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Abstract
We build on the recent characterisation of congruences
on the infinite twisted partition monoids Φ𝑛 and their
finite 𝑑-twisted homomorphic images Φ𝑛,𝑑, and investi-
gate their algebraic and order-theoretic properties. We
prove that each congruence of Φ𝑛 is (finitely) gener-
ated by at most ⌈ 5𝑛2 ⌉ pairs, and we characterise the prin-
cipal ones. We also prove that the congruence lattice
Cong(Φ𝑛 ) is not modular (or distributive); it has no infi-
nite ascending chains, but it does have infinite descend-
ing chains and infinite anti-chains. By way of contrast,
the lattice Cong(Φ𝑛,𝑑) is modular but still not distribu-
tive for 𝑑 > 0, while Cong(Φ𝑛,0) is distributive. We also
calculate the number of congruences of Φ𝑛,𝑑, showing
that the array (|Cong(Φ𝑛,𝑑)|)𝑛,𝑑⩾0 has a rational generat-
ing function, and that for a fixed 𝑛 or 𝑑, |Cong(Φ𝑛,𝑑)| is
a polynomial in 𝑑 or 𝑛 ⩾ 4, respectively.
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1 INTRODUCTION

The twisted partition monoid Φ𝑛 is a countably infinite monoid obtained from the classical finite
partition monoid 𝑛 [8, 9, 14] by taking into account the number of floating components formed
when multiplying partitions. Its finite 𝑑-twisted images Φ𝑛,𝑑 are obtained by limiting the num-
ber of floating components to at most 𝑑, and collapsing all other elements to zero. The congru-
ences on these monoids have been determined in [4], where the reader may also find further
background and additional references; see also [1–3]. In this paper we harness the power of the
classification from [4] to investigate the algebraic properties of congruences on Φ𝑛 and Φ𝑛,𝑑, and
the combinatorial/order-theoretic properties of the congruence latticesCong(Φ𝑛 ) andCong(Φ𝑛,𝑑).
We refer the reader to [4, Section 1] and references therein for the context and background for the
investigation presented in the two papers.
Before we discuss the results of this paper, it is instructive to recall the situation for the parti-

tion monoid 𝑛 itself, whose congruences were determined in [1]. The classification is stated in
Theorem 2.2 below, and the congruence lattice Cong(𝑛) is shown in Figure 1. From the figure,
a number of facts are easily verified: The lattice has size 3𝑛 + 8 for 𝑛 ⩾ 4; it has three atoms,
and a single co-atom; it is distributive, and hence also modular (because it does not contain any
five-element diamond or pentagon sublattice). It was shown in [1, Section 5] that all but three con-
gruences of 𝑛 are principal, and those that are not (denoted 𝜇2 , 𝜆2 and 𝜌2) are generated by
two pairs. Certain structural properties of the monoid 𝑛 are responsible for the ‘neat’ structure
of the lattice Cong(𝑛), as seen in Figure 1. These include the following: The ideals of 𝑛 form a
(finite) chain; the maximal subgroups of 𝑛 are (finite) symmetric groups 𝑞 (𝑞 = 0, 1, … , 𝑛), the
normal subgroups of which also form (finite) chains; and theminimal ideal is a rectangular band.
The ideal structure of the twisted monoid Φ𝑛 is very different to that of 𝑛: There are

infinitely many ideals; they do not form a chain; and there is no minimal ideal. These facts
alone already lead to a substantially more complicated structure of the lattice Cong(Φ𝑛 ), includ-
ing the existence of infinite descending chains; we will also see that it has infinite anti-chains,
though by contrast it has no infinite ascending chains (Theorem 4.3). This property of ascend-
ing chains implies that every congruence on Φ𝑛 is finitely generated, and this in turn implies
that Cong(Φ𝑛 ) is countable, as also follows directly from the classification in [4]. In fact, a
much stronger property than finite generation holds: Theorem 5.7 shows that every congru-
ence is generated by at most ⌈ 5𝑛2 ⌉ pairs. We also show that there is no constant bound (inde-
pendent of 𝑛) on the number of pairs needed to generate congruences of Φ𝑛 (Remark 5.11),
and classify the principal congruences (Theorem 5.2). Other order-theoretic properties of the
lattice Cong(Φ𝑛 ) include the following. The lattice has a single co-atom, but no atoms (The-
orem 4.1). The latter says that the trivial congruence has no covers in the lattice; in fact,
every congruence has only finitely many covers, though some congruences cover infinitely
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F IGURE 1 The Hasse diagram of Cong(𝑛); see Theorem 2.2. Rees congruences are indicated in blue outline

many congruences (Theorem 4.4). In another marked divergence with the ordinary finite
partition monoid 𝑛, the lattice Cong(Φ𝑛 ) contains five-element diamond and pentagon sublat-
tices, meaning that it is neither distributive nor modular (Theorem 4.6).
Other infinite structures related to the finite partition monoids arise by allowing an infinite

base set [2], or by considering partition categories [3], where the sizes of the (finite) base sets
can be unbounded. Again contrasting with Φ𝑛 , the congruence lattices in these cases are always
distributive and well quasi-ordered (so have no infinite descending chains and no infinite anti-
chains), but have infinite ascending chains; congruences can be non-finitely generated.
The situation for the finite 𝑑-twisted monoids Φ𝑛,𝑑 is as follows. First, the lattice Cong(Φ𝑛,𝑑)

