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Marine sediments hold vast stores of organic carbon (OC). Techniques to spatially
map sedimentary OC must develop to form the basis of seabed management tools
that consider carbon-rich sediments. While the natural burial of carbon (C) provides
a climate regulation service, the disturbance of buried C could present a significant
positive feedback mechanism to atmospheric greenhouse gas concentrations. We
present a regional Scottish case study that explores the suitability of integrating archived
seafloor acoustic data (i.e., multibeam echosounder bathymetry and backscatter) with
physical samples toward improved spatial mapping of surface OC in a dynamic coastal
environment. Acoustic backscatter is a proxy for seabed sediments and can be
collected over extensive areas at high resolutions. Sediment type is also an important
predictor of OC. We test the potential of backscatter as a proxy for OC which may
prove useful in the absence of exhaustive sediment data. Overall, although statistically
significant, correlations between the variables OC, sediment type, and backscatter
are relatively weak, likely reflecting a combination of limited and asynchronous data,
sediment mobility over time, and complex environmental processing of OC in shelf
sediments. We estimate linear mixed models to predict OC using backscatter and Folk
sediment type as covariates. Our results show that incorporating backscatter in the
model improves the precision of OC predictions by 14%. Backscatter discriminates
between coarse and fine sediments, and therefore low and high OC regimes; however,
was not able to discriminate amongst finer sediments. Although sediment type is a
stronger predictor of OC, these data are available at a much lower spatial resolution
and do not account for fine-scale variability. The resulting maps display varying
spatial distributions of OC reflecting the different scales of the predictor variables,
demonstrating a need for further methodological development. Backscatter shows
considerable promise as a high-resolution predictor variable to improve the precision
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of surface OC maps, or to reduce the number of OC measurements required to achieve
a specified precision. Applications of such maps have potential in improved C-stock
estimates and the design of conservation and management strategies that consider
marine sediments as valuable C stores.

Keywords: organic carbon, sedimentary carbon, multibeam, folk classification, acoustic backscatter, carbon
stocks, spatial models, climate mitigation

INTRODUCTION

The marine environment has a significant role within the
global carbon (C) cycle with 93% of the earth’s C stored and
cycled here, providing an essential energy source for marine
biodiversity (Nellemann et al., 2009). Carbon captured by coastal
and marine ecosystems is known as blue carbon (BC). The marine
environment can store disproportionate amounts of organic
carbon (OC) within marine organisms and associated sediments
compared to terrestrial C stores, such as forest and peat (Duarte
et al., 2005; Donato et al., 2011; McLeod et al., 2011; Goldstein
et al., 2020). Marine sediments are currently overlooked within
current BC definitions and accounting frameworks because they
do not directly sequester C via photosynthesis (Lovelock and
Duarte, 2019). However, they are a regional and global repository
for OC and act to bury, and thus remove, OC from the active C
cycle over geological timescales (Smith et al., 2015; Sayedi et al.,
2020). This natural process provides an indirect and valuable
climate regulation service (Luisetti et al., 2019). Activities that
physically disturb seabed sediments cause the resuspension and
exposure of buried OC to oxygen, which can be remineralised
back to aqueous CO2 (Aller, 1994; Macreadie et al., 2019). The
management of these activities, such as benthic trawling (Paradis
et al., 2017), could be key to maintaining sediments as part of
the suite of nature-based solutions for mitigating against climate
change (Sala et al., 2021). Assessments of the spatial distribution
of sedimentary OC are key to understanding the processes that
influence how C is processed and where it is more likely to be
accumulating, i.e., carbon hotspots (Diesing et al., 2021).

Spatial maps of sedimentary OC have been developed that
improve global and national-scale C-stock estimates within
the marine environment (Diesing et al., 2017; Atwood et al.,
2020; Smeaton et al., 2020). Maps can be produced by
estimating an average OC content per sediment type, often
Folk-classified, and scaling up to the areal extent of the
sediment coverage (e.g., Smeaton et al., 2020), or through a
modelled approach using existing data and a suite of predictor
variables to estimate C content in places not directly measured
(e.g., Diesing et al., 2017). These studies have progressed
our understanding of the large-scale spatial distribution of
sedimentary OC, however, uncertainties in stock estimates over
large areas can also be high (Burrows et al., 2014; Diesing
et al., 2017). Data for sedimentary OC are generally limited
at the spatial scales required for effective seabed management
strategies (Burrows et al., 2017; Pınarbaşı et al., 2017) and
consequently maps at higher spatial resolutions (e.g., regional-
scale) are needed (Pace et al., 2021). Following a successful
demonstration study using multibeam echosounder (MBES)

data that produced a high-resolution map of OC (Hunt
et al., 2020), we suggest that acoustic backscatter could be an
effective predictor variable to improve OC maps, as has been
demonstrated within habitat modelling studies (De Falco et al.,
2010; Lucieer et al., 2013).

Physically sampling (i.e., “ground-truthing”) the seabed is a
logistically-challenging, time-consuming, and expensive exercise.
In contrast, acoustic mapping via MBES offers the opportunity
to acquire spatially continuous, high-resolution imagery of
seabed depth and morphology (i.e., MBES bathymetry) and
a measure of seabed texture, composition, and hardness (i.e.,
MBES backscatter) (Lurton and Lamarche, 2015) at a lower
expense. MBES data are regularly used to characterise the seabed
because acoustic backscatter intensity acts as a proxy for substrate
composition (Collier and Brown, 2005; McGonigle and Collier,
2014) by responding to complexities in substrate texture and
hardness. Point sample measurements can be maximised by
interpolating information, such as habitat type, over extensive
areas, giving continuous maps which are useful for seabed
conservation and management (Lecours, 2017). Application of
this technology has been demonstrated in a range of studies
to map different structures and habitats, including: geological
features, such as evidence of glacial bedforms (Dove et al., 2015),
horse-mussel (Modiolus modiolus) reef extents (Lindenbaum
et al., 2008), and in one study, backscatter strength was found
to be sufficiently distinct to identify at least six different seafloor
habitats across the study sites, including a mixture of geological
and biological substrates (Parnum and Gavrilov, 2012). However,
despite the advantages of this technology, the complex nature
of acoustic scattering within the marine environment means
fundamental challenges still remain, for instance with delineating
between gradual changes in substrate textures, and thus ground-
truthing is still a necessary activity to interpret the signal (Misiuk
et al., 2018; Diesing et al., 2020).

The basis for using backscatter as a predictor of OC
comes from extrapolating empirical relationships between
sediment grain size and OC (Hedges and Keil, 1995; Burdige,
2007) and between sedimentary properties and backscatter
reflectance (Collier and Brown, 2005; Che Hasan et al.,
2014). In this study, we explore the potential of ground-
truthing an archive MBES dataset to predict the spatial
distribution of OC within surface sediments. Interpolating
OC measurements over an exhaustive surface could support
improved C stock estimates and identify localised hotspots
that may be lost within larger scale (e.g., national) mapping
(Lecours et al., 2015). Under its statutory obligations to maritime
safety, the United Kingdom Hydrographic Office (UKHO)
collects hydrographic, oceanographic, and geophysical data in
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waters of national responsibility to maintain high-resolution
bathymetric charts. Systematic surveys are undertaken by the
Civil Hydrography Programme (CHP) that uses acoustic systems
to map the seabed. This data archive of MBES with ground
truth samples presents a potentially cost-effective opportunity
to extend the methodology of Hunt et al. (2020), to predict
the surface distribution of OC more widely. Other studies
have already shown the viability of using these archived
MBES data to improve the mapping of seabed substrate (e.g.,
Diesing et al., 2014).

