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Abstract: 

1. Biodiversity plays an important role in ecosystem functioning, habitat recovery following 

disturbance and resilience to global environmental change. Long-term ecological records 

can be used to explore biodiversity patterns and trends over centennial to multi-millennial 

time scales across broad regions. Fossil pollen grains preserved in sediment over millennia 

reflect palynological richness and diversity, which relates to changes in landscape 

diversity. Other long-term environmental data, such as fossil insects, palaeoclimate and 

archaeologically-inferred palaeodemographic (population) data, hold potential to address 

questions about the drivers and consequences of diversity change when combined with 

fossil pollen records. 

2. This study tests a model of Holocene palynological diversity change through a synthesis of 

pollen and insect records from across the British Isles along with palaeodemographic 

trends and palaeoclimate records. We demonstrate relationships between human population 

change, insect faunal group turnover, palynological diversity and climate trends through 

the Holocene. 

3. Notable increases in population at the start of the British Neolithic (~6000 calendar years 

before present (BP)) and Bronze Age (~4200 BP) coincided with the loss of forests, 

increased agricultural activity, and changes in insect faunal groups to species associated 

with human land use. Pollen diversity and evenness increased, most notably since the 

Bronze Age, as landscapes became more open and heterogeneous. However, regionally-

distinctive patterns are also evident within the context of these broad-scale trends. 

Palynological diversity is correlated with population, while diversity and population are 

correlated with some climate datasets during certain time periods (e.g. Greenland 

temperature in the mid-late Holocene).    A
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4. Synthesis: This study has demonstrated that early human societies contributed to shaping 

palynological diversity patterns over millennia within the context of broader climatic 

influences upon vegetation. The connections between population and palynological 

diversity become increasingly significant in the later Holocene, implying intensifying 

impacts of human activity, which may override climatic effects. Patterns of palynological 

diversity trends are regionally variable and do not always follow expected trajectories. To 

fully understand the long-term drivers of biodiversity change on regionally-relevant 

ecological and management scales, future research needs to focus on amalgamating diverse 

data types, along with multi-community efforts to harmonise data across broad regions.  

Key words: Biodiversity, Biogeography and macroecology, Global change ecology, Insects, 

Land-cover change, Landscape ecology, Land-use change, Palaeoecology and land-use history

Introduction: 

Current biodiversity patterns and potential of long-term environmental data

Biogeographers aim to understand the importance of different factors governing patterns of 

biodiversity and increasingly recognise the significance of historic dynamics in shaping current 

diversity patterns (Gaston, 2000; Birks et al., 2016a). Understanding how climate and human land 

use shape diversity allows the processes of community assembly to be explored, which can feed 

into efforts to mitigate the effects of human-driven influences on global biodiversity (Rowan et al., 

2019). Biodiversity patterns emerge as a combined result of speciation, extinction and migration, 

and play an important role in the stability of ecosystems and global climate (Symstad et al., 2003). 

Environments with higher levels of biodiversity are thought to recover faster following natural 

disasters and experiments have demonstrated that biodiverse ecosystems are more productive 

(Fargione et al., 2007). Recent debate has questioned whether biodiversity patterns are shaped by 

local or continental-scale factors (Borregaard et al., 2020); global drivers include climate trends, 

latitudinal gradients, evolutionary processes and speciation, while local disturbance factors include 

agricultural activity, erosion, grazing animals, changes in soil properties, and water/nutrient 

availability. Human impact over the last 3000 years has been an increasingly important A
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disturbance factor at sub-continental scales, as illustrated in a recent survey of research community 

opinions (Stephens et al., 2019) and through studies based on empirical data (Roberts et al., 2018). 

Through analysis of spatially-extensive fossil pollen datasets, Giesecke et al. (2019) demonstrated 

that past human impacts on the latitudinal diversity gradient in Europe had greater impacts on 

species richness than climate. Long-term multi-millennial scale environmental datasets have been 

under-utilized in research aiming to understand recent biodiversity trends (Willis et al., 2005; 

2006). Such datasets hold great potential to inform restoration ecology (Higgs et al., 2014; Hobbs 

et al., 2014; Fordham et al., 2020) through revealing ecological legacies and the influence of past 

human activities on current biodiversity patterns, which can be problematic to measure in relation 

to achieving conservation targets (Watts et al., 2020).  

Spatial patterns in diversity derived from fossil pollen datasets (Colombaroli et al., 2013; Matthias 

et al., 2015; Felde et al., 2016; Reitalu et al., 2019) can reveal information about ecological 

memory, shifting baselines, and dynamic equilibrium, i.e. the patterns of change in species 

assemblages that have persisted or changed through millennia. Shifting baseline syndrome (Pauly, 

1995; Soga & Gaston, 2018) represents the tendency of modern societies to believe that conditions 

in recent human memory provide an appropriate reference for a particular environment. Such 

historical baselines are largely a ‘snap-shot’ of species assemblages that have developed over 

centuries and millennia of natural and human-induced disturbance. They rarely represent stable or 

natural ‘baselines’. Consideration of the evolutionary and ecological legacies of both the recent 

and ancient past is key to understanding the forces shaping global patterns of present-day 

biodiversity (Rowan et al., 2019). This challenges the concept of stable baselines, demonstrating 

that communities can re-assemble through millennia (Edwards et al., 2017). Divíšek et al. (2020) 

incorporated historical processes in modelling current species richness using Holocene species-

distribution data from central Europe revealing that landscape changes since the Last Glacial 

Maximum are important predictors of current plant species richness. However, historical effects 

were found to be habitat specific and often show a non-linear relationship with species richness 

due to the impacts of recent environmental conditions and anthropogenic activity. This highlights 

the importance of using multiple data types to tease apart these relationships over time and space. 

