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Abstract
Aim: Ecological data collected by the general public are valuable for addressing a 
wide range of ecological research and conservation planning, and there has been a 
rapid increase in the scope and volume of data available. However, data from eBird 
or other large-scale projects with volunteer observers typically present several chal-
lenges that can impede robust ecological inferences. These challenges include spatial 
bias, variation in effort and species reporting bias.
Innovation: We use the example of estimating species distributions with data from 
eBird, a community science or citizen science (CS) project. We estimate two widely 
used metrics of species distributions: encounter rate and occupancy probability. For 
each metric, we critically assess the impact of data processing steps that either degrade 
or refine the data used in the analyses. CS data density varies widely across the globe, 
so we also test whether differences in model performance are robust to sample size.
Main conclusions: Model performance improved when data processing and analyti-
cal methods addressed the challenges arising from CS data; however, the degree of 
improvement varied with species and data density. The largest gains we observed in 
model performance were achieved with 1) the use of complete checklists (where ob-
servers report all the species they detect and identify, allowing non-detections to be 
inferred) and 2) the use of covariates describing variation in effort and detectability 
for each checklist. Occupancy models were more robust to a lack of complete check-
lists. Improvements in model performance with data refinement were more evident 
with larger sample sizes. In general, we found that the value of each refinement var-
ied by situation and we encourage researchers to assess the benefits in other scenar-
ios. These approaches will enable researchers to more effectively harness the vast 
ecological knowledge that exists within CS data for conservation and basic research.
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1  | INTRODUC TION

Community science or citizen science (CS) data are increasingly 
making important contributions to applied ecological research 
and conservation planning. One of the most common forms of 
CS data is the recording of species observations by members of 
the public. These observations are being collected for a diverse 
array of taxa, including butterflies (Howard et  al.,  2010), sharks 
(Vianna et al., 2014), lichen (Casanovas et al., 2014), bats (Newson 
et  al.,  2015) and birds (Sauer et  al.,  2017). The number of these 
CS projects has been growing exponentially, but they vary widely 
in complexity, data collection flexibility and participation (Pocock 
et al., 2017; Wiggins & Crowston, 2011). Projects occur on a spec-
trum from those with a predefined sampling structure that resem-
bles more traditional survey designs, to those that are unstructured 
and collect observations opportunistically. Projects with study de-
signs and defined protocols generally produce data that are more 
informative for a particular objective, but are often limited to a 
specific time frame and region and have fewer participants. This 
can lead to a trade-off between the quality and quantity of data 
collected by CS projects (Bird et  al.,  2014; Pacifici et  al.,  2017). 
Semi-structured CS projects have unstructured data collection, 
but critically also collect data on the observation process, which 
can be used to retrospectively account for many sources of noise 
introduced by data collection (Altwegg & Nichols,  2019; Kelling 
et al., 2019). With the increasing popularity in the use and applica-
tion of CS data, we describe and evaluate steps for data processing 
and analysis that maximize the value of semi-structured CS data 
(Sullivan et al., 2014).

Data consisting of species observations from volunteers pres-
ent three general challenges that are not as prevalent in conven-
tional scientific data. Firstly, the locations selected by participants 
to collect data are usually strongly spatially biased. For example, 
participants may preferentially visit locations that are close to 
where they live (Dennis & Thomas, 2000; Mair & Ruete, 2016), are 
more accessible (Botts et al., 2011; Kadmon et al., 2004), contain 
high species diversity (Hijmans et al., 2000; Tulloch et al., 2013) 
or are within protected areas (Tulloch et al., 2013). Secondly, the 
observation process is heterogeneous, with large variation in 
effort, time of day, observers and weather, all of which can af-
fect the detectability of species (Ellis & Taylor, 2018; Hochachka 
et al., 2021; Oliveira et al., 2018). Thirdly, participants often have 
preferences for certain species, which may lead to preferential re-
cording of some species over others (Troudet et al., 2017; Tulloch 
& Szabo, 2012). Nonetheless, CS data can fill critical gaps in our 
knowledge of the biodiversity of many parts of the world, and the 
growing scale and scope of CS data will likely increase our un-
derstanding of global biodiversity into the future. Therefore, it is 
imperative to define approaches that can maximize the value of 
the increasing volumes of CS species observations.