is of course finite. In fact, we will obtain an exact formula for |Cong(Φ𝑛,𝑑)|, and show that for
fixed 𝑛 ⩾ 0 or 𝑑 ⩾ 0, |Cong(Φ𝑛,𝑑)| is a polynomial in 𝑑 ⩾ 0 or 𝑛 ⩾ 4, respectively (Theorem 9.16).
Asymptotically, for fixed 𝑑 ⩾ 0 we have |Cong(Φ𝑛,𝑑)| ∼ (3𝑛)𝑑+1∕(𝑑 + 1)! as 𝑛 → ∞, and for fixed𝑛 ⩾ 4 we have |Cong(Φ𝑛,𝑑)| ∼ 13𝑑3𝑛−1∕(3𝑛 − 1)! as 𝑑 → ∞ (Remark 9.19). We also show that the
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array (|Cong(Φ𝑛,𝑑)|)𝑛,𝑑⩾0 has a rational generating function; this is given explicitly in (9.17). Con-
gruences on Φ𝑛,𝑑 continue to be generated by at most ⌈ 5𝑛2 ⌉ pairs (Corollary 8.2); the principal
congruences are classified in Theorem 8.1. Finiteness of the lattice Cong(Φ𝑛,𝑑) implies the exis-
tence of atom(s) and co-atom(s), and as we explain at the beginning of Section 7, it has precisely
one of each. In Theorem 7.1 we show that Cong(Φ𝑛,0) is distributive (and hence modular), while
for 𝑑 ⩾ 1, Cong(Φ𝑛,𝑑) is modular, but not distributive. Distributivity of the lattices Cong(Φ𝑛,0) and
Cong(𝑛) is one of several properties shared by the 0-twisted monoid Φ𝑛,0 and the (ordinary)
monoid 𝑛; for some others, see Remarks 6.5 and 8.3, and compare Figures 1 and 7.
The paper is organised as follows. After giving definitions and preliminaries in Section 2, we

review the classification [4] of congruences on Φ𝑛 in Section 3. Section 4 establishes the above-
mentioned properties of the lattice Cong(Φ𝑛 ), including (co-)atoms, (anti-)chains, covers and
(non-)distributivity. Section 5 proves the results on generation of congruences. The 𝑑-twisted
monoids Φ𝑛,𝑑 are treated in Sections 6 (review of the classification), 7 (order-theoretic proper-
ties of the lattice), 8 (generation of congruences) and 9 (enumeration). The cases where 𝑛 ⩽ 1 are
somewhat different, and are given a special treatment throughout.

2 PRELIMINARIES

In this sectionwe give a basic overview ofmonoids and congruences (Subsection 2.1), the partition
monoid 𝑛 and its congruences (Subsections 2.2 and 2.3) and the twisted and 𝑑-twisted partition
monoids Φ𝑛 and Φ𝑛,𝑑 (Subsection 2.4). The exposition will be rapid, and the reader can find a
more detailed introduction in [4]. For congruences of Φ𝑛 and Φ𝑛,𝑑 we will need a more detailed
account, and we postpone this until Sections 3 and 6, respectively.

2.1 Monoids and congruences

Recall that a congruence on a monoid𝑀 is an equivalence relation 𝜎 compatible with the opera-
tion, in the sense that (𝑥, 𝑦) ∈ 𝜎 ⇒ (𝑎𝑥𝑏, 𝑎𝑦𝑏) ∈ 𝜎 for all 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝑀. The set Cong(𝑀) of all
congruences on𝑀 is a lattice under inclusion, with top and bottom elements ∇𝑀 = 𝑀 × 𝑀 andΔ𝑀 = {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑀}.
Given a (possibly empty) ideal 𝐼 of𝑀, we have the Rees congruence 𝑅𝐼 = Δ𝑀 ∪ ∇𝐼 . Associated

to any congruence 𝜎 is the ideal 𝐼(𝜎) defined to be the largest ideal 𝐼 such that 𝑅𝐼 ⊆ 𝜎; when 𝐼(𝜎)
is non-empty, it is the unique 𝜎-class that is an ideal [6, Lemma 6.1.3].
For a set of pairs Ω ⊆ 𝑀 × 𝑀 we write Ω♯ for the congruence on 𝑀 generated by Ω. We write(𝑥, 𝑦)♯ for Ω♯ when Ω = {(𝑥, 𝑦)}, and refer to such a congruence as principal.
Recall also that Green’s relations on the monoid𝑀 are defined, for 𝑥, 𝑦 ∈ 𝑀, by

𝑥 R 𝑦 ⇔ 𝑥𝑀 = 𝑦𝑀, 𝑥 L 𝑦 ⇔ 𝑀𝑥 = 𝑀𝑦, 𝑥 J 𝑦 ⇔ 𝑀𝑥𝑀 = 𝑀𝑦𝑀,
and furtherH = R ∩ L andD = R ∨ L = R◦L = L ◦R. The set𝑀∕J = {𝐽𝑥 ∶ 𝑥 ∈ 𝑀} of all
J -classes of𝑀 has a partial order ≤ defined, for 𝑥, 𝑦 ∈ 𝑀, by

𝐽𝑥 ⩽ 𝐽𝑦 ⇔ 𝑥 ∈ 𝑀𝑦𝑀.
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F IGURE 2 Multiplication of two partitions in 6