Relationships and thresholds between diversity and ecosystem functioning operate on regional 

scales (Brooke et al., 2013), therefore the regional vegetation signature captured by fossil pollen A
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datasets provides an ideal data type to explore relationships between land use and diversity 

change.

Identifying the drivers of biodiversity trends 

Patterns of change in Holocene plant diversity trends have been summarised by Birks et al. 

(2016a) in a conceptual schematic for north-west Europe, building on McGill et al.’s (2015) 

biodiversity classification (summarised in Fig. 1). Initial forest development is expected to have 

involved a period of change from high to lower diversity, which was followed by declining 

diversity when landscapes became increasingly dominated by closed mixed forests. An increase in 

diversity is then predicted on fertile soils linked to early agriculture, land-use change and 

natural/human-induced disturbance, which is then followed by recent loss of diversity in the last 

200 years associated with major land-use intensification. Plant assemblages in areas with infertile 

soils are expected to show declining or static diversity during these latter periods. This model has 

yet to have been tested for the British Isles, particularly alongside analyses of how population 

change and climate interact to affect diversity patterns.

Here we present current understanding of long-term changes in land cover, palynological (pollen) 

diversity and insect faunal groups through the last 10,000 years (Holocene) via a synthesis of 

pollen sequences, insect faunal group assemblages, human population inferred from radiocarbon-

dated archaeological sites from the British Isles, and palaeoclimate records driven by North 

Atlantic conditions. We aim to test the aforementioned model of Holocene biodiversity trends 

using pollen datasets. Pollen-derived patterns of vegetation/land-cover change have been 

established (Fyfe et al., 2013) and these have been compared with archaeologically-derived human 

population estimates (Woodbridge et al., 2014) across the British Isles, but diversity impacts and 

influence on faunal communities have yet to be investigated.

Periods of human population increase are often associated with major land-cover transformations, 

such as the loss of woodlands and increasingly open landscapes associated with agriculture 

(Woodbridge et al., 2014; Roberts et al., 2019). However, deforestation in the British Isles, from 

the start of the Neolithic around 6000 years ago, is recognised as occurring slightly earlier than 

major population increases through evidence of axe-production and declining forest vegetation A
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(Schauer et al., 2019). There is no simple correlation between population rise and deforestation; 

therefore, the way in which people use the land requires investigation as well as understanding of 

population change. Insect assemblages show a large degree of turnover in lowland Britain as a 

consequence of prehistoric field system development, with the open ground and dung-associated 

‘field fauna’ replacing woodland insects (Smith et al., 2019; 2020). Similar evidence is now 

emerging in other regions (e.g. Schafstall et al., 2020). Insect datasets reflect land-use/cover 

change on a finer scale than pollen records, which reflect both local (on-site) and catchment 

vegetation. Goring et al. (2013) tested relationships between pollen and plant richness and 

suggested that palynological richness cannot be considered a universally reliable proxy for 

inferring plant richness. However, Matthias et al. (2015) demonstrated that palynological diversity 

can capture landscape structure and diversity. They found that Shannon index and the number of 

taxa are highly correlated providing a useful measure of pollen type diversity that reflects 

landscape diversity. Insect and pollen data therefore allow complementary scales of analysis on 

community turnover.

Pollen diversity measures represent both taxa richness and assemblage evenness through 

estimating particular numerical characteristics of fossil pollen assemblages (Birks et al., 2016b). 

Quantifying biodiversity trends remains challenging because “there is no single index that 

adequately summarises the concept” (Morris et al., 2014). These challenges, along with taxonomic 

precision, the effects of sample size, and pollen representation of different plant types, can result 

in biases in biodiversity measures (Odgaard, 1994; 2001). Kuneš et al. (2019) demonstrated that 

ecosystems were most affected by disturbances during the Early Holocene with lower level 

disturbance in the mid-Holocene. These shifts in disturbance were associated with pronounced 

changes in pollen richness. However, the relationship between pollen type richness and plant 

species richness is not straightforward and reflects pollen population evenness. This is related to 

vegetation evenness and disturbance (Odgaard, 2001), which reflects the degree of landscape 

homogeneity or heterogeneity. These factors require consideration when interpreting diversity 

trends derived from pollen data.
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Figure 1. Theoretical model of local to meta-community scale diversity and possible drivers of 

change: summary of trends in biodiversity through the Holocene for fertile and infertile soils 

(based on Birks et al., 2016a). 

Methods: 

Fossil pollen data:

The datasets included in this study (Fig. 2) consist of 269 fossil pollen datasets (SI: Table 2) 

extracted from the European Pollen Database (Leydet et al., 2007-2020) or provided by data 

contributors. Pollen datasets were selected based on their radiocarbon dating quality and sample 

size (Fyfe et al., 2013). Sediment core chronologies were taken from Giesecke et al. (2014) or 

where necessary established through fitting a new age-depth model using CLAM (Blaauw, 2010). 

Data have been taxonomically harmonised at two levels of aggregation (233 and 558 taxa groups) 

and placed on a common chronological time scale summed into 200 year-long time windows, 

which has been demonstrated in previous studies to be a suitable time resolution over which to 

investigate vegetation turnover (Woodbridge et al., 2014). The relationships between 

palynological diversity and plant or vegetation diversity are complex; however, most studies 

comparing modern pollen richness with contemporary plant richness show good relationships 

between the two (Birks et al., 2016b). Within this study, we explore pollen (palynological) 

diversity as opposed to plant or vegetation diversity. Pollen data are also presented as quantified A
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land-cover types transformed using the REVEALS (Regional Estimates of Vegetation Abundance 

from Large Sites) approach (Sugita, 2007), which converts pollen count data into quantified 

vegetation using knowledge of the differential pollen productivity, fall speed and pollen dispersal 

distances characteristic of different plant types (Broström et al., 2008; Fyfe et al., 2013). The 

pollen productivity estimates (PPEs) and fall speed of pollen for the 25 taxa in Trondman et al. 

