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Scientists in some fields are concerned that many published results are false. Re-6

cent models predict selection for false positives as the inevitable result of pressure to7

publish, even when scientists are penalized for publications that fail to replicate. We8

model the cultural evolution of research practices when labs are allowed to expend9

effort on theory – enabling them, at a cost, to identify hypotheses that are more likely10

to be true, prior to empirical testing. Theory can restore high effort in research prac-11

tice and suppress false-positives to a technical minimum, even without replication.12

The mere ability to choose between two sets of hypotheses – one with greater prior13

chance of being correct – promotes better science than can be achieved with effortless14

access to the set of stronger hypotheses. Combining theory and replication can have15

synergistic effects. Based on our analysis we propose four simple recommendations to16

promote good science.17

18

Scientists are concerned about the state of science1. There is ample evidence to suggest that19

in some fields a large portion of reported results may be false2,3,4,5,6,7,8. The quality and magnitude20

of empirical evidence for this concern varies across disciplines and is a matter of debate9. But there21

is widespread acceptance that “researcher degrees of freedom” – such as flexibility in study design,22

measurement, and reporting – can lead to a high rate of false-positive reports. The dominant view23

holds that, in some fields, a sizable portion of published findings are false – a viewpoint publicized24

so widely that the lay person may reasonably be suspicious of the scientific enterprise. To remedy25

this situation, there have been remarkable efforts to fund and undertake large-scale replication stud-26

ies to help identify errors in the literature and understand how they arise from current scientific27
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practice7,10,11,12. Among other approaches, such as pre-registration8,9,13,14,15 and novel funding28

mechanisms16,17, a balance between testing new hypotheses and replicating published studies is29

now prescribed as a matter of course9.30

At the same time, models for the cultural evolution of scientific practice have suggested that31

replication efforts will not suffice to arrest the inevitable trend towards increasing false-positive32

rates – the evolution of “bad science” – driven by incentives to publish positive results regardless of33

their veracity18,19,20,21. Several authors have instead called for increased attention to theory as key34

to restoring a healthy scientific practice18,22,23,24. Whether, or how, theory will actually promote35

good science – that is, reduce the rate of false-positive reports – has not been studied in a formal36

framework. Moreover, models of cultural evolution used to interrogate the value of replication37

have been investigated primarily by simulation, without systematic mathematical analysis. Here38

we work to address both of these outstanding issues in the meta-scientific literature.39

There are two ways that theory can aid scientific inquiry. When a field of research is underpinned40

by a well developed body of theory, the community of scientists can focus on those hypotheses that41

are more important or have a greater prior chance of being correct. That is, theory can give42

all researchers easier access to “stronger” hypotheses. At the same time, even in fields where a43

theoretical framework is not yet well developed or widely accepted, an individual lab that expends44

effort to model the system they are researching will generate stronger hypotheses by clarifying and45

quantifying their intuitions and by weeding out unlikely or illogical hypotheses. We show that46

this latter process – individual labs expending effort to select stronger hypotheses – has profound47

consequences for the cultural evolution of scientific practice.48

Our analysis generalizes earlier models for the evolution of scientific practice in response to49

pressure to publish positive results. In particular, we extend earlier work by analyzing the possibility50

that individual labs may expend effort on “theory” to improve the quality of the hypotheses they51

choose to test. We analyze our model both mathematically and by simulation, showing that the52

pressure to publish does not produce an inevitable decline in the quality of science provided effort53

can be expended on theory. Rather, the system becomes bi-stable: it can support either high-quality54

science (low rates of false-positive reports) aided by theory, or a decline towards low-quality science55
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and minimal effort. We quantify the basins of attraction towards these two different outcomes.56

Then we show how interventions such as replication can facilitate the stability of good-science57

equilibria. Finally we offer four simple recommendations, arising from our analysis, to promote58

good science in the face of pressures to publish.59

Results60

Methods from cultural evolution can be applied to study the development of research practices in61

response to institutional incentives17,18,19,25,26. This approach rests on the idea that competing re-62

search groups vary in methodological traits that affect their success and that are “heritable” either63

by differential imitation27 or by differential production of students who then form their own labs,64

adopting the practices of their mentors.65

66

Model of Efficacy and Effort67

In order to study the natural selection of good science we adapt the model of Smaldino et al.18,68

which characterizes a research lab in terms of its “efficacy” and “effort”. Efficacy and effort are69

treated as traits that can evolve in the population of labs via a process of natural selection. Together70

these traits determine the rate at which a given lab generates novel results for publication, which71

is a natural proxy for success (i.e. fitness) in the face of inter-lab competition and the pressure to72

publish positive results.73

Efficacy in this context refers to the overall ability of a lab to generate positive results. Efficacy74

encompasses the entire process of obtaining funding, designing experiments, executing studies, and75

producing a publication. Increasing a lab’s efficacy also increases its rate of false positives, unless76

effort is exerted18. Effort here is a measure of a lab’s degree of conservatism and rigor, which reduces77

both the false positive rate and the true positive rate. Increasing effort decreases the productivity78

of a lab, because it takes longer to perform rigorous research. (Note that Smaldino et al.18 referred79

to efficacy as “power,” which we avoid because of potential confusion with the familiar concept of80

statistical power.)81

Under this model the process of producing a research paper proceeds as follows: (i) A lab82
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selects a hypothesis to test. (ii) If the hypothesis is in fact true, the lab identifies it as such with a83

probability P (+|T ) – the true positive rate – which depends on the efficacy of the lab’s techniques84

and the effort exerted to test the hypothesis. However, if the hypothesis is in fact false the lab85

mis-identifies it as true with a probability P (+|F ) – the false positive rate – which again depends86

on the efficacy of the lab’s techniques and on the effort they exert. (iii) If the hypothesis is labelled87

as true the work is published – that is, we assume that only positive results are published18.88

Note that the false discovery rate – i.e. the rate at which false hypotheses are published as true89

– is P (F )P (+|F ), that is the chance of first selecting a hypothesis that is false and then incorrectly90

labelling it as true. Similarly the true discovery rate is P (T )P (+|T ).91

We assume that both true and false positive rates increase with a lab’s efficacy, V , and decrease

with the lab’s effort, e. We also assume V ∈ [0, 1] and e ∈ [1,∞)18. We choose the following

functional forms for the rates of true and false positives in terms of effort e and efficacy V ,

P (+|T ) =
V

γ
× γe

1 + γ(e− 1)

P (+|F ) =
V

θ
× 1 + (θ − 1)e

1 + (θ − V )(e− 1)
. (1)

According to this formulation, the true positive rate increases linearly with efficacy, whereas it92

is a convex decreasing function of effort (see Supplementary Figure 1). The false positive rate93

is a convex increasing function of efficacy18; but this can be counterbalanced by increasing effort.94

Increasing efficacy always increases publication rate18, namely the rate of positive findings, whereas95

increasing effort decreases the discovery rate as labs become more conservative and meticulous.96

Our formulation for the rate of true and false positives generalizes the model of Smaldino et97

al.18. The two formulations are identical in the limit θ = γ = 1 and V = 1. In general, however,98

our formulation differs in an important way: effort expended to reduce false positives also has the99

effect of reducing true positives (for γ > 1), whereas Smaldino et al.18 assumed the true positive100

rate is independent of effort. This more general formulation avoids a pathology that was present101

in earlier work: the tautological limit of P (+|T ) → 1 and P (+|F ) → 1 occurs only when efficacy102

is maximized (V → 1) and effort is minimized (e → 1) under our model. This tautological limit103
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corresponds to a situation where a lab simply labels all hypotheses as true, and so it should occur104

only when a lab expends minimal effort.105

Our formulation, in which true and false positive rates are both convex decreasing functions of106

effort, also generalizes Smaldino et al.18 in the limit of maximum effort, e→∞. This limit produces107

P (+|T ) → 1/γ and P (+|F ) → 1/θ, where the parameters 1/θ and 1/γ define the technical limits108

on true and false positive rates in a given field of research. These parameters describe the current109

technical limits of scientific practice, including limitations of current measurement technology, as110

well as constraints such as available funding and feasible sample size, etc. The values of γ and θ111

describe the current state of technical development of a field, and we treat them as fixed for most112

of our analysis. In reality, however, technical limits change as technology develops and resources113

fluctuate. By treating γ and θ as fixed, we are assuming that the overall development of technology114

in a field is slow compared to the evolution of individual lab practices.115

116

Model of Hypothesis Selection117

The rate at which a lab discovers positive results depends on the true and false positive rates118

(Eq. 1) as well as the underlying probability that a hypothesis the lab selects to test is true, P (T ).119

