mass and quasiparticle residue, encoding the strength of the

electron-phonon coupling, from the measured ARPES data of the surface 2DEG of SrTiO3

are shown in Figure 26. They highlight how the polaronic regime may be intricately con-

nected to the occurance of superconductivity, and highlight how the complex evolution of

electron-phonon coupling with carrier doping in this system may play a key role in controlling

the doping-dependent phase diagram of this system.

5.3.3 Anatase TiO2

A related system, titanium dioxide TiO2, has three main polymorphs, namely rutile, anatase

and brookite, and has aroused ongoing interest over many years as a photocatalyst, in pro-

cesses such as water splitting.236,261,262 In the specific case of anatase TiO2, an insulator
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with a 3.2 eV band-gap, one again observes under specific conditions of growth and/or pho-

toirradiation the presence of both non-dispersive in-gap states (IG) as well as dispersive

2DEG electronic states near the Fermi level.39,45,238 A number of issues remain to be re-

solved, including the relationship between the 2DEG and localised IG states and how best

to control their formation and quenching. PES and ARPES give important information on

these matters. Figure 27 summarizes the electronic properties along the Γ - X direction of

the surface projected Brillouin zone (BZ) for an optimal anatase (001) film. Dispersive and

sharp features are detected in the valence band from 4 eV to 8 eV binding energies (right

panel ), consistent with the 3.2 eV energy band gap value expected. Nevertheless, addi-

tional spectral weight is present within the energy gap, as clearly shown by the zoom of the

integrated DOS and by the corresponding ARPES spectrum (top-left ). Two features are

readily identified: the broad, non-dispersive, IG state located at EB 1.6 eV and a dispersive

metallic 2DEG reaching the Fermi energy. Panel (c) in Figure 27 displays the parabolic

dispersion of the 2DEG as measured in the 2nd BZ. In this case, no suppression of intensity

due to symmetry rules is observed (see Figure 4 and Appendix A). An inner replica, arising

from lateral confinements of a surface reconstruction, is also visible.46 The parabolic fit of

the two metallic states is also reported as red-dashed lines on the left-side of the ARPES

spectrum.

A further interesting aspect is the connection (or not) between IG and 2DEG: while in

SrTiO3, oxygen vacancies provide electrons to both the IG and 2DEG states, the different

reactivity of specific oxygen sites (surface or subsurface) may lead to 2DEG formation with

negligible amount of localized IG-states, or stabilization of IG-states alone.39,238 In the case

of TiO2, one observes variation of the energy position and an evolution vs. annealing tem-

perature. Valence band PES spectra in Figure 28 show that IG states significantly change

as a function of the substrate used for the growth, a behavior often found in other large

band gap TMOs.239 The stabilisation of the 2DEG dispersive state is however not affected

by the overall structure, as one observes the presence of states close to the Fermi energy
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Figure 27: ARPES band dispersion of an optimised anatase TiO2/LaNiO3/LaAlO3 thin
film. Spectra have been acquired at hv= 46 eV and horizontal polarisation. a): valence
band density of states (DOS); inset: zoom ( 65 times) of the zone close to the Fermi level,
showing the localised IG and the metallic 2DEG. Panel b), ARPES spectra of panle a):
the non-dispersive IG state corresponds to the flat broad states locate between 1 eV and
2 eV of binding energies. Conversely, the 2DEG is characterised by parabolic electron-like
dispersion obeying t2g symmetry. c) the parabolic dispersion of the 2DEG as measured in
the 2nd BZ. The parabolic fit of the two metallic states is also reported as red-dashed lines
on the left-side.

irrespective of the specific substrate, albeit the sharpest peak is measured for the sample

grown with minimum lattice mismatch (i.e. LaAlO3 ). In general, defect states created by

oxygen vacancies as IG and 2DEG may have different electronic character, and also in TiO2

such difference may be highlighted by resonant-ARPES. Angular resolved resonant ARPES

experiments reveal that 2DEG features and non-dispersive states located at 1 ev of BE res-

onate at different photon energies, corresponding respectively to eg and Ti3+ sites:39,263,264

this suggests that only the latter state is strongly localized in correspondence of oxygen

vacancies and can be considered an impurity state.238,265
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Figure 28: Photoemission Spectra of the DOS in the vicinity of the Fermi level for TiO2

anatase films grown on different substrates, measured at hv = 46 eV . The energy position
of the IG states varies and the fine structure of the 2DEG is revealed, as marked by the
arrows.

