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Abstract

Ecological processes are strongly shaped by human landscape modification, and under-

standing the reciprocal relationship between ecosystems and modified landscapes is criti-

cal for informed conservation. Single axis measures of spatial heterogeneity proliferate in

the contemporary gradient ecology literature, though they are unlikely to capture the com-

plexity of ecological responses. Here, we develop a standardized approach for defining

multi-dimensional gradients of human influence in heterogeneous landscapes and demon-

strate this approach to analyze landscape characteristics of ten ecologically distinct US cit-

ies. Using occupancy data of a common human-adaptive songbird collected in each of the

cities, we then use our dual-axis gradients to evaluate the utility of our approach. Spatial

analysis of landscapes surrounding ten US cities revealed two important axes of variation

that are intuitively consistent with the characteristics of multi-use landscapes, but are often

confounded in single axis gradients. These were, a hard-to-soft gradient, representing

transition from developed areas to non-structural soft areas; and brown-to-green, differen-

tiating between two dominant types of soft landscapes: agriculture (brown) and natural

areas (green). Analysis of American robin occurrence data demonstrated that occupancy

responds to both hard-to-soft (decreasing with development intensity) and brown-to-green

gradient (increasing with more natural area). Overall, our results reveal striking consis-

tency in the dominant sources of variation across ten geographically distinct cities and

suggests that our approach advances how we relate variation in ecological responses to

human influence. Our case study demonstrates this: robins show a remarkably consistent

response to a gradient differentiating agricultural and natural areas, but city-specific

responses to the more traditional gradient of development intensity, which would be over-

looked with a single gradient approach. Managing ecological communities in human domi-

nated landscapes is extremely challenging due to a lack of standardized approaches and a

general understanding of how socio-ecological systems function, and our approach offers

promising solutions.
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Introduction

Rapid expansion of the global human population has led to increasing concern for natural sys-

tems and biodiversity. Anthropogenic landscape modification profoundly influences resource

availability and habitat quality, which in turn, determines patterns of species distribution and

abundance [1]. Given the explicit link between patterns of landscape structure and ecological

processes, and the extent of human modification to the landscape, informed conservation and

ecosystem management requires reliable descriptors of landscape heterogeneity gradients with

an anthropogenic focus [2, 3]. Nevertheless, well documented variability in the quality, com-

plexity, and ecological relevance of quantitative measurements of landscape structure have

contributed to a lack of a general and scalable understanding of how ecological processes

respond to landscape heterogeneity, particularly along gradients of human modification [3–6].

The need for ecologically meaningful measures of landscape heterogeneity (i.e., composi-

tion and configuration of landscape features) to understand drivers of ecosystem responses is

well recognized [7], and over time numerous conceptual, theoretical, and applied approaches

have been posited [4, 5, 8, 9]. These approaches range from the patch mosaic (fragmentation)

paradigm, which, while valuable in some contexts, is arguably overly simple in heterogenous

landscapes [10–12], to various metrics of patch complexity and distribution [13]. Efforts to

improve the ecological relevance and realism of landscape metrics has led to the development

of models thought to better represent the continuous nature of landscape heterogeneity and

ecological processes by extending the patch-centered perspective to incorporate the composi-

tion of the surrounding landscape [14]. Regardless of the metrics used, successful integration

of ideas in spatial ecology across systems and scales requires an improved appreciation for

what landscape descriptors are measuring, and how they relate to ecological processes [15].

That is, reliable and accurate measures of landscape heterogeneity are a prerequisite to under-

standing patterns of ecological response across scales.

Efforts to understand and quantify ecological responses across anthropogenic gradients has

resulted in some general, though equivocal, predictions about patterns of ecological response

to spatial heterogeneity in human dominated landscapes. For instance, a negative relationship

between species richness and human disturbance has been demonstrated in birds [16, 17],

invertebrates [18, 19], plants [20, 21], and other taxa [22, 23]. Moreover, this relationship is

often non-linear, with a peak in richness in areas of intermediate human modification [24, 25].

At the species level, however, responses vary, and depend on the ecology of the species in ques-

tion [26–28]. While fragmentation and human population density have been linked to

decreases in movement and home range size in many species [29–32], much of the literature

suggests no relationship [33–35], or uncertain relationships [36, 37] between a range of eco-

logical processes (e.g., population size, species distribution) and landscape change. These

apparent contradictions suggest that measured responses to gradients of landscape heteroge-

neity are context or locale specific and has led to calls for improved measures of human-

dominated landscapes that move towards a more general understanding of ecological

dynamics in human-dominated ecosystems [6, 38].