(2015) were used in this study. These PPEs are derived by investigating relationships between 

vegetation and pollen abundance in modern landscapes (Broström et al., 2008). A detailed 

description of the REVEALS method is provided in Fyfe et al. (2013) and Trondman et al. (2015). 

There are numerous approaches for estimating diversity from ecological data (Hill 1973), and 

most are strongly related (Matthias et al., 2015). Several approaches were provisionally tested 

within this work, with Shannon diversity and evenness index identified as the most suitable for 

capturing broad scale trends alongside rarefaction, which provides a record of species richness 

accounting for varied sample sizes. Shannon diversity index reflects both taxa richness and 

evenness, which relates to assemblage heterogeneity and can be analysed as a separate component 

of the index. These indices were calculated using pollen percentages from taxa count data binned 

into 200-year time windows. As the REVEALS approach can only be applied to a limited number 

of taxa for which there are reliable PPEs, we chose to estimate diversity using all 233 or 558 land 

pollen taxa groups rather than REVEALS transformed data. Felde et al. (2016) found that results 

based on transformed and untransformed pollen data show the same patterns and pollen richness 

and diversity estimates generally increase after transformations. This occurs because greater 

weight is placed on rare taxa as the influence of abundant pollen taxa is reduced. Therefore, we 

chose not to transform the pollen data in order to retain more information about the assemblage. 

The R vegan package (Oksanen, 2019) was used to summarise both species richness and relative 

abundance (Magurran, 2003) within the entire pollen assemblage. Shannon (H) index provides a 

useful measure of pollen type diversity corresponding to landscape diversity (Matthias et al., 

2015). The index reflects the proportion of each taxon in the population relative to the total 

number of taxa present. Index values are derived by dividing the number of individuals of each 

taxon in each sample by the total number of individuals of all taxa. This value is then multiplied 

by the fraction by its natural logarithm and the results for all taxa are summed together and 

multiplied by minus 1. A high value of H represents a diverse and equally distributed community 

while lower values represent less diverse assemblages that are less equally distributed (Gaunle, A
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2020). The evenness of a community reflects the ratio of observable diversity to maximum 

diversity. This ranges between 0 and 1, with 1 representing complete evenness (Magurran, 2003). 

Rarefaction (pollen taxa richness) has been calculated from pollen count data using the R vegan 

package function ‘rarefy’ (Oksanen et al., 2019) to generate randomly rarefied community data for 

a given sample size (based on the mean of all samples) producing species richness estimates for 

each time window. Typically, the minimum of all samples is used, however, the minimum was not 

suitable for this dataset due to the presence of time windows with zero values; consequently the 

mean was selected as an alternative measure. The rarefaction trend is identical to pollen richness 

derived from Hill numbers; therefore this approach is deemed suitable for capturing diversity 

change that accounts for varied sample sizes. 

Palaeodemographic data:

22,719 archaeological radiocarbon dates for mainland Britain have been extracted from Bevan et 

al. (2017) to infer regional-level palaeodemographic changes (Palmisano et al., 2017; Bevan & 

Crema, 2018). Palaeodemographic trends are inferred using a summed probability distribution 

(SPD) approach where the number of radiocarbon dates act as a proxy for human population size 

for a given time period (Shennan et al., 2013). Potential biases resulting from multiple dates being 

sampled from the same archaeological phase are accounted for by aggregating uncalibrated 

radiocarbon dates from the same site within 100 years of one another and dividing by the number 

of dates in the ‘time bin’ (Timpson et al., 2014). The resulting SPDs, which represent summed 

probabilities from each calibrated date, are binned into 200-year time windows to allow multi-

proxy comparisons.

Fossil insect data:

We used the 30 fossil insect beetle (Coleoptera) datasets from archaeological sites summarised in 

Smith et al. (2019; 2020) to reconstruct insect turnover. Metadata and references for the fossil 

insect sites are provided in Smith et al. (2020). Insect taxa have been allocated to ecological 

groups where possible and the relative proportions of these groupings calculated. The ecological 

groups used are a revision of Robinson (1981; 1983). Insect species are also classified as semi- or 

fully- synanthropic (human-dependent) (Smith et al., 2020) and this is represented in Fig. 3 by the 

proportions of Kenward’s ‘house fauna’ recovered for the periods concerned. As the insect data 

are derived from archaeological sites, it is necessary to aggregate by archaeological period, rather A
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than into time windows that are comparable to the pollen data. Thus, it is not possible to perform 

detailed statistical comparisons between the insect data and the other proxies presented here.

Climate data:

Palaeoclimate datasets (Fig. 2) were selected to cover the majority of the Holocene and 

characterise North Atlantic atmospheric and oceanic climatic patterns. These include: 

- A record of sea surface temperature (SST) from northwest Iceland (Moossen et al., 2015). 

This dataset reflects sea surface temperatures reconstructed using the hydrogen isotopic 

composition of the C29 n-alkane (see Moossen et al., 2015 for further details). 

- An 18O isotope speleothem record from Crag Cave (southwest Ireland) (McDermott et al., 

2001) that provides a regional signal predominantly driven by temperature and North Atlantic 

Oscillation, but is also influenced by factors such as ice rafting, meltwater input and moisture 

availability (see McDermott et al., 2001 for further details).

- A Holocene record of deviation from modern temperature derived from Greenland ice cores 

reconstructed from 18O isotopic data (see Vinther et al., 2009 for further information).

