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A B S T R A C T

Understanding the impacts of anthropogenic sound on marine mammals is important for effective mitigation
and management. Sound impacts can cause behavioral changes that lead to displacement from preferred habitat
and can have negative influence on vital rates. Here, we develop a movement model to better understand and
simulate how whales respond to anthropogenic sound over ecologically meaningful space and time scales.
The stochastic model is based on a sequential Monte Carlo sampler (a particle filter). The movement model
takes account of vertical dive information and is influenced by the underwater soundscape and the historical
whale distribution in the region. In the absence of noise disturbance, the simulator is shown to recover the
historical whale distribution in the region. When noise disturbance is incorporated, the whale’s behavioral
response is determined through a dose–response function dependent on the received level of sound. The
aggregate impact is assessed by considering both the duration of foraging loss and the spatial shift to alternate
(and potentially less favorable) habitat. Persistence of the behavioral response in time is treated through a
‘disruption’ parameter. We apply the approach to a population of fin whales whose distribution overlaps naval
sonar testing activities beside the Southern California range complex. The simulation shows the consequences
of one year of naval sonar disturbance are a function of: i) how loud the sound source is, ii) where the disturbed
whales are relative to preferred (high density) habitat, and iii) how long a whale takes before returning to
a pre-disturbance state. The movement simulator developed here is a generic movement modeling tool that
can be adapted for different species, different regions, and any acoustic disturbances with known impacts on
animal populations.
1. Introduction

The US Marine Mammal Protection Act (16 U.S.C. §§1361 et seq.)
aims to protect marine mammals from harassment in US waters. Excep-
tions may be made for certain activities, including those that generate
underwater sound. A key example, and a central motivator for this
paper, is when tactical sonar is used for naval training and testing.
To receive an exception, the US Navy undertakes extensive planning
to determine how many whales could be exposed to sonar, and the
levels at which each animal is exposed. At present, one limitation of
this approach is that each simulation of behavioral effects is done for
a 24-hour period, with no memory of previous disturbance. This limits
our understanding of longer term effects of multiple sound exposure
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on whales’ behavior, health, and ultimately vital rates. The literature
on the link between exposure and impacts on hearing and behavior is
rich (e.g., Southall et al., 2019), but determining the aggregate impacts
of multiple exposures, as well as the cumulative effect of different
stressors on vital rates is an open and pressing research question
(National Academies of Sciences, Engineering, and Medicine, 2017).

Animal movement models are a class of stochastic models that
simulate trajectories through time and space (Hooten et al., 2017).
These stochastic movement models are extremely flexible in terms of
character of the realizations of animal movement they can generate.
They generally must be confronted with location data (tracks) within
an inferential framework in order to provide reasonable simulations
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of actual trajectories. Bio-logging technologies have provided these
data, and revolutionalized the study of animal movement (Whitford
and Klimley, 2019). Fusion of movement models and tracking data
through statistical methods allow for understanding of animal behavior
inferred through movement. Approaches often focus on estimating the
parameters for behavioral inference (e.g., Patterson et al., 2017) using
methods such as Bayesian Markov chain Monte Carlo (MCMC; Morales
et al., 2004; Joy et al., 2015), and statistical frameworks such as
hidden Markov models (Langrock et al., 2012; Whoriskey et al., 2017),
and state space models (Jonsen et al., 2003; Dowd and Joy, 2011).
There is also significant interest in developing movement simulators
that simulate realistic trajectories but do not rely directly on observed
track data. These include the use of potential functions that influence
model trajectories based on imposed field of attraction or repulsion
(Brillinger, 2010; Preisler et al., 2013). One recent development makes
use of resource selection functions that encapsulate habitat preference
(Michelot et al., 2019a,b), and proposes an MCMC based simulator
wherein the step selection functions, or movement models, are such
that the long run distribution tends to the resource selection function.
Here, we offer a related but distinct sequential Monte Carlo sampler
(Del Moral et al., 2006) for movement simulation that can account
for historical distributions of whale abundance, as well as incorporate
sound exposure.

A suite of individual-based animal movement models have been
developed to merge individual-based movement with exposure to noise
disturbance (e.g., AIM: Frankel et al., 2002; SAFESIMM: Donovan
et al., 2012; 3MB: Hauser, 2006; and the US Navy Acoustics Effect
Model(NAEMO): Blackstock et al., 2018; 3MTSim: Parrott et al., 2011).
These existing methods are limited in a number of respects. First,
long-run movement in the absence of disturbance does not tend to
the resource selection function. Second, none of these acoustic effects
models accounts for behavioral context (Ellison et al., 2012), although a
few include realistic avoidance behavior (Donovan et al., 2017). Third,
existing approaches are limited in their ability to assess aggregate ex-
posure over more ecologically meaningful time frames, i.e., those that
may be linked to vital rates and population consequences (e.g., Pirotta
et al., 2018). From both a conservation and ecological standpoint, it is
important to move beyond single event assessments and examine long-
run movement of individuals and how their spatial use changes across
multiple sound exposures.

This study proposes a novel formulation for a marine animal move-
ment model, in the form of a particle filter based movement sampler.
This is motivated by, and targeted at, a population of fin whales in
the coastal waters off southern California, although the methods them-
selves are quite general. The movement simulator provides a frame-
work for evaluating long term consequences (e.g., over one year) of
sound disturbance, by tracking sound exposure and behavioral changes
on the individuals, that collectively may induce population level con-
sequences on vital rates. We make use of a multi-scale individual-based
random walk marine mammal movement model that simulates horizon-
tal movement and diving over a period of up to one year of US naval
sonar exercises with dive-by-dive resolution. The sequential Monte
Carlo sampler allows movement trajectories to follow historical whale
distributions. In this way, individual-based movement simulations per-
mit us to incorporate the following: (i) the aggregate noise exposure in
an area; (ii) the movement of individuals in response to the exposure;
and (iii) the changes in habitat-use as a result of those sound-induced
behavioral changes. We propose this model as part of a management-
focused tool that, when calibrated to local conditions, could be used
in combination with existing methods to estimate behavioral effects of
accumulated exposure and the distribution of aggregate exposure and
behavior response within the population. Collectively, this tool assists
on-going efforts to better describe the consequences of anthropogenic
sources of disturbance on marine mammals and the possible effect
of mitigation measures. While our focus is on marine mammals and
underwater sound, our movement modeling approach could be applied
to other marine or terrestrial species to study spatial habitat use and
2

behavioral disturbance due to anthropogenic stressors. 𝒙
2. Methods

We develop a stochastic modeling approach that simulates the
movement of a whale through space and time. It is based on a stochastic
movement model producing whale trajectories that are influenced by
historical whale distribution, as well as underwater noise fields. In this
section, we first introduce a general movement model. We consider
its vertical dimension as being taken from a population dive distri-
bution. This is coupled to a random walk model of the horizontal
movement. Next, we demonstrate how realizations (trajectories) of this
stochastic movement model can be guided by a historical spatial whale
distribution surface, something that is often available from past studies
based on sightings surveys or other data on habitat utilization. Finally,
the influence of underwater noise is incorporated using a hypotheti-
cal dose–response function to define the probability of a behavioral
response that takes the form of an alteration of the movement pathway
to avoid or minimize further sound exposure.