One way to imagine science is as a “grab bag” of hypotheses, each of which is true with a fixed120

probability b. We might imagine scientists as reaching into the bag, eyes closed, and drawing a121

hypothesis which they then test18.122

For many labs though, hypothesis selection is itself a product of effort. This effort may consist123

of broad engagement with the prior literature, which highlights some hypotheses as more plausible124

than others based on consistency with established results across many fields of science. Alterna-125

tively, it may consist of a lab expending effort to produce models and theory, which enable the126

production of systematic and self-consistent predictions that can be tested as empirical hypotheses.127

In order to describe the process of putting effort into hypothesis selection we assume128

P (T ) =
b0 + b1(e− 1)

e
. (2)

Under this formulation, we may think of there being two different “bags” of hypotheses. In the first129

5



bag, hypotheses are true with probability b0, whereas in the second they are true with probability130

b1 > b0. Whether a lab selects a hypothesis from the first bag or second bag depends on its level on131

effort. In particular, the probability of drawing a hypothesis from the first bag is 1/e (see Methods).132

And so effort e ≥ 1 expended on hypothesis selection increases the prior probability that a selected133

hypothesis is true from the baseline rate b0, when e = 1, to a maximum value b1 > b0, achieved134

when a lab puts maximum effort (e → ∞) into the development of theory and engagement with135

prior literature (Figure 1).136

137

Model of Publication and Replication138

To study the impact of replication on the cultural evolution of scientific practice, we assume that139

each lab can choose to replicate a published study, at rate r, rather than attempting to produce a140

novel study18. The outcome of each replication attempt depends on the standing body of published141

literature (see Methods). Replication outcomes can be analyzed concisely under the simplifying142

assumption that labs all experience replication of their work at the same rate. We analyze this case143

mathematically, and we later show via simulation that our analytic results are good approximations144

even when this assumption is relaxed.145

We assume that a lab publishes novel results at an overall rate ρ,146

ρ = (1− η log10(e))× (1− r)× [P (T )P (+|T ) + P (F )P (+|F )] , (3)

where the term (1−η log10(e)) describes the time it takes to produce a piece of research using effort147

level e. This logarithmic form reflects the choice made by18. In the SI (Section 1.8) we consider148

other functional relationships between effort and time to produce research, and we show that our149

qualitative results are robust to this choice. The term P (T )P (+|T )+P (F )P (+|F ) gives the overall150

discovery rate for novel results. Similarly labs engage in replication studies at rate151

φ = (1− η log10(e))× r (4)

where we assume that all replications are publishable regardless of outcome18.
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Adaptive Dynamics of Science

We can analyze the natural selection of good science via the payoffs associated with publication of

novel results and replication of previous results. We first analyse the evolution of scientific practice

under the simplifying assumptions of adaptive dynamics. In this framework an infinite population

of labs are assumed to use identical strategies, and the success of a new strategy i, which differs

slightly from the norm, is tested against the current resident strategy28,29. The expected fitness of

a lab with a novel strategy i, denoted w(ei, Vi, ri), is approximated by (see Methods):

w(ei, Vi, ri) = ρiBN + φiBr +
1

2

ρiφ

l
(piBO+ − qiCO−) (5)

where BN is the payoff for publishing a novel result, Br is the payoff for publishing a replication152

study, BO+ the payoff for having another lab successfully reproduce your work, and CO− the cost153

of having another lab fail to reproduce your work (Figure 1). Eq. 5 then simply describes the payoff154

received by a lab given their current practices and the practices of the field: the first term ρiBN155

describes the payoff from lab i publishing novel results; the second term φiBr describes the payoff156

from lab i publishing replication studies; and the term 1
2
ρiφ
l approximates the rate at which lab157

i has their results replicated by other labs (see SI), while piBO+ and qiCO− describe the benefits158

and costs for those replications being successful or unsuccessful. Here l is the ratio of published159

material being considered for replication in the corpus of the field to the number of active labs.160

(Thus if l = 10, there are 10 times as many published works being considered for replication on a161

topic as there are active labs working on that topic.) Finally, pi and qi give the probability that162

a replication attempt by another lab on a study produced by lab i is successful or unsuccessful,163

respectively (see Methods).164

We use the framework of adaptive dynamics28,29 to determine the equilibria associated with165

the evolution of scientific practice, for a population of labs with fitness described by Eq. 5. Under166

this framework the equilibria of the system occur when the selection gradient is zero, i.e. when167
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∂w

∂ei

∣∣∣
ei=e

= 0

∂w

∂ri

∣∣∣
ri=r

= 0 (6)

168

Note that ∂w
∂Vi

∣∣∣
Vi=V

> 0 for all V , which means selection always favors increasing V , and so labs169

necessarily evolve to maximum methodological efficacy, V = 1 under all circumstances, as in pre-170

vious work18. Although Eq. 6 cannot in general be solved analytically (see SI section 1), it can be171

systematically explored numerically to identify stable equilibria and their basins of attraction.172

173

Theory produces good science174

When a lab cannot improve hypothesis selection by effort, then science will evolve to a state where175

labs simply label all novel hypotheses as true – that is, the evolution of bad science18. As we show176

below, however, the mere act of expending effort to find stronger hypotheses is sufficient to stabilize177

good science. We define good science as an equilibrium in the cultural evolution of lab practice178

that maintains a false positive rate close to the technical minimum, P (+|F ) ∼ V/θ. Under our179

model this can occur only when effort is high (Eq. 1).180

The act of expending effort to find stronger hypotheses is described by Eq. 2, where minimum181

effort (e = 1) results in selection of a hypothesis with prior probability P (T ) = b0 and maximum182

effort (e→∞) results in a hypothesis with prior probability P (T ) = b1 > b0. That is to say, a lab183

can expend effort to identify stronger hypotheses. In practice, this type of effort typically involves184

theoretical work – by either formal modeling or leveraging an informal, conceptual framework – in185

order to identify hypotheses that have a greater prior chance of being correct.186

Expending effort to find stronger hypotheses produces good science, whereas simply having187

effortless access to stronger hypotheses does not (Figure 2). The figure shows the results of sim-188

ulations in three different regimes: (i) only weak hypotheses available (b0 = b1 = 0.01) (ii) only189

strong hypotheses available (b0 = b1 = 0.25) and (iii) choice, via effort, between weak and strong190

8



hypotheses (b0 = 0.01 and b1 = 0.25). In the first two cases bad science evolves, with effort de-191

clining to its minimum and true and false positive rates increasing to unity, which replicates the192

simulation results of Smaldino et al.18. However in the third case, when effort can be expended to193

select stronger hypotheses, we find something quite different. As labs evolve, effort increases from194

its initial value to a level that maintains a high true-positive rate and a low false-positive rate –195

the evolution of good science.196

Notably, expending effort to select strong hypotheses produces a good-science equilibrium even197

when effortless access to equally strong hypotheses would lead to bad science (Figure 2c versus198

Figure 2b).199

How does expending effort on hypothesis selection promote good science? Analysis of our model200

by adaptive dynamics (Eqs. 5-6 and SI section 1) shows that when effort can be expended to find201

stronger hypotheses the system becomes bi-stable (Supplementary Supplementary Figure 2-5). The202

bad-science equilibrium identified by18 always exists, but once a tipping point is reached, another203

equilibrium emerges that features high effort and a low false positive rate. For a broad range of204

parameters the basin of attraction towards this good-science equilibrium is much larger than the205

basin of attraction towards the bad-science equilibrium (see Supplementary Figure 2-5). The rea-206

son why increasing effort can be advantageous is that greater effort results in a greater probability207

of selecting a true hypothesis to test in the first place, P (T ). Once the good-science equilibrium208

is reached, decreasing effort tends to reduce the overall rate of publication, because it makes hy-209

potheses less likely to be true a priori; and the lab still puts effort into assessing the veracity of210

each hypothesis, so that they end up identifying more hypotheses as false, thereby reducing publica-211

tion rate. This phenomenon, which opposes reduction in effort, is sufficient to stabilize good science.212

213

Replication can facilitate good science214

We have seen that effort expended at hypothesis selection – that is, theoretical work in advance of215

any empirical experimentation – can lead to the evolution of good scientific practices that ensure216

low false positive rates. Now we consider the additional effects of replication on the evolution of217

scientific practice. Unlike effort and efficacy, which evolve endogenously in response to incentive218

9



structures, the rate of replication can be increased or decreased exogenously by introducing insti-219

tutional incentives or policies that require replication9. And so much of the debate over how to220

promote good science has been focused on encouraging replication and similar interventions9,15.221

Replication can help weed out bad science by re-testing published results and flagging the false222

positives. By imposing a cost on labs who publish false positives, replication reduces the incentive223

for labs to lazily label novel results as true without expending the effort to rigorously test them.224

However, previous models for the evolution of scientific practice have found that replication cannot225

prevent the natural selection of bad science18. We too find that, in the absence of theory to226

enable hypothesis selection, replication alone does not produce good science (Figure 4). However227

we also find (Figures 4 and S7-S10 ) that, in the presence of theory, replication can both increase228

the basin of attraction of good science and interact synergistically with stronger hypotheses and229

better methodology to stabilize good science. Figure 4 shows examples where the introduction of230

replication (r > 0) can make the difference between the evolution of bad versus good science.231