5.3.4 Metallic oxides

The previous sections discussed studies of nominally insulating three-dimensional oxides,

where metallic two-dimensional states were created at their surfaces. ARPES has also found

extensive application in the study of bulk oxide metals with a quasi-two-dimensional lay-

ered structure. Perhaps most famously, it has been instrumental in establishing the Fermi-

ology, superconducting gap structure, and doping-dependent phase diagrams of the high-

temperature cuprate superconductors. As extensive reviews have been written on this topic

(e.g. Refs.14,266–268) we do not treat this further here. We will, however, discuss here a

different layered oxide, Sr2RuO4, which has served as a benchmark material for establishing

the validity of photoemission as a bona fide probe of the interacting electronic structures of

solids.

Sr2RuO4 is a textbook Fermi liquid below T ≈ 25 K,269 with quantum oscillation mea-

surements indicating substantial effective mass enhancements as a result of electronic correla-

tions,269,270 while it has been extensively investigated as a putative unconventional supercon-

ductor.271,272 Despite a pronounced surface reconstruction complicating the interpretation of

photoemission spectra from pristine samples, it has now been firmly established that surface

treatments can be utilised to suppress ARPES intensity coming from the surface states, with

the spectra instead dominated by the bulk states.273

Figure 29a shows the Fermi surface as measured in a recent laser-ARPES experiment,
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Figure 29: Laser-ARPES measurements of Sr2RuO4.
274 (a) Fermi surface and (b) dispersions

measured along high-symmetry directions (see inset). (c) Extracted dispersions for θ = 0,
and illustration of the procedure to extract the real part of the complex self-energy in the
band basis. (d) Corresponding real part of the self energy extracted from several such cuts at
different angles around the Brillouin zone, and transformed to the orbital basis as described
in Ref.274 All panels reproduced with permission from Ref.274 under a Creative Commons
Attribution 4.0 International License.

utilising a latest-generation 11 eV light source. Profiting from the low photon energy, an

excellent momentum resolution is evident, allowing an extremely clear measurement of the

Fermi surface of Sr2RuO4. It is predominantly derived from the three t2g orbitals of the Ru 4d

electrons, from the RuO2 plane of this layered perovskite system (see Figure 24(b)).275 The

dxy orbitals contribute a nearly circular Fermi surface pocket, while the dxz and dyz orbitals

lead to quasi-one-dimensional Fermi surface sheets, reflecting their real-space anisotropy.

Pronounced spin-orbit coupling leads to substantial orbital mixing, and the opening of hy-

bridisation gaps along the Brillouin zone diagonals (Figure 29a).276

Several ARPES studies to date have observed effective mass enhancements for Sr2RuO4,

consistent with the findings of quantum oscillations.269,270,273,274,277–282 A particularly detailed

study was carried out in Ref.274 As evident in Figure 29b, an increased spectral broadening

(indicating a reduced lifetime, see Section 2.3) is evident in the measured dispersions with

increasing binding energy. This is a characteristic spectral signature of electron-electron

interactions, and occurs in tandem with the reduction of the Fermi velocity discussed above.

The quasiparticle renormalization, as referenced to the non-interacting band structure, and
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the decrease of the lifetime are encoded in a complex self-energy (Eqn. 5). This self-energy

can be extracted from high-resolution measurements of the form shown here, albeit with

some calculations of, or assumptions for, the hypothetical non-interacting “bare” band. This

procedure is shown for the real part of the self energy in Figure 29c. This analysis procedure

thus provides direct insight into the nature and strength of the electronic interactions in the

solid. Intriguingly, the self-energy extracted in this way was shown to have a strongly varying

magnitude for different cuts throughout the Brillouin zone.274 This might naively suggest a

strong momentum-dependence to the interaction. Nonetheless, recasting the extracted self-

energy from the band basis to the orbital basis, accounting for the variable orbital mixing

around the Fermi surface discussed above, the extracted self energies at all momenta collapse

onto single orbital-specific curves (Figure 29d).274 This important result indicates that the

self energies are in fact local in the orbital basis in Sr2RuO4, validating, at least for this

model system, an assumption of k-independent self energies that is often applied in the

analysis of photoemission data.