The general framework for the movement model is the following
stochastic time series model,

𝒙𝑡 = 𝑑(𝒙𝑡−1, 𝜙, 𝜖𝑡) (1)

here 𝒙𝑡 is the state vector that describes the state at time 𝑡, which here
epresents the animal’s location. The operator 𝑑 steps the movement
rocess forward in time. It is Markovian and has a dependence on the
tate at the previous time, 𝒙𝑡−1, as well as on a set of parameters, 𝜙.
he term 𝜖𝑡 represents stochastic forcing or random disturbance; it is
enerally assumed serially uncorrelated and can enter multiplicatively
r additively. The unit time index, and the time increment defined
y it, is arbitrary — it could reflect the discretization time used in a
umerical scheme for solving differential equations (hence mimicking
ontinuous movement), it could be the time between observations of
he system, or it could simply reflect any time interval of interest that
s regularly or otherwise spaced. Eq. (1) is a very general movement
odel, and below it is made application-specific by first considering

he movement in the vertical (depth) dimension, and then showing how
hat informs movement in the horizontal dimension.

.1. Vertical movement

We first consider the vertical movement or dive characteristics, as
his acts to specify many of the features of the horizontal movement.
he statistics describing an individual dive typically are assumed to
ollow a known distribution including dive duration, descent rates,
ime at the surface between dives, and time at depth (Hauser, 2006).
ere, we consider the intermediate time spent not diving as surface

elated activity that is linked to the previous subsurface component of
dive which relates in part to the recovery phase after submergence

Tyack et al., 2006). This couplet of submergence and surface recovery
s henceforth called a ‘dive’. Dives are randomly generated from species’
ive statistics (or taken directly from dives recorded on tags). Each dive
ealization is assumed to occur independently from any previous dive,
nd represents a discrete event. Dive durations are variable, and do not
onform to a regular time interval. Furthermore, for realism, each dive
s also constrained to be less deep than the local bathymetry at the dive
ocation. Importantly, as outlined below, these realizations of vertical
ovement are coupled to the horizontal movement with the duration

f each dive defining the associated time step for the stochastic model
f horizontal movement, as well as the magnitude of the horizontal
isplacement.

.2. Horizontal movement

The horizontal part of the movement model is based on a simple
-D random walk that is straightforward to simulate from:

2

𝑡 = 𝒙𝑡−1 + 𝜖𝑡 where 𝜖𝑡 ∼  (0, 𝜎𝑡 ) . (2)
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Here, 𝒙𝑡 is a 2 × 1 vector that represents the northing and easting UTM
position of the whale at time step 𝑡. The unit time step here is taken
s the dive duration, which will be a variable, not constant, length
f time. Longer dive durations tend to be associated with larger dis-
lacement between two point locations (Fauchald and Tveraa, 2003).
o incorporate this feature, we make the variance term 𝜎2𝑡 in the state
volution Eq. (2) a scalar function of the dive duration. Specifically,
he standard deviation for the displacement, 𝜎𝑡, is the dive duration
ultiplied by a typical speed of the whale species under consideration.
e further add a constraint to the horizontal movement through a user-

efined threshold that rejects a proposed displacement if it exceeds the
aximum possible speed of the species, effectively making 𝜖𝑡 a normal

distribution with its upper tail truncated. Hence, the transition density
𝑝(𝒙𝑡|𝒙𝑡−1) associated with Eq. (2) is a truncated normal as described.

2.3. Incorporating spatial habitat use

The basic random walk given by Eq. (2) is, by itself, not a partic-
ularly informative or realistic model for whale location. Eq. (2) has
no directional fidelity to the movement, meaning that the expected
location is the simulation starting position, and location variance just
grows as a linear function of time. To add realism through directional
preference, we use this movement model within a sequential Monte
Carlo sampler to take into account information on historical whale
spatial density. Below, we assume we have an estimate of the spatial
probability density function of whales in a mapped region from past
studies. In practice, this habitat preference is often a product derived
from whale sightings fitted with a density surface model or from a
species distribution model. It may alternatively be referred to as a
resource selection function (Boyce and McDonald, 1999). We will term
this quantity the historical whale spatial density to emphasize that it is
an already obtained quantity, and denote it as 𝑝(𝒚𝑡|𝒙𝑡). This says that
for a particular animal location 𝒙𝑡, we can determine the probability of

whale observation, 𝒚𝑡, occurring there.
The historical whale spatial density will be used to influence the

ocal trajectory of the random walk, and hence bias the horizontal
ovement and impart directional fidelity that reflects habitat prefer-

nce. More specifically, we seek the posterior distribution of the new
hale location taking account the previous position, the movement
odel prediction, and the historical whale spatial density. From Bayes’

heorem we have

(𝒙𝑡|𝒚𝑡) ∝ 𝑝(𝒚𝑡|𝒙𝑡) 𝑝(𝒙𝑡|𝒙𝑡−1) (3)

where 𝑝(𝒙𝑡|𝒚𝑡) is the target distribution. Note that the movement model
𝑝(𝒙𝑡|𝒙𝑡−1) and the historical whale spatial density 𝑝(𝒚𝑡|𝒙𝑡) also provide
the components for a state space model whose goal is to determine the
posterior 𝑝(𝒙𝑡|𝒚𝑡) for 𝑡 = 1,… , 𝑇 . We exploit this fact below to propose a
sequential estimation procedure for the state that combines the random
walk movement model with the historical whale spatial density in order
to generate realizations of whale trajectories that are draws from the
posterior. Note that there are no parameters to estimate here since the
displacement variance, 𝜎2𝑡 , and the whale observation density, 𝑝(𝒚𝑡|𝒙𝑡),
are user inputs and hence specified.