Attempts to improve the applicability and scalability of landscape metrics used in ecological

analyses has led to almost exclusive use of one-dimensional gradients of variation (e.g., percent

impervious surface), even though landscape heterogeneity, and in particular the myriad ways

humans alter landscapes, is multi-dimensional [39, 40]. Highly dimensional landscapes, when

compressed into one-dimensional descriptors, are likely to fall short in terms of ecological

realism, i.e., the landscape as perceived by a species or community, limiting the ability to infer

links between landscape patterns and ecological processes, with important consequences

regarding how ecosystem processes are understood and managed in the Anthropocene. We
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propose an extension of the typical one-dimensional approach, which involves the identifica-

tion of multiple axes of landscape heterogeneity in the context of human influence.

In this paper, we develop a multi-dimensional approach to defining landscape heterogene-

ity that can be used for making inferences about species distributions in human dominated

landscapes. We demonstrate the generality of our multi-dimensional gradient approach by

jointly analyzing urban-exurban landscapes in ten geographically and ecologically distinct US

cities, identifying two significant and biologically relevant axes of variation. We demonstrate

the utility of our approach in a case study analysis of American robin (Turdus migratorious)
occupancy. Specifically, by jointly analyzing detection—non-detection data from the same ten

landscapes, we investigate continental-scale consistencies in species responses to two gradients

of human influence.

Methods

We selected ten geographically distinct medium sized cities (population between 200,000 and

500,000), widely distributed throughout the contiguous United States, representing the Level I

ecoregions as defined by the U.S. Environmental Protection Agency [41]. These were Worces-

ter (Massachusetts), Lexington (Kentucky), Jackson (Mississippi), Lincoln (Nebraska), Lub-

bock (Texas), Salt Lake City (Utah), Albuquerque (New Mexico), Bakersfield (California),

Portland (Oregon), and Spokane (Washington, Fig 1). For each city, we extracted 30-m

resolution landcover data from the freely available 2016 National Land Cover Database [42]

for a 50-by-50 kilometer window surrounding the city center (coordinates extracted from

www.latlong.net). This spatial extent extends well into exurban regions and thus represented

the full extent of landscape heterogeneity for each city. To test for sensitivity to the extent, we

repeated the analysis at alternative windows and found no difference in our results (Effects
spatial extent: 30 x 30 km city window in S1 File).

Landscape composition was fairly evenly split between three dominant lands cover catego-

ries when aggregated among all cities: developed (20.03%), forests (23.98%), and agriculture

(31.28%) and contained fifteen of the nineteen Anderson Land-Cover classes used by the

NLCD. The remaining four (‘Perennial Ice-Snow’, ‘Dwarf Scrub’, ‘Sedge-Herbaceous’,

Fig 1. Map of 10 study cities. Map showing the locations of all study cities for the landscape quantification and

ecological case study. Background colors represent unique Level 1 EPA Eco-Regions. Study cities are represented by

numbered red points. 1—Portland, OR, 2—Bakersfield, CA, 3—Spokane, WA, 4—Salt Lake City, UT, 5—

Albuquerque, NM, 6—Lubbock, TX, 7—Lincoln, NE, 8—Jackson, MS, 9—Lexington, KY, and 10—Worcester, MA.

Ecoregion GIS data was sourced from the US EPA—Ecoregion spatial database (https://www.epa.gov/eco-research/

ecoregions-north-america). Map was produced using the package ‘map’ in R.

https://doi.org/10.1371/journal.pone.0252364.g001
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‘Lichen’) are restricted to Alaska or high elevation locations. At the individual city level, land-

scape composition was more variable; forested classes dominated Worcester and Spokane

(39.08%, 30.22%), Albuquerque was largely scrubland (46.81%), Lexington dominated by pas-

ture (62.31%), and agriculture in Lincoln, Bakersfield, and Lubbock (47.61%, 42.2%, 72.15%).

Details for each city are provided in Table 1.

Landscape analyses followed the landscape quantification framework outlined by Padilla

and Sutherland [3]. Our decisions regarding the types of landscape features relevant for analy-

sis, the data to represent those features, and the spatial scales of analysis were made to reflect a

typical ecological analysis—definitions of, and justification for, these decisions are provided in

Table 2. In general, the landscapes within which our cities were set were characterized by a

mosaic of natural (forests and wetlands) and un-natural (crop and developed) land-cover

categories which are captured well in the NLCD classification system.

The NLCD is a 30-m resolution raster dataset where each landscape pixel is classified as a

single cover type. Ecosystems are influenced both by characteristics of a fixed location, and by

Table 1. Table of study cities.