2.2 The partition monoid 𝒏
Let 𝑛 ⩾ 1 and write 𝐧 = {1, … , 𝑛} and 𝐧0 = 𝐧 ∪ {0}. We also fix two disjoint copies of 𝐧, namely𝐧′ = {1′, … , 𝑛′} and 𝐧′′ = {1′′, … , 𝑛′′}. The elements of the partition monoid 𝑛 are the set parti-
tions of 𝐧 ∪ 𝐧′; as usual, such a partition is identified with any graph on vertex set 𝐧 ∪ 𝐧′ whose
components are the blocks of the partition. Given two partitions 𝛼, 𝛽 ∈ 𝑛, the product 𝛼𝛽 is
defined as follows. First, let 𝛼↓ be the graph on vertex set 𝐧 ∪ 𝐧′′ obtained by changing every
lower vertex 𝑥′ of 𝛼 to 𝑥′′, and let 𝛽↑ be the graph on vertex set 𝐧′′ ∪ 𝐧′ obtained by changing
every upper vertex 𝑥 of 𝛽 to 𝑥′′. The product graph of the pair (𝛼, 𝛽) is the graph Γ(𝛼, 𝛽) on vertex
set 𝐧 ∪ 𝐧′′ ∪ 𝐧′ whose edge set is the union of the edge sets of 𝛼↓ and 𝛽↑. We then define 𝛼𝛽 to
be the partition of 𝐧 ∪ 𝐧′ such that vertices 𝑥, 𝑦 ∈ 𝐧 ∪ 𝐧′ belong to the same block of 𝛼𝛽 if and
only if 𝑥, 𝑦 belong to the same connected component of Γ(𝛼, 𝛽). Partitions and the formation of
the product can be visualised as shown in Figure 2.
A block of a partition 𝛼 ∈ 𝑛 is called a transversal if it contains both dashed and un-dashed

elements; any other block is either an upper non-transversal (only un-dashed elements) or a lower
non-transversal (only dashed elements).
The (co)domain and (co)kernel of 𝛼 are defined by:

dom𝛼 ∶= {𝑥 ∈ 𝐧 ∶ 𝑥 belongs to a transversal of 𝛼},
codom𝛼 ∶= {𝑥 ∈ 𝐧 ∶ 𝑥′ belongs to a transversal of 𝛼},

ker 𝛼 ∶= {(𝑥, 𝑦) ∈ 𝐧 × 𝐧 ∶ 𝑥 and 𝑦 belong to the same block of 𝛼},
coker 𝛼 ∶= {(𝑥, 𝑦) ∈ 𝐧 × 𝐧 ∶ 𝑥′ and 𝑦′ belong to the same block of 𝛼}.

The rank of 𝛼, denoted rank 𝛼, is the number of transversals of 𝛼. We will typically use the follow-
ing characterisation of Green’s relations on 𝑛 from [5, 19] without explicit reference.

Lemma 2.1. For 𝛼, 𝛽 ∈ 𝑛, we have
(i) 𝛼 R 𝛽 ⇔ dom𝛼 = dom𝛽 and ker 𝛼 = ker 𝛽,
(ii) 𝛼 L 𝛽 ⇔ codom𝛼 = codom𝛽 and coker 𝛼 = coker 𝛽,
(iii) 𝛼 D 𝛽 ⇔ 𝛼 J 𝛽 ⇔ rank𝛼 = rank 𝛽.
TheD = J -classes and non-empty ideals of 𝑛 are the sets

𝐷𝑞 ∶= {𝛼 ∈ 𝑛 ∶ rank 𝛼 = 𝑞} and 𝐼𝑞 ∶= {𝛼 ∈ 𝑛 ∶ rank𝛼 ⩽ 𝑞} for 𝑞 ∈ 𝐧0,
and these are ordered by 𝐷𝑞 ⩽ 𝐷𝑟 ⇔ 𝐼𝑞 ⊆ 𝐼𝑟 ⇔ 𝑞 ⩽ 𝑟.
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The above notation for the D-classes and ideals of 𝑛 will be fixed throughout the paper.
Given a partition 𝛼 ∈ 𝑛, we write

to indicate that 𝛼 has transversals 𝐴𝑖 ∪ 𝐵′𝑖 (1 ⩽ 𝑖 ⩽ 𝑞), upper non-transversals 𝐶𝑖 (1 ⩽ 𝑖 ⩽ 𝑠) and
lower non-transversals 𝐸′𝑖 (1 ⩽ 𝑖 ⩽ 𝑡). Here for any 𝐴 ⊆ 𝐧 we write 𝐴′ = {𝑎′ ∶ 𝑎 ∈ 𝐴}.

2.3 Congruences of 𝒏
We now present a brief account of the classification of congruences of the partition monoid 𝑛
from [1]. First, we have a map

whose effect is to break apart all transversals of 𝛼 into their upper and lower parts. Next we have
a family of relations on 𝐷𝑞 (2 ⩽ 𝑞 ⩽ 𝑛), denoted 𝜈𝑁 , indexed by normal subgroups 𝑁 of the sym-
metric group 𝑞. To define these relations consider a pair (𝛼, 𝛽) ofH -related elements from 𝐷𝑞:

We then define 𝜕(𝛼, 𝛽) = 𝜋, which we think of as the permutational difference of 𝛼 and 𝛽. Note
that 𝜕(𝛼, 𝛽) is only well-defined up to conjugacy in 𝑞, as 𝜋 depends on the above ordering on the
transversals of 𝛼 and 𝛽. Nevertheless, for any normal subgroup 𝑁 ⊴ 𝑞, we have a well-defined
equivalence relation (see [1, Lemmas 3.17 and 5.6]):

𝜈𝑁 = {(𝛼, 𝛽) ∈ H ↾𝐷𝑞 ∶ 𝜕(𝛼, 𝛽) ∈ 𝑁}.
As extreme cases, note that 𝜈𝑞 = H ↾𝐷𝑞 and 𝜈{id𝑞} = Δ𝐷𝑞 .