Since the distributions considered are generally non-Gaussian, we
use the basic particle filtering algorithm of sequential importance re-
sampling (SIR; Gordon et al., 1993; Kitagawa, 1987). In general terms
this works as follows. Starting with initial conditions 𝒙0, the whale
movement model predicts possible movement locations, the historical
whale spatial density weights these locations based on the probability
of a whale being found there, and a weighted resampling occurs after
which a new location is determined. The procedure then continues
sequentially forward through time. The particle filter is simple to imple-
ment, well understood, and converges to the target posterior (Kitagawa,
1987). Our specific adaption of this sequential Monte Carlo algorithm
3

to generating whale trajectories is given below.
For this sequential, recursive algorithm we assume, without loss
f generality, that we are at time 𝑡 − 1 and know the whale location
t that time (i.e., the location at the start of a dive). Our goal is to
etermine its position at the next time 𝑡 (at the end of the dive and
fter surface recovery). We do this according to the following sequence
f steps starting with the whale location 𝒙𝑡−1:

I. Set up: Determine the displacement variance term, 𝜎2𝑡 , in the hor-
izontal movement model (2). This is done by randomly generating
a dive duration from a species’ dive distribution (see Sections 2.1
and 2.2).

II. Prediction: Simulate 𝑛 possible whale positions at time 𝑡 by draw-
ing 𝑛 realizations of the random vector of displacement, 𝜖𝑡, and
applying the random walk model (2) to each one. This yields a set
of 𝑛 possible predicted locations, designated {𝒙(𝑖)𝑡|𝑡−1}

𝑛
𝑖=1, which is a

draw from the transition density 𝑝(𝒙𝑡|𝒙𝑡−1). Here, 𝒙𝑡|𝑡−1 designates
the one-step ahead forecast location prior to any consideration of
the historical whale spatial density, and the superscript 𝑖 identifies
an ensemble member (particle).

III. Weighting: Calculate a weight for each member of the forecast
ensemble, {𝑤(𝑖)

𝑡 }, 𝑖 = 1,… , 𝑛. The 𝑛 weights are calculated for each
forecast whale position as being proportional to the whale spatial
density,

𝑤(𝑖)
𝑡 ∝ 𝑝(𝒚𝑡|𝒙

(𝑖)
𝑡|𝑡−1). (4)

IV. Selection: A single ensemble member is selected randomly from
the candidate set {𝒙(𝑖)𝑡|𝑡−1}

𝑛
𝑖=1 with probability proportional to their

weights {𝑤(𝑖)
𝑡 }. This becomes the next location in the simulated

track at time 𝑡, or the value for the position 𝒙𝑡.

Applying this algorithm for all time steps yields a single trajectory
or a whale that is a function of the stochastic movement model as
ell as the historical whale spatial density. The basic random walk

ould in some sense be said to be ‘biased’ by the local landscape
onditions. One feature of the algorithm is that to obtain a single
hale trajectory requires, at each time step, the generation of many
𝑛) candidate location predictions from which a single one is chosen.
owever, since the movement model and the weighted resampling are
omputationally trivial, the overall computational burden should be
inimal. The size of 𝑛 is user-specified and must be large enough so

hat whale location predictions sufficiently populate the local space
round the current position, allowing an appropriate particle to be
hosen for the trajectory that properly responds to the historical whale
patial density (see Supplementary Material). To generate an ensemble
f whale trajectories, or many individual tracks, multiple runs of the
bove algorithm would be undertaken (these could be run in parallel).
inally, note that this approach is a general one — it can be applied to
ny Markovian movement model of the form (1) and will converge to
he target posterior. The sequential Monte Carlo sampler is discussed
urther in Section 4.

.4. Whale movement response to underwater noise

The simulated whales’ response to the sound field incorporates three
omponents:

1. A biphasic dose–response function that informs the probability
of a response to noise disturbance.

2. Directional horizontal movement away from the loudest noise
in the region of the whale. This changes over time as noise
source(s) and the whales move.

3. Duration of behavioral disruption post-disturbance that affects
directional persistence. The strength of the behavior changes
decreases with time as behavior reverts to baseline according to
an exponential decay governed by a ‘disruption’ parameter.
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Fig. 1. Biphasic dose–response function for low-frequency (Mysticetes) whales, der-
ived from (Finneran et al., 2017). The 𝑥-axis is the sound pressure level (SPL) or ‘dose’
eceived by a whale (dB re 1 μPa), and the 𝑦-axis is the probability of a behavioral

response (BR) for a given SPL.

2.4.1. Biphasic dose–response function
Probability of behavioral response is modeled as a function of the

acoustic dose of anthropogenic noise, quantified as the received sound
level (RL). A biphasic functional relationship has been hypothesized
(Ellison et al., 2012) whereby (i) at lower RLs the response is dependent
on the pre-existing behavioral context of the whale, while (ii) at higher
RLs a behavioral response is more likely and is more directly tied
to RL. Combining these two modes of response and integrating over
behavioral states leads to a biphasic function. This type of function
has been fitted to experimental and observational data from multiple
taxa, and used by the US Navy in its impact assessments (Finneran
et al., 2017). Empirical data on fin whale responses to sonar are not
yet available, thus the dose response relationship used here is borrowed
from that of blue whales, a related Mysticete species in the same genus,
Balaenoptera (Finneran et al., 2017). An example of the dose response
functional form is shown in Fig. 1 (with modification possible once
experimental/observational data become available). The probabilistic
functional form is

𝑃𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) =
𝑝

1 + 10(𝐿1−𝐷𝑜𝑠𝑒)ℎ1
+

(1 − 𝑝)
1 + 10(𝐿2−𝐷𝑜𝑠𝑒)ℎ2

(5)

where 𝐷𝑜𝑠𝑒 is the received sound pressure level (SPL, in dB re 1 μPa) of
broadband noise, 𝑝 is the proportion of the curve comprising the first
(lower dose) phase, 𝐿1 is the broadband SPL at the midpoint (inflection
point) of the first phase, 𝐿2 is the broadband SPL at the midpoint
(inflection point) of the second phase, ℎ1 is the slope of the first phase
where smaller values correspond to lower contextual response, and ℎ2 is
the hill slope of the second phase. This model is a generalization of the
monophasic models previously developed and applied in this context,
e.g., Antunes et al. (2014) and Miller et al. (2014). Other forms of
dose–response function than those of mono- and bi-phasic forms could
readily be used. We refer the reader to the Supplementary Material for
additional information on this function.