City, State Population Level I Ecoregion Open Water Devel. Forests Scrub Grass Crop Pasture

Worcester, MA 185,877 ER5 –Northern Forests 3.33 23.15 65.51 2.54 6.11

Spokane, WA 208,916 ER6 –NW Forested Mountains 1.23 14.46 31.31 31.91 20.62

Salt Lake City, UT 200,591 ER6 –NW Forested Mountains 11.02 23.00 36.37 23.34 5.29

Portland, OR 583,776 ER7 –Marine West Coast Forest 3.12 37.06 23.43 7.85 28.54

Lexington, KY 323,780 ER8 –Eastern Temperate Forests 0.56 15.31 16.65 1.03 66.44

Jackson, MS 164,422 ER8 –Eastern Temperate Forests 4.85 30.11 43.29 12.16 18.87

Lubbock, TX 255,885 ER9 –Great Plains 0.15 12.58 0.23 14.89 72.15

Lincoln, NE 287,401 ER9 –Great Plains 1.54 13.02 5.86 29.4 50.82

Albuquerque, NM 560,218 ER10 –North American Deserts 0.23 17.66 15.96 67.71 3.37

Bakersfield, CA 383,679 ER11 –Mediterranean 0.51 13.96 1.19 37.93 46.41

List of ten urban-exurban regions used for landscape comparisons, including population size (2010 census) and US-EPA Ecoregion. Values for land cover types

represent the percent coverage in a given city.

https://doi.org/10.1371/journal.pone.0252364.t001

Table 2. Landscape analysis decision table.

Decision Justification

1) Landscape

Features

Physical land-cover and

demographic land-use

‘Land-cover’ categories (i.e. forest, shrub) track changes in

‘natural’ landscapes, while ‘land-use’ (devel., crop) tracks the

human footprint and approximate population density

2) Spatial Data Remote-sensed, National Land

Cover Data (2016)

NLCD land-cover data is readily available and is a consistent

data-source to represent landscape features in all 10 study cities

3) Spatial Scale 500-m and 1,500-m Gaussian

kernel

Spatial extent (50 x 50-km) chosen to capture sufficient spatial

and ecological heterogeneity. Primary spatial grain (500-m

kernel) selected to represent breeding home range of American

robin. 1,500-m as a common scale in ecological research

selected to compare effects of scale.

Decisions made within landscape gradient framework for analyzing urban landscapes in jointly across study cities

and in the city-specific analysis. This follows the framework outlined in Padilla & Sutherland 2019. Justification

provided here is in light of dual research goals. First, to quantify landscape pattern in 10 distinct cities, and second, to

evaluate occupancy patterns of American robin in response to landscape gradients.

https://doi.org/10.1371/journal.pone.0252364.t002
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the local landscape context surrounding a given location [43]. Therefore, for each NLCD land-

cover class, we extracted a binary raster surface (1 if focal class, 0 if otherwise), and to account

for landscape surrounding a given location (i.e., landscape context) we computed the spatially

weighted average for each pixel using a Gaussian kernel spatial smooth, resulting in a continu-

ous surface ranging from 0 (no focal class within smoothing kernel) to 1 (smoothing neighbor-

hood entirely focal class). The width of the kernel defines the spatial grain of analysis, and

therefore should be selected with the research specific ecological process in mind [44]. We

selected a 500-m smoothing kernel for our analysis based on the typical breeding home range

size of our case study focal species, the American robin [45]. We tested sensitivity of landscape

quantification to this choice by replicating the analysis with a 1500-m spatial scale and found

no effect of scale selection of downstream inference (Effects of smoothing scale in S1 File). All

processing of the spatial data was conducted in R Version 3.5.3 [46] using the ‘raster’ [47],

‘FedData’[48] and ‘smoothie’ [49] packages.

To identify dominant patterns of variation in these landscapes, we used Principal Compo-

nents Analysis (PCA). PCA is one of several methods for summarizing a large number of

potentially correlated variables into fewer uncorrelated axes of variation (others include factor

analysis, non-metric multidimensional scaling, correspondence analysis), and it is particularly

well suited to exploratory ordination and gradient analysis [50]. Using a matrix of class-

specific smoothed landscape variables, we conducted PCA on the data for all cities combined.

Dominant principal components were identified and selected based on a cumulative weight

cut-off of the broken stick method, which retains components that explain more variance

than would expected than dividing variance randomly among all components [51]. These

were used to produce a spatially explicit gradient of habitat heterogeneity based on the resolu-

tion of the input data, where the value for each pixel in the resulting raster surface is the PCA

weighted average calculated as the sum of that pixel’s smoothed NLCD values multiplied by

the corresponding PC weight for each NLCD value. We also conducted this analysis for each

city independently in order to determine how well the combined (i.e., all cities) gradients

described city-specific gradients. Output for our PCA analyses are reported in the Results

section under Landscape Gradient Analysis.

Ecological case study

We evaluated the utility of multi-dimensional landscape heterogeneity gradients for ecological

applications using a real-world case study. Specifically, using occupancy modelling we tested

whether simultaneous consideration of multiple landscape gradients alters inferences about

ecological responses relative to the traditional single-gradient approach. We analyzed Ameri-

can robin detection-nondetection data under an occupancy modelling framework using the

gradients as covariates. We selected the American robin because it is a widespread generalist

species, present in all ten focal cities, and because it is widely considered to be human-

adaptive.