Instead of fixing the replication rate, held in place by an external policy, we can alternatively232

study the case when labs choose their own degree of replication effort. To do this we analyze the233

co-evolution of effort and replication rate. Using the framework of adaptive dynamics (Eqs. 5-6)234

we find that, when the cost for studies that fail to replicate is large (CO− � 1), both good- and235

bad-science equilibria persist, but replication is always lost (see SI Section 1.2 and Supplementary236

Figure 2). Individual-based simulations produce similar results: in combination with theory, repli-237

cation rates evolve to low positive values and good science is maintained whereas without theory,238

replication alone cannot help to prevent the natural selection of bad science (SI Section 2.4). On239

the other hand, when replication occurs at a fixed rate by an external policy, it can dramatically240

expand the basin of attraction of good science (SI Section 1.4 and Figure 3).241

242

Attention-grabbing hypotheses243

Our model of hypothesis selection (Eq. 2) assumes that hypotheses are drawn from two pools that244

differ only in their prior probability of being true, i.e. b0 < b1. In reality, however, different types245

of novel results may generate different benefits, often depending on the effort spent on generating246
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them. In particular, low-effort attention-grabbing hypotheses that seem surprising may be ex-247

pected to generate more “hype” and therefore more benefit for the lab if successfully published,248

than carefully constructed high-effort hypotheses that build on prior work and have a great a priori249

chance of being true. To capture this effect we now assume that a positive report for a low-effort250

hypothesis, with prior probability of being true b0, generates benefit B0
N whereas as positive re-251

sult for a high-effort hypothesis with prior probability of being true b1 > b0, generates a smaller252

benefit B1
N ≤ B0

N . The probability of choosing a particular hypothesis to test is given by Eq. 2 as253

previously (see SI Section 1.6).254

A scientific culture that rewards publication of a low-effort, attention-grabbing hypothesis more255

than publication of a high-effort hypothesis (B0
N > B1

N ) threatens to undermine the evolution of256

good scientific practice. Indeed, we find that setting B0
N > B1

N reduces the size of basin of attrac-257

tion towards the good-science equilibrium. Nonetheless, a stable, good-science equilibrium persists258

even when the reward for publishing an attention-grabbing hypothesis is roughly twice as large as259

the reward for publishing a high-effort conservative hypotheses (Supplementary Figure 6). And so260

evolution can still promote labs that expend effort at hypothesis selection, provided the rewards261

for publication are not too heavily biased towards low-effort findings.262

263

Good science across fields264

The emergence of good science as a stable response to the pressure to publish depends on the265

extent to which a field has developed and on the costs and benefits associated with publication in266

that field. In terms of methodology, stable good science depends on a field’s development along267

three major axes. (i) A field must have achieved a sufficient degree of technological advancement268

(1/θ sufficiently small, Supplementary Figure 2-3). That is, if low rates of false positives cannot269

possibly be achieved even through high effort, then good science cannot be maintained. (ii) Labs270

must have sufficient ability to discriminate between strong and weak hypotheses (b1 sufficiently271

larger than b0, Supplementary Figure 2-3). That is, good science cannot be maintained if a field272

does not yet have sufficient theory to enable the selection of stronger hypotheses through effort.273

(iii) Good science can be stabilized when labs undertake replication (r > 0, Figures 3 and 4), which274
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can help make up for less technical advancement (θ) or less theory (b1), but this is not always275

guaranteed (Supplementary Figure 3-5 and SI section 1.4) and the efficacy of replication depends276

on the relative size of the corpus of literature to the number of active labs (Supplementary Figure277

7-10).278

Methodological advancement and the ability to identify strong hypotheses varies widely across279

fields, as do norms regarding the costs and benefits of publication. We can assess the likely impact280

of interventions, such as increasing the frequency of replications, by calculating the likelihood that281

a good-science equilibrium is supported across a wide range of methodologies. In Figure 4 a-b we282

systematically vary parameters associated with a field’s norms and technical limits (b0, b1, θ, γ,283

B0
N , B1

N ) and shows the associated likelihood that a stable good-science equilibrium exists, across284

a range of different replication rates, and benefits and costs of replication. As this parameter sweep285

reveals, replication is indeed an effective tool for promoting the viability of good science when286

paired with high costs to a lab, incurred when a publication fails to replicate.287

We also assessed whether better methods can make up for mediocre theory (Figure 4 c-d),288

in which we again systematically varied parameters associated with a field’s norms and technical289

limits (b0, b1, r, γ, B0
N , B1

N ) and calculated the likelihood of a good science equilibrium for different290

values of θ, which we use as a proxy for a field’s level of technical advancement (since higher θ leads291

to lower technical limits on the rate of false positives). We find that increasing θ leads to greater292

viability of good science, all other things being equal.293

Discussion294

Scientific practice is amenable to scientific study. We have developed models of cultural evolution295

to study how theory influences research effort and methodological efficacy for labs under pressure296

to publish. The ability to expend theoretical effort on hypothesis selection produces bi-stable297

dynamics: evolution will lead either to high-effort labs that publish reports with few false positives298

(good science), or alternatively to minimal-effort labs that try to get ahead by publishing results299

replete with false positives, (bad science). Our mathematical analysis delineates when the good300

science equilibrium will arise, in terms of the payoffs for publication, the field’s technical limits301
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on true- and false-positive rates, the payoffs associated with replication efforts, and the extent to302

which theory can improve hypothesis selection in the field.303

Our results highlight the role of theoretical effort in shaping scientific practice. Theory is304

construed broadly in this analysis, to include any activity that identifies hypotheses with a greater305

chance of being true, prior to empirical investigation. In some fields of science theory is pursued306

using a formal mathematical or computational framework30; whereas in other fields theory is an307

informal conceptual framework used for systematic, logical synthesis of the literature. In all of its308

various forms, theoretical effort has the effect of winnowing down the set of hypotheses that are309

likely to be correct, prior to empirical testing.310

The history of science provides many illustrative examples of the value of theoretical effort.311

Physics in particular has produced many striking cases, such as the development of quantum elec-312

trodynamics (QED). QED is a prototype for the role of formal, mathematical theory in refining313

hypotheses before further experimentation. Here purely mathematical developments were required314

to produce internally consistent predictions for, e.g., the magnetic moment of an electron – pre-315

dictions that were later verified to 11 significant digits by experiment31. But theory has been316

central to the development of many other fields beyond physics. In bio-medical science, Hodgkin317

and Huxley’s32 quantitative model for action potentials predicted the gating structure of ion chan-318

nels, later verified by MacKinnon33. More importantly, the theoretical framework of Hodgkin and319

Huxley structured a productive feedback loop between hypothesis selection and experimentation320

throughout the development of electrophysiology34. In the social sciences, the development of321

prospect theory35 has shaped our understanding of imperfect rationality in decision making under322

risk. First inspired by empirical observations that violated rational choice, prospect theory was323

developed into a broad conceptual framework that has advanced specific predictions for controlled324

experiments in behavioral economics, as well as explanations for field data36. These three paradig-325

matic examples illustrate the general conclusion of our analysis, on the productive role of theoretical326

effort across a diverse range of disciplines.327

328

Four recommendations to promote good science329
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The question remains what lessons can be drawn from our analysis to guide the evolution of scientific330

practice in fields where pessimism about replication failures and competitive publication practices331

dominate the conversation. Our analysis suggests four simple recommendations to promote the332

evolution of good science, which offer both optimism and caution for researchers concerned about333

the publication of false results.334

1. Put resources into developing a robust theoretical framework. A theoretical frame-335

work that enables labs to distinguish strong hypotheses from weak ones, even at a cost, is336

sufficient to preserve good science (Figure 2). Providing resources targeted at theoretical337

work, especially in fields where formal theory is lacking, should be a priority. Crucially, the338

impact of stronger hypotheses on the evolution of scientific practice is non-linear. Theory-339

driven hypothesis selection reaches a tipping point: before the tipping point only bad science340

is possible, after the tipping point good science can be sustained (Supplementary Figure 3).341

2. Replicate, but don’t rely on replication. Replication alone, absent theory, does not342

produce good science (Figure 3 and Supplementary Figure 11-12), but it can interact syn-343

ergistically with theory to stabilize good science across fields. However this may require344

substantial penalties when a study fails to replicate (Figure 4), and imposing such costs (100345

or 1000 times the benefit for successful novel publication) would distort incentives and may346

produce unintended consequences for lab behavior not well captured by our model.347

