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ABSTRACT
Micro-expressions describe unconscious facial movements which
reflect a person’s psychological state even when there is an attempt
to conceal it. Often used in psychological and forensic applications,
their manual recognition requires professional training and is time
consuming. Therefore, achieving automatic recognition by means
of computer vision would confer enormous benefit. Facial Action
Unit (AU) is a coding of facial muscular complexes which can be
independently activated. Each AU represents a specific facial action.
In the present paper, we propose a method for the challenging task
that is the detection of activated AUs when the micro-expression
occurs, which is crucial in the inference of emotion from a video
capturing a micro-expression. This specific problem is made all
the more difficult in the light of limited amounts of data available
and the subtlety of micro-movements. We propose a segmentation
method for key facial sub-regions based on the location of AUs
and facial landmarks, which extracts 11 facial key regions from
each sequence of micro-expression images. AUs are assigned to
different local areas for multi-label classification. Considering that
there is little prior work on the specific task of detection of AU
activation in the existing literature on micro-expression analysis,
for the evaluation of the proposed method we design an AU inde-
pendent cross-validation method and adopt Unweighted Average
Recall (UAR), Unweighted F1-score (UF1), and their average as the
scoring criteria. Evaluated using the established standards in the
field and compared with previous work, our approach is shown to
exhibit state-of-the-art performance.
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1 INTRODUCTION
Facial expressions can reflect human emotions. Due to different
cultural environments, individuals use different languages to com-
municate, but their emotions are expressed by the same facial ex-
pressions [4]. In addition to the regular macro-expressions which
take place on larger time scales, small and speedy movements that
are inadvertently exhibited for short periods of time, better reveal
emotions which individuals attempt to conceal. Ekman et al. [3] first
reported on a case of these particular expressions. In a recording of a
conversation between a psychiatrist and a depression patient, there
are occasional frames with very painful expressions of a patient
otherwise displaying a happy appearance in the video. Researchers
call that kind of fast, unconscious, spontaneous facial movements
such people produce when they experience intense emotions,Micro-
Expressions. Micro-expressions usually happen within less than 0.5
seconds. If the occurrence of micro-expressions is detected and the
emotional meaning represented by them is recognized, the real
mental activities of individuals could be accurately identified.

Facial actions are different from facial expressions. Facial action
units (AUs) refer to muscular complexes which are activated during
facial movements. External factors such as a gust of wind blowing
across the face also cause AU activation. Facial expressions are re-
flected by facial movements caused by some mental activities (such
as emotion). Micro-expressions are unconscious expressions that
appear when a person tries to suppress or hide emotions [6]. The
correct recognition of micro-expressions helps us understand real
emotions, so it can be an essential basis for identifying individuals’
subjective feelings in the context of public safety or psychotherapy,
for example. The most intuitive method of identifying the emotions
represented in the micro-expressions is to analyse the AUs included
in the micro-expressions, which is also the current method of man-
ually recognising micro-expressions. Therefore, facial AUs could
also be considered as an intermediate variable during automatic
recognition between micro-expressions and emotions.

Due to the small range of movement and the short duration of fa-
cial movements when micro-expressions happen, individuals need
professional training to recognize micro-expressions manually. The
human based processes of training as well as recognition itself
are time demanding, yet the recognition accuracy is still not satis-
factory for most practical purposes. Many researchers have tried
using and developing new computer vision techniques to recog-
nize micro-expressions automatically. This automatically approach
to the identification of micro-expressions has unique advantages,
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Figure 1: Example of AUs detected from a micro-expression and recognized to an emotion.

which significantly improves the feasibility of micro-expression ap-
plications. No matter how fast the facial movement is, as long as the
camera records it, the computer can obtain the corresponding infor-
mation and process it. In addition, once an efficient and stable model
is trained, it can process large volumes of micro-expression data at
low cost, which far exceeds the efficiency of manual recognition of
micro-expressions by professionals. Thus, some research uses high-
speed cameras for the collection of micro-expressions. Recently, fol-
lowing the publication of open-source micro-expression databases,
the amount of work related to micro-expressions increased every
year. Research thus far all but invariably uses 3DHOG [15], LBP-
TOP [14], HOOF [12] and their variations or deep learning methods
as features.