With a growing body of work supporting the role that coastal
and shelf seabed sediments play in the long-term storage of
C (Smith et al., 2015; Legge et al., 2020), considerations of
how to incorporate marine C stocks in national C accounts
are being developed (Luisetti et al., 2020). For a maritime
nation such as Scotland, which has a considerably larger seabed
area than landmass, marine carbon stocks form a significant
proportion of the national carbon inventory (Avelar et al.,
2017) and as such, spatial information is integral to informed
management to protect sediments as nature-based solutions for
climate change mitigation and biodiversity benefits (Shafiee,
2021). Diverse mitigation strategies against GHG emissions are
needed to achieve targets set under the Paris Agreement to
contain global temperature rise below two degrees relative to pre-
industrial temperatures (United Nations/Framework Convention
on Climate Change, 2015).

This study presents a potential methodological approach to
mapping marine carbon stores that go beyond the current
inventory. We explore the potential of archived MBES and
sedimentary datasets as a cost-effective opportunity to improve
regional-scale OC maps as tools to support decision-makers.
We take an archive MBES survey dataset collected within the
Moray Firth on the east coast of Scotland with the following
aims: (1) to ground-truth the MBES dataset and explore the
patterns of OC distribution; (2) to compare the effectiveness
of using acoustic backscatter data to spatially predict OC
against sediment type (Folk classification), a common and
readily available predictor for OC; (3) to apply fitted linear
mixed models (LMMs) to generate a regional-scale map of
OC in a geostatistical framework; (4) to estimate a regional
surface (10 cm) OC stock over the MBES area; and (5) to
discuss the opportunities and limitations of using MBES to
spatially map OC.

REGIONAL SETTING

Our study site is located within the Moray Firth Region,
an embayment in the North Sea off the east coast of
Scotland, United Kingdom (Figure 1). The inner part of
this coastal zone is characterised as estuarine and is fed
by three large estuaries, the Beauly, Cromarty and Dornoch
Firths to the southwest of the site. Moving eastwards, the
Moray Firth extends into the North Sea and is characterised
by a shallow shelf. The seabed bathymetry generally slopes
away from the coast to an average depth of 50 m within
15 km in the inner Moray Firth. Beyond this, the shelf

maintains a gradual slope to the central northern North Sea
to depths between 150 and 250 m. A notable bathymetric
feature within our study area is a narrow, deep trough
orientated in a NNE-SSW direction that separates the Smith
Bank from the immediate coastal zone reaching 80 m depths
(Chesher and Lawson, 1983).

The seabed of the Moray Firth comprises a thin cover of
Holocene sediments which are relict glacial and post-glacial
accretions from offshore sources (Figure 1) (BGS (British
Geological Survey), 1987; Reid and McManus, 1987). Following
glacial melt at the start of the Holocene a rapid rise in sea level
resulted in a source of lithic material to the area of predominantly
sandy facies (Andrews et al., 1990). Sediments here are also
sourced from fluvial contributions of the Dornoch and Cromarty
Firths, limited to the south-west of the site and composed of
muddy sands (Chesher and Lawson, 1983). Coarser, gravelly
sands are found along the southern and northern coastlines in
shallow water areas. Biogenic carbonate material is a final source
of material which accumulates from calcareous seabed biota
within the shallow coastal waters and which influences sediment
composition (Holmes et al., 2004).

Sediment distribution is driven by local hydrodynamic
regimes interacting with broader scale bathymetric variation.
Due to the relatively shallow nature of the seabed, near-bed
currents are mainly driven by wind and tidal interactions; the
dominant current direction is from the north and north-east as
NE Atlantic waters are channelled into the northern North Sea
through the narrow channels between the Scottish mainland and
offshore islands (Holmes et al., 2004).

MATERIALS AND METHODS

To investigate the suitability of acoustic backscatter data to
act as a proxy for sediment type, and thereby a predictor
of OC on the shelf, we first ground truth an MBES
survey and generate a sedimentary C dataset to examine
relationships between backscatter, sediment type and OC. We
fit LMMs for the two covariates, including the backscatter
over a range of scales, and use geostatistical interpolation
to predict OC across the footprint. We compare how well
each of the covariates predicts spatial OC and calculate
surficial stock estimates for the best models. We use an
existing MBES dataset as a cost-effective way to re-purpose
marine datasets. In this section, we describe each of these
steps in detail; the flow diagram in Figure 2 provides a
summary for reference.

Multibeam Echosounder Survey
The Civil Hydrography Programme (CHP) acoustic datasets
are made available through the respective bathymetry1 (UKHO
hosted) and backscatter2 (BGS hosted) Data Archive Centres. The
“HI1150 survey: Tarbat Ness to Sarclet Head” MBES dataset was

1https://datahub.admiralty.co.uk/portal/apps/sites/#/marine-data-portal/pages/
seabed-mapping-services
2https://www.bgs.ac.uk/map-viewers/geoindex-offshore/
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FIGURE 1 | (A) Location map for the survey area within the Moray Firth on the east coast of Scotland. The inset map shows the location in the context of Scotland.
(B) Folk sediment map from the BGS 1:250K Seabed Sediment product DigSBS250 (accessed from: https://mapapps2.bgs.ac.uk/geoindex_offshore/home.html).
Folk codes as follows: (g)M, slightly gravelly mud; (g)S, slightly gravelly sand; G, gravel; S, sand; gM, gravelly mud; gS, gravelly sand; gmS, gravelly muddy sand;
mG, muddy gravel; mS, muddy sand; sG, sandy gravel. (C,D) HI1150 MBES survey results. The rasters are presented at a 6 m × 6 m pixel resolution and the
ArcGIS tool, “Focal Statistics” (circular neighbourhood, 3 m) has been applied to smooth noise. (C) Bathymetry (m). (D) Acoustic Backscatter Intensity (dB). The
white area represents land, and the light-grey area represents the sea.

selected given that, firstly, physical sediment samples collected
during the survey are archived at the National Geological
Repository (NGR) in Keyworth, United Kingdom, and available
to subsample for grain size and C analysis; and secondly, the
typical sediment type (muddy-sands to sands) across the area
was compatible to further sampling using a Day grab. These
CHP MBES bathymetry and backscatter data are of high quality
and have been processed to a very high standard, IHO Order
1a (IHO, 2020). This requires the data to meet strict accuracy
and quality requirements, e.g., line spacing, sounding density,
vertical accuracy, and cross-line calibration. The survey report is
available from the UKHO Data Archive Centre. The 2006 MBES
survey employed a Kongsberg Simrad EM710 (70–100 kHz)
for the offshore leg, and a hull-mounted EM3002D (300 kHz)
sensor for the inshore survey to account for two depth zones.
A Trimble (RTK) GPS was used for positioning. Depth checks
between the nadir beams of the MBES systems against a single
beam echosounder agreed within a few centimetres, except in
areas of rapidly varying terrain (e.g., rock or sand waves). Further
to this, the backscatter data are processed to drastically reduce
angle-range effects, ensuring accurate intensities are recorded
across track. Bathymetry and backscatter data were processed
using Caris HIPS/SIPS software. The total survey area covers
approximately 2,640 km2 (Figures 1C,D).

Multibeam Echosounder Data
Iso Cluster Classification
The bathymetry and backscatter data were classified using
the unsupervised Iso Cluster tool in ArcGIS to inform our
sampling strategy across the MBES survey footprint. These
variables have shown strong discriminatory power for classifying
seabed substrates (Calvert et al., 2015). Prior to classification,
the bathymetry raster data were resampled to 6 m resolution
for consistency with the backscatter dataset and both rasters
were normalised from 0 to 1 (Calvert et al., 2015). We used
the BGS 1:250K Folk sediment map (Figure 1B) to support
our selection of five classes representing the four sediment
types plus rock of the modified Folk classification (Long, 2006)
(Figure 3). Equal numbers of sediment samples were proposed
from each class with the sampling locations dispersed across
the class footprint (Figure 3). Backscatter and bathymetry data
were further processed to remove noise and account for potential
sample location error, using the “Focal Statistics” tool in ESRI
ArcGIS v10.7 (3-pixel × 3-pixel circular neighbourhood), prior
to extracting the raster values at each sample location.