Theorem2.2 [1, Theorem 5.4].For𝑛 ⩾ 1, the congruences on the partitionmonoid𝑛 are precisely:
∙ the Rees congruences 𝑅𝑞 ∶= 𝑅𝐼𝑞 = {(𝛼, 𝛽) ∈ 𝑛 × 𝑛 ∶ 𝛼 = 𝛽 or rank 𝛼, rank 𝛽 ⩽ 𝑞} for𝑞 ∈ {0, … , 𝑛}, including ∇𝑛 = 𝑅𝑛;∙ the relations 𝑅𝑁 ∶= 𝑅𝑞−1 ∪ 𝜈𝑁 for 𝑞 ∈ {2, … , 𝑛} and {id𝑞} ≠ 𝑁 ⊴ 𝑞;∙ the relations

𝜆𝑞 ∶= {(𝛼, 𝛽) ∈ 𝐼𝑞 × 𝐼𝑞 ∶ �̂� L 𝛽} ∪ Δ𝑛 ,
𝜌𝑞 ∶= {(𝛼, 𝛽) ∈ 𝐼𝑞 × 𝐼𝑞 ∶ �̂� R 𝛽} ∪ Δ𝑛 ,
𝜇𝑞 ∶= {(𝛼, 𝛽) ∈ 𝐼𝑞 × 𝐼𝑞 ∶ �̂� = 𝛽} ∪ Δ𝑛 ,
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F IGURE 3 Φ4 as a grid, and the ideal determined by (0,0), (1,2) and (3,3)

for 𝑞 ∈ {0, 1}, including Δ𝑛 = 𝜇0, and the relations
𝜆2 ∶= 𝜆1 ∪ 𝜈2 , 𝜌2 ∶= 𝜌1 ∪ 𝜈2 , 𝜇2 ∶= 𝜇1 ∪ 𝜈2 .

The congruence lattice Cong(𝑛) is shown in Figure 1.
The above notation for the congruences of 𝑛 will be fixed and used throughout the paper.

2.4 Twisted partition monoids

For two partitions 𝛼, 𝛽 ∈ 𝑛 denote by Φ(𝛼, 𝛽) the number of floating components of the product
graph Γ(𝛼, 𝛽), that is, the number of components that are wholly contained in the middle row,𝐧′′. The twisted partition monoid Φ𝑛 is defined by

Φ𝑛 ∶= ℕ × 𝑛 with product (𝑖, 𝛼)(𝑗, 𝛽) ∶= (𝑖 + 𝑗 + Φ(𝛼, 𝛽), 𝛼𝛽).
That the above multiplication is associative follows from [5, Lemma 4.1]. Green’s relations on Φ𝑛
work as follows:

Lemma 2.3 [4, Lemma 2.10]. IfK is any of Green’s relations, and if 𝛼, 𝛽 ∈ 𝑛 and 𝑖, 𝑗 ∈ ℕ, then
(𝑖, 𝛼) K (𝑗, 𝛽) in Φ𝑛 ⇔ 𝑖 = 𝑗 and 𝛼 K 𝛽 in 𝑛.

TheD = J -classes and principal ideals of Φ𝑛 are the sets

𝐷𝑞𝑖 ∶= {𝑖} × 𝐷𝑞 and 𝐼𝑞𝑖 ∶= {𝑖, 𝑖 + 1, 𝑖 + 2, … } × 𝐼𝑞 for 𝑞 ∈ 𝐧0 and 𝑖 ∈ ℕ,
and these are ordered by 𝐷𝑞𝑖 ⩽ 𝐷𝑟𝑗 ⇔ 𝐼𝑞𝑖 ⊆ 𝐼𝑟𝑗 ⇔ 𝑞 ⩽ 𝑟 and 𝑖 ⩾ 𝑗.
It follows that the poset (Φ𝑛 ∕D , ⩽) of J = D-classes is isomorphic to the direct product(𝐧0, ⩽) × (ℕ, ⩾), and that an arbitrary ideal of Φ𝑛 has the form 𝐼𝑞1𝑖1 ∪⋯ ∪ 𝐼𝑞𝑘𝑖𝑘 , for a sequence of

incomparable elements (𝑞1, 𝑖1), … , (𝑞𝑘, 𝑖𝑘) of this poset. As in [4], we often view Φ𝑛 as a rectangu-
lar grid ofD-classes indexed by 𝐧0 × ℕ, as in Figure 3, which also pictures the ideal 𝐼33 ∪ 𝐼12 ∪ 𝐼00
of Φ4 .
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In addition to the infinite monoid Φ𝑛 , we are also interested in its finite homomorphic
images Φ𝑛,𝑑, called the 𝑑-twisted partition monoids. For 𝑑 ⩾ 0, Φ𝑛,𝑑 is defined as the Rees quo-
tient