However, most previous work focuses on emotion recognition
directly, even some considered AUs as supplementary features [9,
13, 18], there is tiny work about micro-expression AU detection
task specifically. In this paper, we focus on the AU detection task
for micro-expression analysis and demonstrate our proposed frame-
work can achieve the effect of state-the-art in the task, even without
deep learning methods. In addition, Since our method does not use
deep learning, it does not require a lot of time for training and run.
It can almost meet the requirement of real-time detection. Taking
CASME II as an example, it only takes about 1s to complete the AU
detection test of all samples using our framework.

The mean contributions of this paper are as follows:
(1) We proposed a novel facial key subregion segmentation

method based on the facial muscle of AU activated and
a novel framework to detect multi-labelled facial micro-
expression AUs by transfer a big multi-label classification to
several small ones based on the segmented regions.

(2) We design anAU independent 5-fold cross-validationmethod
for Facial AU detection in micro-expression and conduct
intensive experiments on two publicly micro-expression
databases with AU labels. The results represent the effective-
ness of our approach.

2 RELATEDWORK
The majority of research on micro-expression analysis before 2019
relies on low-level feature extraction in the form of LBP-TOP,
3DHOG, HOOF and similar extensions thereof [? ]. In recent years,
the application of deep learning has been increasing steadily, which
is a trend which we expect to continue in the near to medium future.

LBP-TOP (Local Binary Patterns on Three orthogonal Planes)
is a feature type which extends the traditional Local Binary Pat-
terns (LBP) to three dimensions. It is one of the earliest methods
of extracting micro-expressions features [14]. This method is rep-
resentative of the majority of the work in the area and provides
a reliable verification and comparison method for the subsequent
micro-expression recognition work. Therefore, LBP-TOP and its
extensions are most popular methods in micro-expression recogni-
tion research. LBP-SIP (Local Binary Pattern with Six Intersection
Points) [17] extends LBP features for micro-expression recognition
from another perspective. The main improvement of this work is
to reduce the dimension of features and improve the efficiency of
feature extraction. CBP (Centralized Binary Pattern) [5] is another
improvement to the local binary pattern. The main contribution is
that the value is the difference between the average value of the
centre point and the neighbouring points, so the corresponding
binary code length is half of LBP and the histogram dimension is
lower.

3DHOG (3D Histograms of Oriented Gradients) [15] uses a gra-
dient feature to describe the spatial and temporal local dynamics of
the face. The feature extraction method of this work is an extension
of the planar gradient histogram. The model construction process
can be regarded as a 𝑘-nearest neighbour model constructed with
the help of the k-means algorithm. Its key limitation stems from the
fact that although the number of facial muscles involved in micro-
expressions is small, the assumption that only one AU is activated
is overly crude. HOOF (Histogram of Oriented Optical Flow) meth-
ods uses the optical flow field as the basic feature to describe the
micro-expression movement. Liu et al. [12] proposed MDMO (Main
directional mean optical flow feature) to extract the main direction
in the video sequence and calculate the average optical flow feature
in the face block. Xu et al. [19] proposed another feature extraction
method based on HOOF, FDM (Facial Dynamics Map). This method
can better reflect the movement features of micro-expressions, and
the calculated features of the facial dynamic spectrum which are
easy to visualize. Thus it can be used to assist in the understanding
of micro-expressions. Its main drawback is that the computation of
the dense optical flow field is time-consuming, which is not suitable
for real-time, large-scale micro-expression recognition.

Within the realm of traditional micro-expression feature extrac-
tion methods, LBP-TOP performs better than 3DHOG and HOOF in
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Figure 2: Framework of the proposed method.

high-resolution images. However, in low-resolution data, the perfor-
mance ranking is reversed, which suggests that LBP-TOP depends
more on spatial information (𝑋𝑌 ), whereas HOOF and 3DHOG are
more dependent on temporal variation (𝑋𝑇 and 𝑌𝑇 ). Unlike these
‘conventional’ computer vision based methods which rely on hand-
crafted feature descriptors, the recent emergence of deep learning
methods helped further increase the accuracy of micro-expression
recognition; a variety of CNN (convolutional neural network) based
methods for automatic extraction micro-expression features have
now been proposed.

Most of these address micro-expression recognition and a small
number focus on micro-expression spotting. Only the work of Li
et al. [11] focuses on AU detection in micro-expressions as we
do herein. They apply a channel attention module and a spatial
attention module on 3DResNet to capture regional changes and
the relationship of facial regions. In addition, they treat every AU
detection as a specific task instead of adopting a multi-label learn-
ing approach for all AUs, which is not a common practice in AU
detection tasks.