2.4.2. Directional response to noise
Suppose there is a received level sufficiently loud to trigger a

behavioral response (BR) via Eq. (5) at time 𝑡 at the animal’s location,
𝒙𝑡. The movements of the whale to next location 𝒙𝑡+1 are modeled as
having a behavioral response such that it moves in a direction 180◦

away from the maximum sound source. This angle is described by the
2 × 1 unit vector 𝜃𝑠𝑜𝑢𝑛𝑑(𝑡) containing the easting and northing vector
components. The magnitude of the movement is taken to be identical
to the horizontal displacement computed by the movement model in
4

the absence of any noise effect. This corresponds to a step size dictated
by the realization of 𝜖𝑡+1, and is the Euclidean distance between 𝒙𝑡 and
𝒙𝑡+1, or ‖𝒙𝑡+1−𝒙𝑡‖. At the new position, 𝒙𝑡+1, at time, 𝑡+1, if the sound
level is still sufficient to trigger another behavioral response then the
procedure continues by moving 180◦ away from the ‘new’ direction
of maximum sound source, 𝜃𝑠𝑜𝑢𝑛𝑑(𝑡+1) with the distance ‖𝒙𝑡+2 − 𝒙𝑡+1‖.
Goldbogen et al. (2013) found whales responded with directional travel
away from the sound source when exposed to playbacks of military
sonar. In some cases, whales have been shown to increase speed in
response to sonar (e.g., DeRuiter et al., 2013), and this could readily
be incorporated if desired.

2.4.3. Disruption of behavior: time to revert to baseline behavior after a
behavioral response

Once a behavioral response occurs, then the post-disturbance move-
ment process gradually reverts back to that of the disturbance-free
movement model. The rate at which this happens is governed by a
parameter 𝛼𝜏 , where 𝜏 is the number of time steps (or dives) since
the most recent behavioral response occurred, and 𝛼 is the ‘disruption’
parameter, (0 ≤ 𝛼 ≤ 1). Since it is only the direction of movement that is
changed, the post-disturbance direction at time step 𝜏, 𝜃𝑡, is computed
as

𝜃𝑡 = 𝛼𝜏 𝜃𝑠𝑜𝑢𝑛𝑑(𝑡) + (1 − 𝛼𝜏 ) 𝜃𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑡) (6)

where the right-hand-side of (6) represents a weighted average of the
directions 𝜃𝑠𝑜𝑢𝑛𝑑(𝑡), (180◦ from the time-varying sound source at time
𝑡), and 𝜃𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑡) (the time-varying direction given by the stochastic
movement model at time 𝑡). The relative weighting changes with time
since disturbance, 𝜏, and at each step the direction of maximum sound
is re-evaluated (updated for movements by both the whale and sound
source). If no behavioral responses occur such as when the noise source
ceases, the whale remembers the direction of maximum sound from
the most recent 𝜃𝑠𝑜𝑢𝑛𝑑(𝑡). The ‘disruption’ parameter dictates the rate at
which this behavior returns to baseline such that when 𝛼 = 0 there
is no change in behavior from past disturbance, and when 𝛼 = 1 the
whale never returns to its baseline behavior. Note that while the above
procedure is explained in terms of a single noise source, the ideas are
generalizable to different dose response functions, multiple behavioral
responses, different magnitudes of response, and multiple simultaneous
moving noise sources.

2.5. Applications

We illustrate the movement model through two applications: (i) an
idealized example that highlights the features of the simulation tool
using a synthetic historical whale spatial density and a synthetic sound
source, and (ii) a realistic case study focused on the consequences
of acoustic disturbance on a population of fin whales to the west of
the Southern California Anti-Submarine Warfare Range (SOAR, located
west of San Clemente Island, Southern California). The simulation
model and all analysis is written in R (R Core Team, 2020).

2.5.1. Generic whale movement model with synthetic noise: an idealized
application

We demonstrate the movement model for a generic whale moving
through a region where a bimodal distribution is imposed that reflects
local habitat quality and specifies the historical whale spatial density.
This idealized scenario simulates one year of whale movement both in
the absence and presence of noise disturbance. For simplicity, we fix the
bathymetry of the idealized region to be deeper than the deepest DTAG
dive registered for tagged fin whales tagged in this region (i.e., > 359
m). The purpose here is to demonstrate that the particle filter algorithm
described in Section 2.2 can be used to construct simulated whale tracks
that reflect the historical whale spatial density, as well as how the
introduction of noise affects the movement.

Dive duration is determined by drawing randomly from a distribu-

tion derived from fin whale DTAG data (see Supplementary Materials
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Fig. 2. Set up for the idealized case. The colors show the historical whale spatial
density in the region where darker red indicates higher probability of a whale
presence. Also shown are underwater noise contours where each line represents 20 dB
difference in amplitude between 100 dB (the outer contour line) and 200 dB (the
innermost/smallest contour line), the 0 to 1 range of the biphasic dose–response
function in Fig. 1.

for more details on the DTAG data). The dive step variance, 𝜎2𝑡 , is then
scaled to the dive duration such that the characteristic displacement
is 𝜎𝑡 = 𝑠𝑝𝑒𝑒𝑑 × 𝑑𝑖𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) where the 𝑠𝑝𝑒𝑒𝑑 is taken as 1 m∕s and
represents a typical surface speed. Once 𝜎2𝑡 is determined, we follow
the movement sampler of Section 2.2 with a sample size of 𝑛 = 30 (See
Supplementary Material for an analysis of sensitivity to the number
of particles, 𝑛). Note that we incorporate the additional constraint
of having movement displacements such that they cannot exceed the
maximum speed for fin whales (assumed to be 7.7 m/s, or 15 knots;
Aguilar and García-Vernet (2017).