Multiscale Backscatter Data
Studies have shown that the spatial scales of terrain and ecological
attributes are an important consideration in sedimentary
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FIGURE 2 | Flow diagram highlighting the order of the data collection and analysis steps used within this study.

FIGURE 3 | Classified map of the MBES survey using ArcGIS unsupervised Iso Cluster tool (five classes). Sample locations are shown. Primary samples were
collected in July 2019. Secondary data samples were collected over multiple surveys (see Supplementary Table 1 for full details).
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modelling and mapping studies since different environmental
processes operate at different scales (Wilson et al., 2007; Misiuk
et al., 2018). To investigate if there was an optimum scale at which
backscatter and OC were correlated, we re-gridded the original
data (6 m resolution) to the following spatial scales: 12, 24, 48,
96, 192, and 300 m resolution using the bilinear algorithm in
the ArcGIS Resample tool. The backscatter values at the sample
point locations, and as averaged over a 300 m grid, were extracted
and used as predictor variables in the modelling component (see
section “Spatial Analysis – Linear Mixed Models”).

Sediment Characterisation
Primary Data Collection
Twenty-three grab samples were successfully collected by FRV
Scotia (1019S) in July 2019 using a Day grab (0.1 m2) (Figure 3).
Three grabs failed where the sediment was too coarse to sample
(all within “Class 4”). A full list of samples and accompanying
metadata is found in Supplementary Table 1. Samples were
collected according to the United Kingdom’s Joint Nature
Conservation Committee (JNCC) marine monitoring protocols
(Davies et al., 2001). A full-depth scoop of sediment (∼10 cm
depth) was collected from the Day grab, homogenised, and
frozen until analysis.

Secondary Data
We supplemented our dataset using complementary secondary
data spatially located within the MBES footprint. Physical
material was subsampled from the NGR. This included the
11 retained samples collected during the HI1150 MBES survey
and additional archive material collected during national seabed
surveys from the 1970s (Fannin, 1989). We also searched national
databases (e.g., ICES) for sedimentary datasets with associated
OC and grain size information, however, due to differences in
analytical methods and reporting formats of the OC sediment
fraction and grain size statistics, we decided to only use the
physical secondary samples available for laboratory analysis,
to maintain consistency with our primary data. There will
be some uncertainty in OC amounts from archive samples
attributable to the possible loss of labile material during long-
term storage, which could manifest in an underestimation in
OC predictions. We also note that the location uncertainty of
archive samples is approximately 100 m because these were
collected prior to the availability of Global Positioning Systems
(Lark et al., 2012). Despite the uncertainties, the increased
dataset nevertheless allows us to better characterise the regional
sedimentary properties. An inventory of secondary data is found
in Supplementary Table 2 and includes a further 29 samples.

Carbon Analysis
Sediment samples were oven-dried at 50◦C until constant weight,
cooled, and ground to a homogenous powder. 40 mg ± 5 mg of
sediment was weighed out into pre-baked steel crucibles. Carbon
analysis was carried out using an Elementar SoliTOC Cube
Elemental Analyser. This instrument measures in situ organic and
inorganic C within a sample, thus the typical pre-acidification
step to remove carbonates is not required to measure the
organic component. This is advantageous for coastal sediments

comprising inorganic material because the acidification step
can result in loss of sample through effervescent reaction
(Verardo et al., 1990). The machine was calibrated against
the standard reference material, B2290 (TOC/ROC/TIC silty
soil standard) from Elemental Analysis, United Kingdom. The
standard measurements deviated from the reference value by:
TOC = 0.14%; ROC = 0.003%; and TIC = 0.29%. The measured
C was normalised to the proportion of the sediment composition
<2 mm. This represents the fraction of the bulk sediment viable
for analysis; we assume that there is no OC associated with the
sedimentary fraction >2 mm (i.e., “gravel” or rock).

Sediment Grain Size
Particle size analysis was undertaken for the 23 primary sediment
samples using the protocol outlined in Mason (2011) to split
the bulk material into coarse (>2 mm) and fine (<2 mm)
components prior to analysis. The coarse material was sieved at
1/2 phi intervals (5.6, 4.0, 2.8, and 2.0 mm). The <2 mm fraction
was analysed in a Coulter LS230 laser granulometer. The machine
was calibrated using two sizes of glass bead reference standards
(Vasquashene C100 and Vasquashene 590/840). Samples were
treated with 3 ml of 5% Calgon solution to aid dispersion of
aggregates prior to analysis (Blott et al., 2004). The results from
the fine and coarse fractions were combined into a full particle
size distribution as per Mason (2011). Grain size statistics were
derived using GRADISTAT (Blott and Pye, 2001), although we
only consider mean grain size in this study.

Dry Bulk Density
The dry bulk density (DBD) values of the sediment types
have been derived from Smeaton et al. (2021) who collated
sedimentary DBD data from across the United Kingdom
Exclusive Economic Zone (EEZ). Where available, we first
extracted region-specific data for the Moray Firth and aggregated
the higher sediment classifications into the modified Folk
sediment types (Kaskela et al., 2019). The average DBD value for
each type is used in C-stock calculations and can be found in
Supplementary Table 3.

Observed Sediment Type – Harmonising
the Data
We only had access to the bulk sediment of the 23 primary
grab samples and therefore could only generate full particle
size distributions for these samples. The secondary sediment
samples were available for subsampling in conservative amounts
from the NGR archive, and we could not assume the
sub-samples were representative of the bulk sediment to
establish a quantitative grain size breakdown. We instead relied
on composition metadata available from the BGS Offshore
Geoindex3, to harmonise the primary and secondary data by
deriving a modified Folk classification based on the % gravel,
% sand, and % mud composition of each sample (Kaskela
et al., 2019; Smeaton and Austin, 2019). Every data point
has thus been described according to the modified 5 Folk

3http://mapapps2.bgs.ac.uk/geoindex_offshore/home.html
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classification (Mud-muddy sand; Sand; Mixed sediment; Coarse
sediment; and Rock) (Kaskela et al., 2019). This allowed us to
investigate how the composition of sediment affects the acoustic
backscatter response.

Modified BGS Folk Sediment Map
As above, we converted the United Kingdom seabed Folk
sediment polygon shapefile (1:250,000) (BGS (British Geological
Survey), 1987) into a modified Folk sediment raster within
ArcGIS by aggregating and reclassifying the default 16 Folk
classes into 5 Folk classes based on Kaskela et al. (2019). The
raster was projected into UTM Zone 30N and resampled to
a 300 m resolution to align with the maximum backscatter
raster scale (see section “Multiscale Backscatter Data”). We
cross-checked the observed sediment type at each grab sample
location (see section “Observed Sediment Type – Harmonising
the Data”) against this reclassified sediment map to see how
well it represented the sediment types described by the point
sample data. Values of modified Folk type were extracted at each
sample location (“mapped” Folk opposed to “observed” Folk) and
used as a covariate within the spatial models. The modified Folk
raster was also used as a continuous predictor variable for OC
in our spatial predictions (see section “Spatial Analysis – Linear
Mixed Models”).