3 PROPOSED METHOD
Recall that our main aim in the present work is the identification of
AUs activated during a facial micro-expression. Thus, the method
we propose can be broadly seen as comprising the following stages:
facial sub-region segmentation, facial sub-region feature extraction,
and multi-label classification. These are summarized in Figure 2
and explained in detail hereafter.

3.1 Local Facial Region Segmentation
Facial Action Coding System [4] is currently recognized as the
universal norm for encoding facial actions, which associates each
facial action with an AU. It also forms the basis for the standard
labelling of facial movements in micro-expression datasets. Hence,
the overarching aim of the present work is to detect from a se-
quence of images all AUs activated when a micro-expression is
displayed (n.b. the majority of micro-expressions using in emo-
tion inference involve the activation of multiple AUs). Since AUs
are by design canonical, elementary primitives used to describe
facial movement, it is a corollary of the anatomical structure of
the face that a specific AU is spatially localized i.e. it corresponds
to a specified sub-region of the face. For example, the common
units AU1, AU2, and AU4 describe movement only in the eyebrow
area. Therefore, segmenting the face into multiple sub-regions and
identifying the AUs that appear in each specific sub-region is less

complicated than concurrently identifying all AUs that activate
across the entire face area. Mirroring the spatial layout of AUs, we
propose a segmentation method which segments the facial region
into 11 sub-regions, specifically: Left and Right Brow, Left and Right
Eye, Left and Right Cheek, Left and Right Nasolabial Area, Nose,
Mouth, and Chin.

Our local facial region segmentation method is based on facial
landmark detection – a crucial step in many face recognition and
analysis algorithms. The task involves the localization of salient
areas of a face, such as the eyebrows, eyes, nose, mouth, or the face
contour, from a given image of a face.

We pursued the standard 68 key-point positioning strategy. The
specific landmarks recognition results is summarized in Figure 3.
We used the ERT (Ensemble of Regression Trees) [8] algorithm, a
regression tree method based on gradient improvement learning,
to localize these key points of the face. The ERT uses cascading
regression factors and several GBDTs (Gradient Boosted Decision
Trees) whose leaf nodes store the residual. When the input falls
onto a node, the residual is added to the input for the purpose of
regression correction. Finally, all the residuals are superimposed to
obtain the final face point position.

Figure 3: An example of detected landmarks in a micro-
expression image from CASME II database.

As each micro-expression is exhibited over a short period, and
the range of the corresponding muscular movement is small, the
person’s pose does not change significantly. Therefore, it is not
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necessary to detect all the facial key points of each frame in a micro-
expression image sequence.We select the central frame of the image
sequence as the reference image to identify facial landmarks and
extend the result to each frame of this micro-expression image
sequence. After that, we propose a segmentation method of facial
sub-regions based on 68 facial landmarks in each micro-expression
sequence.

As shown in Figure 3, points 27–30 can be used to determine
the centre line of the nose that can be established within the facial
range in the image. This line is used as the vertical line of the entire
face area during our segmentation process. During the decision of
each sub-region of face, the sub-region image will rotate according
to this vertical line to ensure that images of all facial sub-regions
are in vertical state. The specific distribution of choice 11 face sub-
regions is shown in Figure 4. Eyebrows, eyes, nose, and mouth area
are all determined based on the landmarks that mark them. The
cheek and nasolabial area are determined by the upper and lower
contour points of the face and the landmarks of the upper part of
the lips (for example, points 0, 4 and 50). The chin is determined by
the lower lip point 57 and the lowest point 8 of the facial contour.

3.2 Sub-regional Feature Extraction and
Multi-label Classification

The LBP-TOP feature extraction method is representative of the
bulk of micro-expression recognition research and is often used
as a baseline model in new micro-expression research. LBP-TOP
features capture the relationship between the appearance of a pixel
and its neighbourhood. In order to encode the spatio-temporal co-
occurrence model, feature extraction is performed on the 𝑋𝑌 plane,
𝑋𝑇 plane and 𝑌𝑇 plane in the image sequence. We used the method
provided in [7] to set the radius 𝑅𝑋 , 𝑅𝑌 , 𝑅𝑇 on three space-time
axes (𝑋,𝑌,𝑇 ). After setting the number of samples on three spaces
𝑃𝑋𝑌 , 𝑃𝑋𝑇 , 𝑃𝑌𝑇 , on the space-time plane, an ellipse determined by
the corresponding axes in each space-time plane is used to sample
points uniformly to calculate the local binary mode on each plane.
After that, the histogram of data in each facial sub-region is used to
find the unified features of each facial AU. In the proposed method,
LBP-TOP feature extraction is performed on the image sequence
of each facial key sub-region, instead of the entire face. In this
way, features can be focused on the key parts of the face that are
meaningful in micro-expressions. We can also ignore the facial
information unrelated to emotion and AUs, which can make the
feature used in learning more specific.