- A cosmogenic isotope and total solar irradiance (TSI) record as a proxy for solar activity 

(Steinhilber et al., 2012). The reconstruction is based on a combination of different 10Be ice 

core records from Greenland and Antarctica with the global 14C tree ring record (see 

Steinhilber et al. (2012) for further information) (site locations not displayed in Fig. 2).

General Additive Models (GAMs) were fitted to the climate data using the ‘gam’ function in the 

mgcv R package (Wood, 2017) to smooth and interpolate values in the climate data series for time 

periods that match the pollen and archaeological datasets. GAMs allow flexible modelling of non-

linear relationships, such as those displayed in climate data series; therefore we used a smoothing 

function to capture these non-linear patterns through time.

Spearman’s rank correlation coefficient was used to identify relationships between the datasets, as 

ranked correlation coefficients are most suitable when a proxy indicator is not linearly related to a 

variable (e.g. SPDs are not linearly related to population, but indicate magnitude of population 

change). The ‘p.adjust’ function in R using the ‘bonferroni’ method was applied to correct p-

values for multiple tests and avoid spurious significant correlations (Benjamini & Yekutieli, 

2001). The dataset was divided into periods representing the early (10000-6000 BP), mid (6000-A
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3000 BP), late (3000-0 BP) and entire Holocene for correlation analysis to explore differences in 

relationships between the datasets over time.

Site distribution:

The fossil pollen sites are generally located within upland regions with data gaps in central 

England and Wales, while the insect sites are mostly situated in southeast and central England 

with very few datasets in Scotland. The palaeodemographic archaeological sites are mainly 

located in England and the coastal regions of Scotland (Fig. 1), which impacts upon the trends 

identified in the different datasets. We have not included the island of Ireland as it was separate 

from the British Isles by the start of the Holocene, and therefore might be expected to have 

different patterns of biodiversity to Britain, which remained connected to continental Europe until 

several millennia after the start of the Holocene. The pollen and palaeodemographic datasets have 

been analysed at sub-regional scales to address these spatial biases. Climate records based on sites 

within the British Isles were explored, but these datasets largely only cover short periods of the 

Holocene, therefore we selected records from different locations within the North Atlantic that 

principally reflect temperature variation across the majority of the Holocene epoch.

Figure 2. a) Fossil pollen and insect sites, b) radiocarbon-dated archaeological 

(palaeodemographic) site distribution, and c) palaeoclimate sites. A
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Results: 

Holocene trends in environmental datasets 

Synthesis of the pollen-inferred land cover, fossil insect faunal groups, palaeodemographic trends, 

and pollen-derived diversity measures (Fig. 3 and 4), reveals that population increases at the start 

of the Neolithic, ~6000 BP (Before Present), and Bronze Age, ~4200 BP, coincided with declining 

deciduous forest and increasing open land. The first appearance of plant types indicative of 

agriculture, such as cereals and plant species associated with disturbance as a result of human land 

use, is evident from the start of the Neolithic. Marked increases in these indicators are not apparent 

until the Bronze Age (Stevens & Fuller, 2012), which marks the first widespread evidence for 

cereal cultivation with more pronounced increases in the most recent 3000 years. The transition 

from the Neolithic to the Bronze Age also saw a significant shift in insect fauna from woodland 

types to open ground and dung insect types associated with agricultural activity and the presence 

of grazing animals. See Smith et al. (2019) for further discussion around the site types 

investigated. We see an increase in palynological diversity from ~9400 BP, which was followed 

by a period of stable diversity scores. Shannon diversity index values then increase at the start of 

the Bronze Age, continue to steadily increase until the Iron Age (~2700 BP), and remain stable 

until the most recent part of the record with a slight decline since the Medieval period (~1000 BP). 

The palynological evenness component of the Shannon index shows a similar trend to the index 

scores that incorporate taxa richness, but evenness values decline more from the end of the Iron 

Age into the Medieval period, showing that these trends are increasingly decoupled during the 

most recent 2000 years. Calculating diversity measures at different levels of pollen taxonomic 

resolution (232 and 558 taxa groupings) (e.g. separating or combining pollen taxonomic units) 

reveals the same trends throughout the Holocene. Rarefaction analysis provides a measure of taxa 

richness that is independent of evenness, and indicates that palynological richness was lowest 

during periods of high woodland cover, and increased as landscapes became more open, similarly 

to the Shannon diversity curve. Changes in broad landscape openness are much more subtle after 

the middle Iron Age.   
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Significant relationships between palaeodemographic, climate and pollen data are mostly evident 

with palynological richness rather than evenness (Table 1). Palaeodemographic (population) 

trends are also more strongly correlated with pollen diversity in the later Holocene with higher r-

values, although the p-values were not deemed significant after correcting for multiple tests. Some 

climate datasets show correlations with the pollen datasets in the early Holocene (e.g. Iceland 

temperature) and others in the later Holocene (e.g. Greenland temperature). The strongest 

relationships are shown with the Greenland ice core temperature deviation and Iceland sea surface 

temperature records (SST). Population and climate trends show the strongest significant 

relationships for the entire Holocene, but this is likely associated with the higher number of 

samples compared, which leads to lower p-values. The climate record from Iceland indicates that 

the early Holocene was characterised by high air temperatures relative to the later Holocene, but 

SSTs were dampened by melt water events (Moossen et al., 2015) (Fig. 5). The middle Holocene 

saw a peak in SSTs, followed by cooling into the late Holocene (Moossen et al., 2015). The Crag 

Cave speleothem δ18O sequence reflects temperature change with cooling events evident at ~7730, 

7010, 5210 and 4200 BP (McDermott et al., 2001) while the Greenland ice core record reveals a 

number of abrupt shifts in climate with the most significant ~7600, 6500, 6300 and 4300 BP. The 

total solar irradiance (TSI) record fluctuates through the Holocene with lowest values in the early 

and late Holocene. 
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Testing the conceptual diagram presented by Birks et al. (2016a) (Fig. 1) at the scale of the British 

Isles indicates that loss of diversity associated with initial forest development is not reflected in 

the current dataset in the early Holocene. However, this may be because the transitional phase 

from late-glacial vegetation to early Holocene forest initiation is not captured by these datasets. 

