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Abstract 19 

Sensory ecology and physiology of free-ranging animals is challenging to study but underpins 20 

our understanding of decision making in the wild. Existing non-invasive human biomedical 21 

technology offers tools that could be harnessed to address these challenges. Functional near-22 

infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique 23 

measures oxy- and deoxyhemoglobin concentration changes that can be used to detect localised 24 

neural activation in the brain. We tested the efficacy of fNIRS to detect cortical activation in 25 

grey seals (Halichoerus grypus) and identify regions of the cortex associated with different 26 

senses (vision, hearing and touch).  Activation of specific cerebral areas in seals was detected 27 

by fNIRS in responses to light (vision), sound (hearing) and whisker stimulation (touch). 28 

Physiological parameters, including heart and breathing rate, were also extracted from the 29 

fNIRS signal, which allowed neural and physiological responses to be monitored 30 

simultaneously. This is the first time fNIRS has been used to detect cortical activation in a non-31 

domesticated or laboratory animal. Since fNIRS is non-invasive and wearable, this study 32 

demonstrates its potential as a tool to quantitatively investigate sensory perception and brain 33 

function while simultaneously recording heart rate, tissue and arterial oxygen saturation of 34 

haemoglobin, perfusion changes and breathing rate in free-ranging animals. 35 
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1. Introduction36 

Animals respond continually to diverse environmental stimuli (e.g. sound, sight and touch) [1-37 

3] to make critical ecological decisions (e.g., communication, foraging). Extensive research38 

has described behavioural responses to such stimuli [4-7]. For example, experiments 39 

demonstrate that domestic sheep can recognize their offspring at a distance using visual and 40 

acoustic cues, with olfaction providing a final check of identity at close range before allowing 41 

suckling [8]. Specific areas of a sheep’s cerebral cortex are involved in facial recognition and 42 

there is a specialized mechanism to learn offspring odours immediately after birth [9]. 43 

However, understanding how most species detect and perceive external stimuli rarely 44 

integrates information from several senses. Instead, basic knowledge of the structure [10] and 45 

function [11] of individual sensory apparatus is used along with measurements of their relative 46 

sensitivity, detection capacity, and threshold ranges [12-14]. For example, we know that deep-47 

diving seals have acute vision adapted for the deep ocean [12], they can hear well underwater 48 

[13]; and their vibrissae can detect the wake of fish [14]; but it is currently unclear which of 49 

these senses they use at different stages of prey detection, localisation, and capture. 50 

Although animals can perform some tasks when experimentally restricted to only one sensory 51 

system [15], and some behavioural characteristics are suggestive of task-based dominance of a 52 

particular sensory pathway (e.g. changing bearing in response to prey-derived bioluminescence 53 

[16]), under natural conditions most behaviours are based on multimodal convergence of input 54 

from several senses [3]. In addition, information from different senses may change in 55 

importance relative to other senses depending on the context. Our understanding of which 56 

senses animals rely upon to complete tasks in the wild (such as locating prey or detecting and 57 

fleeing danger) is complicated by the fact that sensing occurs in a spatially, temporally, and 58 

contextually heterogeneous environment, in which information masking and central attentional 59 

factors, such as a focus on finding prey or detecting a predator, can affect how even simple 60 

stimuli are detected and processed [17]. Given the complexity of natural environments and the 61 

dynamic interactions that free-ranging animals must process, it is important to measure sensory 62 

activation under naturalistic conditions. An ability to understand multi-sensory perception, 63 

specifically sensory cortical activation, synchronously with behaviour and physiological 64 

parameters such as heart rate, is key to understanding contextual decision-making in the wild. 65 

Visual, auditory, mechanoreceptive, and chemoreceptive stimuli evoke responses from 66 

different regions of the cortex of the mammalian brain [18]. The location of these areas varies 67 

across mammals, but the specialization of cortical areas for different senses is shared across 68 









that included the optode/detector locations (Model A). The tissue overlying the skull was then 164 

removed to expose the braincase. The carcass was imaged a second time (40 photographs) and 165 

a second 3D photogrammetry model was generated (Model B). Both models had a Root Mean 166 