After extracting the features of each facial sub-region, we per-
form multi-label classification based on multiple AU labelled micro-
expressions. Traditional supervised learning by and large focuses
on single-label learning. However, the target samples in real life
are often more complex, with multiple semantics, and containing
multiple labels. In particular, in our micro-expression AU detection
work, most of the expressions are composed of more than one active
facial AUs, making multi-label learning the natural choice.

Our strategy of multi-label classification is to transform the prob-
lem structurally, to make the extracted features more readily usable
by existing single-label learning algorithms. Firstly, we apply the
Label Powerset (LP) algorithm to transform a multi-label learning
problem into a multi-class (single-label) classification task. This

Figure 4: An example of segmentation areas of micro-
expression image from CASME II database.

is achieved by learning one single-label classifier ℎ : 𝑋 → 𝑃 (𝐿),
where 𝐿 is a set of disjoint labels, 𝑃 (𝐿) is the powerset of 𝐿, contain-
ing all possible label subsets. The label set predicted by LP is already
in the training set, and it cannot be generalized to the unseen label
set. In order to overcome this limitation of LP, the LP classifier used
by Random 𝑘-labelsets (RAkELd) [16] only trains a subset of length
𝑘 in 𝑌 output dataset and then integrates a large number of LP
classifiers to predict. In general, this type of method considers the
relationship between the class labels, but for datasets with many
class labels and a large amount of data, the computational complex-
ity of problem transformation is an obvious limitation. However,
micro-expression datasets are not big enough and our facial sub-
region segmentation work reduced the number of labels of each
sample. So, this limitation of these methods has little effect in the
present context.

The main purpose of employing the LP algorithm is to convert
the multi-label classification problem into a single-label one. Every
combination of different labels is henceforth considered as a class
in itself. This algorithm will generate more classes when there are
more labels. Therefore, if it is applied to the entire face image since
the number of all micro-expression AUs appearing on the entire
face is large, the result of learning when they are all used as labels
in one multi-label classification is very poor. However, after we
segment the face according to the range of AUs, the number of AUs
that may appear in each salient area is much lower across than the
whole facial region. Hence, segmentation is crucial in preventing
an excessive increase of the computational cost of the LP algorithm,
resulting in far better performance. RAkELd algorithm is a variant
of the LP algorithm. It converts an LP from multiple labels into
multiple LPs of length 𝑘 to predict the results jointly. This method
can effectively reduce complexity when there are too many types
of labels in the LP algorithm. When we apply these two multi-
label classifiers in actual experiments, the results of the LP are
better than RAkELd. Therefore, LP is used as the final multi-label
classification strategy in our approach. Finally, we apply adopt
the Gaussian Naïve Bayes algorithm on the extracted sub-regional
features to learn a model of multi-labelled AUs activated during
micro-expressions.
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4 EVALUATION
The four datasets most widely used in the existing literature on
micro-expression recognition and analysis are SMIC [10] (without
AU labels), CASME [21], CASME II [20] and SAMM [2]. It is im-
portant to emphasise that all of the aforementioned corpora were
acquired in relatively controlled conditions for the specific purpose
of micro-expression analysis. In particular, the data acquisition pro-
cess involved the participants watching emotional videos while
attempting to hide the facial expression of the aroused emotions.
Thus, they are more standardized and easier to process than the
datasets of faces in the wild. Considering that the duration of a
micro-expression is usually under 0.5s, in order to capture more
frames of images during the occurrence of micro-expressions, data
is usually acquired using high-speed cameras. SAMM and CASME II
contain data with the highest frame rate of 200 frames per second.
In order to test the effectiveness of our method, we apply it first on
CASME II and then the combination of CASME II and SAMM.