Subsequent periods show similar trends to those predicted by the model. Closed mixed forest is 

characterised by a period of limited change in palynological diversity (~10,000 - 6,000 BP), 

which is followed by early agriculture and land-use change associated with a clear increase in 

diversity, particularly since the beginning of the Bronze Age when agricultural activity increased 

(Fig. 3). The final phase in the model for fertile soils, declining diversity associated with recent 

land-use change in the last 200 years, is not clearly captured by the Shannon diversity index. The 

model predicts no change in diversity in the most recent phase on infertile soils, which may be 

expected in upland regions and in parts of Scotland and Wales with acid infertile soils, a pattern 

that is supported by the sub-regional analyses for Scotland and the midlands/northern England 

where little recent change is evident (Fig. 4). This final phase may be indistinguishable at the 

broad spatial and temporal scale used here (200 year-long time windows) and shows the 

importance of exploring patterns at smaller sub-regional and site-specific scales. It may also 

reflect the lack of pollen data spanning recent decades in the synthesis, which could capture this 

more recent decline in diversity (e.g. Hanley et al., 2008). 

At the sub-regional scale (Fig. 4), some of the patterns predicted by Birks et al’s (2016a) model 

are shown more clearly. For example, the decline in palynological diversity in the last five 

hundred years appears to be reflected in the diversity indices for southwest England and the 

midlands/northern England pollen sites where a minor recent decline in diversity is evident, but 

not clearly for sites in southeast England and Scotland. Regional variation is evident when 

average palynological diversity index scores for the four regions are compared (Fig. 4). The large 

standard deviation in palynological diversity within the pollen datasets from Scotland reflects the 

greater number of sites capturing the diverse landscapes within this region. Whereas the smaller 

standard deviation for sites in the southwest, southeast, midlands/northern England, show that 

palynological diversity trends through the Holocene were more similar for sites within these 

regions, which may represent more similar landscapes or land-use types. Pollen taxa richness 

(rarefaction) reflects the diversity index and indicates gradually increasing values in all four 

regions as landscapes became more open. The palaeodemographic curves (SPDs of radiocarbon-A
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dated archaeological sites) for these areas indicate increasing population at the start of the 

Neolithic with all regions showing a peak ~5200 BP. This is followed by another population peak 

~3500 BP during the Bronze Age, and further increases in the late Iron Age / early Roman period 

(~2000 BP) and in the Medieval period (~1000 BP) (Fig 4).
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Figure 4. Pollen taxa richness and assemblage evenness summarised by Shannon diversity and 

evenness indices and rarefaction (pollen richness) (with standard deviation and number of pollen 

sites) averaged for four regions of the British Isles: southeast England, southwest England, 

Scotland and the midlands/northern England. Dashed grey lines show values based on 233 pollen 

taxa groups and solid black lines show values for 558 pollen taxa groups. Palaeodemographic 

(population) trends are shown for each region (based on the summed probability distributions 

(SPDs) of radiocarbon-dated archaeological sites. 

Figure 5. Pollen taxa richness and assemblage evenness summarised by Shannon diversity and 

evenness indices for the British Isles presented with palaeodemographic data for all regions and 

palaeoclimate datasets: sea surface temperature (SST) from Iceland (Moossen et al., 2015), an 18O 

isotope speleothem record from Crag Cave (Ireland) (McDermott et al., 2001), temperature 

deviation from the Greenland ice core (Vinther et al., 2009) and total solar irradiance (TSI) 

(Steinhilber et al., 2012). Grey circles represent all data points and black lines represent smoothed 

data values derived using a general additive model (GAM). A
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Table 1 Spearman’s rank correlations (r and p-values) between the palaeoclimate records 

reflecting North Atlantic patterns, pollen taxa richness and evenness (Shannon diversity index and 

evenness) and taxa richness (rarefaction), and palaeodemographic change (population) inferred 

from summed probability density (SPD) functions of radiocarbon-dated archaeological sites. 

Correlation analyses were carried out for the early, mid, late and entire Holocene and significant 

relationships are shaded. Dates represent the mid-point of each 200-year time window. Grey 

shading indicates significant correlations (p < 0.05). P-values corrected for multiple comparisons 

of significantly correlated variables are shown in brackets.
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Time period

 Pollen: 

Shannon 

diversity index

Pollen: 

Shannon 

evenness

Pollen taxa 

richness 

(rarefaction)

9900-1700 BP
0.768

0.00

0.048

0.762 

0.88

0.00

2900-1700 BP
0.821

0.023 (0.138)

0.036

0.939 

0.679

0.094 

5900-3100 BP
0.532

0.041 (0.246)

0.229

0.413 

0.746

0.001 (0.006)

Palaeo 

demographic 

change

9900-6100 BP
0.102

0.668

0.056

0.816

0.299

0.2 

Palaeoclimate 

records

Palaeo-

demographic 

change

9900-100 BP
-0.547

0.00

-0.249

0.081 (0.486)

-0.669

0.00

(9900-1700 BP)

-0.676

0.00

2900-100 BP
0.446

0.095 

-0.411

0.128 

0.45

0.092 

(2900-1700 BP)