Squared (RMS) error of < 2.0 (arbitrary units defined by Photomodeler), which is within the 167 

acceptable threshold of accuracy (RMS 0-5) recommended by Photomodeler software (De 168 

Bruyn et al 2009). Both models were exported from Photomodeler as *.stl files and combined 169 

in the software package Mesh Lab (Visual Computing Lab, Istituto di Scienza e Tecnologie 170 

dell’ Informazione “A. Faedo”, Italy), using anatomical features (eyes, nose, vibrissae) to align 171 

them. The optode/detector positions on the skin (Model A) were then matched to the underlying 172 

locations on the skull (Model B). The area covered by the optode/detector array is shown in 173 

Fig. 1 and was presumed to be representative of the cohort of juvenile grey seals used in 174 

experiments. 175 

Sensory Stimuli 176 

Visual, auditory, and tactile stimuli were selected to stimulate each sense independently. Visual 177 

stimuli consisted of the presence and absence of torchlight (50 lumens) manually shone into 178 

the eyes from a range of 30 cm. Auditory stimuli consisted of five different anthropogenic 179 

sounds (Fig. S1); these were a) pile driving (500 m), b) pile driving (40 km), c) an operational 180 

tidal turbine (low sound pressure level), d) an operational tidal turbine (high sound pressure 181 

level), and e) a training whistle. Previous research has shown that acoustic characteristics (e.g. 182 

source level, rise time, signal duration, signal frequency) can have a significant influence on 183 

the probability of detection by an animal [29]. Therefore, by selecting a range of sounds with 184 

different acoustic characteristics, we hoped to maximise the probability of inducing a 185 

haemodynamic response to the acoustic stimuli. The pile-driving signals were derived from 186 

two far-field measurements of pile driving (500m and 40km from the source) in a shallow water 187 

environment [30]. Similarly, the tidal turbine signal was generated to show comparative far-188 

field temporal and spectral characteristics of real turbine noise [6]. The training whistle signal 189 

was a recording of a whistle used by training and husbandry personnel as a conditioned 190 

reinforcement ‘bridging’ signal [31] during feeding of the seals. The majority of the signals 191 

(pile driving (500 m), pile driving (40 km), the tidal turbine (low sound pressure level), and the 192 

training whistle) were played at the same source sound pressure level (sound pressure level) 193 

(~86.5 dB re 20 µPa @ 1 m(root mean square)). A high sound pressure level tidal turbine signal 194 

was also played at ~94 dB re 20µPa @ 1m (root mean square). Noise was kept to a minimum 195 























optical property measurements with 3D Monte Carlo simulations [58] would provide 519 

more accurate estimation of where in the brain the activation is being measured. In the 520 

current study, we used commercially available wavelengths suitable for humans, 521 

because seal haemoglobin has similar optical properties to humans [59], there is a short 522 

distance from scalp to brain (< 1.5 cm – typically less than a human), and fNIRS has 523 

been successfully used on seals to measure blood volume in brain and blubber [21]. 524 

However, for species without this information, the absorption and scattering 525 

coefficients should be measured, and the dynamics of optical propagation estimated. 526 

6. In terms of the physical deployment of an fNIRS logger on an animal, it is important527 

that this is not only robust but does not unduly influence the behaviour or energetics of528 

the animal [60]. Appropriate ruggedisation/marinization while maintaining optical-529 

integrity and appropriate attachment protocols is therefore required to allow fNIRS to530 

be used on wild animals. Initial work on seals [21] and deep-diving humans [53],531 

although restricted to single-channel systems, has shown that this is readily achievable532 

even for extreme environmental conditions.533 

5. Conclusion534 

We have shown fNIRS can be used to measure sensory activation, along with simultaneous 535 

measurement of systemic cardiovascular changes (i.e. heart rate and breathing events) in seals, 536 

and demonstrate that its powerful applications in human biomedical and cognitive research 537 

could translate to free-ranging wild animal research. The capacity of fNIRS to simultaneously 538 

capture cortical activation and systemic physiological responses in a non-invasive, wearable 539 

instrument may facilitate free-ranging measurements. Together with data from existing animal-540 

borne behavioural and environmental data logging systems, such data could provide key 541 

information to understanding sensory perception, behavioural responses, and decision-making 542 

in wild animals. 543 
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