Robin detection histories were analyzed using a single-season hierarchical occupancy

model, which estimates site occupancy probabilities while accounting for imperfect detection

[52]. Stationary, complete checklists in which non-reporting of a species assumed to be non-

detection, from surveys conducted from April 1st through September 30th 2018 were extracted

from the eBird online database [53] using the R package ‘auk’ [54]. In this analysis, detection

data from all cities were pooled in a single analysis. Because there was substantial variation in

the number of eBird locations in each city (i.e., each unique fixed eBird survey site), and to

improve balance and reduce regional bias in sample size, the data were randomly thinned to

a maximum of 250 locations (Table 1 in S2 File).
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The standard occupancy model consists of two sub-models: a logit-linear model describing

site- and occasion-specific detection probability (p), which can be modelled using site- and

occasion-specific covariates, and a second logit-linear model describing site-specific occu-

pancy probability (ψ), that can be modelled using site-specific covariates. To account for varia-

tion in detection, we considered the following covariates: city (categorical factor), sampling

date, and date2 to allow for peaks or troughs in detection, and site-specific landscape gradient

values. Sampling date was scaled (0–18) such that a one unit increase in the date variable repre-

sented 10 calendar days, which facilitated parameter interpretation and model convergence. A

total of 26 possible detection models were considered, which included all additive combina-

tions and only single interaction terms (Table 2 in S2 File). For occupancy, we included the

effect of city, again as a factor, each of the site-specific landscape gradient values, and all com-

binations of city-gradient interactions for a total of 16 candidate models (Table 2 in S2 File).

We adopted a two-stage modeling approach whereby we fit and compared all possible com-

binations of detection covariates, each with the ‘global’ (most complex) model for the occu-

pancy component [55]. Using Akaike’s Information Criterion (AIC) to rank models, the best

supported model for detection was carried over to the second stage, where we compared com-

peting models for occupancy. Finally, the model selected for inference was validated by exam-

ining model residuals and performing goodness of fit tests. Occupancy analysis was conducted

in the package ‘unmarked’ [56], while AIC model selection and goodness of fit tests were done

using the ‘AICcmodavg’ package [57]. All analyses, were conducted in R Version 3.5.3 [46].

Results

Landscape gradient analysis

Principal components analysis of the combined (i.e., all cities) landscape data identified three

axes of variation, explaining 37.1% of the cumulative variance in the data (Table 3). When

each city was considered independently, the same three axes explained between 42.60 and

54.89% of the variance (Table 1 in S1 File), demonstrating the scalability of emergent land-

scape gradients across scales. However, using the broken stick method [51], only the first two

axes exceeded the 22.1% cumulative variance threshold for combined and city-specific analy-

ses. The principal component explaining the largest proportion of data variation for the com-

bined data (16.7%) was strongly negative for developed land-cover classes, with neutral or

positive loadings for forested, open, and agricultural classes (Table 3). Developed classes are

characterized by a high degree of impervious surface, buildings, and associated human popula-

tion density, whereas the others are predominantly non-impervious natural (wetlands) or un-

natural (pasture) landscapes. Thus, this first descriptor of landscape pattern can be interpreted

as a transition from hard (characterized by impervious and human presence) to soft (unpaved

natural or agricultural), which we refer to as a hard-to-soft gradient.

The second principal component explained 11.1% of the variation and showed a strong dif-

ferentiation between the land use classes at the soft end of the hard-to-soft gradient. Specifi-

cally, this axis distinguishes between human modified but un-developed areas (cultivated

croplands) and more natural areas (forests or wetlands). This axis is intuitively interpretable as

a shift from modified agricultural landscapes, to un-developed natural regions, or, brown-to-

green. While the hard-to-soft axis does not distinguish between dominant types of soft land-

scapes, the second accounts for this variation between brown and green regions and is a valu-

able counterpart to component one producing a triangular distribution (Fig 2).

The third principal component explained 9.3% of the total variation and was not retained

to produce a gradient surface as the cumulative variance of the first two principal components

exceeded the broken stick cutoff. However, it is interesting in that like PC2, the third principal
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component reflected a divergence between modified and un-modified undeveloped areas.

While PC2 differentiated natural deciduous and mixed forests from modified croplands, the

third axis is a gradient from evergreen forests and scrub, to pastures (Table 3). Both PC2 and

PC3, therefore, can be interpreted as brown-to-green in different habitat and land-use types.

Due to the ecological complementarity of the two dominant components, and our focus on

highlighting the value of simultaneously considering multiple dimensions of human influence,

our approach considers these axes jointly. However, it is worth noting that on their own, these

gradients are analogous to traditional approaches that consider single gradients in isolation.