Φ𝑛,𝑑 ∶= Φ𝑛 ∕𝑅𝐼𝑛,𝑑+1

by the ideal 𝐼𝑛,𝑑+1 = {𝑑 + 1, 𝑑 + 2,… } × 𝑛. We can also think of Φ𝑛,𝑑 as being Φ𝑛 with all ele-
ments with more than 𝑑 floating components equated to a zero element 𝟎. Thus wemay take Φ𝑛,𝑑
to be the set

Φ𝑛,𝑑 ∶= (𝐝0 × 𝑛) ∪ {𝟎},
with multiplication

𝒂 ⋅ 𝒃 ∶=
{𝒂𝒃 if 𝒂 = (𝑖, 𝛼), 𝒃 = (𝑗, 𝛽) and 𝑖 + 𝑗 + Φ(𝛼, 𝛽) ⩽ 𝑑,

𝟎 otherwise. (2.4)

In this interpretation, Φ𝑛,𝑑 consists of columns 0, 1, … , 𝑑 of Φ𝑛 , plus the zero element 𝟎.

3 CONGRUENCES OF THE TWISTED PARTITIONMONOID 
𝚽𝒏

We now recount the description of congruences ofΦ𝑛 from [4]. It will involve congruences on the
additivemonoidℕ of natural numbers, andwe recall that every such non-trivial congruence 𝜃 has
the form

𝜃 = (𝑚,𝑚 + 𝑑)♯ = Δℕ ∪ {(𝑖, 𝑗) ∈ ℕ × ℕ ∶ 𝑖, 𝑗 ⩾ 𝑚, 𝑖 ≡ 𝑗 (mod 𝑑)} for some𝑚 ⩾ 0 and 𝑑 ⩾ 1.
Here𝑚 = min 𝜃 is theminimum of 𝜃, and 𝑑 = per 𝜃 is the period of 𝜃. For the trivial congruence
we defineminΔℕ = perΔℕ = ∞. If 𝜃1 and 𝜃2 are congruences on ℕ, then

𝜃1 ⊆ 𝜃2 ⇔ min 𝜃1 ⩾ min 𝜃2 and per 𝜃2 ∣ per 𝜃1. (3.1)

Here ∣ is the division relation on ℕ ∪ {∞}, with the understanding that every element of this set
divides∞.

Definition 3.2 (C-pair, C-chain, C-matrix). An ordered pair Π = (Θ,𝑀) is called a C-pair if the
following are satisfied:

∙ Θ = (𝜃0, … , 𝜃𝑛) is a chain of congruences on ℕ satisfying 𝜃0 ⊇ ⋯ ⊇ 𝜃𝑛.∙ 𝑀 = (𝑀𝑞𝑖)𝐧0×ℕ is a matrix with entries drawn from the following set of symbols:

{Δ, 𝜇↑, 𝜇↓, 𝜇, 𝜆, 𝜌, 𝑅} ∪ {𝑁 ∶ {id𝑞} ≠ 𝑁 ⊴ 𝑞, 2 ⩽ 𝑞 ⩽ 𝑛}.
We refer to the entries in the second set collectively as the 𝑁-symbols.∙ Rows 0 and 1 of𝑀 must be of one of the row types RT1–RT7 shown in Table 1.
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TABLE 1 The specification of row types in a C-matrix

Type Row(s) Relationship with 𝜽𝒒 Further conditions
RT 1

RT 2 𝜃0 = 𝜃1 = Δℕ 𝜁 ∈ {Δ, 𝜇↑, 𝜇↓, 𝜇}

RT 3 𝜃0 = (𝑚,𝑚 + 1)♯ 𝜉 ∈ {𝜌, 𝜆, 𝑅}

RT 4 𝜃0 = 𝜃1 = (𝑚,𝑚 + 𝑑)♯ 𝜉 ∈ {𝜇, 𝜌, 𝜆, 𝑅} if 𝑑 = 1,𝜉 = 𝜇 if 𝑑 > 1
RT 5 𝜃1 = (𝑚 + 1,𝑚 + 1 + 𝑑)♯,𝜃0 = (𝑚,𝑚 + 𝑑)♯ 𝜁 ∈ {Δ, 𝜇↑, 𝜇↓, 𝜇},𝜉 ∈ {𝜇, 𝜌, 𝜆, 𝑅} if𝑑 = 1, 𝜉 = 𝜇 if𝑑 > 1, 𝑖 < 𝑚
RT 6 𝜃1 = (𝑙, 𝑙 + 𝑑)♯,𝜃0 = (𝑚,𝑚 + 𝑑)♯ 𝜁 ∈ {Δ, 𝜇↑, 𝜇↓, 𝜇},𝜉 ∈ {𝜇, 𝜌, 𝜆, 𝑅} if𝑑 = 1, 𝜉 = 𝜇 if𝑑 > 1,𝑚 < 𝑙
RT 7 𝜃1 = (𝑙, 𝑙 + 𝑑)♯,𝜃0 = (𝑚,𝑚 + 𝑑)♯ 𝜉 ∈ {𝜇, 𝜌, 𝜆, 𝑅} if𝑑 = 1, 𝜉 = 𝜇 if𝑑 > 1, 0 < 𝑚 < 𝑙 − 1,𝑚 ≡ 𝑙 − 1 (mod 𝑑)
RT 8