The multi-band nature of Sr2RuO4 has further rendered it an attractive candidate for

tuning its electronic properties and many-body interactions via chemical and pressure con-

trol, with ARPES providing valuable feedback to the efficacy of each method. Of particular

interest is a saddle-point in the γ-band electronic structure, located at the M point of the

Brillouin zone. Driving this van Hove singularity, with its large peak in the electronic den-

sity of states, to the Fermi level can be expected to have substantial consequences for the

many-body interactions and the electronic phases of this system.283

As shown in Figure 30a(i), the top of the hole-like dispersion along Γ-M, which marks

the location of the van Hove singularity, is located above EF. As ARPES is a filled-state

spectroscopy, the top of the band is not visible in measurements performed at low temper-

ature. However, it is possible to utilise thermal population of states above the chemical

potential. Figure 30a(ii) shows equivalent measurements performed at a temperature of

100 K, with the measured spectra divided by the Fermi-Dirac distribution function for this
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Figure 30: (a) (i) ARPES dispersion of Sr2RuO4 along the Γ-M direction, showing the
γ band in the vicinity of the Brillouin zone boundary. A van Hove sigularity is located
14 meV above the Fermi level, and is visible in ARPES measuremements performed at
elevated temperature (ii). The chemical potential is moved through this van Hove singularity
with increasing La doping, as evident in (iii) and (iv). Reproduced with permission from
Ref.284 (b) Fermi surface of Sr2RuO4 and Ba2RuO4 epitaxial thin films grown on SrTiO3

and GdScO3 substrates, showing the traversing of the van Hove singularity with increasing
in-plane lattice constant, evident as change in topology of the Fermi surface. Adapted with
permission from Ref.282 (c) Fermi surface of bulk Sr2RuO4 subject to a uniaxial stress along
[100] applied using the device shown at the top, leading to an anisotropic strain of 0.7%. The
van Hove singularity has now been traversed along the ky direction, while the bands have
been pushed downwards further below the Fermi level along kx, leading to a pronounced
two-fold symmetry in the Fermi surface. Adapted with permission from Ref.285 under a
Creative Commons Attribution 4.0 International License.

elevated temperature. In this way, it becomes possible to observe the band top along this

direction, and via this, to locate the van Hove singularity in Sr2RuO4 at 14 meV above the

Fermi level.284 This is close enough to EF to be accessible via chemical doping, where again

ARPES can be used to track the evolution of the position of the van Hove singularity. Fig-

ure 30a(iii,iv) shows that a substitution of La for Sr leads to the expected electron doping,
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with detailed analysis showing that this leads to an effective rigid band shift.284 A composi-

tion of Sr1.82La0.18RuO4 brings the van Hove singularity very close to the Fermi level (solid

line in Figure 30a(iii), while the van Hove singularity is clearly pushed below the Fermi level

for a composition of Sr1.73La0.27RuO4, accompanied by a topological change of the γ Fermi

surface from electron-like to hole-like.284

A similar change in the Fermi surface topology can be observed in Figure 30b, where

epitaxial strain is employed as the tuning parameter.282 For Sr2RuO4 coherently strained to

a SrTiO3 substrate (applying tensile strain), the γ Fermi surface sheets are now much closer

to touching at the Brillouin zone boundary than for bulk Sr2RuO4 (Figure 29a), indicating

the closer proximity of the van Hove singularity to the Fermi level. With additional chemical

pressure from the replacement of Sr with Ba, the van Hove singularity is moved just below

the Fermi level, while additional epitaxial strain induced by a GdScO3 substrate makes the

Lifshitz transition clear, with hole-like γ Fermi surfaces now located around the Brillouin

zone corners. This is a clear indication of the power of thin-film growth approaches for

tuning the electronic structure of complex oxides, and of the benefit of combining these with

in situ ARPES capabilities to provide direct spectroscopic feedback of the evolution of the

electronic structure and quantum many-body interactions.282,286–288

As a final method for tuning the electronic structure of Sr2RuO4, we show in Figure 30c

Fermi surface measurements of a sample subject to a uniaxial stress. Achieving large uniaxial

strains in single-crystal samples, within the size and vacuum constraints of a typical photoe-

mission experiment, is technically challenging. Nonetheless, several spring- and piezo-based

sample rigs have been developed to allow detwinning of multi-domain samples, which have

been extensively used to study the electronic structure of Fe-based supreconductors.289–292

Recently, several sample rigs have also been developed, based on mechanical actuation or dif-

ferential thermal contraction of components on the sample plate, in order to apply large and

tuneable uniaxial stress to single-crystal samples, in a geometry that leaves optical access to

the sample and is suitable for performing high-resolution ARPES experiments.285,293,294 One
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such device (Figure 30c) has recently been applied to study the uniaxial strain-evolution of

the electronic structure of Sr2RuO4.
285 Uniaxial strain is a particularly clean tuning param-

eter, and has been shown to lead to a remarkable increase (by more than factor of two) and

peak in the superconducting transition temperature of Sr2RuO4.
283 ARPES measurements,

performed with a uniaxial strain, εxx − εyy as high as -0.7%, allow tracking the change in

Fermiology that underpins this. Figure 30c shows that the Fermi surface has again under-

gone a Lifshitz transition as compared to unstrained Sr2RuO4, with a van Hove singularity

moving below the Fermi level. Now, however, this occurs only for the direction correspond-

ing to induced tensile strain, while the γ sheet Fermi surface moves further away from the

Brillouin zone boundary for the direction corresponding to applied compressive strain, indi-

cating that the van Hove singularity moves further above the Fermi level for this direction.