Exploratory Analysis – Drivers of Organic
Carbon Variation
Spatial information was extracted for each sample location using
ArcGIS V10.7 including, geographical northing and easting and
distance from the coast (calculated as the planar distance in
metres from the target sample to the closest point on the
coastline). These variables are included as potential predictors of
sediment type and OC (Diesing et al., 2017). The appropriateness
of using MBES and sedimentary data as explanatory variables
to spatially predict OC was explored in the following ways;
(i) by comparing the summary statistics of the sample data
grouped by Iso Cluster class and by modified Folk type
(Supplementary Tables 4, 5) and (ii) by exploring statistical
associations between sedimentary properties and backscatter
variables using Pearson correlation coefficients (Supplementary
Figure 1 and Supplementary Table 6) (Serpetti et al., 2012). The
relationship between modified Folk type, a categorical variable,
and OC was compared using a one-way analysis of variance
(ANOVA) (Supplementary Table 7). These analyses provided
the supporting evidence for whether backscatter was a viable
proxy for characterising sediments in this area (i.e., do sediment
types have characteristic signatures?), and for insights into the
significant predictors of OC here.

Spatial Analysis – Linear Mixed Models
We applied geostatistical methodology (Webster and Oliver,
2007) to explore how the observed relationships between OC
and its drivers of variation could be used to map OC across our
study region and how predictions of OC and their uncertainty
could be upscaled to the entire study region. Non-spatial
statistical methodologies such as linear regression require the
assumption that the model errors or residuals are independent. In

contrast, spatial analyses acknowledge that these residuals could
be spatially correlated (i.e., residuals from proximal locations are
more likely to be similar than those from disparate locations).
This means that there is a spatial pattern to the observed data
beyond that which can be explained by the covariates. This
unexplained spatial pattern can be predicted using geostatistical
methods (Webster and Oliver, 2007) thus improving the accuracy
of the maps that result. The spatial correlation can also lead to
the underlying model consistently under- or over-estimating the
true values across broad portions of the study region. This in
turn implies that the uncertainty of upscaled predictions of OC
(e.g., the average across the study area) can be larger than if the
residuals were independent.

We explored the spatial relationships between OC and the
strongest drivers of variation as per the Pearson correlation
coefficients, by estimating a series of LMMs by residual maximum
likelihood. This is a commonly used method in terrestrial
spatial C stock studies (Lark et al., 2006; Rawlins et al.,
2009). LMMs divide variation in the modelled variable between
the fixed effects (i.e., an assumed linear relationship between
the response variable, in this case OC, and the explanatory
covariates) and a random-effects component (i.e., the variation
in the model residuals which can be spatially correlated).
A comprehensive explanation of this type of geostatistical model
can be found in Lark et al. (2006).

The model covariates must be known at all locations where
the OC is to be predicted. We thus used the “mapped”
modified Folk sediment type as a proxy for mean grain size
and composition data in the fixed effects and compared its
performance with the backscatter data processed to different
scales. At the model estimation and validation stage, we also
consider the “observed” Folk class to explore the effectiveness
of this predictor if it were known precisely at each location.
This covariate cannot be used to predict OC at locations where
it was not measured, however. For each covariate, we consider
both independent and spatially correlated random effects. In the
geostatistical literature, independent residuals are said to have
arisen from a pure nugget model. We use an exponential function
(Webster and Oliver, 2007) to represent the degree of spatial
correlation when it is present in the model. The appropriateness
of the different combinations of fixed and random effects was
assessed via the Akaike Information Criterion (AIC, Akaike,
1973) which weighs model complexity against model fit. The
model which leads to the lowest AIC is thought to have the
appropriate degree of complexity to best model the observed data
(Villanneau et al., 2011).

The best-fitting models were used to predict OC and its
uncertainty across the study region using the best linear unbiased
predictor (BLUP) (Lark et al., 2006). This is a spatial interpolation
method, sometimes referred to as kriging, which combines the
fixed and random effects. We also simulated 1,000 realisations
of OC according to each fitted model using the Cholesky
decomposition approach (Webster and Oliver, 2007). Each of
the realisations reflects the degree of spatial correlation in the
estimated model. If the average OC across the study region is
calculated for each realisation, then the variation between these
averages reflects the uncertainty in predicting OC at this scale.
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The relatively small number of samples in this study meant
it was difficult to split the data into a training and validation
set. Instead, the models were validated by a 10-fold cross-
validation procedure (Webster and Oliver, 2007). In this process,
a tenth of the observations are removed from the dataset and
the other observations are used to predict OC at the locations
of those that have been removed. The process is repeated 10
times with different observations removed each time so that
each observation is removed once. The predicted values are
compared with the observed values and the bias can be assessed
by calculating the mean error (ME):

ME =
1
n

n∑
i=1

{
z (xi)− ẑ (xi)

}
,

and the accuracy by calculating the root mean squared error
(RMSE),

RMSE =

[
1
n

n∑
i=1

{
z (xi)− ẑ (xi)

}2
] 1

2

,

or the correlation between predicted and observed values, where
z(xi) is the observed OC and ẑ (xi) is the prediction of OC at
location xi and n the number of observations.

In addition to a prediction of OC at each location, the
BLUP also produces a measure of uncertainty of the prediction
referred to as the prediction or kriging variance, an important
consideration for decision-makers (Lark et al., 2012). The degree
to which the kriging variances σ̂2 relate to the prediction
uncertainty can be explored by calculating the standardised
squared prediction errors (θ) at each site:

θi =

{
z (xi)− ẑ (xi)

}2

σ̂2 (xi)
.

If the random effects are normally distributed and the LMM
correctly describes the variation of OC, then the expected mean
and variance of the θi are equal to 1.

Organic Carbon Stock Estimates
Surface (10 cm) OC stock estimates were calculated for the
best-fitting model surface maps using the methodological steps
outlined in Burrows et al. (2014). The modified Folk class raster
was first converted into a corresponding map of average DBD
using the values identified from section “Dry Bulk Density.”
Combined with the maps of predicted OC, OC stocks and
densities were derived per pixel area. For each spatial model, we
calculated the OC stock over each Folk class area by aggregating
the predicted OC mass for all relevant pixels. The uncertainty of
these stocks was determined by repeating the stock calculation
process for each of the 1,000 realisations of OC simulated from
each LMM. The standard deviation of the stock predictions
that resulted approximates the standard error. This approximate
standard error does not account for uncertainty in estimating the
DBD for each Folk class.

RESULTS

Data Characteristics
Backscatter Signal
The backscatter data (Figure 1D) highlight discrete areas of
high intensities within an otherwise generally homogenous
signal, broadly reflecting the sediment structure described in
section “Regional Setting.” High backscatter intensities follow the
coastline, coincident with rock and coarse sediments (Figure 1B).
The area overlying the Smith Bank is characterised by higher
backscatter (∼−16 to −21 dB), likely a signature of the coarser
sand and gravel material described by previous surveys (Holmes
et al., 2004). There are additional areas of high backscatter (∼−16
to −23 dB) associated with bathymetric-high features known as
drumlins (streamlined subglacial landforms comprised of coarse
and over-consolidated sediments), leaving the Dornoch Firth.
The upstanding ridges will be more exposed to currents and
therefore likely to consist of coarse-grained material, flanked
by winnowed finer sediments within the troughs. Much of the
remaining area is represented by lower backscatter intensities
ranging between −28 and −34 dB correlating with observations
of sand-dominant sediment facies (Andrews et al., 1990).

Sediment Type
Our grab samples were predominantly classified as sands
and muddy sands, with a smaller proportion classified as
coarse and mixed sediments (Figure 4 and Supplementary
Table 1). Generally, it is difficult to sample a coarser sediment
matrix successfully and these sediment types are often under-
represented in sedimentary C studies. The three failed grabs
during 1019S (all within “Class 4”) were likely due to coarse
sediments. This assumption is supported by Figure 4, which
clearly delineates the coarse sediment found within “Class 4”
compared to the other classes. “Class 5” has a varied mixture of
sediment types which could indicate poor sorting of sediments
closer to the coastline. Despite having different compositions,
the mean grain size of sediments collected within Classes 1, 2,
3, and 5 (following removal of outlier GB12) are broadly similar
(∼150 µm) and classify as fine to medium sands with a mean
backscatter intensity (∼−31 dB ± 1) (Supplementary Table 4).
The mean grain size for “Class 4” is significantly higher (∼2 mm)
characterised as a coarse sediment and matched by high mean
backscatter intensity (−20.4 dB).