RT 9 min 𝜃𝑞 ⩾ 𝑘 𝑁𝑖, … ,𝑁𝑘−1, 𝑁 ⊴ 𝑞 ,𝑁𝑖 ⩽ ⋯ ⩽ 𝑁𝑘−1 ⩽ 𝑁
RT 10 𝜃𝑞 = (𝑚,𝑚 + 1)♯ 𝑁𝑖, … ,𝑁𝑚−1 ⊴ 𝑞 ,𝑁𝑖 ⩽ ⋯ ⩽ 𝑁𝑚−1

∙ Every row 𝑞 ⩾ 2must be of one of the row types RT8–RT10 from Table 1.∙ An 𝑁-symbol cannot be immediately above Δ, 𝜇↑, 𝜇↓ or another 𝑁-symbol.∙ Every entry equal to 𝑅 in row 𝑞 ⩾ 1must be directly above an 𝑅 entry from row 𝑞 − 1.
The last two items were referred to as the verticality conditions in [4], and denoted (V1) and (V2).
We refer toΘ as a C-chain, and to𝑀 as a C-matrix. With a slight abuse of terminology, we will say
that𝑀 is of type RT1–RT7, as appropriate, according to the type of rows 0 and 1.

Some concrete examples of C-pairs can be seen in Examples 5.3–5.6 further on.

Definition 3.3 (Congruence corresponding to a C-pair). The congruence associated with a C-pair(Θ,𝑀) is the relation cg(Θ,𝑀) onΦ𝑛 consisting of all pairs ((𝑖, 𝛼), (𝑗, 𝛽)) ∈ Φ𝑛 × Φ𝑛 such that one
of the following holds, writing 𝑞 = rank𝛼 and 𝑟 = rank 𝛽:
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(C1) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = Δ, (𝑖, 𝑗) ∈ 𝜃𝑞 and 𝛼 = 𝛽;
(C2) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝑅;
(C3) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝑁, (𝑖, 𝑗) ∈ 𝜃𝑞, 𝛼 H 𝛽 and 𝜕(𝛼, 𝛽) ∈ 𝑁;
(C4) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜆 and �̂� L 𝛽;
(C5) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜌 and �̂� R 𝛽;
(C6) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇↓, �̂� = 𝛽 and 𝛼 L 𝛽;
(C7) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇↑, �̂� = 𝛽 and 𝛼 R 𝛽;
(C8) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇, �̂� = 𝛽 and one of the following holds:∙ 𝑞 = 𝑟 and (𝑖, 𝑗) ∈ 𝜃𝑞, or∙ 𝑞 ≠ 𝑟, (𝑖 + 𝑟, 𝑗 + 𝑞) ∈ 𝜃0, 𝑖 < min 𝜃𝑞 and 𝑗 < min 𝜃𝑟, or∙ 𝑞 ≠ 𝑟, (𝑖 + 𝑟, 𝑗 + 𝑞) ∈ 𝜃0, 𝑖 ⩾ min 𝜃𝑞 and 𝑗 ⩾ min 𝜃𝑟.
One special kind of C-pair also has a second kind of congruence associated to it:

Definition 3.4 (Exceptional C-pairs and congruences). A C-pair (Θ,𝑀) is exceptional if there
exists 𝑞 ⩾ 2 such that:
∙ 𝜃𝑞 = (𝑚,𝑚 + 2𝑑)♯ for some 𝑚 ⩾ 0 and 𝑑 ⩾ 1; associated with this relation, we also set 𝜃x𝑞 ∶=

(𝑚,𝑚 + 𝑑)♯;∙ 𝑀𝑞𝑚 = 𝑞 if 𝑞 > 2;∙ if 𝑞 = 2 then𝑀2𝑚 = Δ,𝑀1𝑚 ∈ {𝜇, 𝜌, 𝜆, 𝑅} and 𝜃x2 ⊆ 𝜃1.
This 𝑞 is necessarily unique (by the verticality conditions in Definition 3.2), and we call row 𝑞 the
exceptional row, and write 𝑞 =∶ x(𝑀). To the exceptional C-pair (Θ,𝑀), in addition to cg(Θ,𝑀),
we also associate the exceptional congruence cgx(Θ,𝑀) consisting of all pairs ((𝑖, 𝛼), (𝑗, 𝛽)) such
that one of (C1)–(C8) holds, or else:

(C9) (𝑖, 𝑗) ∈ 𝜃x𝑞 ⧵ 𝜃𝑞, 𝛼 H 𝛽 and 𝜕(𝛼, 𝛽) ∈ 𝑞 ⧵𝑞.
The following is the main result of [4]:

Theorem 3.5. For 𝑛 ⩾ 1, the congruences on the twisted partition monoid Φ𝑛 are precisely:

∙ cg(Θ,𝑀) where (Θ,𝑀) is any C-pair;∙ cgx(Θ,𝑀) where (Θ,𝑀) is any exceptional C-pair.
Remark 3.6. Consider a congruence 𝜎 on Φ𝑛 . As in [4, Section 5], the C-pair (Θ,𝑀) associated
to 𝜎 is determined as follows. For the C-chain Θ = (𝜃0, … , 𝜃𝑛), we have

𝜃𝑞 = {(𝑖, 𝑗) ∈ ℕ × ℕ ∶ ((𝑖, 𝛼), (𝑗, 𝛼)) ∈ 𝜎 (∃𝛼 ∈ 𝐷𝑞)}
= {(𝑖, 𝑗) ∈ ℕ × ℕ ∶ ((𝑖, 𝛼), (𝑗, 𝛼)) ∈ 𝜎 (∀𝛼 ∈ 𝐷𝑞)} for 𝑞 ∈ 𝐧0.