Imperfect detection in the observation process means that 
not every individual is detected by an observer, and consequently, 
some species are falsely absent from the data. The three CS data 

challenges listed above each result in false absences in the species 
recorded. The spatial bias has the strongest impact, since an ab-
sence of observers in an area results in no species being recorded. 
The other two challenges affect whether a species is recorded, 
conditional on an observer visiting a location where a species is 
present. Some facets of observer effort affect whether a species 
is available for detection—e.g. whether it is a time of day when the 
species is present in that place and behaves in a way that makes 
it detectable (Diefenbach et  al.,  2007; Hochachka et  al.,  2009). 
Other facets of effort affect whether an observer detects and 
identifies an available species, for example the duration and dis-
tance travelled while observing (Fuller & Langslow, 1984), or the 
skills and equipment associated with a particular observer (Kelling 
et al., 2015).

False negatives due to imperfect detection are ubiquitous in eco-
logical data and require careful data analysis for robust inference. 
There are two main approaches for addressing the challenges of false 
negatives: 1) imposing a more structured protocol onto the dataset 
after collection via data filtering (Kamp et al., 2016) and 2) using an 
analytical framework that accommodate the false negatives, such as 
including covariates in a model to account for the variation in the 
causes of false negatives (Miller et al., 2019). In this paper, we advo-
cate combining both of these approaches to increase the reliability 
of inferences made using CS observations.

We describe analytical approaches for using semi-structured CS 
data, using the example of estimating species distributions from data 
collected by the eBird CS project (Sullivan et al., 2014). We evaluate 
the efficacy of using two critical aspects of these CS data that facil-
itate robust ecological inference. Firstly, data submitted to eBird are 
structured as “checklists,” where each checklist is a list of the num-
bers of individuals of each bird species recorded during a period of 
bird-watching. The majority of these checklists record every individ-
ual bird the observer detected and identified, so we can infer when 
a species was not detected. Secondly, eBird is a semi-structured CS 
project, which means most eBird checklists have associated meta-
data describing the “effort” or observation process (Kelling et al., 
2019), which allow us to model variation in the probability of de-
tection. While our examples focus on the use of eBird data for es-
timating species occurrence, our results are applicable to similar CS 
datasets tackling similar ecological questions, and these results can 
also help inform the design of future CS surveys.

2  | METHODS

We explored the impact of various analytical practices when using 
CS data to estimate species distributions. We used different model-
ling approaches to estimate 1) encounter rate with Maxent and ran-
dom forest models and 2) occupancy rate with an occupancy model. 
Species encounters arise as a compound process requiring both the 
species to occur at a site and to be detected at that site. Encounter 
rate is defined as the average rate at which observers encounter the 
species, so it reflects the product of occurrence and detectability. It 



     |  1267JOHNSTON et al.

can also be considered to describe the “apparent distribution” of the 
species: the distribution of where observers encounter, detect, iden-
tify and record the species. Occupancy is defined as the probability 
that a species is present in a given location, with the model struc-
ture separating occurrence and detectability. For the random forest 
and occupancy models, we use detection/non-detection data as the 
response variable, while Maxent uses only detection (or “presence-
only”) data and combines these with pseudo-absences. All analyses 
were conducted with R (R Core Team, 2018).

2.1 | eBird data selection

We used data from the eBird Basic Dataset (EBD), which is global 
in extent and updated monthly (www.ebird.org/scien​ce/downl​
oad-ebird​-data-products). The most current version of the EBD 
can be freely accessed via an online data portal and processed 
with the auk R package (Strimas-Mackey et al., 2017). eBird has 
a robust review process, focussed on ensuring correct locations 
and species identification, that is conducted before data enter the 