3. Better methods can make up for mediocre theory. There is a trade-off between the348

methodological efficacy, theoretical sophistication, and the rate of replication required to349

sustain good science (Supplementary Figure 3-5). A field that is more developed in one area350

can afford to be less developed in another (Figure 4), meaning better methods can make351

up for mediocre theory, to some extent23. Where theory reaches a dead end, focusing on352

developing better methods can still help a field reach the tipping point when good science353

becomes viable.354

4. Bad science is always a danger. Even when a good-science equilibrium is available,355

a bad-science equilibrium remains an option. Low-effort, attention-grabbing publication of356
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any and all hypotheses is a stable equilibrium in all fields (SI Section 1.2-1.3), and this357

outcome is increasingly likely when scientific culture, including journal policies, excessively358

rewards attention-grabbing or gratuitously novel findings (Supplementary Figure 6 and 12).359

All fields, no matter their theoretical and technical sophistication, are at risk of succumbing360

to bad science.361

Models of models362

In our model for the evolution of scientific practice, increased effort makes almost everything harder:363

research takes longer and a lab is more conservative when labelling a hypothesis as true, both of364

which reduce the overall rate of publication. The only direct benefit of effort lies in selecting365

stronger hypotheses. And yet this effect is often sufficient to induce a qualitative change in the366

equilibrium outcome – namely, to stabilize good science in the face of pressure to publish.367

Like all models, ours is a simplification and abstraction of what is, in reality, an incredibly com-368

plex process. The purpose of the model is to cut through the complexity whilst retaining the most369

salient forces at play when scientists make decisions about what to study and by what methodol-370

ogy and effort. The value of a mathematical or computational model over a verbal hypothesis is371

that it allows systematic exploration of how these fundamental forces play out, without relying on372

intuition alone.373

To be truly useful, a model should tell us something that we did not know before we built it.374

In the context of scientific practice, we have seen that theory must provide new information about375

what constitutes a strong versus a weak hypothesis, in order to promote good science. A theoretical376

model whose output simply recapitulates the assumptions that went into building it is tautological,377

and it does not grant us any additional ability to distinguish between strong and weak hypotheses;378

it is wasted effort that does not help promote good science.379

Our findings reinforce and justify calls made by several authors for more theoretical effort,380

particularly in the social sciences18,22,23. Our analysis makes no assumptions or prescriptions381

about what type of theory should be developed (e.g. statistical models, agent-based simulations,382

mathematical models etc.). Rather, we have considered any theoretical technique that improves383

hypothesis selection, and analyzed its influence on the cultural evolution of scientific practice.384
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The availability of theory that improves hypothesis selection will vary across fields, depending385

on the field’s age and topic matter. While physicists have used mathematical models for centuries,386

biologists actively debated their utility in the mid-twentieth century37,38 although that debate is387

now largely resolved39,40. Contemporary discussions of theory in other scientific fields are not388

dissimilar to the historical developments in physics and biology. What our analysis highlights,389

regardless of the discipline, is the tremendous potential for theoretical effort to alter the culture of390

scientific practice.391

We also offer some optimistic results for those who lament the pressure to publish as corroding392

good science41,42,43,44. Such concerns have a long history45 and an exponentially expanding scien-393

tific literature46 poses profound challenges for researchers, even if the rate of false-positive reports394

is low. Yet our results show that pressure to publish, and competition between labs in general,395

can stimulate effort and produce excellent science provided the theoretical and empirical tools in396

a field are sufficiently well developed. It is only when theoretical tools are not yet developed, or397

go unused, that pressure to publish creates perverse incentives that lead to the evolution of bad398

science.399

Methods400

We analyze a model for the natural selection of scientific publication strategy under the framework401

of adaptive dynamics28,29. Within this framework we follow the basic assumptions of Smaldino402

et al.18: a lab’s success is measured in terms of the number of publications and (un)successful403

replications of their work by other labs. We assume that labs “reproduce” by adopting the research404

strategies of other labs, chosen based on their past success. Under this framework we assume an405

infinite population of labs, each using the same resident publication strategy, and we perform an406

invasion analysis to determine which resident strategies are stable in the face of local “mutations”407

that perturb the resident research strategy. While the assumptions of adaptive dynamics are unre-408

alistic in several important ways, they nonetheless allow us to systematically explore the qualitative409

behavior of the system, and our key finding from the analysis – that competition to publish can410

produce good science when accounting for the role of theory in selecting hypotheses – holds when411
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relaxation these simplifying assumptions in individual-based simulations.412

413

Lab life cycle414

We consider a population of labs whose life cycle proceeds via a phase of publication followed by a415

phase of selection and reproduction, in which the current population is replaced with a population416

of new labs. This simplifying assumption allows us to assume that all labs are the same age during417

the selection phase, ignoring effects that arise due to older labs appearing more successful due to418

having had more time to publish. We relax this assumption in our simulations and show that it419

does not qualitatively alter our results.420

As described in the Results section, a lab i produces novel results at a rate421

ρi = (1− η log10(ei))× (1− ri)× (Pi(T )Pi(+|T ) + Pi(F )Pi(+|F )). (7)

422

The probability that the hypothesis being tested is true is given by423

Pi(T ) =
b0 + b1(ei − 1)

ei
, (8)

424

and Pi(F ) = 1− Pi(T ). Eq. 8 can be understood as a generalization of the “grab bag” model18 in425

which a selected hypothesis is true with probability b0. Eq. 8 describes a scenario in which there426

are two “types” of hypotheses. The weaker hypotheses are true with probability b0 and make up a427

proportion 1/e of all hypotheses; whereas the stronger hypotheses are true with probability b1 > b0428

and make up the remaining (1 − 1/e) of all hypotheses. Thus by expending greater effort e a lab429

can alter the space of hypotheses to which they have access. Once a hypothesis is selected, it is430

tested and the chance of a positive finding is described by the following equations:431
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Pi(+|T ) =
Vi
γ
× γei

1 + γ(ei − 1)

Pi(+|F ) =
Vi
θ
× 1 + (θ − 1)ei

1 + (θ − V )(ei − 1)
. (9)

432

The behavior of Eq. 9 as a function of effort is shown in Supplementary Figure 1.433

Labs produce replication studies at rate434

φi = (1− η log10(ei))× ri (10)

where (1 − η log10(ei)) describes the time it takes to complete a study. A lab carrying out a435

replication study of an original report produced by another lab i, successfully reproduces the436

original finding with probability437

pij =
Pi(T )Pi(+|T )Pj(+|T ) + Pi(F )Pi(+|F )Pj(+|F )

Pi(T )Pi(+|T ) + Pi(F )Pi(+|F )
, (11)

while they produce a different finding to lab i with probability438

qij =
Pi(T )Pi(+|T )(1− Pj(+|T )) + Pi(F )Pi(+|F )(1− Pj(+|F ))

Pi(T )Pi(+|T ) + Pi(F )Pi(+|F )
. (12)

From Eqs. 11-12 we define pi = 1
N−1

∑
j 6=i pij and qi = 1

N−1
∑

j 6=i qij , the probability of successful439

and unsuccessful replication attempts for lab i by the rest of the population.440

To model the production of publications during a lab’s life we use a system of ordinary differ-441

ential equations, where xin(t) denotes the number of novel results that have been produced at time442

t by lab i and xir(t) the number or replication studies published by lab i. We also define zi(t) as443

the number of novel studies produced by lab i that have been replicated by other labs at time t.444

Under these assumptions the dynamics of publication are as follows445
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dxin
dt

= ρi

dxir
dt

= φi

dzi

dt
=

∑
j 6=i

xin − zi

L
φj (13)

446

where L is the size of the corpus of published materials available for replication, which is assumed for447

simplicity to be fixed. Following the standard assumptions of adaptive dynamics28,29, we consider448

the fitness of a lab i in a monomorphic population such that φj = φ. If we set the number of449

publications at time t = 0 to zero, the distribution of publications for a lab i at time t is given by450

xin(t) = ρit

xir(t) = φit

zi(t) = (N − 1)

(
e−φt/L − 1 +

φ

L
t

)
Lρi
φ

(14)

We assume that the lifespan of each lab is one time unit, such that the integral must be evaluated451

at t = 1. This corresponds to a scenario in which there are many more publications in the corpus of452

literature for a field than can be replicated in the lifetime of a lab, i.e. L� 1. By Taylor expansion453

of zi(t) in terms of L−1 and neglecting terms O
(
L−2

)
and higher we recover454

xin = ρi

xir = φi

zi = (N − 1)
1

2

φρi
L

+O
(
L−2

)
. (15)

455

19



Taking the limit N →∞, L→∞ and L/N → l we recover456

xin = ρi

xir = φi

zi =
1

2

φρi
l

(16)

which gives us the expression for fitness used in the Results section (Eq. 5). Further details of the457

invasion analysis for this model are given in the SI.458

459

Individual-based Simulations460

In addition to mathematical analysis by adaptive dynamics, we also perform Monte Carlo simu-461

lations in polymorphic, finite populations of size N , where lab strategies replicate according to a462

copying process27. We assume that science is produced according to Eqs. 7-10 and that replication463

can occur once for any study present in the corpus, which has absolute size L. Labs are assumed to464

become inactive when they adopt a new strategy, which may be thought of as retirement of a senior465

professor and replacement by a new hire. When a new lab is formed we assume that mutations466

perturb effort e, efficacy V , and replication rate r. Mutational perturbations are drawn uniformly467

from [−0.01, 0.01], and mutations occur at rate µe, µV and µr respectively (see SI for full details).468