0.5

0.253

5900-3100 BP
-0.689

0.004 (0.024)

-0.396

0.143

-0.957

0.00

-0.746

0.001 (0.006)

Iceland: sea 

surface 

temperature

9900-6100 BP
0.508

0.022 (0.132)

0.484

0.031 (0.186)

0.008

0.975

0.126

0.596

9900-100 BP
-0.227

0.112

0.041

0.779

-0.348

0.013 (0.078)

(9900-1700 BP)

-0.584

0.00

2900-100 BP
-0.257

0.355

0.186

0.508

-0.111

0.694

(2900-1700 BP)

-0.214

0.645

5900-3100 BP
-0.421

0.118

-0.143

0.612

-0.646

0.009 (0.054)

-0.925

0.00

Crag Cave 

speleothem: 18O

9900-6100 BP
0.411

0.072

0.295

0.207

0.352

0.128

0.302

0.195

Greenland ice 9900-100 BP -0.848 -0.291 -0.94 9900-100 BPA
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0.00 0.04 (0.240) 0.00 -0.879

0.00

2900-100 BP
-0.057

0.84

0.743

0.002 (0.012)

-0.882

0.00

(2900-1700 BP)

-0.929

0.003 (0.018)

5900-3100 BP
-0.7

0.004 (0.024)

-0.411

0.128

-0.832

0.00

-0.65

0.009 (0.054)

core: 

temperature 

deviation

9900-6100 BP
0.002

0.995

0.002

0.995

-0.236

0.316

-0.368

0.11

9300-100 BP
0.124

0.405

0.079

0.596

0.166

0.265

(9300-1700 BP)

0.719

0.00

2900-100 BP
0.261

0.348

0.571

0.026 (0.156)

-0.471

0.076

(2900-1700 BP)

1

0.00

5900-3100 BP
0.143

0.612

-0.054

0.85

0.364

0.182

0.375

0.168

Total Solar 

Irradiance (TSI)

9300-6100 BP
0.044

0.866

-0.123

0.639

0.145

0.58

0.414

0.098

Discussion:

Biodiversity trends in the Holocene

The synthesis presented in this study (Fig. 3) has demonstrated that people and climate have 

played important roles in shaping past land-cover change with likely impacts on the changing 

diversity and abundance of vegetation types, which reflects previous literature demonstrating the 

impact of people on past vegetation and pollen richness (e.g. Iversen, 1949; Birks & Line, 1992). 

However, the relationships between human population, climate, land cover and palynological and 

insect diversity are not straightforward and consideration of the processes involved in landscape 

transformation and different species traits, which influence species responses, is key to 

understanding how modern biodiversity patterns emerged within a long-term context. A
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Trends identified in the pollen-inferred land-cover types reflect Stevens & Fuller’s (2012) 

agricultural model (Fig. 3), which is based on radiocarbon-dated wild and cultivated food plants. 

The model recognises an initial phase of arable agriculture in the early Neolithic followed by 

predominantly pastoral practices and evidence of later more pronounced Bronze Age 

intensification of agriculture. This reflects the patterns shows in Fig. 3 and the findings of 

Colombaroli et al. (2013) who identified that land clearance promoted diverse open ecosystems, 

but in the long-term, this led to reduced woodland and forest diversity. In our study, this is 

reflected by decreased deciduous forest cover from the start of the Neolithic, which became more 

pronounced from the start of the Bronze Age. This was followed by a clear increase in cereals and 

a shift from woodland to open ground insect types.

The palynological diversity indices presented here imply that opening of the landscape, associated 

with early land-use and forest removal, initially led to an increase in the diversity of vegetation 

types across many sites, which varied regionally (Fig. 4). Similar patterns identified by Kuneš et 

al. (2019) in central Europe show that diversity increased continuously throughout the Holocene 

with comparable trends between pollen richness and evenness. This pattern is reflected in the 

rarefaction curves presented here. Whilst the Shannon index also provides a measure of taxa 

richness, it does not account for varied sample sizes and slight differences in the Shannon and 

rarefaction figures are apparent (Figure 3). Recent loss of diversity is not clearly reflected by the 

majority of sites in this study, which is likely the result of pollen records not extending into the 

most recent period, the amalgamation of pollen data from 200 BP until present, the absence of 

modern (i.e. datasets spanning recent decades) pollen data in the analyses, and as a result of many 

sites being located on infertile soils, which Birk’s (2016a) model predicts should not show a recent 

decline in diversity. Once landscapes have become predominantly open (i.e. by the start of the 

historic period in Britain), measures such as woodland cover become insensitive proxies for 

understanding biodiversity trends and more ecologically detailed interpretations of pollen 

assemblages are required. This study also demonstrates that vegetation communities are rarely 

stable over time as assemblages reassemble on centennial to millennial timescales (Edwards et al, 

2017). 
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Smith et al. (2020) identified distinct phases in the introduction of synanthropic insects in the 

British Isles. This included an initial group of taxa originating from natural ecosystems during the 

Mesolithic and Neolithic, followed by a second phase of new insect taxa associated with pasture, 

fodder production and animal stocking in the Bronze Age and Iron Age. This was proceeded by 

the appearance of strongly-synanthropic insect species, such as grain pests, during following time 

periods, which were introduced into Britain during Romans times (Smith et al., 2020). The 

agricultural landscape may have become more even and less diverse in the Roman period as areas 

became specialised in producing for larger populations. Insect remains can provide a range of 

information at an intermediate scale on land-use nature and practice, particularly the clearance of 

forest and the development of pasture, along with indicating the spread and intensity of settlement 

(Kenward, 1977; Smith, 2012; Smith et al., 2010; 2019; 2020). 