F I G U R E  1   Schematic diagram of the flow of data into each of the 7 model types for the encounter rate model. The sizes of the boxes and 
the numbers inside them are the number of checklists. The blue processes occur once, and the pink processes occur 25 times, once for each 
model run. The numbers shown will therefore vary slightly each time within the pink box. The dark colours represent training data and the 
pale colours validation data. Arrows represent data processing steps or projection of the same data forward to the next stage

http://www.ebird.org/science/download-ebird-data-products
http://www.ebird.org/science/download-ebird-data-products
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EBD. This review process removes unlikely false positives from 
the data, that is species records without adequate evidence of the 
identification, for locations and times of year that they are not 
expected to occur. This process does not remove false positives 
that are plausible observations based on species distributions and 
phenology. We provide further details on this review process and 
other aspects of eBird data in Appendix S1. Our data are from 
the EBD version released in May 2019. To model distribution in 
the breeding season, we used checklists from 15 May to 30 June. 
We used a geographically restricted subset of data, from Bird 
Conservation Region 27 “Southeastern coastal plain” (BCR27), a 
biogeographically distinct region that covers and includes parts of 
the states: Mississippi, Alabama, Florida, Georgia, North Carolina 
and South Carolina (NABCI, 2000).

For our primary case study, we focussed on wood thrush 
Hylocichla mustelina in the breeding season. Wood thrush is a rel-
atively common nesting passerine across much of eastern North 
America, that is easily detected by its distinctive song. We also pres-
ent some supplementary results from modelling the distribution of 
chuck-will's-widow (Antrostomus carolinensis), in order to illustrate 
how decisions about data analysis may have different impacts in 
different species. Chuck-will's-widows are camouflaged and noctur-
nally active, when their loud and distinctive vocalizations make them 
highly detectable. Their different daily activity patterns and habitats 
provide a good contrast between these two example species.

2.2 | eBird data processing—training data

We split the eBird data into a dataset to train (or fit) the models and 
semi-independent datasets to validate (or test) the models (Figure 1 

and Figure S1). To train the models, we used eBird data from 2018. 
We used a hierarchy of data processing steps on the training data, 
applying these sequentially to create a set of differently processed 
datasets. These data processing steps were designed to highlight or 
address the challenges with CS data outlined in the introduction. We 
applied these datasets to each of the two model types to estimate 
both species encounter rate and occupancy (Table 1).

Two data processing steps were designed to demonstrate the dif-
ferences in model estimates when the dataset does not contain key 
information. These two steps both degraded the eBird data to pro-
duce datasets that mimic common CS data structures. The first data 
degrading step, i) select only detections (Table 1), produced a data-
set of “presence-only” information. This structure of data is common 
with CS projects that do not collect lists of species. The data degrad-
ing step, ii) select only “incomplete” checklists (Table 1), produced a 
dataset of checklists for which observers explicitly indicated that not 
all species were recorded. In this subset, non-detections cannot be 
separated from species bias when observers decide not to record a 
particular species that they have detected and identified. The mod-
els with these data (models 1 and 2) highlight the impact of using 
similar data to estimate species occupancy or encounter rates.

Three data processing steps were designed to demonstrate 
the impact of refining the eBird data and show the relative value 
of smaller, but more selective datasets, compared to larger and less 
refined datasets. These refinements were additively imposed on the 
raw data, so each cumulatively refined the data further. The data 
refinement steps were iii) select only “complete” checklists, to pro-
vide data with non-detections; iv) spatially subsample the data, to 
reduce the influence of spatial bias; and v) select checklists within 
standard range of effort, to reduce the influence of checklists with 
unusual effort (Table 1). Using non-detections allows the model to 

TA B L E  1   Descriptions of the elements in models 1–7 that include different data processing treatments. Model 3 uses all the raw data 
with no processing. Models 1–2 use data degraded in different ways by processes (i) and (ii). Models 4–6 use data refined in different ways 
by processes (iii), (iv) and (v). Model 7 uses the same data as model 6, but additionally includes effort variables as covariates

Data processing treatment

Model

1 2 3 4 5 6 7

Degrade i) Select detections only 
(“presence-only”)