4.1 Data Preparation
For our experiments we chose to adopt the use of the CASME II data-
base [20], which is widely used in the field owing to its size and high
video frame rate. Its collection method is spontaneously induced,
which is representative of the real-world conditions. Professional
psychologists have marked all AUs in each micro-expression image
sequence. A total of 19 AUs were included in CASME II, namely AU
1, 2, 4–7, 9, 10, 12, 14–18, 20, 24–26 and 38. In our experiment, the
11 facial sub-regions are the smallest modules. Therefore, these 19
AUs are separated into each sub-region according to the area where
they appear. However, because some AUs may appear in both left
and right half of the face, such as AU1, Inner Brow Raiser, they are
included in both left and right facial areas. In addition, the original
labels in CASME II also include some single-side AUs, such as L1,
L2 and R4. Therefore, we divide AUs which are activated in both
sides into two parts. For example, the initial both-side label AU1 is
relabelled as L1&R1, the initial single-side label L1 remains. Finally,
in our experiment, a total of 26 AUs were included. The specific
AUs included in each facial sub-region are shown in Table 2.

The types of AUs labelled in the SAMMmicro-expression dataset
are more abundant than those in CASME II. However, there are
several rare AUs only activated in one or two samples of micro-
expression. After analysis the AU labels in SAMM and CASME II,
we find the relabelled AUs we previously described for CASME II
are the most common ones in both datasets. In order to unify the
evaluation criteria of the experiment, we only used the 26 AUs as
we described and relabeled AUs of samples in SAMM. The other
rare AU labels were deleted, and only the AUs in Table 2 were used
for the experiment. Due to there are no AU16 and AU38 labelled in
SAMM, the final AU number applied in SAMM is 24.

4.2 Metrics
The frequency of activation of AUs is different across facial ex-
pressions. Some AUs are more commonly activated than others,
such as AU4, Brow Lowerer, which is the most frequently engaged
AU. AU26, Jaw Drop, is activated less in micro-expressions than
others, especially when participants are asked to suppress their
expressions. Therefore, in the model training process, in order to

make sure that all the AUs’ features could be learned, we randomly
separate data that each AU appears in each facial sub-region into
5 folds and each time 4 of them as a training set. Thus, we ensure
that samples of all AUs are in our training corpus. The remaining
subset of the micro-expression data is used as a test dataset to eval-
uate the final algorithm results. In this way, an AU independent
5-fold cross-validation strategy is applied to evaluate the proposed
method.

As emphasised already, there is virtually no AU detection work
in the context of micro-expressions and no standard metrics which
could be used for evaluation in this realm. Therefore, we adopt the
evaluation approaches from other AU detection work, as well as
the metrics used in as related as possible micro-expression analysis
problems. Accuracy and F1-score arewidely used criteria in bothAU
detection and micro-expression recognition. The distribution of the
number of each AU in the micro-expression database is unbalanced,
so we choose Unweighted F1-score (UF1), and Unweighted Average
Recall (UAR) to show the performance of our approach and equalize
the influence of each AU.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =

∑𝐹
𝑖=1𝑇𝑃𝑖,𝑐∑𝑆

𝑖=1𝑇𝑃𝑖,𝑐 +
∑𝐹
𝑖=1 𝐹𝑃𝑖,𝑐

, (1)

𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =

∑𝐹
𝑖=1𝑇𝑃𝑖,𝑐∑𝑆

𝑖=1𝑇𝑃𝑖,𝑐 +
∑𝐹
𝑖=1 𝐹𝑁𝑖,𝑐

, (2)

F1-score𝑐 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑐
, (3)

𝑈𝐹1 =
∑𝐶
𝑐=1 F1-score𝑐

𝐶
, (4)

𝑈𝐴𝑅 =

∑𝐶
𝑐=1

∑𝑆
𝑖=1𝑇𝑃𝑖,𝑐
𝑁𝑐

𝐶
, (5)

where 𝑇𝑃𝑖,𝑐 , 𝐹𝑃𝑖,𝑐 and 𝐹𝑁𝑖,𝑐 are true positive, false positive and
false negative for each class 𝑐 (of 𝐶 AUs, 26 in our experiments),
when samples of fold 𝑖 as test set. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 represent
the fraction of𝐴𝑈𝑐 is correctly identified and the number of correct
detections of 𝐴𝑈𝑐 over the actual number of samples with 𝐴𝑈𝑐

active. 𝐹 is the number of fold (5), and 𝑁 is the total number of
samples. After obtaining the average of UAR and UF1, this quantity
is used as the final evaluation score, which is also the comparison
criterion used in the EmotionNet Challenge [1] (a popular AU
detection challenge “in the wild”).