For the C-matrix𝑀 = (𝑀𝑞𝑖)𝐧0×ℕ, an entry𝑀𝑞𝑖 is uniquely determined by the restriction
𝜎𝑞𝑖 ∶= {(𝛼, 𝛽) ∈ 𝐷𝑞 × 𝐷𝑞 ∶ ((𝑖, 𝛼), (𝑖, 𝛽)) ∈ 𝜎},

apart from two possible cases:
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TABLE 2 The relationship between the entries𝑀𝑞𝑖 of a C-matrix and the
restrictions 𝜎𝑞𝑖 of its associated congruence(s) 𝜎 on Φ𝑛
𝒒 𝑴𝒒𝒊 𝝈𝒒𝒊 Additional criteria
𝑞 ⩾ 2 Δ Δ𝐷𝑞

N 𝜈𝑁 𝐷𝑞𝑖 ⊈ 𝐼(𝜎)
R ∇𝐷𝑞 𝐷𝑞𝑖 ⊆ 𝐼(𝜎)

𝑞 = 1 Δ Δ𝐷1𝜇↑ 𝜇↑
𝜇↓ 𝜇↓
𝜇 𝜇1↾𝐷1𝜆 𝜆1↾𝐷1𝜌 𝜌1↾𝐷1
R ∇𝐷𝑞𝑞 = 0 Δ Δ𝐷0 𝜎 ∩ (𝐷0𝑖 × 𝐷1𝑗) = ∅(∀𝑗 ∈ ℕ)
𝜇 Δ𝐷0 𝜎 ∩ (𝐷0𝑖 × 𝐷1𝑗) ≠ ∅(∃𝑗 ∈ ℕ)
𝜆 𝜆0↾𝐷0𝜌 𝜌0↾𝐷0
R ∇𝐷𝑞

∙ If 𝜎0𝑖 = Δ𝐷0 , then𝑀0𝑖 is either 𝜇 orΔ, depending on whether there are 𝜎-relationships between
elements of 𝐷0𝑖 and those of some 𝐷1𝑗 .∙ If 𝜎𝑛𝑖 = ∇𝐷𝑛 , then 𝑀𝑛𝑖 is either 𝑅 or 𝑛, depending on whether 𝐷𝑛𝑖 is contained in the ideal
class 𝐼(𝜎) of 𝜎.

The full relationships between the𝑀𝑞𝑖 and 𝜎𝑞𝑖 are summarised in Table 2. The two hitherto unde-
fined relations making an appearance in the table are

𝜇↑ ∶= {(𝛼, 𝛽) ∈ 𝐷1 × 𝐷1 ∶ �̂� = 𝛽, 𝛼 R 𝛽} and 𝜇↓ ∶= {(𝛼, 𝛽) ∈ 𝐷1 × 𝐷1 ∶ �̂� = 𝛽, 𝛼 L 𝛽}.
Building on the above classification of congruences on Φ𝑛 , [4] also characterised the inclu-

sion ordering constituting the congruence lattice Cong(Φ𝑛 ), as stated below in Theorem 3.7. This
ordering is closely related, but not identical, to the lexicographic ordering on C-pairs, based on the
inclusion ordering of congruences on ℕ, and the ordering of C-matrix entries shown in Figure 4.
Specifically, given two C-pairs Π1 = (Θ1,𝑀1) and Π2 = (Θ2,𝑀2), we write:
∙ Θ1 ⩽𝐶 Θ2 ⇔ 𝜃1𝑞 ⊆ 𝜃2𝑞 for all 𝑞 ∈ 𝐧0,∙ 𝑀1 ⩽𝐶 𝑀2 ⇔ 𝑀1𝑞𝑖 ⩽𝐶 𝑀2𝑞𝑖 for all 𝑞 ∈ 𝐧0 and 𝑖 ∈ ℕ and∙ Π1 ⩽𝐶 Π2 ⇔ Θ1 ⩽𝐶 Θ2 and𝑀1 ⩽𝐶 𝑀2.
The deviations from the lexicographic ordering are caused by pairs of matching 𝜇s in rows 0

and 1, as well as by the exceptional congruences. To capture the former, suppose𝑀 is a C-matrix
of type RT2, RT5 or RT7. These are precisely the types that have ‘initial 𝜇s’ in row 0, by which we
mean entries𝑀0𝑗 = 𝜇 with 𝑗 < min 𝜃0. These initial 𝜇s are coloured green in Table 1. We defineμin0(𝑀) to be the position of the first initial 𝜇 in row 0. We then define μin1(𝑀) to be the position
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F IGURE 4 The partial ordering ⩽𝐶 on the C-matrix entries

of its ‘matching 𝜇’ in row 1. Thus, in the notation of Table 1:

μin0(𝑀) =
{𝑖 for RT2 and RT5

𝑚 − 1 for RT7,
and μin1(𝑀) =

{𝑖 + 1 for RT2 and RT5
𝑙 − 1 for RT7.