We chose to reclassify our primary grab samples to a modified
Folk class (see section “Observed Sediment Type – Harmonising
the Data”) to incorporate secondary data in our study. The
observed Folk type broadly agrees with the modified Folk map
over the study area (Figure 5), with 60% overall accuracy
(Supplementary Table 8). The main source of disagreement
comes from grab samples of muddy sands being incorrectly
classed as sands and coarse sediments by the BGS Folk map
indicating there is heterogeneity over finer scales than is captured
by broad Folk sediment classifications.

Sedimentary Organic Carbon
Organic carbon values are consistent with other studies from
the coastal shelf environment on the east coast of Scotland
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FIGURE 4 | Sediment samples with % gravel, sand, and mud data mapped to a modified Folk classification (four classes + rock) as proposed by Kaskela et al.
(2019) to enable harmonisation between multiple datasets. Samples are grouped by Iso Cluster class.

(Serpetti et al., 2012); values range from 0 to 1.55% content, with
an overall mean value of 0.87% and a standard deviation of 0.37%
(Supplementary Table 1). Enriched OC values are found closer
to the estuary, characterised by muddier sediments, and within
the deeper water (defined by “Class 1”) suggesting that depth
could be a factor in OC accumulation (Supplementary Table 4).
“Class 4” has the lowest range of values recorded – the average
OC content within this class is 0.65% ± 0.41 (Supplementary
Table 4) and mean grain size∼2 mm. When grouped by Folk type
(Supplementary Table 5) the muddy sands are enriched in OC%
(mean = 1.04% ± 0.27) and coarse sediments have the lowest
average value at 0.38% ± 0.27. Sands have the largest variability
in OC% (between 0.18 and 1.31%) with higher values overlapping
those found in the muddy sands.

Exploratory Analysis
Effectiveness of Iso Cluster Classification
The objective of the unsupervised Iso Cluster classification
of MBES bathymetry and backscatter was to identify distinct
seabed substrates to guide a representative sampling strategy.
Grouping the sample variables by Class highlights some issues
with our approach. The bathymetry data appeared to drive the

final classification demonstrated by each class having a distinct
depth range, except for Classes 3 and 4 (Figure 6A). The
distinction between Class 3 and 4 was subsequently made using
backscatter intensity. However, in this study, bathymetry shows
limited discriminatory power to separate between sediment types
(Figure 6B) indicating that our classification approach did not
meet the objectives. This could be due to limited data, and it is
possible that finer-scale sampling would have shown a response to
small-scale bathymetric and geomorphological variation. “Class
4” (Figure 6A) is an exception and is distinctive from the others
exhibiting similar characteristics to those of coarse sediment
(Figure 6B) demonstrating the strong effect of increased grain
size on acoustic backscatter (Goff et al., 2000).

Grouping the data instead by sediment type (n = 49) shows
more distinct trends (Figure 6B). Coarse sediments have distinct
signatures for all variables specifically, the lowest OC% values, a
mean grain size >2 mm, the highest backscatter intensities, and
are within shallower depths. Mixed sediments are characterised
by slightly larger mean grain sizes than sands due to the presence
of gravel. This is also reflected in higher backscatter intensities
for mixed sediments relative to muddy sands and sands. Despite
having distinctly different mean grain sizes (note that mean grain
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FIGURE 5 | Observed sediment type from all grab samples overlaid on the modified BGS Folk sediment map (adapted from DigSBS250). Agreement statistics
between observed and mapped classes are shown in Supplementary Table 8.

size is only available for (n = 23 samples), muddy sands and sands
are characterised by similar mean backscatter values (∼32 dB)
and depth ranges. Backscatter has thus provided a distinction
between coarse sediments from muddy sands (M-mS) and
sands (S); however, these sediment types are indistinguishable
from each other based on backscatter intensity alone. Mean
grain size (n = 23) is a more useful indicator in this respect
than sediment type.

Other than “Class 4” (coarse sediment), the Iso Cluster
classification has not been able to differentiate sediment types,
and OC contents satisfactorily. Thus, we have chosen not to use
the Iso Cluster classification as a predictor (categorical) variable
in further analysis and instead, we use Folk sediment type which
demonstrates better coupling to OC content and backscatter.

Predictor Variable Correlations
Backscatter is significantly correlated with mean grain size
(r = 0.72) and most influenced by the gravel content (r = 0.76)
(Figure 7A and Supplementary Table 6), correlations that are
in keeping with other studies (Goff et al., 2000; Sutherland
et al., 2007; McGonigle and Collier, 2014). OC has a significant,
negative correlation with both mean grain size (r = −0.68)
and with backscatter but this is much weaker (r = −0.47).
The relationship appears to be driven in part by sediment
composition highlighted by relationships with both % gravel
(r =−0.65) and % mud (r = 0.48) (Figure 7B and Supplementary
Figure 1). Backscatter does not separate OC values around
−30 to −34 dB (Figure 7B), which is problematic because

this backscatter range corresponds to varying compositions of
muddy-sands and sands represented by similar mean grain size
but with different associated OC values, ranging from ∼0.3 to
1.4%. However, despite our low sample numbers, we do see the
general trends that we would broadly expect given the empirical
relationships between these predictor variables (Hunt et al.,
2020); increased backscatter intensities correlate to reduced OC
contents as a function of sediment type becoming coarser. There
are clearly environmental complexities, beyond which our dataset
parameters can elucidate.

Water depth is weakly correlated to OC (r = −0.3) with no
overall trends and therefore depth is not a reliable predictor of OC
in this study (Supplementary Figure 1). Geographic covariates,
distance from the coast, easting, and northing, are not correlated
with OC and not used further.

Spatial Analysis: Linear Mixed Models
In total, nine LMMs of OC variation with single fixed effects
were estimated as summarised in Table 1. All model validation
statistics can be found in Supplementary Table 9. The lowest
AIC is achieved by using the observed Folk classification
derived from our samples as the fixed effects, followed by
the classified Folk map values. Inclusion of sediment type and
backscatter information as a covariate (fixed effect) improved
the model performance by 17–19% (mapped and observed)
and 14%, respectively, compared to the constant fixed effect
model according to the relative decrease in the RMSE values
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FIGURE 6 | Box plots characterising the core variables from the ground truth samples by (A) Iso Cluster classification and (B) modified Folk sediment type (Key for
modified Folk type: CrsSed, coarse sediment; M-mS, muds to muddy sands; MxSed, mixed sediment; S, sand).

(Supplementary Figure 2). Of all the scales for backscatter, the
data at the 48 m resolution lead to a more accurate model,
indicating that backscatter resolution may be an important
consideration for OC mapping, however, the differences in
accuracy are modest and more data would be required to support
this hypothesis. The fixed effects selected to spatially predict the
OC were M5b (backscatter − 48 m) and M8b (Folk-mapped)
because these variables are known across the study site.

While including exponential spatial correlation in the
random effects did not improve any model fits according
to the AIC alone, it does lead to small improvements in
the model accuracy (Supplementary Table 9). Further, the
upscaled prediction uncertainty values for the pure nugget are
unrealistically small, approximately 1% of the total stock estimate
(Supplementary Table 10). This results from a cancelling-out
effect of positive and negative errors at different prediction
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FIGURE 7 | (A) Backscatter correlated with mean grain size (n = 23) grouped by Folk sediment type and (B) OC% correlated with backscatter (dB) (n = 49) grouped
by Folk sediment type to highlight the complexity within the correlations between these variables (Key for modified Folk type: CrsSed, coarse sediment; M-mS, muds
to muddy sands; MxSed, mixed sediment; S, sand).