✓

ii) Select incomplete checklists only ✓

Refine iii) Select complete checklists only ✓ ✓ ✓ ✓

iv) Spatial subsampling ✓ ✓ ✓

v) Effort filters ✓ ✓

vi) Effort covariates ✓

Model structures

Encounter rate model Model type Maxent Random forest

No. of land cover covariates 16 16

No. of effort covariates 0 0 5

Occupancy model Occupancy model Single-season occupancy model

No. of land cover covariates 4

No. of effort covariates 0 5
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have knowledge of where effort was expended, but the species was 
not recorded. Data processing step iii) ensures that all the inferred 
“non-detections” are actually non-detections, by only including com-
plete checklists where observers report all the species they could 
detect and identify. This addresses the challenge of species report-
ing bias. Step iv) spatial subsampling reduces the over-influence of 
well-surveyed locations in the analysis. This addresses the challenge 
of spatial bias. Step v) reduces the range of checklist effort, creat-
ing a more consistent and standardized set of checklists for analysis. 
This addresses the challenge of variable effort. Methodological de-
tails for how we performed each of these data processing steps are 
given in Appendix S2.

2.3 | eBird data processing—validation data

We created two validation datasets, chosen because of their differ-
ent forms of independence from the 2018 training data. In general, 
the form of validation data should be tailored to a specific intent 
(Valavi et al., 2018).

Our main validation set was temporally independent, using 
eBird data from 2017. We split data with species detections from 
data with species non-detections and spatially subsampled each set 
of data to reduce the influence of spatial bias. We then randomly 
subsampled the non-detections so there were equal numbers of 
detections and non-detections. Recombining these two datasets 
gave us a balanced validation set (with equal detections and non-
detections) and with reduced spatial bias (Figure  1). The reduced 
spatial bias ensured that the data represent the study region more 
evenly, and the balance of detections and non-detections was 
designed to test the ability of the model to discriminate between 
areas of species presence and absence. As 2017 is a different year, 
it would not provide good validation for species that change their 
distribution substantially from year-to-year, such as irruptive spe-
cies, but we have no reason to expect such inter-annual variability 
for our example species.

Our second validation dataset was designed to compare esti-
mates from eBird data with estimates from data collected with a 
standardized and pre-designed survey. We used data from the 2018 
North American Breeding Bird Survey (BBS) that were also submit-
ted to eBird (Figure 1). We used the BBS data submitted to eBird to 
enable us to use data with precise location information for each stop 
on the 25-mile BBS routes. We extracted BBS data from eBird by 
identifying sets of at least 40 × 3-min point counts conducted on the 
same day, by the same observer, at locations that were spatially and 
temporally separated according to expectations for BBS stops. We 
also removed these same data from the training data. See Appendix 
S2 for more details of both validation datasets.

Using the model fitted with the training data, we estimated 
counts on checklists in both the validation datasets. We compared 
the estimated occurrence rates to the actual occurrence, enabling us 
to understand the quality of the models to predict to different data-
sets. See Appendix S2 for more details of the validation procedures.

2.4 | eBird data processing—occupancy models

Preparing data for the occupancy models required some additional 
data processing. There are many decisions required when using CS 
data for occupancy models and we describe these in greater detail in 
Appendix S1 with only a brief overview here. We defined a “site” as 
a location (defined by latitude and longitude) with at least two visits 
during 15 May-30 June 2018. Where there were more than 10 visits 
to a single site, we randomly selected 10 of the visits.

For the occupancy models, we created a third validation set. We 
wanted to validate the estimates of occupancy, while limiting the ef-
fects of detectability. We used the models to estimate occupancy 
and detectability at all sites. We calculated the cumulative estimated 
detectability across all visits at a single site by using the formula: 
pi = 1 −

∏10

t=1

�

1 − pit
�

 where pit is the estimated detectability at 
site i and visit t and pi is the cumulative detectability at site i across 
all visits. We used the cumulative detectability to select only sites 
with high detectability (pi ≥0.90) and determined whether the focal 
species was recorded on any visit. Using these validation data, we 
compared the estimated occupancy to the observed occurrence at 
each site. Using only the sites with high detectability ensured that 
we were getting close to comparing our estimates of occupancy with 
true species occurrence.