In the limit γ = θ = 1, where our model coincides with Smaldino et al.18, simulations reproduce469

the finding18 that bad science evolves in the absence of theory (Supplementary Figure 5).470

Data availability471

All scripts data to reproduce the results are available at 10.5281/zenodo.4616768472

Code availability473

All scripts necessary to reproduce the results are available at 10.5281/zenodo.4616768474
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Figure 1: How can a lab do better science? a) Science can be made better in two basic ways: 1) A lab
can expend more effort, which means (all other things equal) that the lab selects a hypothesis with a higher
prior probability of being correct and that, at the same time, the lab is more conservative about testing the
hypothesis. Increased effort is associated with theoretical work to select hypotheses that have greater prior
likelihood of being correct, as well as more conservative procedures for testing these hypotheses. 2) A lab
can develop more effective methods, which means (all other things equal) that the rate of positive results
increases. Increased efficacy is associated with greater measurement precision, larger sample sizes, or simply
more funding, for example. b) Our model includes eight parameters that describe the technical state of a
field and the costs and benefits associated with publication and replication. The technical limits 1/θ and
1/γ describe the false and true positive rates that are achieved by a lab using methods of maximum available
efficacy, V = 1, and maximum effort e→∞.

26



0.0

1.0

0.2

0.4

0.6

0.8

a

0 1 2 3 5
Time

4
x104

0.0

1.0

0.2

0.4

0.6

0.8

b

0 1 2 3 5
Time

4
x104

0.0

1.0

0.2

0.4

0.6

0.8

c

0 1 2 3 54
x104Time

only weak hypotheses only strong hypotheses hypothesis choice

0.0

1.0

0.2

0.4

0.6

0.8

a

0 1 2 3 5
Time

4
x104

bno replication

0.0

1.0

0.2

0.4

0.6

0.8

0 1 2 3 5
Time

4
x104

replication

0.0

1.0

0.2

0.4

0.6

0.8

a

0 1 2 3 5
Time

4
x104

bno  hypothesis choice

0.0

1.0

0.2

0.4

0.6

0.8

0 1 2 3 5
Time

4
x104

hypothesis choice

effort

false positive rate

efficacy
true positive rate

Figure 2: The evolution of good science: We ran individual-based simulations in which N = 100 labs
compete to publish positive results, in the absence of replication. In each panel we plot the trajectories of
efficacy V (dashed blue line), true positive rate P (+|T ) (solid blue line), false-positive rate P (+|F ) (red
line), and effort, re-scaled as (e−1)/e so that values lie [0, 1] (green line). a) When only weak hypotheses are
available (b0 = b1 = 0.01) efficacy increases over time, but effort declines, so that the population evolves to
a bad-science equilibrium in which the true and false positive rates both evolve to 1 – that is, all hypotheses
are labelled as true. b) The same is true when only strong hypotheses are available (b0 = b1 = 0.25). c)
When effort can be put into choosing between weak and strong hypotheses (b0 = 0.01 and b1 = 0.25) a
stable, good-science equilibrium emerges, and effort and efficacy both increase, leaving the false positive rate
close to the technical minimum P (+|F ) ∼ 1/θ. The figures show the mean trajectories over an ensemble
of 103 replicate simulations. The rate of publication for each lab was determined by Eqs. 1-3; mutations
occurred to effort e and efficacy V at rate µe = µV = 0.01. Mutational perturbations to efficacy were drawn
uniformly from the range [−0.01, 0.01], and effort was assumed to change by ±1 upon mutation. Cultural
evolution occurred via a copying process (see SI), payoffs were set at BN = 1, with γ = 1.1 and θ = 25, with
no replication (r = 0)

.
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Figure 3: Synergy between replication and theory. The figure shows results of individual-based
simulations for the evolution of scientific practice with and without replication. In the regime 1/θ = 0.04,
shown here, theory and replication are both required to produce good science, as predicted by mathematical
analysis by adaptive dynamics (Figure 3a). (a) In the absence of replication, both true (blue) and false
(red) positive rates increase to unity, and effort declines to a minimum (e − 1)/e = 0, i.e. e = 1 (green).
b) However, when replication occurs at a rate r = 0.1, effort increases over time towards a good-science
equilibrium in which false positives are rare. All parameters are the same as in Figure 2c, except for θ.
Replications are chosen from a corpus of L = 105 novel studies, and each study is allowed to be replicated
only once (see SI). Payoffs are BN = 1, Br = 0.2, BO+ = 0.1 and CO− = 100.
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Figure 4: Viability of good science across fields. The figure shows the proportion of parameter sets
which support a stable good-science equilibrium, as a function of the replication rate r (a and b) and level
of technical advancement, θ (c and d), for different costs and benefits of publication. In all cases studied,
we see that introducing replication r > 0 initially increases the viability of good science. But this only
occurs up to a point: when replication rates are very high, and replication studies are beneficial, there is
comparatively less reward for effort spent at hypothesis selection and novel research. On the other hand, we
see that increasing the technical advancement of a field θ > 1 always increases the viability of good science.
(a and c) Larger benefits for replication Br tend to reduce the viability of good science. This is because
the benefit for performing a replication study is awarded independent of effort, which reduces the relative
benefit of effort spent at hypothesis selection. (b and d) Increased costs to a lab of failure to have their study
replicated CO− increase the viability of good science. This is because false discoveries, although initially
beneficial when published, become extremely costly if they are later flagged in a replication study. For each
curve, we drew 107 parameter sets for every value of r at increments of 0.01 between 0 and 1. We chose
parameters from the following ranges: b0 ∈ [0, 1], b1 ∈ [b0, 1], θ ∈ [2,∞), γ ∈ [1, 2], B0

N ∈ [1, 2], r ∈ [0, 1].
Unless otherwise indicated we fixed B1

N = 1, Br = 0.2, BO+ = 0.1, CO+ = 100, η = 0.2 and l = 10. The
effects of varying l, BO+ and η are shown in Figure S7-S8 and are qualitatively similar to panel b).
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In this supplement we provide derivations for the equations in the main text, along with additional
analysis and simulation results to demonstrate the robustness of our findings to relaxation of model
assumptions. Note that equation numbers continue from the main text.

1 Adaptive dynamics model of publication

We consider a population of labs whose life cycle proceeds via a phase of publication followed by a
phase of selection and reproduction, in which the current population is replaced with a population
of new labs as described in the Methods section.

1.1 Re-scaled effort

Throughout we use “re-scaled effort” in our figures, where the re-scaled effort is simply e∗ =
(e − 1)/e. Plotting e∗ allows us to visulaize effort on the interval [0, 1] rather than [1,∞). A
comparison of the True and False positive rates (Eq. 9) as a function of effort e and re-scaled effort
e∗ is shown in Supplementary Figure 1 below.

a b

Supplementary Figure 1: Effort and rate of positive findings. Shown are the true (blue) and false
(red) positive rates under the default parameters used in simulations, with efficacy at it’s equilibrium level,
V = 1. a) Effort e of the scale [1,∞), both true and false positive rates approach their technical limit, 1/γ
and 1/θ for e ≈ 10. b) When effort is re-scaled to lie in [0, 1] we see that these technical limits correspond
to a high degree of effort

1.2 Invasion analysis

We now perform an invasion analysis for the model described in the Methods section of the main
text.

Taking Eq. 16 as the publication distribution at the end of the publication cycle, we can then
describe the fitness of a lab i against a monomorphic background of competing labs, following
publication as

w(ei, Vi, ri) = ρiBN + φiBr +
1

2

ρiφ

l
(piBO+ − qiCO−) (17)
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which we can write as

w(ei, Vi, ri) =

(1− η log10(ei))× (1− ri)

[
Pi(T )Pi(+|T )

(
BN +

φ

2l
BO+P (+|T )− φ

2l
CO−(1− P (+|T ))

)
+

Pi(F )Pi(+|F )

(
BN +

φ

2l
BO+P (+|F )− φ

2l
CO−(1− P (+|F ))

)]
+ (1− η log10(ei))× riBr

(18)

We can now compute the selection gradient for the system. From Eq. 9 we immediately see that
fitness is monotonically increasing in Vi thus we need only evaluate the gradient at w(ei, 1, ri). This
gives us

se =
∂w

∂ei

∣∣∣∣∣
ei=e,ri=r

= − η
e log[10]

[
(1− r)P (T )P (+|T )α+ (1− r)P (F )P (+|F )β + rBr

]
+

(1− η log10(e))× (1− r)

[
d(Pi(T )Pi(+|T ))

dei
α+ d(Pi(F )Pi(+|F ))

dei
β

]

sr =
∂w

∂ri

∣∣∣∣∣
ei=e,ri=r

= −(1− η log10(e))

[
P (T )P (+|T )α+ P (F )P (+|F )β

]
+ (1− η log10(e))Br

(19)

where

α =

(
BN +

φ

2l
BO+P (+|T )− φ

2l
CO−(1− P (+|T ))

)
β =

(
BN +

φ

2l
BO+P (+|F )− φ

2l
CO−(1− P (+|F ))

)
(20)

with

d(Pi(T )Pi(+|T ))

dei
=

b1 − γb0
(1 + γ(ei − 1))2

(21)

and
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d(Pi(F )Pi(+|F ))

dei
= − 1

1 + (θ − 1)(ei − 1)

1

θei
×[

(1 + (θ − 1)ei)
(b1 − b0)

ei
+ (ei(1− b1) + (b1 − b0))

(
θ − 1

1 + (θ − 1)(ei − 1)

)]
.