In addition, in order to make a clearer comparison with the work
of Li et al. [11], we also adopted their subject independent 4-fold
cross validation on CASME II and SAMM. Nevertheless, we still
use our multi-label learning for 26 AUs, as all of the AUs chosen
by Li et al. are amongst these.

4.3 Summary of Results
The test results of the models trained on CASME II, SAMM and
CASME II & SAMM by our method are shown in Table 1. Firstly,
observe that the proposed approach achieves excellent results across
the different micro-expression databases, testifying to the value of
our multi-label AU detection based approach. It is also important
to note the model performed equally well across the entire set of
AUs. This finding demonstrates that our method can effectively
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CASME2 SAMM CASME2&SAMM
AU Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
L1 0.7729 0.6563 0.7146 0.9466 0.7525 0.8495 0.6361 0.5314 0.5838
R1 0.7649 0.5970 0.6810 0.9084 0.6006 0.7545 0.6516 0.4380 0.5448
L2 0.7656 0.6020 0.6838 0.7863 0.5492 0.6677 0.6411 0.5166 0.5789
R2 0.8433 0.6170 0.7301 0.7634 0.4889 0.6261 0.7018 0.4356 0.5687
L4 0.6813 0.6720 0.6767 0.8626 0.6796 0.7711 0.7030 0.6555 0.6792
R4 0.5037 0.4866 0.4951 0.8168 0.4876 0.6522 0.5664 0.5374 0.5519
L5 0.9728 0.7597 0.8662 0.7109 0.4155 0.5632 0.7818 0.4815 0.6317
R5 0.9572 0.4891 0.7231 0.7344 0.4505 0.5924 0.7714 0.4764 0.6239
L6 0.5804 0.3758 0.4781 0.9844 0.4961 0.7402 0.4569 0.3177 0.3873
R6 0.6902 0.4084 0.5493 0.9531 0.4880 0.7206 0.6527 0.3949 0.5238
L7 0.6070 0.4974 0.5522 0.5156 0.4507 0.4832 0.8234 0.6891 0.7563
R7 0.5720 0.4448 0.5084 0.5156 0.4572 0.4864 0.8234 0.6688 0.7461
9 0.7490 0.4431 0.5960 0.7734 0.4678 0.6206 0.7363 0.4241 0.5802
10 0.7985 0.5580 0.6782 0.9044 0.4749 0.6897 0.8947 0.5967 0.7457
12 0.6844 0.5645 0.6245 0.6471 0.5810 0.6140 0.6291 0.5158 0.5724
L14 0.7255 0.4205 0.5730 0.7344 0.4234 0.5789 0.4465 0.3312 0.3888
R14 0.7569 0.4987 0.6278 0.7422 0.4539 0.5980 0.3760 0.2919 0.3339
15 0.8821 0.6634 0.7728 0.9926 0.9425 0.9676 0.5564 0.4227 0.4896
16 0.9848 0.8294 0.9071 - - - 0.9900 0.8308 0.9104
17 0.7137 0.5118 0.6128 0.7891 0.4410 0.6151 0.4909 0.4015 0.4462
18 0.9962 0.4990 0.7476 0.9779 0.7801 0.8790 0.9424 0.4852 0.7138
20 0.9924 0.4981 0.7452 0.9265 0.4809 0.7037 0.8997 0.4736 0.6867
24 0.9620 0.6331 0.7975 0.9706 0.8256 0.8981 0.9599 0.7039 0.8319
25 0.9924 0.4981 0.7452 0.9338 0.7176 0.8257 0.9599 0.5897 0.7748
26 0.9961 0.4990 0.7475 0.9141 0.5543 0.7342 0.9086 0.4761 0.6923
38 0.9922 0.4980 0.7451 - - - 0.9948 0.4987 0.7467

UAR UF1 Score UAR UF1 Score UAR UF1 Score
Final 0.7309 0.5347 0.6328 0.7823 0.5128 0.6476 0.6642 0.4884 0.5763

Table 1: Experimental scores on CASME II, SAMM and CASME II & SAMM with AU independent 5-fold cross-validation

Facial Sub-region AUs
Left Brow L1, L2, L4
Right Brow R1, R2, R4
Left Eye L5, L7
Right Eye R5, R7
Left Cheek L6
Right Cheek R6
Nose 9, 38
Mouth 10, 12, 15, 16, 18, 20, 24, 25
Chin 17, 26
Left Nasolabial Area L14
Right Nasolabial Area R14

Table 2: AUs in each local key facial sub-regions

address the challenge posed by highly unbalanced multi-labelled
data, which is crucial for real-world applicability.