Fig. 2 shows the synthetic historical whale spatial density con-
structed as a mixture of two bivariate normal distributions. Also shown
in Fig. 2 is a synthetic, isotropic noise field centered at (0,0). The
sound pressure level contours in Fig. 2 correspond to 20 dB increments
of broadband noise between 100 and 200 dB re 1 μPa. The smallest
circle corresponds to 200 dB isocline, which implies a 100% chance
of the simulated whale responding to noise at that location using the
dose–response function of Fig. 1. Similarly, outside the biggest circle,
received levels are below 100 dB corresponding to a 0% chance of
eliciting a behavioral response. The sound source is always on for the
duration of this idealized simulation.

We explored the following scenarios as numerical experiments:

1. Whale trajectory in the absence of underwater noise. The simulated
whale trajectories are based only on the random walk model and
responding to the historical whale spatial density as dictated by
the particle filter.

2. Whale trajectory in the presence of continuous underwater noise,
weak disruption. Simulation of whale movement using both the
historical whale spatial density and the imposed underwater
noise field. The disruption parameter of (6) is set as 𝛼 = 0.5
which implies a relatively short disturbance period and less
directional persistence away from the local noise source.

3. Whale trajectory in the presence of continuous underwater noise,
strong disruption. As above, but with 𝛼 = 0.95 implying a longer
time before behavior returned to baseline after noise distur-
bance.

For each of the three numerical experiments, we summarize a one
year whale trajectory with the resultant whale density function derived
from the simulated trajectories, called the utilization density. This uses
kernel-smoothed density estimation (Worton, 1989), and we assume a
Gaussian kernel and select the smoothing bandwidth as recommended
by Venables and Ripley (2002). This creates a map of the habitat
utilization as dictated by the movement model, the historical whale
spatial density and the noise field.
5

2.5.2. Fin whale response to naval sonar in southern California: a case
study

In this application, we investigate the consequences of an extended
period of naval sonar events on a population of fin whales in the
waters off Southern California. This synthetic scenario consists of a
single naval destroyer equipped with a surface-ship mid-frequency
sonar (‘53C’). We use an available regional fin whale density surface to
bias the random walk towards preferred habitat using our movement
sampler (Becker et al., 2016). The movement model uses realizations
of dive behavior taken from tagged fin whales in the region and also
accounts for local bathymetry (which limits dive depths) and coastlines
(which act to constrain horizontal movement). Specifically, the follow-
ing sources of data are used (more information about these data sources
is given in Supplementary Material):

1. Dive Data. We incorporate the vertical component of whale
habitat through the dives logged on animal tagging devices
(e.g., DTAGs). Using tag data, we determine the relative amount
of time spent at each 10 m depth interval, as well as the
total dive duration and surface time of each dive. These dive
duration set the displacement magnitude 𝜎2𝑡 (Eq. (2)) as in the
idealized example. The realized displacement is conditional on
the horizontal movement not exceeding the species’ maximum
swim speeds.

2. Historical Whale Spatial Density. We use the density surface of
Becker et al. (2016) (Fig. 3) to bias the random walk towards
preferred habitat according to the movement sampler.

3. Noise Field. We incorporate the estimated received level (RL)
fields (Margolina et al., 2018) from a typical single-ship naval
53C sonar event to the east of the SOAR region at 5-minute
time resolution. We use the NSPE (Navy Standard Parabolic
Equation) model to describe transmission loss from the vessel
position (sound source) along discrete bearings such that each
10 m depth ‘slice’ of RL is estimated as a sound map; the 20 m
depth bin is shown in Fig. 3C (more details on the NSPE model
can be found in the Supplementary Material). A whale’s received
level is determined by matching the transmission loss model
prediction to the depth interval where the whale spends the
most time during a dive. The temporal sonar sound production
regime is based on data provided by the US Navy on hourly
detections of Navy sonar at the nearby SOAR range for the
two years 2014 and 2015. This disturbance regime is proposed
only as a demonstration — we do not suggest that this level is
applicable to the disturbance regime in the region. The duration
of each sonar event is simulated with a gamma distribution
(shape 1.845, rate 0.698) with mean of 2.64 h. The time between
each sonar event is simulated using a gamma distribution (shape
0.561, rate 0.02) with mean of 27.86 h, corresponding to 272
naval sonar events per year. Overall, the expected percent of
days with no sonar is 48%.

4. Bathymetry. The simulated whales’ dive depths are constrained
not to exceed the local depth, which can be an important con-
straint in shallow waters. Bathymetry at resolution of 3-arc
second (∼ 90 m) from the National Geophysical Data Center was
used (US Coastal Relief Model bathymetry; www.ngdc.noaa.gov/
mgg/bathymetry/relief.html) (Fig. 3A).

In this application, we follow a population of 1176 fin whales for
one year. This number comes from integrating the regional density
surface used to predict the number of fin whales from the 2-D log linear
model reported in Becker et al. (2016). We simulate movement of each
individual in the horizontal and vertical dimensions with dive-by-dive
resolution in the presence of multiple exposures to point sources of
underwater sound. Each whale’s trajectory corresponds to one year of
animal movement and tracks each individual’s history of disturbance.
Within a year, for each naval sonar event, the whale is assigned a
unique threshold noise value above which the whale has a behavioral

https://www.ngdc.noaa.gov/mgg/bathymetry/relief.html
https://www.ngdc.noaa.gov/mgg/bathymetry/relief.html
https://www.ngdc.noaa.gov/mgg/bathymetry/relief.html
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Fig. 3. Panel A: Bathymetry of the coastal Southern California region of interest. Panel B: Species distribution model surface of Becker et al. (2016) used as historical whale spatial
density. Panel C: Estimated received level of sound in the 10–20 m depth bin for a single position of the naval sonar, dB re 1 μPa (C).
response. This response threshold is randomly generated from the dose–
response function by treating it as a cumulative distribution function.
If the estimated received level at the horizontal and vertical location of
the whale exceeds this response threshold, the whale responds.

We apply the dose–response function (Fig. 1) at each dive but count
only one BR per naval sonar event. Multiple events that elicit a response
for an individual whale can be accumulated across time. If a whale
has one or more BR across a time period, the fin whale’s movement
trajectory is then a mixture of the movement model and its unique
exposure history and its memory thereof. A schematic is presented in
Fig. 4.