(22)

From Eqs. 13-17 we can calculate the points at which the selection gradient vanishes, (ê, r̂), which
satisfy:

η

ê log[10]

[(
b0 + b1(ê− 1)

ê

)(
ê

1 + γ(ê− 1)

)
α+

(
1− b0 + b1(ê− 1)

ê

)(
1 + (θ − 1)ê

θ(1 + (θ − V )(ê− 1))

)
β +

r̂

1− r̂
Br

]
=

(1− η log10(ê))×

[(
b1 − γb0

(1 + γ(ê− 1))2

)
α− 1

1 + (θ − 1)(ê− 1)

1

θê
×

[
(1 + (θ − 1)ê)

(b1 − b0)

ê
+ (ê(1− b1) + (b1 − b0))

(
θ − 1

1 + (θ − 1)(ê− 1)

)]
β

]
(23)

where

r̂ =
Br−BN (P̂ (T )P̂ (+|T )−P̂ (F )P̂ (+|F ))

(BO+P̂ (+|T )−CO−(1−P̂ (+|T )))P̂ (T )P̂ (+|T )+(BO+P̂ (+|F )−CO−(1−P̂ (+|F )))P̂ (F )P̂ (+|F )
× 2l

(1−η log10(ê)) .

(24)

Eqs. 23-24 cannot be solved analytically in general and in particular Eq. 23 can produce multiple
solutions in the physically relevant range. However we observe that the condition for any equilibrium
to be convergent stable under all mutation matrices is that the 2 × 2 Jacobian matrix J for the
system must have negative eigenvalues or, equivalently, be negative definite (Leimar, 2009) which
in turn implies that (J)rr = ∂sr

∂r < 0 must hold. This condition is satisfied only if

P (T )P (+|T )(BO+P (+|T )− CO−(1− P (+|T ))) +

P (F )P (+|F )(BO+P (+|F )− CO−(1− P (+|F ))) > 0. (25)

If we assume CO− � BO+, i.e. the penalties for publishing false results are very large, then Eq. 25 is
only satisfied in the limit P (+|T )→ 1 and P (+|F )→ 1 which is the bad-science equilibrium. Thus

4



under our model assumptions there are no points of zero selection gradient that are convergent
stable except close to the bad-science equilibrium. This is consistent with our numerical analysis of
the system (Supplementary Figure 2), under which we find only unstable singular points. However
this result does not exclude the possibility that stable equilibria can arise at the boundaries of
phase space.

1.3 Boundary behavior

Stable equilibria can arise at the boundary if the selection gradient perpendicular to the boundary
points towards it, and the selection gradient parallel to the boundary is zero. We now explore the
behavior of the system at the boundaries r = 0, r = 1, (e− 1)/e = 0 and (e− 1)/e→ 1 beginning
with tje resident bad-science equilibrium of Smaldino and McElreath (2016) which corresponds to
(e− 1)/e = r = 0.

Bad science (e = 1, r = 0): The bad-science equilibrium of Smaldino and McElreath (2016)
arises at (e = 1, r = 0). From Eqs. 19-20 the selection gradient at this point is

se(1, 0) = − η

e log[10]
BN − (1− η log10(e))×

[
b0(γ − 1) + (1− b0)(θ − 1)2/θ

]
BN

sr(1, 0) = −(1− η log10(e))(BN −Br)
(26)

which is always negative, indicating that the bad-science equilibrium is always a stable state of
the system provided the benefit of publishing a novel result is greater than that for publishing a
replication, BN ≥ Br.

Maximum replication (r = 1): When replication rate is at its maximum, r = 1, the selec-
tion gradient parallel to the boundary, calculated from Eq. 19, is given by

se(e, 1) = − η

e log[10]
Br (27)

which is always negative. Thus we need only evaluate the selection gradient perpendicular to the
boundary at (r = 1, e = 1) which, from Eq. 19 gives

sr(1, 1) = −

[
BN +BO+/l −Br

]

which, under our assumption BN ≥ Br, is always negative. Thus there is no stable equilibrium
with maximum replication.

Minimum replication (r = 0): Finally we consider the behavior of the system when replica-
tion rate is minimized, r = 0. For Eqs. 19-20 we find selection gradient
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se(e, 0) = − η
e log[10]

[
(P (T )P (+|T ) + P (F )P (+|F )

]
BN +

(1− η log10(e))×

[
d(Pi(T )Pi(+|T ))

dei
+ d(Pi(F )Pi(+|F ))

dei

]
BN

sr(e, 0) = −(1− η log10(e))

[
(P (T )P (+|T ) + P (F )P (+|F ))BN −Br

]
(28)

at the boundary, where Eq. 30 must be treated numerically as above. Eq. 30 is negative provided
(P (T )P (+|T )+P (F )P (+|F ))BN > Br. The term (P (T )P (+|T )+P (F )P (+|F )) is non-monotonic
in e and thus, depending on the solution to Eq. 30 and the choice of Br the boundary may be
either stable or unstable. Crucially this means that the addition of replication to the evolutionary
dynamics of the system may cause a stable, high-effort equilibrium to become unstable.

The resulting evolutionary trajectories of the system across a range of parameter are shown
in Supplementary Figure 2 and the basin of attraction for the good- and bad-science equilibria in
both the presence and absence of enforced replication are shown for different model parameters in
Supplementary Figure 3-S5. Note that for each parameter varied in Supplementary Figure 3-S5
there is a “tipping point” at which good science becomes stable. Nonetheless the system remains
bi-stable, with good and bad science equilibria coexisting. Thus two things are required for good
science to emerge where it is absent: 1) The tipping point must be reached and 2) a perturbation
must occur to push the system from the bad science to the good-science equilibrium.
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Supplementary Figure 2: Co-evolution of e and r Phase portraits in the regime of adaptive dynamics
for a) high benefits for replication, Br = 0.2 and a small corpus of literature l = 5 b) high benefits for
replication, Br = 0.2 and a large corpus of literature l = 50 c) no benefit for replication, Br = 0.0 and
a small corpus of literature l = 5 b) no benefit for replication, Br = 0.0 and a large corpus of literature
l = 50. All other parameters are chosen as in Figure 3. The good-science equilibrium consisting of high
effort and zero replication rates, always exists alongside the bad-science equilibrium at minimum effort and
zero replication rate. We see that high levels of replication can undermine good science and pull the system
back to the bad-science equilibrium . Both equilibria are marked with red dots. In all cases we assume that
the costs for failed replication is high, CO− = 100
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Supplementary Figure 3: Analysis of equillibria by adaptive dynamics. The figure shows equilib-
rium publication strategies in a large population of labs, as a function of model parameters. Plotted in each
panel are the locations of the stable (blue) and unstable (red) equilibria as a function of either the technical
minimum false positive rate 1/θ (left column) or the maximum achievable hypothesis strength b1 (right col-
umn). For many parameter choices the system is bi-stable, with a good-science equilibrium indicated by the
blue line and a bad-science equilibrium at minimum effort (e− 1)/e = 0. In the gray regions selection favors
increasing effort towards the good-science equilibrium; whereas in the white regions selection favors ever
decreasing effort towards to bad-science equilibrium. a) For b0 = 0.01 and b1 = 0.25 and without replication
(r = 0), stable good science requires a technical minimum true positive rate no greater than 1/θ = 0.08.
b) With better theory, meaning the possibility of stronger hypotheses b1 = 0.5, good science is stable with
even lower methodological efficacy (e.g. 1/θ > 0.1). c) Adding replication at a low rate (r = 0.01) enables
good science to be maintained for even larger values of 1/θ. Similar patterns occur when we fix 1/θ and
vary b1 (right column): increasing methodological efficacy allows good science to emerge even with weaker
hypotheses (panels d-e), and replication decreases the need for strong theory even further (panel f). Payoffs
are set at BN = 1, Br = 0.2, BO+ = 0.1 and CO− = 100 and l = 5.
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Supplementary Figure 4: Analysis of equillibria by adaptive dynamics. The figure shows equilib-
rium publication strategies in a large population of labs, as a function of model parameters. Plotted in each
panel are the locations of the stable (blue) and unstable (red) equilibria as a function of all five parameters
of the system without replication. For many parameter choices the system is bi-stable, with a good-science
equilibrium indicated by the blue line and a bad-science equilibrium at minimum effort (e − 1)/e = 0. In
the gray regions selection favors increasing effort towards the good-science equilibrium; whereas in the white
regions selection favors ever decreasing effort towards to bad-science equilibrium. a) Impact of the technical
limit true-positive rate 1/γ of the basin of attraction for good science. b) Impact of hypothesis strength b0.
c) Impact of the production cost of science η. Payoffs are set at BN = 1, and l = 1. All other parameters
are as in Supplementary Figure 3 unless otherwise specified in the panel.
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1.4 Tipping points and changing technical limits