The performance of our method evaluated by AU independent
5-fold cross-validation of three experiments is summarized in Ta-
ble 1. The results of the experiments conducted on CASME II &
SAMM show little deterioration s compared with those obtained by
using only CASME II or SAMM data. A possible cause of the slight

performance drop may lie in the fact that the SAMM database is
more ethnically diverse – CASME II contains data from only one
ethnic group, whereas SAMM includes 13 different ethnicities. It
is also worth noting that the data acquisition protocols utilized
for the collection of the two datasets are different, making the AU
detection task on their composite is harder than when no such
confounding is present.

As for the subject independent 4-fold cross-validation in Table 3
and Table 4, only F1-score is applied for a fair comparison. The
advantages of our approach in addressing the problem of unbal-
anced data are clearly demonstrated by this comparison. The results
show that the proposed method’s F1-score corresponding to each
individual AUs lies between 0.4 and 0.6. This is in contrast with
other methods, which exhibit dependency on the frequency of AU
activations. For example, AU4 is the most commonly activated AU
in CASME II, so our competitors’ detection of other AU is much
worse than that of AU4. In summary, our method comprehensively
exhibits state-of-the-art performance, out performing the otherwise
leading methods in the literature.
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AU LBP-TOP [14] LBP-SIP [17] 3DHOG [15] SCA[11] Ours
1 0.1057 0.2308 0.2771 0.2857 0.4678
2 0.4985 0.3892 0.2769 0.4532 0.4786
4 0.7324 0.7354 0.7012 0.8877 0.5706
7 0.0635 0.0888 0.0000 0.2473 0.5160
12 0.2386 0.2143 0.0526 0.4792 0.5528
14 0.2185 0.2979 0.0000 0.3327 0.5070
15 0.0000 0.4318 0.0000 0.3954 0.4754
17 0.1667 0.4287 0.1212 0.5159 0.4776
UF1 0.2530 0.3521 0.1786 0.4496 0.5057

Table 3: F1-scores on CASME II dataset, with subject independent 4-fold cross-validation

AU LBP-TOP [14] LBP-SIP [17] 3DHOG [15] SCA[11] Ours
2 0.2652 0.2144 0.0000 0.3289 0.4873
4 0.1538 0.0556 0.1667 0.1297 0.4692
7 0.4603 0.0400 0.2330 0.4876 0.4072
12 0.2376 0.0000 0.0833 0.4218 0.4541
UF1 0.2792 0.0775 0.1208 0.3420 0.4545

Table 4: F1-scores on SAMM dataset, with subject independent 4-fold cross-validation

5 CONCLUSION
In this paper, we proposed a method for facial Action Unit (AU) de-
tection in micro-expressions achieved by facial sub-region segmen-
tation and multi-label classification in this paper. The approach was
empirically evaluated on two popular and publicly available micro-
expression databases, namely CASME II and SAMM, on which it
is shown to achieve state of the art results. The proposed facial
sub-region segmentation method is based on facial landmarks and
facial AU distribution positions. The features of key facial areas
are extracted, and the micro-expression AUs separated into 11 key
facial sub-regions to perform the multi-label classification. The
essence of the novelty is the division of labels in a large number
of multi-labels into a set of multiple small-number multi-label clas-
sifications to determine the final result of each label jointly. We
focus on achieving AU multi-label classification by refining facial
sub-regions by where the AUs are located.

By means of AU independent 5-fold cross-validation and a com-
prehensive comparison with the leading methods in the literature
using subject independent 4-fold cross-validation, it is shown that
the proposed method is successful in addressing the difficulty of
micro-expression AU detection caused by unbalanced data – our
approach was shown to achieve state-of-the-art results, outperform-
ing its competitors. The proposed methods also opens a range of
avenues for future research and further improvement. Amongst
these, one of the most obvious ones is the optimization of feature
extraction and multi-label classification algorithms. In addition, in
future we will attempt to use the proposed method to the learn the
mapping from micro-expressions to actual human emotions.
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