We ran two numerical experiments of one year duration on the pop-
ulation of 1176 whales, but with different ‘disruption’ parameters. The
first experiment describes a population of fin whales whose movement
is disrupted, on average, for 20 min (𝛼 = 0.05) post disturbance. We
assume 48% of days have naval sonar events, or 272 events across
365 days. The second experiment similarly describes a population of
1176 fin whales with the same regimen of naval sonar events but where
this population retains a disruption memory on average of three days
(𝛼 = 0.99; as reported for behavioral response of beaked whales by
McCarthy et al., 2011). As with the idealized example, we map the
ensemble of whale trajectories using kernel density estimation to create
a distribution surface.

3. Results

3.1. Results for idealized case with synthetic noise

The first application details the simulated horizontal movement of
an individual whale in an idealized setting. Fig. 5 shows the results
from the 3 different scenarios: (1) whale track without noise (Fig. 5A–
C); (2) whale track with noise and weaker disruption (𝛼 = 0.50;
Fig. 5D–F); and (3) whale track with noise and stronger disruption
(𝛼 = 0.95; Fig. 5G–I). For each scenario, the left column of Fig. 5
provides the reference historical whale spatial density and the noise
field (if present), the middle column is the simulated whale trajectory
and the right column is the kernel density reconstruction of the whale
density from the simulated tracks, which we term the utilization, or
posterior, density surface.

The results from the noise-free scenario (top row of Fig. 5) demon-
strates that the movement trajectory is an effective sampler of the
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underlying bimodal historical whale spatial density. The whale track in
Fig. 5B shows that in the absence of noise the simulated whale moves
between the modal regions of the density surface and is faithful to their
relative probabilities (note that more opaque red indicates more time
spent in an area), while avoiding areas that have low historical whale
spatial density. The kernel density estimate (Fig. 5C) matches well the
true underlying historical whale spatial density (Fig. 5A).

The introduction of noise in addition to the historical whale spatial
density alters the movement trajectories and the utilization density
(Table 1). When the noise is sufficiently loud to elicit a behavioral
response from the whale, the trajectory moves 180◦ away from the
sound source in the first interval, with a decay in directional persistence
proportional to its sensitivity or ‘disruption’ parameter that defines how
long before an individual returns to baseline behavior post-disturbance.
This results in directed movement away from the noise source and,
given that the sound level of 200 dB re 1 μPa corresponds to a
probability of a behavioral response equal to 1, it results in a region
of zero occupancy (no whale tracks) near the origin. The sound source
also has the effect of blocking the transiting of the whale between the
two areas of preferred habitat.

This region of whale exclusion is seen for both noise scenarios in
both the trajectories (Fig. 5E, H), as well as in the kernel density
estimate of the whale utilization density (Fig. 5F, I). Parts of this central
region with the highest noise amplitude would have been an area of
preferred habitat and have more movement tracks in the absence of
the noise disturbance. Outside of the central acoustic exclusion zone, in
regions with moderate received levels, there is also a reduced tendency
to use this habitat (Table 1, cols. 3 and 4). This is combined with a
general tendency to preferentially use the eastern half of the domain.
The noise source region thus not only acts as an exclusion zone, it also
acts as a partial barrier for the simulated movement. In the case of
low disruption parameter, the simulated whale initially moves to the
preferred habitat to the northeast and then spends most of its time
there, but is able to transit to the preferred habitat in the southwest
by going south of the sound source (Fig. 5E). With a large disruption
parameter, the whale is essentially fully blocked from going to the
preferred habitat in the southwest. Whale movement preferentially
tends toward the high historical whale spatial density region in the
northeast and eastward since strong disruption means more persistence
in moving away from the sound source (Fig. 5H, I).

The details of habitat utilization are also affected by the acoustic

disruption. The role of the disruption parameter 𝛼 can be ascertained
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Fig. 4. Conceptual diagram describing the three movement scenarios: whale movement in the absence of noise, movement in response to prior disturbance, and movement mediated
through a behavioral response to excessive received level of noise. Here, ‘BR’ stands for behavioral Response to naval sonar, and 𝜏 represents the dive (time) steps since the most
recent BR, and 𝑡 corresponds to the dive steps across the monitoring period and varies from 1 and 𝑇 (the number of dives in a year).
Table 1
The percentage of dives displaced relative to the noise contour that corresponded
to a 5% probability of a behavior response (BR; 130.13 dB re 1 μPa) and 50%
probability of a BR (176.52 dB re 1μPa). The first row of this table corresponds to the
130.13 dB contour shown in Fig. 5 E-H. Dive displacement is relative to the number
of dives that occurred in the absence of noise. The rows in this table correspond to
different dose–response received level thresholds, whereas columns 3 and 4 correspond
to displacement with different disruption parameters (𝛼 = 0.50, 45-minute behavior
disruption, col. 3; 𝛼 = 0.95, 10-hour behavior disruption, col. 4).

Probability of Received Level Relative % dives Relative % dives
experiencing a BR (dB re 1 μPa) displaced (𝛼 = 0.50) displaced (𝛼 = 0.95)

P(BR) = 0.05 130.13 dB 81.4% 92.8%
P(BR) = 0.50 176.52 dB 96.5% 98.3%

by contrasting the weaker disruption scenario (𝛼 = 0.5) to the stronger
disruption (𝛼 = 0.95) scenario. In the stronger disruption scenario, the
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tracks are more broadly spread out over a larger region (Fig. 5E) as
compared to the weaker memory case (Fig. 5H), and the corresponding
density surface is more diffuse (Fig. 5F and I). The memory effect also
influences the number of noise-induced behavioral responses (BRs that
the whale is subjected to: the strong memory case had 2.5 times lower
number of BRs compared to whales that had shorter behavior disrup-
tions from disturbance when evaluated across a year of continuous
sound exposure (1342 BRs for 𝛼 = 0.5 vs. 542 BRs for 𝛼 = 0.95). This
corresponds to 2.5 times fewer dives at BR inducing exposure levels
when disturbance memory is stronger as whales tend to be more distant
from the sound source. While whales with strong memory have fewer
behavior responses, these whales also spend more time in less-favorable
habitat.
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Fig. 5. Results from the idealized application. Row 1, Panel (A): a synthetic bimodal historical whale spatial density in the absence of noise with low densities appearing yellow
and higher densities appearing red. Panel (B): the forward simulator of whale trajectories based only on the movement model for one year. Simulated whale dive locations are
colored white, the track line is transparent red, with more overlapping locations rendering tracks darker red. Panel (C): Two-dimensional kernel density estimation of whale
utilization density surface. Row 2: Panels (D, E, F): the same as Row 1 except now with a stationary noise source denoted by the concentric gray contours, and disturbed whales
quickly returning to baseline movement behavior (𝛼 = 0.50). Row 3: same as Row 2, but taking longer to return to baseline post-disturbance (𝛼 = 0.95). The circles in panels B,
E, and H correspond to the 130.13 dB re 1 μPa contour where received levels inside this circle are ≥ 5% likely to elicit a BR from a pseudo-whale based on the biphasic dose
response of Fig. 1 and see Table 1.
3.2. Results from fin whale case study in Southern California