The Fermi surface thus develops a pronounced two-fold symmetry. Quantitative comparison

with strain-driven evolution of the electronic structure shows some pronounced discrepancies

with the predictions of first-principles calculations in the vicinity of the Lifshitz transition,

indicating a possible changing role of many-body interactions as the van Hove singularity

is approached.285 Such studies of strain-driven changes in electronic structure are in their

infancy, and we would expect more elaborate strain-ARPES approaches to be developed over

the coming years. These can be expected to provide powerful insights on how externally-

applied, as well as epitaxially-induced strain, manipulate the many-body states and phases

of quantum materials.

6 Future directions and technical challenges

As already evident from some of the results presented above, recent technological develop-

ments have continued to expand the range of applicability of ARPES and the information

that can be obtained. Here, we briefly summarise some of these developments and the

opportunities and challenges for exploiting them in future.
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6.1 Micro and Nano-ARPES

Traditionally, ARPES measurements are performed by illuminating the sample with a spot

of typical dimensions from ca. 50 µm to ca. 1 mm, depending on the setup. This means that

the information obtained reflects a spatial average over relatively large length scales. There

has been increased interest in focussing the light spot used for photoemission, which can then

be scanned across the sample in order to provide real-space selectivity. The result is a form of

spectro-microscopy, where (AR)PES measurements provide a powerful contrast mechanism.

This has found increasingly widespread use, from studies of electronically-inhomogeneous

phases295 through to the investigation of materials with limited spatial dimensions (e.g.

exfoliated flakes of transition-metal dichalcogenides - see Figures 19 and 23). Current ap-

proaches have reached sub-µm spatial resolution.

The ongoing technical development of synchrotron storage rings, including many planned

future upgrades worldwide, have targeted so-called diffraction-limited performances, where

the increased brightness due to the reduction of the source dimension, among other specific

advantages, will allow optimization of extremely focused radiation.296 Although the useful

flux for ARPES experiment is intrinsically limited by so-called space charge effects (arising

from the Coulomb repulsion between the photoemitted electrons), a small spot will bring

significant advantages in effective energy and angular resolution, and one may expect spectro-

microscopy will be routinely used to monitor the evolution of size dependent phenomena

and nanostructures, as e.g. embedded nanoparticles, photosensitive reactions and catalytic

effects, multi and stripe-phase orders.

As a function of the achieved spot at the sample position, different technical solutions have

been adopted, leading to micro-ARPES and nano-ARPES spectro-microscopy,297 both of

them building on specific requirements of optic elements. Looking at the more representative

approaches, the field of spectro-microscopy at synchrotron radiation beamlines has been

initiated by the pioneering work of Kirkpatrick and Baez,298 where a geometrical tandem

arrangement of two toroidal mirrors is used to obtain typically a few micron of focal spot.
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The drawback of this approach when applied to ARPES is the unpractical short distance (in

the range of some cm) between the optics (and their mechanical supports and kinematics)

and the sample.

Submicrometric spot size is also achievable with the use of Schwarzschild objectives, a

reflective microscope objective optimized for high reflectivity.299 Although well adapted to

ARPES setups, such approach suffers the lack of photon energy tuneability. Thanks to the

increased brilliance of sources and in perspective of future upgrades of synchrotron radia-

tion facilities, the dimension of the spot at the sample position is expected to scale down

to the nm range by the use of special diffractive objectives, the zone plates, in combination

with dedicated focusing mirrors and miniaturization efforts.297 When highest transmission

and a somehow relaxed spatial resolution (on the order of hundreds of nm to a few mi-

crons) are needed, a recent complementary approach has been demonstrated by the use

of capillary optics, typically based on ellipsoidal coated mirrors.300 Important examples of

spectro-microscopy setups have not only been developed at synchrotron sources, but also

in a laboratory environment, where laser-based Micro and Nano-ARPES instruments have

been succesfully developed with high energy and spatial resolution.301–304

It is important to underline that non only spectro-microscopy, i.e. the use of a small

spot combined with a classic detector (see section 2) but also micro-spectroscopy, consisting

in the illumination of the sample with a larger spot and the achievement of micro/nano

lateral resolution by means of electrostatic/magnetic optics, has been successfully developed

in recent years with outstanding examples in PEEM/LEEM spectroscopy, and more recently

with the so-called momentum microscope. We refer the reader to specific publications and

review books focused on this argument.305–311

The reduced spot is also expected to boost so-called in-operando spectroscopy, including