TABLE 1 | Matrix summarising linear mixed model permutations fitted to the observed data to predict OC%.

Fixed effects

Constant
(mean OC)

Bck-6 Bck-12 Bck-24 Bck-48 Bck-96 Bck-192 Folk5-Map Folk5-Obs

Random effects

Without spatial autocorrelation
(pure nugget)

M1a M2a M3a M4a M5a M6a M7a M8a M9a

With spatial autocorrelation
(exponential)

M1b M2b M3b M4b M5b M6b M7b M8b M9b

The random effects considered both a non-spatial (pure nugget) and spatial autocorrelation (exponential) covariance function. Bck-X, backscatter intensity (dB)-resolution
of data (m); Folk5-Map, modified BGS 250K Folk sediment map classification; Folk5-Obs, observed modified Folk type at sample locations.

locations. The failure of the spatially correlated random effects
to improve the AIC is likely to reflect the relatively small sample
size meaning that there is limited evidence to assess the spatial
correlation. It cannot be interpreted as evidence of an absence of
spatial correlation. We therefore included spatial correlation in
our spatial predictions of OC (Figure 8).

Only one of the observed OC values was made at a location
with a “Mixed sediment” mapped Folk classification. Therefore,
the expected OC % for the “Mixed sediment” class could not be
estimated. For the purposes of spatial prediction, the expected
OC % for this Folk class was assumed to equal the average of
the expected values for the other three classes. Mixed sediment
covers around 1% of the study area so this assumption is unlikely
to substantially influence the predicted maps or site-wide stocks.

All models quantify the uncertainty satisfactorily according to
the variances of the θi values which are close to 1; the spatial
variation of this uncertainty can be seen in the standard error
maps in Figure 8. Highest uncertainties arise from the constant
fixed-effects model. The predicted OC using M5b ranges from

0.2 to 1.4% and is highly variable across the site. Lowest values
of OC and associated prediction uncertainty are concurrent with
high intensities in backscatter characterised by coarse sediments
and rock (assumed to be 0%). For M8b, predicted OC shows very
little variation within Folk sediment type boundaries and ranges
from approximately 0.5–1.2%, the highest values characterised
by the area of muddy-sands. The maps have relatively large
standard errors which reflect the large degree of small-scale
variation in OC. These uncertainties could be reduced if more
data were collected.

Organic Carbon Stock Calculations
Table 2 outlines the estimated OC stocks calculated from the
spatial predictions of OC for model M5b (estimated 3.00± 0.159
Mt OC) and model M8b (estimated 3.08 ± 0.164 Mt OC). The
total OC stocks derived from the two models are within the
prediction error of each other, differing by approximately 0.08
Mt. The Folk model predicts the higher stock value presumably
a result of not capturing finer-scale sediment heterogeneity
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FIGURE 8 | Predicted spatial distributions of OC% for the different LMMs (top row) and corresponding prediction uncertainties given by the model standard errors
(bottom row). (A,B) Model M1b: Constant fixed effects (mean OC). (C,D) Model M5b: backscatter at 48 m resolution. (E,F) Model M8b: Mapped modified Folk
class. All models have exponential random effects. The maps are projected in ETRS89/UTM zone 30N (EPSG:25830) and have a raster resolution of 300 m.

TABLE 2 | Calculation of organic carbon stock using (A) predictions from the linear mixed model with backscatter at 48 m resolution as a fixed effect covariate including
exponential random effects and (B) predictions from the linear mixed model with mapped Folk class as a fixed effect including exponential random effects.

(A) Model: M5b (backscatter)

Folk class DBD (kg/m3) Area (m2 × 109) Mean OC (%) Mean SE (%) OC stock (Mt) Stock SE (±) (Mt) OC density (kg m−2)

Mixed sediment 1154 0.01 0.72 0.12 0.0076 0.0012 0.83

Coarse sediment 1454 0.86 0.73 0.05 0.915 0.066 1.06

Mud – muddy sand 1141 0.27 0.87 0.06 0.266 0.018 0.99

Sand 1438 1.49 0.85 0.04 1.814 0.093 1.22

Rock NA 0.01 NA NA NA NA NA

Total – 2.64 – – 3.0022 ±0.159 –

(B) Model: M8b (Folk class)

Folk class DBD (kg/m3) Area (m2 × 109) Mean OC (%) Mean SE (%) OC stock (Mt) Stock SE (±) (Mt) OC density (kg m−2)

Mixed sediment 1154 0.01 0.88 0.08 0.009 0.0009 1.01

Coarse sediment 1454 0.86 0.56 0.08 0.700 0.099 0.81

Mud – muddy sand 1141 0.27 1.12 0.10 0.341 0.031 1.28

Sand 1438 1.49 0.95 0.06 2.034 0.124 1.36

Rock NA 0.01 NA NA NA NA NA

Total – 2.64 – – 3.085 ±0.164 –

Standard error (SE) relates only to uncertainty in predicting OC %; bulk densities (DBD) are assumed to be known exactly. (1 Mt = 1 million tonnes which is the
equivalent of 1 Tg).

with sediment boundaries (Figure 5). The limitation of this
backscatter dataset to differentiate between sands and muddy
sands (similar intensity values) could be leading to an under- and
over-estimation for OC in muddy-sands and sands, respectively
(Figure 7). Both models agree that sands contribute most to
the total stocks (∼60–66%) due to their coverage. Estimated
values for OC density are within the values estimated by other
studies for United Kingdom coastal sediments, although in
contrast to Smeaton et al. (2021), the two models predict that

sands have the highest OC density rather than the muddy
sediments (Table 2).

DISCUSSION

We have explored the potential of using archived MBES
backscatter data in combination with primary and secondary
ground-truth data to map OC at high resolutions over a regional
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area. We see promising trends between the predictor variables,
yet the correlation between backscatter and OC is relatively
weak, which suggests that backscatter cannot be solely used
to predict OC. However, we show that the inclusion of this
variable improves the carbon prediction accuracy or equivalently
reduces the number of OC measurements required to achieve
a specified precision. Comparing two exhaustive parameters,
sediment type and backscatter, we have modelled two regional
distribution maps of OC over an MBES footprint (2,640 km2)
within the Moray Firth with spatially explicit uncertainties
(Figure 8). We have used these maps to estimate surficial OC
stocks across the area (Table 2). The stock estimates are in
good agreement with each other; however, the spatial distribution
pattern of OC varies. This is a result of the differences in how
the covariate data were acquired. The BGS Folk sediment map
is currently the United Kingdom’s best national seabed map
based on interpolated point data and expert judgement, whereas
backscatter is a form of high-resolution remote sensing. Further
samples and additional complementary predictor variables are
needed to resolve the finer-scale variability of OC and to
understand which of the maps is most representative; this would
also serve to reduce the relatively large standard errors of
OC (Figure 8). In this section, we discuss the limitations and
opportunities of acoustic backscatter as a predictor variable for
OC. We briefly analyse the spatial distribution of OC of this
Scottish east coast embayment and its role in C-processing,
and we consider the implications for such OC maps in seabed
management and C-accounting frameworks.