This application simulates a population of fin whales off the coast of
southern California exposed to noise from naval sonar. The individual
whale trajectories of 1176 fin whales across a one year time period
are shown in Fig. 6(B) and (C). In the figure, each simulated track is
partially transparent such that we see the aggregate of the population
trajectories. Collectively, as with the idealized scenario, the yearly
movement trajectories of the population of 1176 fin whales recreates
the original historical whale spatial density as taken from Becker et al.
(2016).

The southeastern region of Fig. 6 contains the subregion (in gray
box) where the naval destroyer conducts a sequence of sonar events
and exposes the population to received levels high enough to elicit a
BR from a fin whale. This subregion is also depicted in Fig. 7. Whales
in this subregion respond to the disturbance through their horizontal
movement. As this subregion is not a significant hotspot for fin whales,
the effect of naval disturbance on individual movement has less impact
(than Fig. 5(C) vs. (F), (I)), and therefore is less influential on the
aggregated population’s habitat utilization. This pattern arises from the
region hosting fewer whales and therefore, fewer opportunities for an
overlap of whales and noise disturbance.

In Fig. 7, we show the naval sonar exposure field and the BR history
for two identical populations of 1176 whales, differing only in their
return time to baseline behavior after a disturbance. In both cases, 79
8

of the 1176 fin whales in the southern California region were affected
by naval sonar events (Table 2). This means 7% of the population
experienced a received level high enough to experience a behavioral
response. Comparing the short disruption time before return to baseline
behavior (Fig. 7B) to the long disruption time case (Fig. 7C) shows
higher numbers and density of BRs in the short disruption case over
the long disruption case. This means that whales that return to the area
faster (returning to baseline movement behavior sooner) could have
greater consequences from the same disturbance regime at the end of
a year of monitoring. Specifically, in the short disruption case, there
were a total of 328 BRs across the 79 whales with a response to the
naval disturbance, i.e., 0.27 (95% C.I., 0.16, 0.44) BRs per whale per
year. Comparatively, there were 198 BRs shared across the 79 whales
when a longer disruption time occurs, i.e., 0.17 (95% C.I., 0.10, 0.25;
Table 2).

At the individual dive level over the course of a year, the largest
impact (most BRs) occurs when the return time to baseline behavior
is short (smaller disruption parameter 𝛼) and the whale is exposed to
threshold sound levels for 163 dives. When the return time is long
(larger 𝛼), the maximum dives above threshold noise levels, fell to 39.
This corresponds to four times fewer dives at BR inducing exposure
levels largely due to whales being more distant from the sound source
when the disruption parameter is greater. When translated to time, this
corresponds to 15.3 h (95% C.I.: 2.36, 59.5 h) and 3.7 h (95% C.I.:
0.56, 14.2 h) of time exposed to noise above the BR threshold for the
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Fig. 6. Panel (A): the historical whale spatial density of fin whales superimposed with the naval sonar noise field showing all received levels ≥ 100 dB (below which the dose
is too low to elicit a BR; Fig. 1). See Fig. 3 for separated panels for noise and whale density. Panels (B) and (C) depict the translucent pathways of a population of whales with
disruption parameters informing the time before whales revert to baseline movement behavior: 20 min post-disturbance response (B) and 3 days (C). The gray rectangle in the
panels corresponds to the image area of Fig. 7.
Fig. 7. Panel A: The sonar noise field in the sub-region of high noise. Panel B: the location and relative number of BRs when the disturbance time to baseline behavior is 20 min.
Panel C: same as panel B but disturbance time is 3 days.
Table 2
Behavioral response (BR) events for a population of 1176 fin whales monitored over 365 days for exposure
to naval sonar events. 95% confidence intervals are derived through bootstrapping individual tracks within
the simulation.
Disruption Sum of BRs in Avg. number of BRs Max. number dives above
parameter population per year per whale per year threshold for a single whale

0.05 328 0.27 (0.16, 0.44) 163
0.99 198 0.17 (0.10, 0.25) 39
short and long changes in behavior cases, respectively. Many of these
individual dive-level impacts are logged within the same naval sonar
exercise. That is, the 163 and 39 dives above the BR noise thresholds
occurred during just five sonar exercises. As the convention is to count
a maximum of one BR per whale per naval exercise (Finneran et al.,
2017), the range of BRs for a single whale is between 0 and 5. It
is worth remembering, however, that higher values of the disruption
9

parameter means a longer period of displacement, even if in aggregate
it means fewer BRs.

4. Discussion

In this study, we have presented a framework for simulating marine
animal movement. Its novelty is the following: (i) a flexible movement
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simulator (sampler) wherein a stochastic movement model adapts to
a pre-defined whale density surface using a sequential Monte Carlo
algorithm (particle filter); (ii) inclusion of dive information in the
forward simulator to control the magnitude of the displacement vari-
ance term and set the step size, thereby linking the horizontal and
vertical movement dynamics; (iii) inclusion of a probabilistic behav-
ioral response to sound using a biphasic dose–response curve that
operates as a stochastic element within a movement model to trigger
compensatory movement in response to disturbance; (iv) incorporation
of short and long lasting behavior changes in response to sound-induced
disturbance that controls the time-scale for reversion of movement to
the disturbance-free case; and (v) realistic application to the fin whale
population off southern California over biologically meaningful lengths
of time (one year in our experiment). For this latter targeted application
to naval sonar exposures, we demonstrated how movement histories
and sound exposure at-depth for each track over an entire year can
be summarized, thereby establishing the means to infer the impacts of
cumulative disturbances on vital rates.