2.5 | Environmental data

As environmental covariates, we used land cover data derived from 
the MODIS product MCD12Q1 v006 (Friedl & Sulla-Menashe, 2015). 
We estimated the land cover associated with each checklist as the 
proportion of each land cover category in a 2.5 km × 2.5 km square 
surrounding the checklist location in the year the observations were 
made. We included the proportions of each of 16 land cover types in 
the UMD LC_Type2 classification of MODIS MCD12Q1 v006 clas-
sification (Friedl & Sulla-Menashe, 2015). See Appendix S2 for a list 
of the land cover types.

2.6 | Effort covariates

We used effort covariates that describe heterogeneity in observer 
effort that we expect to be associated with differences in detect-
ability. eBird checklists contain information on the following effort 
covariates: start time of birding activity, duration of birding activity, 
whether observers were travelling or stationary, distance travelled 
and the number of observers. For occupancy models, we also included 
the square of “start time of birding activity,” to enable quadratic rela-
tionships with time of day. Each of these covariates describes varia-
tion in effort that will impact detectability. We expect that all of these 
will usually be important descriptors of heterogeneity in effort, but 
the effect of these on detectability is likely to vary by species, region 
and season. Not all eBird checklists contain each of these variables, 
but all complete checklists contain each of these; by filtering to only 



1270  |     JOHNSTON et al.

complete checklists in step iii), we ensure that each of the checklists 
in the training and validation data all contains the effort variables.

2.7 | Estimating species encounter rate

We estimated the encounter rate of the two species on eBird check-
lists in relation to the environmental covariates for each of the 
seven treatments of the data (Table 1). We fitted models to 25 ver-
sions of data, from each of the seven treatments of the data. For 
each of the 25 versions, we randomly selected 0.75 of the training 
and validation datasets before applying the relevant data process-
ing treatments (Figure  1). The response was the detection/non-
detection of each species, and the environmental covariates were 
16 land cover covariates described in Appendix S2 (Friedl & Sulla-
Menashe, 2015). Model 1 used presence-only records of the species 
on a checklist, fitted with a Maxent model through the R package 
maxnet (Phillips, 2016). Models 2–7 fitted a random forest with a re-
sponse of detection/non-detection records on checklists, followed 
by calibration with a generalized additive model (GAM). The ran-
dom forest models were fitted with the R package ranger (Wright 
& Ziegler, 2017) and the calibration GAMs within R package scam 
(Pya, 2013). For further details of the model fitting, see Appendix S2 
and the code in supporting information A3.

We used the validation datasets to validate the estimates either 
from the Maxent model or from the combination of the random 
forest and the calibration GAM. We used a range of performance 
metrics to compare the estimates to the observations: sensitivity, 
specificity, true skill statistic (TSS), area under the curve (AUC), 
kappa and mean squared error (MSE, also named Brier score). To 
quantify the benefit or detriment of the seven data refining or de-
grading steps, we calculated the differences in performance metrics 
between each of the 7 models and model 3. We selected model 3 as 
the “baseline” because it used no data degrading or refinement. We 
examined the distribution of these differences across the 25 differ-
ent runs of the model sets.

Randomly selecting one of the twenty-five iterations of fitting 
the set of seven models, we mapped the estimated encounter rates 
across the whole region of the BCR27. We produced a dataset with 
the land cover for each 2.5 km × 2.5 km grid cell across the entire 
region and we set effort variables to be constant across the region. 
The predictions were the hypothetical encounter rate of an average 
eBird participant conducting a 1 hr, 1 km complete checklist on 15 
June 2018 at the optimal time of day for species detection. We es-
timated encounter rate for this standardized checklist in each grid 
cell in BCR27, using each of the seven models.