Acoustic Backscatter as a Predictor of Sedimentary
Organic Carbon
While backscatter has a significant, negative correlation with the
OC content in surface sediments (Supplementary Table 6), the
strength of the relationship is relatively weak, and thus offers
limited power to predict OC directly. This is a similar finding
within habitat or substrate mapping studies using MBES data,
which show that backscatter can improve models as part of a
suite of predictor variables (De Falco et al., 2010; Lucieer et al.,
2013). The inclusion of backscatter in the geostatistical model
M5b leads to a prediction accuracy improvement for OC of
approximately 14% This is a promising finding and is similar
to improvements seen in substrate mapping accuracy when
backscatter variables were incorporated (Lucieer et al., 2013;
Biondo and Bartholomä, 2017). The resolution of the backscatter
variable did not impact the overall performance of the LMMs,
however, this does not mean that there is no difference and is
likely a function of the limited sample size for the survey area.
High-resolution backscatter data as a spatial covariate has the
potential to increase the resolution of OC maps (Hunt et al.,
2020). Fine-scale variability can be incorporated into these maps
beyond which can be accounted for by current sediment maps
(Smeaton et al., 2021).

The backscatter data differentiates between areas of coarse and
fine sediments; however, it is not able to distinguish between
muddy-sand and sandy sediments. Distinguishing between
coarse and fine sediments is still a useful finding with respect to
OC mapping because OC varies as a function of sediment type

(Hedges and Keil, 1995), with significantly lower quantities of OC
within coarse sediments (Figure 6). High-intensity backscatter
is characteristic of coarse or poorly-sorted material (Collier
and Brown, 2005; Biondo and Bartholomä, 2017), which are
likely to result from dynamic or erosive processes, and therefore
unimportant areas for C storage. This visual aid can help
prioritise ground-truthing toward the finer-grained sediments
associated with deposition and enrichment in organic matter
(Diesing et al., 2021). The difficulties of the backscatter to
delineate between finer materials could be due to a limitation
of the MBES survey technology and post-processing methods
employed over a decade ago, however, similar challenges have
been identified in very recent studies, indicating that further
development is still required within this field (Diesing et al.,
2020). As a result, there are likely to be some systematic
over- and under-estimations of OC for sands and muddy-
sands, which have similar intensities. Sediment composition can
also cause conflicting interpretation of the backscatter signal
and OC content. For example, a muddy gravel can have a
very high backscatter signal, particularly as gravel or shell
hash disproportionately affects the scattering effect (Goff et al.,
2000, 2004), but counter-intuitively, also a relatively high OC
content governed by the presence of mud (Serpetti et al., 2012).
Increased ground-truthing or camera-tow coverage would help
to better characterise the sedimentary environment in these areas
(Hunt et al., 2020).

The dominant oceanographic characteristics of the inner
Moray Firth are of a dynamic coastal system and the seabed
is comprised of glacially relict, re-worked sediments (Reid and
McManus, 1987). These factors will influence OC quantity and
quality and could help to explain why the correlation between
backscatter intensity as a proxy for OC is less convincing
than backscatter as a proxy for sediment grain size. There are
numerous variables that can influence the availability of OC
within sediments including, oxygen penetration levels (Janssen
et al., 2005; Hicks et al., 2017), water temperature (Burdige,
2011), sedimentation rate (de Haas et al., 1997), reactivity of
OM (Burdige, 2007; Bianchi, 2011), disturbance levels (e.g.,
through benthic fishing actvities: De Borger et al., 2020),
and age/transportation times (Bao et al., 2019), which cannot
be explained by backscatter alone. Equally, the relationship
between backscatter and sediment type is complex (Diesing
et al., 2020) and return signals can be influenced by the survey
itself, including factors such as instrument type and acoustic
frequency settings, weather conditions, and data processing
techniques, and by physical environmental characteristics
including sediment density and bioturbation from benthic fauna
(Feldens et al., 2018).

Nevertheless, our results show that when backscatter
measurements are combined with OC values within a
geostatistical framework, the precision of the carbon predictions
improves, and this method allows the prediction uncertainty
to be quantified. In the absence of appropriate or exhaustive
sedimentary datasets, our models show that acoustic backscatter
data could be used to generate an improved picture of the
spatial distribution of OC with appropriate ground-truthing. The
backscatter data highlight some interesting finer-scale variations
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that could provide insights into geomorphological features and
sedimentary processes, which may also have implications for
carbon storage, such as sand ripples, moraines, or trenches.

Folk Type as a Predictor of Sedimentary Organic
Carbon
Sediment Folk type was a stronger covariate than backscatter
for predicting OC in this study, and is commonly used within
sedimentary OC studies (Smeaton et al., 2020), however, there
are limitations with using such categorical data. Much of the
United Kingdom archive sediment data is classified using the
Folk scale based on broad composition information (Lark
et al., 2012) which can be associated with a wide range of
OC values. The current BGS 250K Folk sediment map for the
United Kingdom doesn’t pick up the heterogeneity in sediment
type at smaller scales as highlighted by the 60% agreement
between our observed samples and the Folk map (Figure 5).
Sediment heterogeneity can have a large influence on C storage
and should be accounted for Smeaton and Austin (2019). Areas
of disagreement may be attributed to analytical improvements
in sediment grain size detection for fine sediments (e.g., with
laser sizing technology available) and/or legacy sample location
inaccuracies which did not have the benefit of Global Positioning
Systems (GPS) (Lark et al., 2012). In addition, large temporal
differences exist between the samples collected in the 1970s, from
which the BGS Folk sediment map was derived, compared to
the samples for this study, during which time there is likely to
have been considerable sediment movement. The improvement
in LMM prediction accuracy of OC using sediment type is a
clear indication of the importance of understanding sediment
type and distribution. The confidence in substrate maps is
also improved where remote sensing has been undertaken
(Kaskela et al., 2019). Statistical relationships between our data
variables (Supplementary Figure 1) show that grain size, and
component fractions (e.g., % mud, gravel) were a stronger
predictor of OC than sediment type, however, limited data
coverage prevented us from using it as a covariate within the
spatial modelling. We would therefore recommend that in situ
sediment ground-truthing of MBES surveys is retained and
submitted for comprehensive grain size analysis using laser-
sizer technology (Blott et al., 2004), which would also allow
complementary continuous predictions of % mud, sand and
gravel at higher resolutions (Misiuk et al., 2018). See further
recommendations in section “Recommendations.”

Opportunities Presented by Multibeam Echosounder
Surveys
Our study explores the development of a new methodology to
map OC. There are several reasons why MBES backscatter as
a predictor for OC may be a preferable option to traditional
point sampling and interpolation methods. Sampling at sea is
logistically challenging, expensive, and recognised as a carbon-
intensive activity (Turrell, 2020). Within a decadal timescale,
the Irish national seabed mapping project (INSS) has used
acoustic systems to map at least 80% of the seabed of the
Irish EEZ, generating new opportunities for environmental
and commercial research toward sustainable development of

the marine environment (Guinan et al., 2020). “Piggy-backing”
ground-truthing sampling onto such national-scale surveys has
the potential to collect valuable datasets of seabed properties,
including surficial OC. Often, as with this study, data for mapping
projects are collated from different sources and temporal scales
(Wilson et al., 2018; Atwood et al., 2020) which can increase the
uncertainty in calculating and interpreting results.

Acoustic backscatter, collected as part of MBES surveys, is a
spatially continuous measurement, which can uncover relative
differences in seabed properties over multiple scales (Brown
and Blondel, 2009), and can improve upon traditional sediment
class maps. To highlight this point, the final OC map based on
Folk type for instance shows rigid boundaries which are almost
certainly overly simplistic (Figure 8).