ARPES. In-operando experiments are one of the next frontier of experiments with X-rays

since the intermediate steps in synthesis and assembly of nano and quantum materials can

in principle be monitored in real time yielding information that will allow designing more
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effective and efficient synthesis routes. So far, this approach has been successfully developed

for the so-called ambient pressure photoemission and soft X-ray ARPES.312–314 In light of the

theoretical difficulties in predicting pathways, this capability is urgently needed for devel-

oping efficient nano-fabrication with tailored functionalities. Most systems are synthesized

under non-equilibrium conditions, thus performing analytic measurements in complex and

“real” conditions, such as in gas-liquids and gas-solid environment will be a major achieve-

ment in the field. In particular, for nano-catalysis, a key issue is to develop the ability

to monitor nano-particle chemical reactions in real time.315 The study of processes at the

nanoscale “while they occur” is of core relevance for synthesis and chemical analysis, both at

large facilities and in lab-environment.314,316 In addition, in-operando studies as a function

of electrical control, e.g. electrical gating (Figure 19) are also likely to find increasingly

widespread use in the coming years.

6.2 Time Resolved ARPES

ARPES is a filled-state spectroscopy, and as such provides access only to the electronic

structure below the Fermi level. As discussed in Section 5.2.2, it is possible to transiently

occupy the nominally unoccupied states via photoexcitation, and to make use of stroboscopic

ARPES measurements from this excited state to track how the resulting excited state carrier

dynamics evolve. This is typically achieved using ultrafast laser-based setups. A pump pulse

is used to photo-excite the system, while a separate probe pulse, separated by a well-defined

and variable time delay, is used to induce photoemission. The probe pulse must therefore

be of sufficiently high photon energy, and is typically generated by either sequential stages

of frequency doubling or sum-frequency generation of pulsed laser sources using non-linear

optical crystals, or via high-harmonic generation (HHG) in the gas phase.303 The former

are typically limited to a single lower energy, but can often be achieved with more compact

setups, and with higher repetition rates and higher energy resolutions.303 The later give

access to higher photon energies (and thus access to a larger portion of the Brillouin zone),
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which are often tuneable. The pulse length is normally on the order of a few tens or hundreds

of fs, allowing access to ultrafast carrier dynamics. The time-bandwidth product, however,

means that the shorter the pulse duration, the worse the achievable energy resolution. A

choice must therefore be made between required temporal and energy resolution. Energetic

shifts and broadening of the measured spectra due to space-charge effects can be particularly

problematic for time-resolved ARPES, especially for instruments where the repetition rate

is low and thus a high photon number per pulse is required.317 This has proved a major

constraint for realising ARPES studies using free electron lasers (FELs),318 which typically

generate ultrashort ultra-intense pulses with low repetition-rate. However, the first time and

momentum-resolved ARPES studies utilising FELs have now been reported,306 and this is

likely to become increasingly utilised as high-repetition-rate FELs become more available.

Meanwhile, recent advances in the generation of XUV photons from HHG sources, and

the more wide-spread availability of these, is currently strongly increasing the impact and

applicability of TR-ARPES experiments in the laboratory setting.304,319–324 Optical pump-

probe setups are also being combined with efficient electron detection schemes such as time-

of-flight analysers324 and momentum-microscopes,307 giving access to an impressive amount

of information on non-equilibrium states in solids.

In general, accessing the time-domain parameter space in ARPES experiments opens

up a wide range of avenues for controlling and imaging the electronic structures of solids.

Beyond photodoping to occupy conduction band states, it allows the tracking and tuning of

many-body interactions,325,326 driving phase transitions,327,328 establishing the characteristic

timescales for the melting of electronic orders,329,330 creating and imaging photon-dressed

states,331 and more. A full treatment of this exciting area is beyond the scope of this review,

and we refer the interested reader to several review articles that are specifically focused on

laser-based and time-resolved photoemission.303,332 We note here, however, that given the

breadth and complexity of the systems and phenomena that can be studied in this way,

time-resolved ARPES is likely to receive significant and increasing utilisation in the coming
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years.