The hard-to-soft gradient is consistent with traditional urban gradients focusing on the built

environment (e.g., percent impervious surface or housing density) [3, 6, 58], or it’s comple-

ment, percent forest cover. The more agricultural brown-to-green gradient, though less com-

mon in urban ecology, has been used in agro-ecological investigations [59, 60]. Our approach

allows us to investigate ecological responses to both important characteristics of human influ-

ence simultaneously.

As a test of whether these axes were consistent locally and at varying spatial extents, we con-

ducted the same analyses of NLCD data for each city independently as well as jointly using a

30x30 km window. Both city specific, and 30x30 km analyses revealed the same dominant axes

of variation as the 50x50 km combined analysis. As expected, the component weights of

NLCD classes and absolute values of axes differed, nevertheless, interpretation of these axes

remained consistent (Effects of smoothing scale: 1,500-m scale in S1 File).

Ecological case study

Our robin analysis included data from a total of 1,703 sampling locations (sites) across all cities

(min: 31 in Bakersfield, max: 250 in Worcester, Albuquerque, Portland, and Salt Lake City).

Table 3. Dominant principal component axes.

NLCD Layer Obs. Freq. PC1 PC2 PC3

Std.Dev. 1.581 1.295 1.182

Variance Explained (%) 16.7 11.1 9.3

Water 11—Open Water 2.70 0.042 0.030 -0.04

Developed 21—Developed Open 6.49 -0.360 0.055 0.017

22—Developed Low Intensity 6.72 -0.545 0.047 -0.040

23—Developed Medium Intensity 4.78 -0.553 0.015 -0.125

24—Developed High Intensity 1.61 -0.392 -0.007 -0.148

Barren 31—Barren Land 0.79 0.039 -0.017 -0.116

Forest 41—Forest Deciduous 10.17 0.119 0.469 0.171

42—Forest Evergreen 8.96 0.154 0.269 -0.349

43—Forest Mixed 2.14 0.087 0.433 0.001

Shrubland 52—Scrub/Shrub 10.56 0.151 -0.012 -0.554

Herbaceous 71—Grassland/Herbaceous 10.85 0.140 -0.339 -0.282

Cultivated 81—Pasture/Hay 11.25 0.053 0.082 0.446

82—Cultivated Crops 19.41 0.119 -0.491 0.387

Wetlands 90—Woody Wetlands 2.81 0.043 0.378 0.157

95—Herbaceous Wetlands 0.77 0.032 0.075 -0.039

Dominant Principal Component axes. The Obs. Freq. column displays the percent composition of each land cover category in all cities combined. For each principal

component, standard deviation, percent variance explained, and rotated variable loadings are displayed. Variables with a strong weight are in bold. The first two axes

were selected because cumulative variance exceeded the 22.1% broken stick threshold.

https://doi.org/10.1371/journal.pone.0252364.t003
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There were a total of 5,779 sampling visits across all cities, with a mean number of visits per

site of 1.95 (range: 1–172, Table 1 in S2 File). The overall proportion of sites with a minimum

of one observation (i.e., naïve occupancy) was 0.43, which varied by city from 0.387 in Spo-

kane, to 0.482 in Bakersfield (Table 1 in S2 File).

Of the 26 detection models considered, only eight converged, largely due to the complex

model structure. The AIC-top model (AICc wt = 1.0) included additive effects of both land-

scape gradients, a quadratic effect of date, and a city by date interaction term (Table 4). In the

second step, we used the best supported detection model to evaluate 16 candidate occupancy

models. Here, a single model held the majority of support (AICcwt = 0.91, Table 4) and

included the effects of both landscape gradients, city, and an interaction between city and the

hard-to-soft gradient. The second model was identical to the top model apart from the inclu-

sion of one additional term, the interaction between city and brown-to-green. Given the lack

of support for the additional terms, as indicated by the model ranking [61], model evaluation

and inference that follows is based on the top model. Examination of model residuals and a

Chi-Square goodness of fit test showed adequate model fit.

There was a significant quadratic effect (estimate± SE) of survey date on detectability

(-0.012± 0.002), such that detection probability increased, reached a peak, and declined. Robin

detection varied significantly along the brown-to-green axis, with robins more likely to be

observed in more ‘green’ landscapes (0.14± 0.05), and showed a negative relationship with

hard-to-soft, though confidence intervals included zero (-0.38± 0.04). Date of peak detectabil-

ity ranged from April 1st in Bakersfield (date = 0.0) to July 23rd in Portland (date = 11.3), while

Fig 2. Conceptual diagram of multi-dimensional landscape gradient: A conceptual description of the triangular

distribution captured by a multi-dimensional landscape definition that differentiates between urban, agricultural,

and natural portions of the landscape along dual axes of variation. Hard and soft portions of the landscape are

sorted along the vertical axis, while brown and green regions along the horizontal. This results in a multi-dimensional

perspective where heterogeneity is maximized at the center of both axes.

https://doi.org/10.1371/journal.pone.0252364.g002
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maximum detection probability ranged from 0.33 in Worcester, to 0.87 in Jackson (Fig 3;

Table 3 in S2 File).