2.8 | Estimating species occupancy

To assess the effects of these data processing steps in an alterna-
tive modelling framework, we applied single-species occupancy 
models to estimate occupancy and detectability. We modelled 

occupancy probability as a function of MODIS land cover (Friedl & Sulla-
Menashe, 2015). However rather than using all 16 land cover variables 
as above, we selected four categories considered a priori to have the 
most ecological relevance for wood thrush (deciduous broadleaf forest, 
mixed forest, croplands and urban) and chuck-will's-widow (evergreen 
needleleaf, deciduous broadleaf, mixed forest, urban). For modelling 
detectability, we used five effort covariates described above and the 
square of start time of birding activity. We used the R package un-
marked to fit single-season occupancy models (Fiske & Chandler, 2011). 
We could not run an occupancy model with the detection only data 
(model 1) above, but we ran these occupancy models using six different 
combinations of data processing that matched encounter rate models 
2–7 (Table 1). The data degrading and refinement steps took place be-
fore we prepared the data for occupancy models. For further details of 
the data processing and model fitting, see Appendix S2. Given the more 
stringent data processing for occupancy models, there was less value in 
repeating this analysis several times as the datasets would be relatively 
similar; therefore, we did not repeat this analysis 25 times.

We validated the estimates from the occupancy model using the 
occupancy validation dataset described above. As above, we also 
mapped the occupancy rate across the whole region by predicting 
to the whole of BCR27.

2.9 | Varying sample size

Our study area has a relatively high density of eBird data, but other 
regions and other CS projects often have fewer data. Therefore, we 
wanted to assess whether the results we found would be similar with 
smaller datasets. We estimated wood thrush encounter rate using only 
models 3 and 7 for a range of sample sizes. As above, for each model 
pair (model 3 and model 7) we randomly selected 0.75 of both the 
training and validation datasets. We then further subsampled these 
new datasets to varying proportions of the new total: 0.1, 0.3, 0.5, 0.7 
or 0.9. We ran this set of 10 analyses (five sample sizes, two models) 
25 times. For each run, we compared the difference in predictive per-
formance metrics (as described above) between model 7 and model 3.

3  | RESULTS

3.1 | Estimating species encounter rate

Both wood thrush and chuck-will's-widow results show model 7 had 
the highest estimates of encounter rate (Figure 2, Figures S4, S10 
and S11) and the best model performance (Figure 3, Figures S2, S13 
and S14). Model performance was consistently the best with model 
7, across both validation datasets and most of the performance 
metrics (Figure 3, Figures S2, S13 and S14). Thus, the combination 
of all data processing steps resulted in the best model, and using 
complete checklists produced the biggest improvement for wood 
thrush, while adding covariates produced the biggest improvement 
for chuck-will's-widow (compare models 2 and 3).
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With wood thrush data, both models 1 and 2 had substantially 
worse model performance than other models, which was evident 
with both of the validation datasets (Figure 3 and Figure S2). The 
estimates of encounter rate from models 1 and 2 were poorly cor-
related with those from model 7 (Figure S3), although there are some 
broad similarities in spatial patterns (Figure 2). These results demon-
strate that for wood thrush using presence-only or casual observa-
tions (not part of a complete checklist) is likely to result in poorer 
ecological inference. Models 3–6 all displayed similar model per-
formance (Figure 3 and Figure S2), similar absolute encounter rate 
(Figure S4) and similar correlations with the predictions from model 
7 (Figure S3). As a contrast, chuck-will's-widow showed the greatest 
gains in model performance with the addition of effort variables as 
covariates and with the use of non-detections in model 2. There was 

smaller improvement for the other model refinement steps (Figures 
S13 and S14). Overall, due to the strong effect of time of day on 
the estimated encounter rate, most estimates had a poor correlation 
with those from model 7 (Figure S12). All these results suggest that 
the largest gains in model performance may vary with characteristics 
of the data, which we expect to vary by species, season and region.

3.2 | Estimating species occupancy

Across models, the estimates of occupancy for both wood thrush 
and chuck-will's-widow were less variable (within species) than those 
of encounter rate. The six occupancy models showed relatively con-
sistent spatial patterns (Figure 4 and Figure S15) and high correlation 

F I G U R E  2   Estimated wood thrush 
encounter rate across the BCR27 region 
for models 1–7. Estimated encounter 
rate is the expected proportion of 
standardized checklists that would 
record wood thrush. These hypothetical 
standardized checklists are conducted 
by an average eBirder, travelling 1 km 
over 1 hr, at the optimal time of day for 
detecting wood thrush
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between estimates (Figures S5 and S16). The notable outlier for oc-
cupancy models was model 7, when effort covariates were included. 
This led to correlated, but larger absolute estimates of occupancy 
(Figures S7 and S17), and slightly improved model performance by 
some metrics (Figures S8 and S19). With these training and validation 
datasets, therefore, we could not strongly identify improvements re-
sulting from most of the data processing steps, but including effort 
covariates describing heterogeneity in detectability was an impor-
tant improvement (Figures S6 and S18).