The absence of patterns between the palaeodemographic curves and the palynological diversity 

indices for each region (Fig. 4) implies that there are no direct detectable regional-scale 

relationships between population change and palynological diversity in this study beyond the 

initial change at the start of the Neolithic at the onset of agriculture. Therefore, the size of the 

population may be less important than the way in which people used the land.  Within some 

regions, such as the midlands/northern England, palynological diversity appears to have remained 

stable during multiple population ‘boom and bust’ cycles; however, changing palynological 

diversity patterns may not be easily detectable at this spatial scale. In other regions, such as 

southwest England, highest levels of palynological diversity occur when population peaks in 

Neolithic times. This implies that low levels of human-induced disturbance and associated land-

use practices may have initially led to an increase in pollen diversity; however, this pattern is not 

evident for all regions. In a review of biodiversity trends through the Anthropocene, McGill et al. 

(2015) highlighted human-induced land-cover change as a major factor influencing biodiversity 

patterns. They identified that land-cover change typically results in decreased species richness in 

the changed area. They also recognise that by creating more heterogeneous habitat structures, 

meta-community to biogeographical-scale species richness can increase through integration of 

edge or open habitat species. This is clearly demonstrated in the pollen-inferred diversity trends 

presented here (Fig. 3), which increase when deciduous forest declines and vegetation becomes 

more open. During recovery from natural or human-mediated disturbance, species richness often 

peaks during periods of intermediate disturbance, as demonstrated by McGill et al. (2015). This A
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too is reflected in the pollen-inferred diversity trends, such as from the start of the Bronze Age as 

landscapes became more open as a result of forest removal and use of land for agriculture. This 

‘intermediate’ land use would have been less intensive than later agriculture and forest removal, 

which is demonstrated in Fig. 3 as woodland/open land cover, increasing cereal crops and insect 

groups indicative of human activity. McGill et al. (2015) identified 15 categories of biodiversity 

trends based on a range of data types and highlighted the importance of scale in interpreting 

diversity indices. Pollen data represent different spatial scales dependent on taxa group and 

landscape type, such as closed forest or open grassland. The results presented in this study mostly 

represent meta-community scales (i.e. spatial heterogeneity with dispersal as the dominant 

process) as opposed to biogeographical and global scales, which are governed by speciation and 

global extinction (McGill et al., 2015). This study has highlighted that spatial scale plays an 

important role in understanding human drivers of biodiversity. 

The results from this data synthesis indicate that patterns of diversity change are more 

heterogeneous than the theoretical schema presented by Birks et al. (2016a) and highlight that 

there is a great deal of regional and temporal variability in palynological diversity trends, although 

the conceptual model may reflect large (continental) scale trends. The relationships between 

population change, land cover and diversity are not straightforward, which implies that the ways in 

which people managed the land has greater impact on diversity than changing population levels 

through the Holocene. Detailed information about the type, scale and intensity of land use is 

needed to allow diversity patterns to be fully understood in relation to changing human 

populations over time. The specific combinations of taxa driving diversity change and traits that 

condition ‘success’ or ‘failure’ to persist also require exploration alongside diversity, as 

interpreting diversity indices alone may mask the decline or loss of key taxa or functional types 

(e.g. Reitalu et al., 2015; Davies, 2016; Carvalho et al., 2019). More detailed analysis of species 

characteristics or traits is needed, which will be addressed in future work on the combined 

analyses of pollen and archaeobotanical data, which provide information about the scale and 

intensity of land use (Treasure et al., 2019), cultivation practices, cereal and horticultural crops, 

and the evolution of weed floras. Further work at smaller spatial scales is also needed to explore 

patterns between demographics, land use, and trends in particular taxa or phytosociological 

groups, which is demonstrated by the high standard deviation in certain sub-regional patterns 

indicating dissimilar trends between individual sites. Broad spatial scale macroecological A
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syntheses are valuable for understanding to what extent there are generalisable relationships 

between human land use and biodiversity trends. However, meta-analyses need to consider sub-

regional patterns and site-specific characteristics along with exploration of the nature of past land 

use to assess species sensitivity to change. This has potential to provide answers to questions about 

the way in which these factors shaped plant assemblages, which can facilitate more efficient 

communication across palaeo- and neo-ecology and conservation. 

The majority of the significant correlations appear between climate, palaeodemography and the 

pollen taxa richness component of diversity rather than evenness. This implies that the significant 

associations with Shannon diversity mostly depend on the richness component and not evenness. 

Analyses of palaeoclimate trends can also help to address debates about the relationships between 

climate, land use and land cover over time (Dark, 2006). The climate datasets analysed within this 

study provided mixed results with some climate trends showing significant correlations with 

palynological diversity and population change for specific time periods, but not others. Weak 

correlations are to be expected during periods of stable Holocene climate when climatic influence 

on vegetation change would have been minor. However, the significant correlations identified with 

climate records from Iceland and Greenland demonstrate a strong relationship between pollen 

diversity trends and climate, suggesting that the climatic optima and ranges of different taxa 

played an important role in shaping vegetation patterns. The Greenland temperature deviation 

record shows strongest correlations with population and the diversity indices. Despite the 

numerous significant correlations between the datasets, we cannot assume that causation directly 

relates to the variables of interest. Despite statistically significant correlations between population 

and both Shannon index and rarefaction for the entire time period covered by both records (9900-

1700 BP), r-values indicate that population change is correlated with palynological diversity more 

clearly in the later Holocene in comparison with the earlier Holocene. This suggests that people 

had an increasingly impactful influence on landscapes and palynological diversity, which is 

reflected by the increase in insect fauna associated with human land use and the increasing 

abundance of cereals and arable pollen indicators.