Robin occupancy varied by city and with both gradients. Holding both gradients at 0 (over-

all scaled average), robin occupancy ranged from a low of 0.47 (0.08) in Albuquerque, New

Mexico to a high of 0.99 (0.074) in Jackson, Mississippi. Robin occupancy was positively

related to the brown-to-green axis (0.52± 0.01), suggesting that robins are more likely to occur

in more forested areas than in areas characterized as predominantly open or agricultural. This

effect was universal across all cities. In contrast, and interestingly, direction and magnitude of

the hard-to-soft gradient effect varied by city, i.e., the responses to the gradient describing the

transitions from built to vegetative environments was specific to each city (Fig 4). For example,

occupancy was positively associated with the hard-to-soft gradient in Spokane (1.61± 0.819),

but negatively associated with hard-to-soft in Worcester (-1.72± 0.765).

Table 4. Model selection table.

Detection Model Structure K AICc ΔAICc AICwt - LogLik

1 ~ city�date+date2+HS+BG
~ ψ

63 6544.02 0.0 1 -3206.45

2 ~ city�date+HS+BG
~ ψ

62 6611.83 67.81 0 -3241.44

3 ~ city�HS
~ ψ

60 6998.33 454.31 0 -3436.84

4 ~ city
~ ψ

43 7001.75 457.73 0 -3456.69

5 ~ date
~ ψ

42 7038.66 494.64 0 -3476.20

6 ~ BG
~ ψ

42 7450.53 906.51 0 -3682.13

7 ~ 1 ~ ψ 41 7450.69 906.67 0 -3683.27

8 ~ HS
~ ψ

42 7452.32 908.30 0 -3683.03

Occupancy Model Structure K AICc ΔAICc AICwt - LogLik

1 ~ p ~ city�HS+BG 44 6530.44 0 0.91 -3219.98

2 ~ p ~ city�(HS+BG) 53 6535.21 4.77 0.09 -3212.80

3 ~ p ~ city�HS 43 6542.84 12.40 0 -3227.23

4 ~ p ~ city�(HS�BG) 63 6544.02 13.58 0 -3206.45

5 ~ p ~ city+HS�BG 36 6567.86 37.42 0 -3247.10

6 ~ p ~ city+HS+BG 35 6572.90 42.46 0 -3250.67

7 ~ p ~ city+HS 34 6578.90 48.46 0 -3254.71

8 ~ p ~ city�BG+HS 44 6580.24 49.80 0 -3244.88

9 ~ p ~ HS�BG 27 6580.55 50.11 0 -3262.81

10 ~ p ~ city�BG 43 6581.49 51.05 0 -3246.56

11 ~ p ~ city+BG 34 6582.03 51.59 0 -3256.27

12 ~ p ~ city 33 6587.86 57.42 0 -3260.23

13 ~ p ~ BG 25 6490.33 59.89 0 -3269.76

14 ~ p ~ HS+BG 26 6591.46 61.02 0 -3269.29

15 ~ p ~ HS 25 6600.95 70.51 0 -3275.07

16 ~ p ~ 1 24 6601.16 70.72 0 -3276.21

Model selection results for both detection and occupancy components of the American robin analysis based on sample size corrected AIC. K denotes the total number

of parameters in the model and AICwt is the model weight. Detection was assessed with the global occupancy model and the best model for detection was used in all

models for occupancy. Here, HS refers to the hard-to-soft gradient, while BG denotes brown-to-green.

https://doi.org/10.1371/journal.pone.0252364.t004
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Discussion

Analysis of spatially heterogeneous landscapes surrounding ten metropolitan regions revealed

two statistically important and ecologically intuitive axes of variation, which offers an exciting

alternative to the conventional one-dimensional approach to investigating ecological responses

in human-dominated landscapes. Despite regional variation in landscape composition

(Table 1 in S1 File) the dual-gradient approach we present here consistently distinguished

between two distinct types of anthropogenic influences: a hard-to-soft gradient capturing a

continuum of the built human environment, and a brown-to-green gradient capturing the

human agricultural footprint (Fig 2). Our analysis shows that in addition to being fundamental

properties of the landscape, considering these axes jointly provides ecological insight that

would otherwise be overlooked using a single-axis approach (Table 3). This multi-dimensional

perspective highlights the importance of considering the complexity of human-dominated

landscapes and identifies a triangular distribution of human influence that presents an intui-

tive and generalizable framework for understanding patterns of ecological function and devel-

oping management strategies in human-dominated landscapes.