3.3 | Varying sample size

Model 7 (with all data refinement steps) was better than model 3 (no 
data refinement) (Figure 3). However, the benefits of using model 7 

were reduced at smaller sample sizes (Figure 5 and Figure S9). This 
may be because reducing the dataset size by filtering (Figure 1) also 
has a cost when there are fewer data. However, we find that even 
with the smallest datasets, there is no disadvantage to using model 
7—it performs equivalent to or better than model 3 across all sample 
sizes that we tested (Figure 5 and Figure S9).

4 | DISCUSSION

Community science datasets are becoming increasingly valuable 
research tools for ecology and conservation due to their increas-
ing prevalence (Pocock et  al.,  2017) and broad spatio-temporal 
scope (Chandler et al., 2017). For example, eBird data have been 
used to study phenology, species distributions, population trends, 

F I G U R E  3   Differences in predictive performance metrics for the wood thrush encounter rate models 1–7 against balanced and 
subsampled eBird data from 2017. Metrics are compared to the performance from model 3, and the y-axis values show differences relative 
to model 3. The white halves of the plots indicate where model performance is better than model 3. The grey halves of the plots indicate 
where model performance is worse than model 3. Model 3 uses all the data in a random forest encounter rate model. Model 7 is the random 
forest encounter rate model using complete checklists, spatial subsampling, effort variable filters and effort variables as covariates. The 
validation metrics are calculated for 25 different model runs. For details of models 1–7, see Table 1 and the text. Boxes show the median and 
the interquartile range, and whisker ends denote the extremes of the distributions
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evolution and behaviour and to inform conservation (Lang et al., 
2019; MacPherson et  al.,  2018; Mattsson et  al.,  2018; Mayor 
et  al.,  2017; Seeholzer et  al.,  2017). However, CS data generally 
have more errors, assumptions and biases associated with them, 
often a result of relatively unconstrained survey design and a 
highly heterogeneous observation process. Here we demonstrate 
how thoughtful combinations of data filtering and analysis can re-
move relatively uninformative data and control for much of the 
statistical noise in CS data.

In our example, spatial subsampling did not result in large changes 
to the model performance. Spatial subsampling is designed to reduce 
the impact of spatial bias on the environmental relationships and sub-
sequent species distribution. In line with our results, previous stud-
ies have found that spatial bias can have surprisingly little impact on 
estimated species distributions (Beck et al., 2014; Higa et al., 2014; 
Johnston et al., 2020). This may be particularly true where there are 
high data volumes, good coverage of environmental space, sampling 
that covers the species' environmental niche and stationarity of the 
species distribution across the region (Johnston et al., 2020), all of 
which are true in our example datasets. Accordingly, we did not see 

any impact of the spatial subsampling on the results. In general, we 
expect the impact of spatial subsampling would vary in different 
situations and with different subsampling parameters. For example, 
there may be a greater impact of spatial subsampling when esti-
mating population trends or other processes that show spatial non-
stationarity (Kamp et al., 2016; Zbinden et al., 2014).

Our results suggest that where effort data are not available, in 
some situations occupancy models may be a more robust model-
ling approach. Including information on the observation process 
has generally been shown to produce more accurate and robust 
results (Johnston et al., 2018; Isaac et al., 2014). In our analyses, 
the advantages of effort variables were important for chuck-will's-
widow occupancy models, but were less apparent for wood thrush 
occupancy models. We also recognize that our occupancy model 
validation scheme was less robust, and further study is needed.