6.3 Integrating growth and ARPES

One of the future directions of the next decade is to develop the ability to create ‘on-demand’

quantum materials.227 Both single-layer controllability and design of hybrid hetero-structures

are needed, and quantum material synthesis is rapidly progressing in this direction.10,333,334

Controlled defect-chemistry and controlled doping, i.e. defying the solubility limit, are also

expected to play an important role, following results and achievements obtained with metal

oxides,335 and more recently in molecular graphene nanostructures.336 ARPES will have

a critical role in the development of ‘ad-hoc’ synthesis of quantum materials, exploiting

on the one hand its direct access to k-space and electronic structure , and on the other

hand the comparison with theoretical prediction on novel interfacial electronic phases and

states of matter which it facilitates.286 This, however, requires a full integration of growth

(e.g. molecular beam epitaxy or pulsed layer deposition) and characterisation, in large and

complex experimental setups. Several systems to achieve this have now been developed both

in university labs and integrated with synchrotron beamlines at large scale facilities36,337–339

(see e.g. Figures 18, 20, and 30 of this review for some recent results obtained exploiting

such capabilities). The development of common protocols in controlled environment (e.g.

in-situ transfer) will be beneficial to further the increase of reliability and repeatability of

such experiments.

6.4 The future of spin-resolved ARPES

As outlined in previous sections, the capability of disentangling spin-related information

in quantum materials has been the ‘fil-rouge’ of technological developments and scientific

outcomes; since the breakthrough experimental determination of spin-momentum locking in

the first family of topological insulators such as Bi2Se3 and Bi2Te3, the interplay between

spin, topology and magnetism in many relevant systems has reinforced the need for efficient
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and reliable spin detectors.52–55,58 New effects and new quantum quasiparticles have been

recently predicted and observed. These include amongst many others axion insulators, Chern

insulators, single and few-layers van der Waals ferromagnets, and layered antiferromagnetic

insulators. In all these cases , knowledge of spin properties (both in magnetic and non-

magnetic environments) is a fundamental prerequisite for technological applications. We

believe that spin resolved ARPES will continue to play a relevant role in this field and we

anticipate that multi channel spin filter apparatus will be developed further with respect

the present state0of-the-art, reaching higher efficiency by means of parallel acquisition.59

Multidimensional ARPES, where for example spin, momentum and time resolution will be

jointly at hand is certainly one major axis of development in ARPES-based science.

7 Conclusions and Perspectives

One of the next frontiers in research on the quantum properties of solids will be developing

the ability of understanding, designing, and controlling, i.e. ‘building’ systems with tailored

structural, electronic and magnetic properties, directly connected with a whole new world

of emergent new collective phenomena. To name but a few, self-assembly and self-ordering,

quantum size confinement, wave-like transport, orbitally/magnetically driven effects, spin-

orbit coupled phases, non-trivial topologies, and strong electronic correlations must all be un-

derstood, integrated, and their interplay controlled. The study of condensed matter systems

exhibiting emergent effects not only in their bulk, but also in thin layers and via interfacial

phenomena provides a promising research field with a wide potential and multi-disciplinary

research objectives.

Angle-resolved photoelectron spectroscopy provides invaluable insights into the ordered

states of quantum materials, by directly probing how their electrons - at the heart of their

complex phases - move and interact in the solid. We have presented a few recent examples

focused on topological insulators/spin-orbit coupled states, interface and bulk 2-dimensional
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metallic phases in transition-metal oxides, and orbitally/spin driven effects in transition

metal dichalcogenides. The range of applicability of the technique is, however, much broader,

from studying halide perovskites used in solar cells340 to probing the fundamental physics of

high-temperature superconductors,268 and from studying the surface physics and chemistry

of nanowires328 to inducing and probing new hybrid light-matter states.331 Angle-resolved

photoelectron spectroscopy can thus be expected to play an important role in the study

of the electronic properties of solids across a broad array of materials systems and phases.

Indeed, quantum materials are characterised by their complex chemistry, physics, and the

link between these. In order to reach a step forward in the control of their functionalities, a

fundamental understanding of the link between synthesis processes and functional behaviour

must be gained. To address such a goal, advanced synthesis and growth capabilities must

be developed in combination with analytical tools and spectroscopies, and we consider that

angle-resolved photoelectron spectroscopy has an important role to play in that area.
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(44) Rödel, T.; Vivek, M.; Fortuna, F.; Le Fèvre, P.; Bertran, F.; Weht, R.; Goniakowski, J.;

Gabay, M.; Santander-Syro, A. Two-dimensional Electron Systems in a ATiO3 Per-

ovskites (A= Ca, Ba, Sr): Control of Orbital Hybridization and Energy Order. Phys.