An important feature of our analysis is that a good-science equilibrium does not emerge gradually
from a bad-science one, as conditions improve. Rather there is a “tipping point” at which the system
becomes bi-stable, with a good- and bad-science equilibria coexisting under certain parameter
regimes. For example, in Supplementary Figure 3 we may consider the x-axis as describing the
overall level of methodological development of a field. As the minimum rate of false positives,
1/θ, declines, or the strength of theory-driven hypotheses, b1, increases, a tipping point is reached
beyond which a good-science equilibrium (blue line) exists. For the parameters in Supplementary
Figure 3a, for example, this tipping point occurs when 1/θ ≈ 0.08. This illustrates how changes in
the technical limits or theoretical development of a field over time can lead to sudden improvement
and the emergence of good science.

1.5 Replication as a policy

So far we have studied replication as an evolving trait, which labs can choose to engage in as a
way to improve their success through publication. However replication of published research can,
in principle at least, be implemented as policy, in which a proportion r of all published studies are
replicated by an outside agency. To study replication as policy it is sufficient to set Br = 0 and
ri = 0 in Eq. 18. We then retrieve selection gradient

se =
∂w

∂ei

∣∣∣∣∣
ei=e

= − η
e log[10]

[
P (T )P (+|T )α+ P (F )P (+|F )β

]
+

(1− η log10(e))×

[
d(Pi(T )Pi(+|T ))

dei
α+ d(Pi(F )Pi(+|F ))

dei
β

]
(29)

where α and β given by Eq. 21 account for the amount of enforced replication under the policy.
As in previous examples, Eq. 29 must be solved numerically. Supplementary Figure 5 shows the
basin of attraction for good and bad science as a function of replication rate r and literature size
l. Supplementary Figure 3c and 3f shows the effect of introducing replication on the basin of
attraction as a function of θ and b1. We see that more stringent replication (arising from either
higher rates of enforced replication, or a lower ratio of literature to labs) results in a larger basin
of attraction for good science.

1.6 Attention-grabbing hypotheses

Up until this point we have assumed that strong hypotheses, which are true with probability b1
produce the same benefits on publication as weak hypotheses, which are true with probability
b0 < b1. However we may also consider a scenario in which publication of different types of
hypotheses produce different benefits, B1

N and B0
N .

In particular, the case where B0
N > B1

N describes a scenario in which weak hypotheses are
also attention-grabbing, due to their novelty and surprise relative to prior work. Scientific culture
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Supplementary Figure 5: Replication as a policy under adaptive dynamics. The figure shows
equilibrium publication strategies in a large population of labs, as a function of model parameters. Plotted
in each panel are the locations of the stable (blue) and unstable (red) equilibria as a function of either the
replication rate r or the size of the corpus of literature relative to the number of active labs, l. For many
parameter choices the system is bi-stable, with a good-science equilibrium indicated by the blue line and a
bad-science equilibrium at minimum effort (e−1)/e = 0. In the gray regions selection favors increasing effort
towards the good-science equilibrium; whereas in the white regions selection favors ever decreasing effort
towards to bad-science equilibrium. a) Increasing the replication rate r increases the basin of attraction for
good science, for a corpus of relative size l = 10. Here a 20% replication rate is sufficient to produce a large
basin of attraction for the good-science equilibrium. b) Impact of corpus size l on the basin of attraction for
good science for a fixed replication rate r = 0.1. Here a larger corpus of l > 10 acts to minimize the size of
the basin of attraction for good science. All other parameters are as in Supplementary Figure 3.

that provides greater rewards to publishing attention-grabbing hypotheses may undermine a good-
science equilibrium. To assess the impact of attention-grabbing hypotheses on good science we
looked at how the basin of attraction for good science changes as B0

N increases (Supplementary
Figure 6). We see that when B0

N/B
1
N < 2 good science is still sustainable.

1.7 Good science viability

In the analysis and figures above we have explored how the basin of attraction of a good-science
equilibrium changes as individual parameters are varied. We would also like to estimate the overall
viability of good science in the full 9-dimensional parameter space of the model. In order to achieve
this we performed a systematic numerical exploration of parameter space, randomly selecting 107

parameter sets for a given replication rate r, corpus size l and research time η, each of which
was then varied systematically (Figure 4 and Figures S7-S9). For each set of 107 parameters we
estimated the likelihood that good science was viable by calculating the proportion of parameter
sets that could sustain a stable good-science equilibrium.

1.8 Time to produce good science

Following Smaldino and McElreath (2016) we typically assume that the time to produce a study is a
convex function of the effort, e put into science, of the form (1−η log10(e)). To assess the impact of
this assumption on our results we also consider a concave function of the form η log10(101/η +1−e)
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Supplementary Figure 6: Equillibria under adaptive dynamics with attention-grabbing hy-
potheses. The figure shows equilibrium publication strategies in a large population of labs, as a function of
model parameters. Plotted in each panel are the locations of the stable (blue) and unstable (red) equilibria
as a function of all five parameters of the system without replication. For many parameter choices the sys-
tem is bi-stable, with a good-science equilibrium indicated by the blue line and a bad-science equilibrium at
minimum effort (e− 1)/e = 0. In the gray regions selection favors increasing effort towards the good-science
equilibrium; whereas in the white regions selection favors ever decreasing effort towards to bad-science equi-
librium. When B0

N/B
1
N < 2 a good-science equilibrium remains viable for replication rate r = 0.15. All

other parameters are as in Supplementary Figure 3 unless otherwise specified in the panel.

and a linear function of the form 1 − 10−1/η(e − 1) (Supplementary Figure 8c). As expected the
convex function is the most conservative choice, in the sense that it produces a lower level of good
science viability than either the linear or concave functions; but results are qualitatively similar for
all these formulations of time as a function of effort.

1.9 Unequal distribution of effort

We have assumed that effort e impacts both hypothesis selection and hypothesis testing equally.
However in reality, a lab may emphasize one or the other of these two aspects of the scientific
process, and split effort unequally between them. To address this we introduce a parameter f
which describes the distribution of effort between hypothesis selection and hypothesis testing. In
particular, if the total level of effort expended by a lab is e, the effort spend on hypothesis selection
is fe while the effort spent on hypothesis testing is (1 − f)e. Note that when f = 0 we recover
the model of Smaldino and McElreath (2016) in which good science cannot be sustained. We see
that when f = 0.33 - i.e. when twice as much effort is put into testing than is put into selection,
and when f = 0.67, i.e. when twice as much effort is put into hypothesis selection, good science
remains highly viable.
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Supplementary Figure 7: Viability of good science across fields. The figure shows the proportion of
parameter sets which support a stable good-science equilibrium, as a function of the replication rate r (a and
b) and level of technical advancement, θ (c and d), for different costs and benefits of publication. In all cases
studied, we see that introducing replication r > 0 initially increases the viability of good science. But this
only occurs up to a point: when replication rates are very high, and replication studies are beneficial, there is
comparatively less reward for effort spent at hypothesis selection a novel research. On the other hand, we see
that increasing the technical advancement of a field θ > 1 always increases the viability of good science. (a
and c) Larger relative corpus sizes l tend to reduce the viability of good science. This is because the benefit
for performing a replication study is awarded independent of effort, which reduces the marginal benefit of
effort spend at hypothesis selection. (b and d) Increased benefits to a lab following successful replication of
the study BO+ can increase or decrease the viability of good science depending on the replication rate. For
each curve, we drew 107 parameter sets for every value of r at increments of 0.01 between 0 and 1. We chose
parameters from the following ranges: b0 ∈ [0, 1], b1 ∈ [b0, 1], θ ∈ [2,∞), γ ∈ [1, 2], B0

N ∈ [1, 2], r ∈ [0, 1].
Unless otherwise indicated we fixed B1

N = 1, Br = 0.2, BO+ = 0.1, CO+ = 100, η = 0.2 and l = 10.

