Supporting Information

Title: Pd and GDC Co-infiltrated LSCM Cathode for High-temperature CO₂ Electrolysis using

Solid Oxide Electrolysis Cells

Seokhee Lee¹, Sung Hun Woo¹, Tae Ho Shin^{1*} and John T. S. Irvine²

Dr. S. Lee, S. Woo, and Dr. T. Shin ¹Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea Prof. T. Irvine ² School of Chemistry, University of St Andrews, KY16 9ST, Fife, Scotland, UK

* Correspondence E-mail: ths@kicet.re.kr, ceramist95@gmail.com

Figure S1. Microstructure images of the Nano-structured Pd-GDC co-infiltrated on LSCM cathode; (a) high magnification of the surface of Pd-GDC@LSCM to verify nano-sized distribution, (b) cross-section of the cell (Pd-GDC|YSZ-LSCM|YSZ-LSCM|YSZ-LSCF|LSCF), (c) EDS point analysis of Pd on the surface, and (d) the distribution of ceia on the LSCM surface.

Figure S2. XRD pattern of the cathode electrode of Pd-GDC@LSCM on YSZ SOC cells, compared with that of GDC@LSCM and LSCM. The PdO XRD peak was observed on the Pd-GDC co-infiltrated LSCM cathode.

Figure S3. The comparison of Pd-GDC co-infiltrated on LSCM cathode with LSCM cathode; (a) the I-V curves of Pd-GDC@LSCM, GDC@LSCM and LCM in CO₂ electrolysis as well as SOFC mode in H₂, (b) activation energy from the slop of the temperature-dependent ASR curve, calculated from impedance analysis of each different cathode.

Figure S4. Long term test at 1073 K in 100% CO_2 gas; (a) Running time-dependent terminal voltage curve with applying constant current during CO_2 electrolysis, (b) Impedance spectra as dependent operating time under CO_2 gas, (c) Resistance different with operation running time. (d) Impedance analysis and fitting simulate the model for separating between ohmic & non-ohmic parts. (e) 3-probe method and position of reference electrode and configuration.

Faradaic efficiency calculation

Faradaic efficiency (FE) is calculated according to Equation S1:

$$FE = \frac{Q_{\rm CO}}{Q_{\rm total}} = \frac{n_{\rm CO} z_{\rm CO} F}{It}$$
(S1)

where Q_{CO} and Qtotal represent the quantity of electricity consumed in CO production and the whole CO₂ electrolysis process, respectively. n_{CO} denotes the molar quantities of CO produced in CO₂ electrolysis, z_{CO} is the number of electrons transferred for a CO molecule production, F is the Faraday constant (96485 C mol⁻¹), I denote the total current in the CO₂ electrolysis process and t is the time.