Landscape metrics that are adaptable to a variety of ecosystem contexts are needed to

improve understanding of human-dominated ecosystems and effectively synthesize local and

regional conservation efforts. Prior attempts to produce universal metrics for human footprint

or urbanization have thus far failed to result in methodological consistency or broad uptake, in

part due to methodological complexity and data requirements. For example the HERCULES

method [62] requires users to classify the landscape into categories of building, surface cover,

and vegetation using LiDAR data. Seress et al. [63] describe another method that also requires

some user based classification of satellite imagery into categories of buildings, vegetation, and

Fig 3. Detection probability of American robin: Robin Detection probability as a function of survey date for each

city predicted from the top model. Grey shaded area represents 95% confidence intervals and solid is the expected

value. Date of peak detection probability varied between cities, but tended toward the start of the study period, which

coincides with robin breeding behavior.

https://doi.org/10.1371/journal.pone.0252364.g003
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road to train a semi-automated model. Metrics proposed as generalizable for use in human-

natural systems also tend to focus on one axis of landscape modification, typically urbaniza-

tion, rather than the full spectrum of changes to the landscape [64, 65]. Recently, a human

modification gradient [66] has been produced that incorporates all aspects of the human foot-

print, however, it results in a single metric making it difficult to distinguish differential effects

of agriculture or urbanization, as we have demonstrated here.

Multiple metrics have been used to analyze and quantify spatial change in human-dominated

systems. Large suites of input variables ranging from landscape configuration measures to

human population density have been used to identify multiple important features of change in

urban landscapes in several notable instances [9, 65, 67, 68]. In most of these cases, however,

multiple univariate measures are identified (e.g., using multi-variate analyses) as representative

of landscape change along urban-rural gradients. Meanwhile, Berland and Mason [67], noted

that dominant factors or principal components could perhaps be used to directly represent

urbanization rather than selecting the variables with highest loading. Ultimately, regardless

of the number of metrics utilized, or how they were derived, prior multi-metric research has

tended to focus on identifying one aspect of landscape change, namely urbanization.

Fig 4. Predicted robin occupancy along dual landscape gradients: Surface plots depicting robin occupancy on both the brown-to-green (y axis)

and hard-to-soft (x axis) for each of the ten cities. The color scale ranges from low occupancy (red) to high occupancy (blue). Variation in surface

plots highlights the differences in landscape composition in study cities, and the variable response to urbanization along the hard-to-soft gradient.

https://doi.org/10.1371/journal.pone.0252364.g004
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Furthermore, despite identifying multiple important measures, none of these explicitly promote

a dual-axis or multi-dimensional application of these measures.

The multi-dimensional landscape gradient approach we propose here offers the flexibility

to balance regional adaptability with local specificity and ecological realism to better under-

stand more mechanistically the relationships between landscape structure and ecological pro-

cesses [58, 69]. We use an established multi-variate statistical approach to succinctly describe

spatial heterogeneity and employ readily available NLCD data to incorporate complexity of the

entire landscape into a clear and consistent dual axis of human-influence. Although the NLCD

dataset is limited to the United States, it employs a nearly identical landscape classification sys-

tem as other products, including the European Space Agency’s GlobCover data [70] or Coper-

nicus Global Land Cover [71], and therefore should be applicable globally wherever such

landcover data are available. In addition to PCA, other multi-variate methods have been sug-

gested as alternatives when identifying landscape gradients, such as factor analysis [9], and

non-metric multidimensional scaling [72]. More recently, PCA approaches that better account

for similarities and differences in multi-group (e.g., multi-city) data have been developed [73],

which may be particularly applicable when analyzing landscape gradients in multiple regions

simultaneously. Our analysis has demonstrated the importance of considering multiple axes

of variation in landscape gradients, and fits within a methodological framework centered on

transparent and ecologically informed analysis [3]. It is important to note, however, that city-

specific means (i.e., mean effect of landscape on occupancy) in our global analysis may influ-

ence interpretation and comparison of effect size between groups. Ultimately, the multi-variate

method selected by researchers should be informed by the study’s goals, objectives, and types

of data available [50]. As the human population continues to grow, the urban, industrial, and

agricultural infrastructure must be restructured to ensure future ecological integrity, and the

resulting debate over how to effectively do this has led to discussions of land-sharing, i.e., inte-

grating natural systems into the mix of human land-uses, versus land-sparing, i.e., where natu-

ral and human systems are concentrated in large, individualized patches. Due to a traditional

one-dimensional perspective of landscape heterogeneity, this discussion has largely taken

place for agricultural [74], and urban [75] systems in isolation. In reality, however, urban, agri-

cultural, and natural landscapes are inherently inter-mixed. Viewing the land-sharing versus

land-sparing debate through a multi-dimensional lens of landscape heterogeneity views the

landscape mosaic as a more realistic integrated agro-urban-natural system. Furthermore, the

species that will benefit or suffer most from any specific sharing or sparing management,

depends entirely on the landscape context within which they are evaluated [76]. Determining

how to design a conservation strategy and manage a heterogeneous regional landscape for this

species would require that the entire human-natural mosaic be considered and could be facili-

tated with a multi-dimensional approach to landscape context.