1.10 Good science basin of attraction

The results above show the viability of good science across a wide range of parameters. However
the basin of attraction of good science when it exists also varies as we vary the replication rate.
Supplementary Figure 10 shows the distribution of sizes for the basin of attraction of good science,
as well as the true and false positive rates, as replication rate r is varied. We see that increasing
the replication rate does not impact the rate of true and false positive but does make the size of the
basin of attraction of good science bigger. This is consistent with our observation that replication
is synergistic with theory, not a replacement for it.
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Supplementary Figure 8: Viability of good science across fields. The figure shows the proportion
of parameter sets which support a stable good-science equilibrium, as a function of the replication rate r (a)
and level of technical advancement, θ (b), for different choices of functional form for the time to produce a
study (convex, concave or linear as described in the text). (a-b) A convex function is always conservative
(produces a lower viability of good science) than concave of linear unctions. c) Rate of finding results as a
function of effort for all three functions. For each curve, we drew 107 parameter sets for every value of r at
increments of 0.01 between 0 and 1. We chose parameters from the following ranges: b0 ∈ [0, 1], b1 ∈ [b0, 1],
θ ∈ [2,∞), γ ∈ [1, 2], B0

N ∈ [1, 2], r ∈ [0, 1]. Unless otherwise indicated we fixed B1
N = 1, Br = 0.2,

BO+ = 0.1, CO+ = 100, η = 0.2 and l = 10.

a b

Supplementary Figure 9: Viability of good science across fields. The figure shows the proportion
of parameter sets which support a stable good-science equilibrium, as a function of the replication rate r (a)
and level of technical advancement, θ (b), for different distributions of effort between hypothesis selection
and testing, f . (a) Depending on the rate of replication, putting more effort into selection or testing may
improve the viability of good science. c) As we vary the level of technical advancement, putting more effort
into theory is typically better for sustaining viable good science. For each curve, we drew 107 parameter
sets for every value of r at increments of 0.01 between 0 and 1. We chose parameters from the following
ranges: b0 ∈ [0, 1], b1 ∈ [b0, 1], θ ∈ [2,∞), γ ∈ [1, 2], B0

N ∈ [1, 2], r ∈ [0, 1]. Unless otherwise indicated we
fixed B1

N = 1, Br = 0.2, BO+ = 0.1, CO+ = 100, η = 0.2 and l = 10.
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Supplementary Figure 10: Basin of attraction of good science across fields. The figure shows the
distribution of sizes for the basin of attraction of good science (left) and the distribution of true and false
positive rates (right), conditional on good science being viable, for 107 randomly drawn parameter sets. (a-b)
When replication rate is 0, false positive rates are low but there is wide variation in the basin of attraction
of good science. (c-d) A 25% replication rate does not noticeably impact the true and false positive rate,
but the size of the basin of attraction increases. (e-f) Increasing the replication rate further to 50% further
grows the basin of attraction of good science. For each plot, we drew 107 parameter sets for every value of r
indicated, and calculated basin of attraction as the maximum and minimum levels of effort such that, when
initialized at that value, the system would evolve towards the good-science equilibrium under our adaptive
dynamics analysis. We chose parameters from the following ranges: b0 ∈ [0, 1], b1 ∈ [b0, 1], θ ∈ [2,∞),
γ ∈ [1, 2], B0

N ∈ [1, 2], r ∈ [0, 1]. Unless otherwise indicated we fixed B1
N = 1, Br = 0.2, BO+ = 0.1,

CO+ = 100, η = 0.2 and l = 10.
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2 Individual-based simulations

We ran individual-based simulations, relaxing the assumptions of the adaptive dynamics model
described above to account for (i) variation in lab age and (ii) heterogeneity in lab publication
strategy (iii) a finite population of active labs. We treated effort e, efficacy V and replication
rate r as heritable, evolving traits. We ran ensembles of 103 replicate simulations to produce each
simulation figure and plotted the average trajectories over time. Further details of the simulation
setup are provided below.

2.1 Lab aging

Under the assumptions of adaptive dynamics the population of labs is infinite and the lab life cycle
ensures that all labs are the same age when natural selection occurs. These simplifying assumptions
are made for mathematical convenience but do not describe a particularly realistic case: in any
given field there is a wide range of labs of different ages, and the older a lab is, the more it has
published. This has consequences for the rate at which the lab experiences replication attempts
(as they have contributed more novel results to the corpus of results in their field) which in turn
has consequences for their fitness.

We assume that labs “die” when they copy another lab’s strategy (see below). Furthermore we
assume that the fitness of a lab is determined by the average payoff received due to novel publication
and replication over the lab lifetime.

2.2 Natural selection and the copying process

We assume that lab birth and death occurs via the copying process Traulsen et al. (2006) used to
study a process of cultural evolution via imitation. Under this model, we assume that a pair of
labs i and j are chosen at random, such that lab i chooses to adopt the strategy of lab j with a
probability πij where

πij =
1

1 + eσ(w̄i−w̄j)
(30)

where w̄i is the average payoff to lab j during its lifetime. This birth-death process can be thought
of as a fixed population of labs who update their strategies, described by their methodological
efficacy V , effort e and replication rate r, when they see another lab doing better. This may be
thought of as occurring whenever an old lab is disbanded and replaced with a new lab in a university
or research institute. Alternatively it may be understood as occurring among a fixed population of
competing labs trying to gain an edge over one another.

2.3 Replication

Populations of competing labs are assumed to contribute to a corpus of literature of size L. When
choosing a study to replicate a lab chooses a study at random from the corpus. They attempt to
reproduce the study using the same level of methodological efficacy V and effort e as for testing a
novel hypothesis. After an attempt at reproduction the study is moved from the corpus of literature
available for replication.
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As a result, a lab that has produced n papers with novel results has a study reproduced with
probability n/L when another lab decides to undertake a replication study. If the outcome of the
replicating labs study is positive, the replication is successful otherwise it is not. The corpus of
literature is always assumed to contain L novel papers available for replication - if all the papers
by currently active labs have been replicated we assume that the labs can still reproduce older
literature. Thus labs can in principle engage in replication at the maximum rate r = 1, although
this pathological case is not observed in simulations or under the adaptive dynamics model, except
transiently (Supplementary Figure 2).

2.4 Co-evolution of effort and replication

We explored the co-evolutionary dynamics of replication and effort via individual-based simulations
(Supplementary Figure 11). In the absence of hypothesis choice only very low levels of replication
emerged and, as in Figure 2 and Figure 4 of the main text, effort evolved to the bad-science mini-
mum. In contrast, when hypothesis choice was allowed the good-science equilibrium was maintained
and replication evolved steadily to around r = 0.1 (Supplementary Figure 11b).
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Supplementary Figure 11: Co-evolution of replication and effort. The figure shows results of
individual-based simulations for the co-evolution replication and effort. (a) In the absence of hypothesis
choice, both true (blue) and false (red) positive rates increase to unity, and effort declines to a minimum
(e − 1)/e = 0 (green), while replication rate (purple) remains low. b) However, when hypothesis choice is
allowed, effort increases over time towards a good-science equilibrium in which false positives are rare, and
replication evolves to a modest rate. All parameters are the same as in Figure 2c. Replications are chosen
from a corpus of L = 105 novel studies, and each study is allowed to be replicated only once (see SI). Payoffs
are BN = 1, Br = 0.2, BO+ = 0.1 and CO− = 100.

2.5 Limit of θ = γ = 1

Our model reproduces that of Smaldino and McElreath (2016) in the limit γ = θ = 1, and as such
our simulations in this limit should produce the same qualitative results. We ran simulations in
this limit without hypothesis choice and showed that, indeed, the bad-science equilibrium quickly
emerged (Supplementary Figure 12a). When hypothesis choice was allowed (Supplementary Figure
12b) the bad-science equilibrium still evolved in this limit, since power P (+|T ) and false positive
rate P (+|F ) are both independent of effort under this model, once efficacy evolves to its maximum
V = 1. This latter result illustrates a pathology of the limit θ = γ = 1, under which bad science

17



(true- and false-positive rates equal to one) cannot be avoided, no matter how much effort a lab puts
in, once methodological efficacy reaches its maximum – a state of affairs that does not reflect reality
in any scientific field. However, when we separate out methodological efficacy from lab effort in
identifying positive results, and allow for the possibility that a diligent lab can, in principle, expend
effort to do good science (i.e. by setting γ > 1 and θ > 1), the effects of theory on stabilizing good
science become apparent, and both good- and bad-science equilibria emerge – a state of affairs that
more accurately reflects what we see in scientific practice across fields.
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Supplementary Figure 12: Simulations in the limit θ = γ = 1. This figure is the same as Supplemen-
tary Figure 11 with the alteration that the technical limits of false- and true-positives are set to θ = γ = 1.
In this case both without (a) and with (b) hypothesis choice, bad science evolves.
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