Additionally, beyond the primary backscatter and bathymetry
measurements, acoustic remote sensing data can provide a wealth
of additional terrain and seabed geomorphology information
(Lecours et al., 2016b; Masetti et al., 2018). The geomorphology of
the seabed can provide important clues as to the dominant (local)
physical processes, such as whether current and hydrodynamic
regimes will enhance erosion or deposition. This information
is commonly used within an ecological context, for instance,
habitat modelling studies (Wilson et al., 2007; Lecours et al.,
2017) and recently, has been used to predict the distribution
of seabed sediments (Misiuk et al., 2018). As already noted,
OC is associated with fine-grained material (Hedges and Keil,
1995), which is more likely to settle in low-energy environments;
thus, it may be possible to identify relationships between seabed
terrain attributes or geomorphological features that may indicate
a depositional environment. For instance, the slope of the seabed
is linked to dynamic ocean processes such as the steering or
acceleration of currents, which can impact sediment transport
and stability (Dolan, 2012) and as such, there is a higher
probability that harder substrates will dominate steeper slopes
(Dove et al., 2020). In the past decade, a suite of toolboxes have
been developed to enable researchers to derive geomorphological
parameters from high-resolution bathymetry data (Lecours et al.,
2016a). Further research including terrain attribute predictors for
sediment deposition could prove invaluable for improving the
picture of sedimentary OC on the shelf (Diesing et al., 2021).

Finally, the United Kingdom is in a favourable position of
having wide-scale sediment mapping across the EEZ with high
confidence (Kaskela et al., 2019). Other maritime nations may not
be in such a position and the use of MBES allows both substrates
and OC to be investigated and mapped in parallel (Smeaton
et al., 2021) and OC stocks to be subsequently calculated
(Avelar et al., 2017).

Recommendations
We recognise that this study was constrained by a combination
of temporally asynchronous primary and secondary data and a
limited number of spatial OC observations (approximately one
grab per 51 km2), which will have likely contributed to the
weaker relationships seen (e.g., O’Carroll et al., 2017). However,
despite this, we believe the results for this approach to mapping
OC are promising. Looking forward, we would recommend that
future national MBES surveys collect and preserve ground-truth
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samples for sediment and OC analysis. Standard protocols and
analytical procedures should be developed by the community to
allow efficient re-use of data and comparative studies to maximise
the opportunities. Secondary datasets can be used to enhance
studies and data repository initiatives focussed on compiling
contemporary sedimentary data, such as the MOSAIC initiative,
will undoubtedly serve to improve understanding of sedimentary
C processes (van der Voort et al., 2021). Sampling designs for
ground-truthing could potentially be improved by incorporating
primary MBES and secondary terrain attribute information at
different scales before classification (Misiuk et al., 2018). The
classification approach prior to sampling in this study versus
that of Hunt et al. (2020) was less successful in differentiating
substrates due to the influence of bathymetry, thus sampling
approaches could consider the environment being surveyed; for
instance, a higher proportion of samples could be collected
within homogenous backscatter areas in dynamic coastal settings
and/or camera tows are additional cost-effective tools to improve
substrate classification (Kenny et al., 2003) prior to sampling.
Small gradient changes in substrates present mapping challenges
(Diesing et al., 2020), and could have a large impact on the overall
C processing dynamics (Hicks et al., 2017).

Spatial Patterns of Sedimentary Organic
Carbon Stocks in the Moray Firth
Organic carbon content ranges from∼0.2 to 1.5% (Figure 8) and
we estimate that the total stock of sedimentary OC within the
surface 10 cm for the MBES survey area is between 3.0 and 3.1 Mt
of OC (Table 2). The MBES footprint covers an area of 2,640 km2

and represents∼7% of Scotland’s coastal and inshore waters area;
39,325 km2 (Smeaton et al., 2021). The average OC density for
our study area is thus estimated at approximately 1,144 tonnes
OC km−2 which is in good agreement with the upper estimates
calculated by [Smeaton et al. (2021); 1,060 ± 128 tonnes km−2].
This is not distributed uniformly across the survey area, and we
see variation in response to sediment type and potentially with
localised hydrographic processes. For instance, the two predictive
maps generally show the spatial agreement of enriched OC values
to the southwest of the site in proximity to the estuarine systems
(Figure 8). This region accumulates muddy sand, presumably
from fluvial sources, in combination with a diminishing supply of
carbonate muds that are transported onshore from the northeast
(Reid and McManus, 1987). An interesting observation in our
data relates to the slightly elevated levels of OC seen in the
sediments of the deeper water to the north of the study area
(outlined as “Class 1” in Figure 3). This local region is dominated
by sands, which are permeable sediments and are known to be
centres of efficient OC recycling (Huettel and Rusch, 2000) so the
relatively elevated values of OC are unexpected for this sediment
type. Given that the region falls within a deep channel it is
possible that the local topography might be creating a localised
area of deposition from currents arriving from the northeast
(Goward Brown et al., 2017). To investigate these ideas further,
techniques to elucidate the provenance and therefore fate of
sedimentary OC can help in developing appropriate management
strategies (Geraldi et al., 2019).

Implications for Marine Spatial Planners,
National Carbon Accounts, and Going
Beyond the Inventory
Maps of the spatial distribution of sedimentary OC hotspots can
be valuable to marine spatial planners who have a strategic goal
to manage the seabed in a sustainable manner (Frazão Santos
et al., 2019). Relative to large-scale mapping products of recent
studies (Lee and Phrampus, 2019; Atwood et al., 2020; Legge
et al., 2020; Smeaton et al., 2021), we would argue that regional-
scale OC mapping data may be more practical for planners when
considering the spatial conflicts between anthropogenic activities,
environmental change, and vulnerable C stores. Protection of
the seabed through spatial instruments such as marine protected
areas (MPAs) can provide multiple benefits beyond C protection
and supporting data are critical to identifying priority areas
(Sala et al., 2021).

Marine shelf sea sediments are beyond the current C
accounting frameworks for inclusion in NDCs, national GHG
inventories and other actionable climate policies. However,
there is a growing interest in the incorporation of these very
significant C sinks and stores into accounting frameworks
(Luisetti et al., 2020), as well as recognition of their vulnerability.
Sediments are long-term stores of C on scales that have
provided climate regulation services (Berner and Raiswell, 1983)
but are vulnerable to human activities that cause disturbance
and result in GHG emissions from the remineralisation of
buried C (Macreadie et al., 2019). As explained by Howard
et al. (2017), reporting an ecosystem as part of national GHG
inventories would require in part an assessment of current C
stocks and the geographic area covered. High-resolution OC
maps will therefore have a valuable role in improved marine
C accounting. Further research in sedimentary C hotspots, the
source, and vulnerability of this C is necessary to determine
appropriate accounting and sustainable seabed management
measures (Luisetti et al., 2020).

CONCLUSION

Mapping the spatial distribution of sedimentary OC at regional
scales is important for targeted seabed management measures
which can protect C-rich sediment stores, in addition to
promoting biodiversity, and food provisioning services. We
have utilised an existing MBES dataset to investigate the
potential of acoustic backscatter as a proxy for sediment
type and therefore, to map associated OC. We use LMMs,
a common technique in soil mapping studies, to estimate
OC, comparing Folk sediment type and backscatter as fixed
effect covariates. This study shows that the use of acoustic
backscatter as a predictor covariate for OC improves the
accuracy of the spatial model for OC by 14% and has good
potential to delineate low – high C areas as a function of
sediment type, at finer-scale resolutions than current UK seabed
substrate maps. Inclusion of spatial autocorrelation in the
models improves the quantification of uncertainty, which is
an important consideration for decision-makers. We predict
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that the MBES footprint within the Moray Firth holds between
3.0 and 3.1 Mt of OC in the top 10 cm, an estimate in good
agreement with other modelling studies. This study would have
benefited from more ground-truthing to better characterise the
acoustic backscatter at lower intensities and to increase our
understanding of the effect of spatial autocorrelation on OC.
Despite the relatively limited dataset, the results for OC mapping
using backscatter are promising and support the case for further
research in this area. MBES data could play a pivotal role
in improved spatial predictions for OC across regional scales,
allowing inclusion of OC stocks into national C accounts and thus
supporting broader thinking of marine carbon within nature-
based solutions for climate mitigation, biodiversity preservation,
and sustainable fisheries.
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