This movement modeling framework is general and flexible. It
allows for incorporation of any stochastic movement model (e.g.,
continuous-time, or discrete-time with any time step). Rule-based alter-
ations to movement were used to deal with the behavioral response to
sound exposure and coastline avoidance. One novelty was to introduce
a sequential Monte Carlo sampler that allows for movement realizations
to be generated that are influenced by the historical whale spatial
density. Most existing movement simulation frameworks provide a
means to sample from a pre-defined known whale distribution that
could be derived from a sighting data or a species distribution model
(e.g., AIM, Frankel et al., 2002; SAFESIMM, Donovan et al., 2012;
3MB, Hauser, 2006; NAEMO, Blackstock et al., 2018). Michelot et al.
(2019a,b) also treat this problem by proposing a Markov Chain Monte
Carlo sampler whose target distribution is the historical whale spatial
density (there called a resource selection function) with an emphasis on
identifying movement models for which this feature holds. In fact, the
random walk model of this study (in the absence of sound and coastline
effects) corresponds to their ‘local Gibbs over irregular sample intervals’
whose long-run distribution is the historical whale spatial density.

Sequential Monte Carlo samplers are a flexible class of samplers
based on forward kernels (movement models) and importance sam-
pling, and offer a viable and, in some cases, superior alternative to
Markov chain Monte Carlo samplers (Del Moral et al., 2006). Our
sequential Monte Carlo sampler yields a movement generator faithful
to the underlying historical whale spatial density surface, with the
flexibility to also alter movement in response to coastlines, bathymetry,
oceanographic fields, prey distributions, and underwater sound distur-
bance. It was demonstrated that when excessive noise is present, the
movement of whales differs from the historical whale spatial density,
reflecting changes in animal behavior in response to noise disturbance
and the duration of response to that disturbance. It offers an alternative
to the potential function approach (Brillinger, 2010) wherein move-
ment trajectories are altered through imposed fields of attraction or
repulsion.

We explored application of the movement simulation framework
through two case studies: one idealized, and the other based on south-
ern California fin whales. The idealized study illustrates the basic
setup as well as how the simulator performs for a simple and intuitive
situation. The more realistic application to fin whales with exposure
to naval sonar provides an illustration of how the framework can be
used to understand the cumulative effects of underwater sound over a
biologically meaningful period of time. We were able to show that the
consequences of a single disturbance are a function of how loud the
received level at the whale’s location, where the whale is relative to
its preferred habitat when it is disturbed, and how long a whale takes
before returning to a ‘pre-disturbance’ state. Over the one year time
period, the movement framework links multiple disturbance events to
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individuals in a population that are repeatedly affected leading to a
potential means to assess impacts on vital rates. That is, by examining
the cumulative consequences of multiple naval sonar exercises in an
animal’s home range, we can look at energetic consequences of sound
exposure.

In the fin whale case study, we observed some individuals being
exposed more due to their proximity to the sonar exercises. If the
consequence of disturbance can last up to 3 days (McCarthy et al.,
2011), and BRs happen repeatedly to the same whale, then lower
survival and breeding rates are likely consequences (Pirotta et al.,
2018). In this case study, the locations of the naval sonar exercises
did not overlap with a high density region of fin whales. Had the
naval exercises overlapped more with high whale density regions, the
consequences would likely have been greater. We would expect higher
numbers of dives at received noise levels above the BR threshold, po-
tentially eliciting more BRs and causing more fin whales to be excluded
from preferred habitat for longer. If such responses were observed in
many individuals, there would be a potential for impacts on fin whale
population vital rates. As the simulated sonar used in our case study
overlapped a low whale density area, and in reality it is unlikely that
one exercise would represent the spatial extent of a year’s worth of
sonar exercises, it may be of interest to the US Navy to repeat this
experiment with a more realistic set of spatial and temporal locations.

For our individual based model we made a series of assumptions
and decisions using a bottom-up approach (in the sense of Grimm,
1999). Several of these necessarily simplify the underlying ecology. For
example, simulated animals were assumed to move independently of
each other. In many cases, animals are known to live in groups. This
could most readily be included in the simulations by assuming that
animal locations are, instead, group locations, and simulating a random
group size. If further refinement were needed, the animal location could
instead be considered to be the center of a group, with individuals
displaying an attraction to this group center (e.g., Langrock et al.,
2014). Another reason for non-independence is that many species live
within home ranges within a larger population distribution. In this case,
density surface model could be used to simulate a different home range
center for each animal, and an individual density surface could then be
generated for each animal, for example based on a bivariate normal
distribution centered on its home range center. This would then be
used instead of the population-level density surface to bias the animal
movement model, so that the animal would tend to remain within its
home range.

The movement of animals almost certainly deviates from the as-
sumptions of this movement model, but we can use information about
the characteristics of movement paths from real animals to derive better
predictions of encounter rates with naval disturbance. That is, with the
wealth of information from satellite tagging data we could create a
more realistic movement model than a random walk, and have animals
cue off of environmental and oceanographic features, or set movement
model parameters to reflect behavioral state (e.g., foraging vs. travel-
ing). Additionally, uncertainty could be incorporated on model inputs.
For example, different whales could be given different dose–response
functions reflecting permanent differences in responsiveness; uncer-
tainty in the density surface could be incorporated through multiple
simulations, each sampling from the possible range of inputs. Output
uncertainty could then readily be quantified. We stress, however, that
considerable complexity and understanding can be made using straight-
forward assumptions about movements (e.g., Nabe-Nielsen et al., 2013,
2014, 2018). The framework is a highly flexible, and similar ap-
proaches have yielded considerable insight about spatial patterns with
and without disturbance (Nabe-Nielsen et al., 2018; Warwick-Evans
et al., 2018). Our study offers opportunities for combining theory with
data and to improve our understanding of spatial dynamics and naval
impacts (Grimm, 1999).

With this framework in place, we are now able to examine impacts
of a time-series of exposures and what these imply for individuals in

terms of impacts on vital rates. Towards this end, there are several
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frameworks that could be applied, including an individual-based model
that tracks food intake (Nabe-Nielsen et al., 2013), and a dynamic
state-variable approach (McHuron et al., 2017) that examines how
disturbance may alter vital rates over the course of a year (Pirotta et al.,
2018). Our model, once calibrated and validated, should prove useful as
part of a decision-support tool in combination with existing methods to
estimate behavioral effects of accumulated sound exposure for on-going
efforts to assess the aggregate consequences of anthropogenic sources of
disturbance and develop mitigation measures for affected populations.
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