We found that model performance was poorer when we de-
graded the data to reflect two common types of CS data: to de-
tections only (presence-only data) and to incomplete checklists 
only. There are clear limitations to the ecological insights that 
can be gained from presence-only data (Aranda & Lobo,  2011; 

F I G U R E  4   Estimated occupancy of 
wood thrush across the BCR27 region 
for occupancy models 2–7 calculated 
with data processing steps (ii) to (v). The 
occupancy is the expected probability that 
cells are occupied by wood thrush
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Václavík & Meentemeyer, 2009). As a result, multiple approaches 
have been suggested for inferring non-detection events when 
data are stored in a presence-only format (Hill, 2012; van Strien 
et al., 2013). Our case study strongly supports the importance of 
complete checklists and the value of retaining this information in 
analyses.

Our general recommendation is that both filtering and model-
ling variation in effort are important analytical tools, although their 
benefits will vary across datasets and modelling objectives. In our 
examples, we find that analysing complete checklists and using 
effort variables as covariates made the largest difference to the 
model quality. However, the raw data, the volume of data, the model 

type and the modelling objective will all affect the relative benefit 
of the data processing steps that we describe. In the two metrics 
and two species we investigated, the refinements we made to the 
data and models either had no negative effect or notably improved 
model performance. As such, we suggest these refinements should 
be implemented as a general practice; however, the impact of these 
filtering and modelling practices should be further evaluated for dif-
ferent datasets and ecological questions. Here, we investigated and 
recommend current best practices for using semi-structured CS data 
to estimate species occurrence. However, for other ecological ques-
tions the trade-offs related to data quantity and refinement may 
lead to different optimal data processing steps. Most importantly, 

F I G U R E  5   Effect of sample size on differences in predictive performance metrics for the wood thrush encounter rate models 3 and 
7. Differences were computed between the metrics as (model 7 - model 3); the y-axis values show differences relative to model 3. The 
white halves of the plots indicate where model 7 performance is better than model 3. The grey halves of the plots indicate where model 
7 performance is worse than model 3. The test dataset was balanced and subsampled eBird data from 2017. The datasets were random 
subsampled to 0.75 of the original checklists. Then, they were further reduced to a proportion of this dataset: 0.1, 0.3, 0.5, 0.7 and 0.9. This 
process was repeated 25 times to produce 25 paired comparisons of model performance for each dataset size. Each paired comparison 
between model 3 and model 7 used the same randomly subsampled test and train datasets. See Table 1 for further details of model 3 and 
model 7. Panels show the following performance metrics: A mean squared error (MSE); B area under the curve (AUC); C kappa; D sensitivity; 
E specificity; and F true skill statistic (TSS). Boxes show the median, the interquartile range and the extremes of the distributions
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we encourage other researchers to carefully consider and test ap-
propriate data processing for their own questions.

While we have focused on aspects of the observation process 
that create false-negative errors, data can also contain false-positive 
errors. These false positives occur when an observer falsely re-
cords a bird as present, which is usually a result of misidentification 
of another species. An increasing number of studies demonstrate 
the importance of accounting for false positives (Pillay et al. 2014; 
Chambert et al. 2015) and in some cases even a low rate of false 
positives can create biased estimates of species distributions (Miller 
et al. 2011). We have not discussed the treatment of false positives 
in this paper, and eBird data do not contain required information to 
estimate false-positive error rates. Additionally, due to the eBird re-
view process, unlikely species records require additional evidence to 
enter the publicly accessible data, so false positives in the eBird data 
will only be species that could be plausibly detected in those places. 
Therefore, false positives in eBird should not affect estimates of 
species ranges, but could bias estimates of occurrence or relative 
abundance within a species’ range.

There are numerous CS programmes in the world today, but only 
a limited number of them collect the information needed to infer 
non-detections (Pocock et al., 2017). eBird provides evidence that 
information on observer effort and completeness of species lists can 
be collected while maintaining high participation. While we focused 
on modelling species distributions, many other types of ecological 
inference and conservation planning will also benefit from these 
data processing steps. In combination, the approaches outlined here 
for collecting, processing and modelling CS data can inform ways to 
improve existing and future programmes, while increasing our cur-
rent capacity to conduct robust analyses using growing volumes of 
community science data.
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