Conclusions: 
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Synthesis of fossil pollen, archaeological and insect datasets from the British Isles has 

demonstrated that humans played an important role in shaping landscape transformation 

throughout the Holocene within the context of climatic influences on vegetation change. However, 

relationships between population change, land cover and palynological diversity in the past are not 

straightforward. Testing a model of biodiversity change has demonstrated that patterns of 

palynological diversity trends are regionally variable and may not always follow expected 

trajectories. Current understanding of environmental change is often focused on recent decades, 

which only represents a ‘snap-shot’ in time. Exploring trends at smaller spatial scales, and 

understanding how different types of human-induced disturbance, such as land-use change, lead to 

loss or increases in diversity, also holds great potential for addressing questions about human 

impacts on biodiversity change. In order for long-term environmental data to inform modern 

challenges surrounding land use and biodiversity loss, detailed high-resolution spatial and 

temporal datasets need to be synthesised through multi-community efforts and large-scale data 

harmonisation exercises.  
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Figures:

Figure 1. Theoretical model of local to meta-community scale diversity and possible drivers of 

change: summary of trends in biodiversity through the Holocene for fertile and infertile soils 

(based on Birks et al., 2016a). 

Figure 2. a) Fossil pollen, insect and potential archaeobotanical sites, b) radiocarbon-dated 

archaeological (palaeodemographic) site distribution. 

Figure 3. Synthesis of pollen and insect records from the British Isles: Stevens and Fuller’s (2012) 

model of agricultural changes in the UK presented with archaeological periods, radiocarbon-

inferred palaeodemographic changes (from Bevan et al., 2017), pollen-based vegetation cover and 

key land-use indicators (Fyfe et al., 2013), changes in key insect faunal groups (Smith et al., 2019) 

represented as average, minimum, maximum and interquartile range, and pollen taxa richness and 

evenness (Shannon diversity and rarefaction) indices averaged for all pollen sites. Dashed grey 

lines show values based on 233 pollen taxa groups and solid black lines show values for 558 

pollen taxa groups. Dotted horizontal lines show the standard deviation. A
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Figure 4. Pollen taxa richness and assemblage evenness summarised by Shannon diversity and 

evenness indices and rarefaction (pollen richness) (with standard deviation and number of pollen 

sites) averaged for four regions of the British Isles: southeast England, southwest England, 

Scotland and the midlands/northern England. Dashed grey lines show values based on 233 pollen 

taxa groups and solid black lines show values for 558 pollen taxa groups. Palaeodemographic 

(population) trends are shown for each region (based on the summed probability distributions 

(SPDs) of radiocarbon-dated archaeological sites.

Figure 5. Pollen-derived Shannon diversity and evenness for the British Isles presented with 

palaeodemographic data for all regions and palaeoclimate datasets: sea surface temperature (SST) 

from Iceland (Moossen et al., 2015), an 18O isotope speleothem record from Crag Cave (Ireland) 

(McDermott et al., 2001), temperature deviation from the Greenland ice core (Vinther et al., 2009) 

and total solar irradiance (TSI) (Steinhilber et al., 2012). Grey circles represent all data points and 

black lines represent smoothed data values derived using a general additive model (GAM).

Table 1 Spearman’s rank correlations (r and p-values) between the palaeoclimate records 

reflecting North Atlantic patterns, pollen taxa richness and evenness (Shannon diversity index and 

evenness) and taxa richness (rarefaction), and palaeodemographic change (population) inferred 

from summed probability density (SPD) functions of radiocarbon-dated archaeological sites. 

Correlation analyses were carried out for the early, mid, late and entire Holocene and significant 

relationships are shaded. Dates represent the mid-point of each 200-year time window. Grey 

shading indicates significant correlations (p < 0.05). P-values corrected for multiple comparisons 

of significantly correlated variables are shown in brackets.

 

Supplementary Information, Table 2. Pollen site metadata from data contributors and the 

European Pollen Database (EPD) Leydet et al. (2007-2020) and Fyfe et al. (2013).
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http://www.europeanpollendatabase.net/fpd-epd/bibli.do by selecting a country and clicking on a 

relevant site name (please see Supplementary Information for site names, author names and 

references). The EPD is also available as an Access database, which can be downloaded here: 

http://www.europeanpollendatabase.net/data/downloads/ 

The fossil insect datasets are available from BugsCEP (http://bugscep.com/). The latest version of 

the BugsCEP Access database can be downloaded here: http://bugscep.com/downloads.html. All 

radiocarbon dates used for palaeodemographic reconstructions are available within University 

College London’s Discovery database (discovery.ucl.ac.uk/10025178/: doi: 

10.14324/000.ds.10025178). For a full set of sources and acknowledgements for the radiocarbon 

data see Bevan et al. (2017). 

The climate datasets are available from NOAA (https://www.noaa.gov/) and can be accessed using 

the following links:

• Northwest Iceland Climate Reconstructions: 

https://data.noaa.gov/dataset/dataset/noaa-wds-paleoclimatology-northwest-

iceland-holocene-biomarker-data-and-climate-reconstruction A
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• 18O isotope speleothem record from Crag Cave (southwest Ireland): University of 

Plymouth PEARL repository: https://doi.org/10.24382/c7ex-n779 

• Holocene record of deviation from modern temperature derived from Greenland ice 

cores: https://www.ncdc.noaa.gov/paleo-search/study/22057  

• Cosmogenic isotope and total solar irradiance (TSI): 

https://www.ncdc.noaa.gov/paleo-search/study/12894 

• A modified version of the climate datasets modelled using GAMs (General 

Additive Models) is available from the University of Plymouth PEARL data 

archive: https://doi.org/10.24382/c7ex-n779  
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