American robins are widely considered to be urban-adaptive and are thought to benefit

from urbanized (e.g., hard) landscapes with human habitation [77, 78]. However, our results

consistently predicted higher occupancy in more forested (green) regions over areas predomi-

nantly agricultural (brown), while the effect of the hard-to-soft axis on robin occupancy

varied by city both in terms of magnitude and direction likely due to regional variation in

composition of the soft landscape (Fig 4). Regional variation in the effect of hard-to-soft on

robin occupancy demonstrates the need to consider and decouple multiple dimensions of

landscape heterogeneity and suggests that ecological response to human-dominated land-

scapes is highly nuanced and regionally variable. While highly adaptable and able to exploit

many habitat types, robins showed a preference for natural areas in proximity to urbanization

(i.e., green-and-hard) over those in more agricultural landscapes. Our approach synthesizes

prior research on the species where single landscape gradients were considered in isolation. In
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urban contexts higher presence and survival of robins was reported in residential yards, wood-

lots and golf courses [79, 80], while studies in agricultural landscapes found that robins were

more common in habitat fragments surrounded by urbanization than those surrounded by

agriculture [81].

City-specific variation in robin response to landscape heterogeneity reiterates the importance

of landscape context on biotic response. The size (i.e., spatial extent) and density (i.e., human

population) of human-dominated landscapes significantly impacts the direction and magnitude

of biotic response, with larger and more densely populated cities typically resulting in a stronger

negative response [82, 83]. Had our analysis centered on larger or smaller urban regions the spe-

cifics of robin response may have differed, however, our core findings—the importance of con-

sidering multiple landscape gradients and regional variation in response—would likely have

remained. Though, additional research into the impacts of size of human-dominated landscapes

on the use of multi-dimensional landscape gradients is warranted. We saw that robin occupancy

was demonstrably influenced by both axes of human-modification across the continental United

States, suggesting that a continued reliance on one-dimensional landscape descriptors may result

in ecosystem pattern being misinterpreted as inherent stochasticity (e.g., noise), when in fact it

reflects an overlooked component of the landscape. Specifically in our context, an analysis using

a conventional hard-soft gradient would have overlooked the value of green (natural) landscapes

integrated in hard (urban) regions for robins (Fig 4). Bearing this in mind, management deci-

sions that consider only a single aspect of the human-natural landscape may overlook or misin-

terpret ecological response and result in ineffective conservation plans [84].

All measures of landscape heterogeneity are imperfect representations of reality and there-

fore fall short to varying degrees, and it is unlikely that any single metric will be ideally suited

to every question of ecological pattern and process [85]. Therefore, extending one-dimensional

descriptors to a multi-dimensional perspective can help move toward a more general under-

standing of landscape mosaics. And yet, oversimplified one-dimensional measures such as per-

cent forest cover, or percent impervious surface continue to dominate the literature [3]. Multi-

city analysis of urban ecosystems has experienced rich growth in recent years. This work has

highlighted the negative and positive potential impacts of urbanization on biodiversity, while

stressing the importance of the regional landscape context in driving the direction and magni-

tude of biological response [82, 83, 86]. Still, multi-region analysis remains hampered by

inconsistencies in study design and methodological limitations [87, 88]. The multi-

dimensional, dual-axis understanding of spatial heterogeneity we describe has the potential

to improve and standardize existing approaches to producing ecologically relevant landscape

metrics leading to improvements in multi-region research and valuable insight into patterns

of ecological response within and across human-dominated systems.
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5. Li H, Wu J. Use and misuse of landscape Índices. Landsc Ecol. 2004; 19: 389–399. https://doi.org/10.

1023/B:LAND.0000030441.15628.d6

6. Moll RJ, Cepek JD, Lorch PD, Dennis PM, Tans E, Robison T, et al. What does urbanization actually

mean? A framework for urban metrics in wildlife research. J Appl Ecol. 2019; 56: 1289–1300. https://

doi.org/10.1111/1365-2664.13358

7. Watt AS. Pattern and process in the plant community. J Ecol. 1947; 35: 1–22.

8. Gustafson EJ. How has the state-of-the-art for quantification of landscape pattern advanced in the

twenty-first century? Landsc Ecol. 2018;0123456789. https://doi.org/10.1007/s10980-018-0709-x

9. du Toit MJ, Cilliers SS. Aspects influencing the selection of representative urbanization measures to

quantify urban–rural gradients. Landsc Ecol. 2011; 26: 169–181. https://doi.org/10.1007/s10980-010-

9560-4

10. Frazier AE, Kedron PJ. Landscape metrics: past progress and future directions. Curr Landsc Ecol

Reports. 2017; 63–72. https://doi.org/10.1007/s40823-017-0026-0
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