Rev. B 2017, 96, 041121.

(45) Moser, S.; Moreschini, L.; Jaćimović, J.; Barǐsić, O.; Berger, H.; Magrez, A.;
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Controlling Many-Body States by the Electric-Field Effect in a Two-dimensional Ma-

terial. Nature 2015, 529, 185–189.

102



(154) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A.

Type-II Weyl Semimetals. Nature 2015, 527, 495–498.

(155) Bahramy, M. et al. Ubiquitous Formation of Bulk Dirac Cones and Topological Sur-

face States from a Single Orbital Manifold in Transition-Metal Dichalcogenides. Nat.

Mater. 2017, 17, 21–28.

(156) Suga, S.; Tusche, C.; Matsushita, Y.-i.; Ellguth, M.; Irizawa, A.; Kirschner, J. Momen-

tum Microscopy of the Layered Semiconductor TiS2 and Ni intercalated Ni1/3TiS2.

New J. Phys. 2015, 17, 083010.

(157) Chen, P.; Pai, W. W.; Chan, Y.-H.; Takayama, A.; Xu, C.-Z.; Karn, A.; Hasegawa, S.;

Chou, M. Y.; Mo, S.-K.; Fedorov, A.-V.; Chiang, T.-C. Emergence of Charge Density

Waves and a Pseudogap in Single-layer TiTe2. Nat. Commun. 2017, 8, 516.

(158) Watson, M. D.; Clark, O. J.; Mazzola, F.; Marković, I.; Sunko, V.; Kim, T. K.;
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(212) Clark, O. J.; Mazzola, F.; Marković, I.; Riley, J. M.; Feng, J.; Yang, B.-J.; Sum-

ida, K.; Okuda, T.; Fujii, J.; Vobornik, I.; Kim, T. K.; Okawa, K.; Sasagawa, T.;

Bahramy, M. S.; King, P. D. C. A General Route to form Topologically-Protected

Surface and Bulk Dirac Fermions along High-Symmetry Lines. Electron. Struct. 2019,

1, 014002.

(213) Yan, L. et al. Identification of Topological Surface State in PdTe2 Superconductor by

Angle-Resolved Photoemission Spectroscopy. Chinese Phys. Lett. 2015, 32, 067303.

(214) Huang, H.; Zhou, S.; Duan, W. Type-II Dirac Fermions in the PtSe2 Class of Transi-

tion Metal Dichalcogenides. Phys. Rev. B 2016, 94, 121117.

(215) Noh, H.-J.; Jeong, J.; Cho, E.-J.; Kim, K.; Min, B.; Park, B.-G. Experimental Real-

ization of Type-II Dirac Fermions in a PdTe2 Superconductor. Phys. Rev. Lett. 2017,

119, 016401.

(216) Fei, F.; Bo, X.; Wang, R.; Wu, B.; Jiang, J.; Fu, D.; Gao, M.; Zheng, H.; Chen, Y.;

Wang, X.; Bu, H.; Song, F.; Wan, X.; Wang, B.; Wang, G. Nontrivial Berry Phase

and Type-II Dirac Transport in the Layered Material PdTe2. Phys. Rev. B 2017, 96,

041201.

(217) Yan, M. et al. Lorentz-violating Type-II Dirac Fermions in Transition Metal Dichalco-

genide PtTe2. Nat. Commun. 2017, 8, 257.

(218) Clark, O. J. et al. Fermiology and Superconductivity of Topological Surface States in

PdTe2. Phys. Rev. Lett. 2018, 120, 156401.

(219) Xu, C.; Li, B.; Jiao, W.; Zhou, W.; Qian, B.; Sankar, R.; Zhigadlo, N. D.; Qi, Y.;

Qian, D.; Chou, F.-C.; Xu, X. Topological Type-II Dirac Fermions Approaching the

Fermi Level in a Transition Metal Dichalcogenide NiTe2. Chem. Mater. 2018, 30,

4823–4830.

110



(220) Fei, F. et al. Band Structure Perfection and Superconductivity in Type-II Dirac

Semimetal Ir1−xPtxTe2. Adv. Mater. 2018, 30, 1801556.

(221) Cucchi, I.; Gutiérrez-Lezama, I.; Cappelli, E.; McKeown Walker, S.; Bruno, F. Y.;

Tenasini, G.; Wang, L.; Ubrig, N.; Barreteau, C.; Giannini, E.; Gibertini, M.;

Tamai, A.; Morpurgo, A. F.; Baumberger, F. Microfocus Laser-Angle-Resolved Pho-

toemission on Encapsulated Mono-, Bi-, and Few-Layer 1T
′
-WTe2. Nano Lett. 2019,

19, 554–560.

(222) Tang, S. et al. Quantum Spin Hall State in Monolayer 1T
′
-WTe2. Nat. Phys. 2017,

13, 683–687.

(223) Cox, P. A. Transition Metal Oxides: An Introduction to Their Electronic Structure

and Properties, 10th ed.; Oxford University Press: UK, 2010.

(224) Cox, P. A. In The Electronic Structure of Transition Metal Oxides and Chalcogenides,

in Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Se-

ries (Series B: Physics); Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S.,

Eds.; Springer: Boston (MA), 1996; Vol. 266.

(225) Tokura, Y.; Nagaosa, N. Orbital Physics in Transition-Metal Oxides. Science 2000,

288, 462–467.

(226) Samarth, N. Quantum Materials Discovery from a Synthesis Perspective. Nat. Mater.

2017, 16, 1068–1076.

(227) Basov, D. N.; Averitt, R. D.; Hsieh, D. Towards Properties on Demand in Quantum

Materials. Nat. Mater. 2017, 16, 1077–1088.

(228) Rondinelli, J. M.; May, S. J. Oxide Interfaces: Instrumental Insights. Nat. Mater.

2012, 11, 833–834.

111



(229) Biesinger, M. C.; Lau, L. W.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chem-

ical States in XPS Analysis of first Row Transition Metals, Oxides and Hydroxides:

Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

(230) Morosan, E.; Natelson, D.; Nevidomskyy, A. H.; Si, Q. Strongly Correlated Materials.

Adv. Mater. 2012, 24, 4896–4923.

(231) Sawatzky, G. A.; Allen, J. W. Magnitude and Origin of the Band Gap in NiO. Phys.

Rev. Lett. 1984, 53, 2339–2342.

(232) Zaanen, J.; Sawatzky, G. A.; Allen, J. W. Band Gaps and Electronic Structure of

Transition-Metal Compounds. Phys. Rev. Lett. 1985, 55, 418–421.

(233) Henderson, M. A. A Surface Science Perspective on TiO2 Photocatalysis. Surf. Sci.

Rep 2011, 66, 185–297.

(234) Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modi-

fications, and Applications. Chem. Rev. 2007, 107, 2891–2959.

(235) Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–

229.

(236) Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 Photocatalysis and Related Surface Phe-

nomena. Surf. Sci. Rep. 2008, 63, 515–582.

(237) Di Valentin, C.; Pacchioni, G.; Selloni, A. Reduced and n-type Doped TiO2: Nature

of Ti3+ species. J. Phys. Chem. C 2009, 113, 20543–20552.

(238) Gabel, J.; Zapf, M.; Scheiderer, P.; Schütz, P.; Dudy, L.; Stübinger, M.; Schlueter, C.;
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Polaronic Conduction in Anatase TiO2. Phys. Rev. Lett. 2013, 110, 196403.

(259) Riley, J. M.; Caruso, F.; Verdi, C.; Duffy, L. B.; Watson, M. D.; Bawden, L.; Vol-

ckaert, K.; Laan, G. v. d.; Hesjedal, T.; Hoesch, M.; Giustino, F.; King, P. D. C.

Crossover from Lattice to Plasmonic Polarons of a Spin-Polarised Electron Gas in

Ferromagnetic EuO. Nat. Commun. 2018, 9, 2305.

(260) Verdi, C.; Caruso, F.; Giustino, F. Origin of the Crossover from Polarons to Fermi

Liquids in Transition Metal Oxides. Nat. Commun. 2017, 8, 15769.

(261) Thompson, T. L.; Yates, J. T. Surface Science Studies of the Photoactivation of TiO2

New Photochemical Processes. Chem. Rev. 2006, 106, 4428–4453.

115



(262) Zhang, S. X.; Kundaliya, D. C.; Yu, W.; Dhar, S.; Young, S. Y.; Salamanca-

Riba, L. G.; Ogale, S. B.; Vispute, R. D.; Venkatesan, T. Niobium Doped TiO2:

Intrinsic Transparent Metallic Anatase versus Highly Resistive Rutile Phase. J. Appl.

Phys. 2007, 102, 013701.

(263) Chen, C.; Avila, J.; Frantzeskakis, E.; Levy, A.; Asensio, M. C. Observation of a Two-
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