Note that μin1(𝑀) need not be the position of the first 𝜇 in row 1, as we could have 𝜁 = 𝜇 in types
RT2 and RT5.
Also, when dealing with exceptional congruences, for an exceptional C-pairΠ = (Θ,𝑀), recall

that x(𝑀) is the index of the exceptional row (see Definition 3.4). With this notation we have:

Theorem3.7 [4, Theorem 6.5]. Let 𝑛 ⩾ 1, and letΠ1 = (Θ1,𝑀1) andΠ2 = (Θ2,𝑀2) be twoC-pairs
for Φ𝑛 .
(i) We have cg(Π1) ⊆ cg(Π2) if and only if both of the following hold:

(a) Π1 ⩽𝐶 Π2, and
(b) if𝑀1 has type RT2, RT5 or RT7, then at least one of the following hold:

(b1) min 𝜃20 ⩽ μin0(𝑀1) andmin 𝜃21 ⩽ μin1(𝑀1) or
(b2) 𝑀2 also has type RT2, RT5 or RT7 (not necessarily the same as 𝑀1), andμin1(𝑀2) − μin0(𝑀2) = μin1(𝑀1) − μin0(𝑀1).

(ii) WhenΠ2 is exceptional, we have cg(Π1) ⊆ cgx(Π2) if and only if cg(Π1) ⊆ cg(Π2).
(iii) WhenΠ1 is exceptional, we have cgx(Π1) ⊆ cg(Π2) if and only if all of the following hold, where𝑞 ∶= x(𝑀1):

(a) cg(Π1) ⊆ cg(Π2),
(b) 2 per 𝜃2𝑞 ∣ per 𝜃1𝑞 and
(c) 𝑀2𝑞𝑖 ∈ {𝑞, 𝑅} for all 𝑖 ⩾ min 𝜃2𝑞 .

(iv) When both Π1 and Π2 are exceptional, we have cgx(Π1) ⊆ cgx(Π2) if and only if both of the
following hold:
(a) cg(Π1) ⊆ cg(Π2) and
(b) if x(𝑀1) = x(𝑀2) =∶ 𝑞, then the ratio per 𝜃1𝑞∕ per 𝜃2𝑞 is an odd integer.

Remark 3.8. Let 𝜎1 and 𝜎2 be congruences on Φ𝑛 , with associated C-pairs Π1 and Π2. Then by
inspecting the various parts of Theorem 3.7, we have 𝜎1 ⊆ 𝜎2 ⇒ Π1 ⩽𝐶 Π2.
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Remark 3.9. The cases of 𝑛 = 0, 1 were discussed in [4, Section 8]. When 𝑛 = 0, Φ0 ≅ ℕ and its
congruence lattice is completely described by (3.1). When 𝑛 = 1, Theorems 3.5 and 3.7 remain
valid, though there are some redundancies/degeneracies:

∙ There are no rows 𝑞 ⩾ 2, and so no 𝑁-symbols, and no exceptional congruences.∙ Since �̂� = 𝛽 for all 𝛼, 𝛽 ∈ 1, it follows that certain symbols play the same role: 𝜇↑ ≡ 𝜇↓ ≡ Δ
and 𝜆 ≡ 𝜌 ≡ 𝑅, and there are no unmatched 𝜇s.

Thus, C-matrices have labels from {Δ, 𝜇, 𝑅}, and only items (C1), (C2) and (C8) from Defi-
nition 3.3 are needed to specify the congruence cg(Θ,𝑀). Based on these observations, from
now on, the case 𝑛 = 0 will be ignored, while 𝑛 = 1 will be accompanied with necessary extra
considerations.

Remark 3.10. By inspection of the row types in Table 1, we see that the rows of a C-matrix 𝑀 =(𝑀𝑞𝑖)𝐧0×ℕ are weakly increasing with respect to the ⩽𝐶 order. That is, we have
𝑀𝑞0 ⩽𝐶 𝑀𝑞1 ⩽𝐶 ⋯ for all 𝑞 ∈ 𝐧0.

4 PROPERTIES OF THE CONGRUENCE LATTICE Cong(𝚽𝒏 )
At the end of [4, Section 3], some properties of the latticeCong(Φ𝑛 )were derived as relatively easy
corollaries of the main results, including the fact that Cong(Φ𝑛 ) is countable. In this section we
provide amuchmore detailed analysis of the combinatorial and algebraic properties of the lattice,
proving results on (co-)atoms (Theorem 4.1), infinite (anti-)chains (Theorem 4.3), the covering
relation (Theorem 4.4) and non-modularity (Theorem 4.6).
In what follows we adopt the way of writing down explicit C-pairs introduced in [4]: The

C-matrix is written as a rectangular grid of its entries, and themembers of the C-chain are written
to the right of their corresponding rows.

Theorem 4.1. For 𝑛 ⩾ 1, the lattice Cong(Φ𝑛 ) has a unique co-atom, and no atoms.
Proof. It follows immediately from Theorem 3.7 that cg(Π) is the unique co-atom, where for 𝑛 ⩾ 2
and 𝑛 = 1, respectively:

(4.2)

To prove that there are no atoms, we show that for every non-trivial congruence 𝜎 there exists
a non-trivial congruence 𝜏 ⊊ 𝜎. If 𝜎 = cgx(Θ,𝑀) is exceptional we can take 𝜏 = cg(Θ,𝑀). Now
suppose 𝜎 = cg(Θ,𝑀).
Consider first the case where not all 𝜃𝑞 equal Δℕ, and let 𝑞 be the largest such. If 𝑀 has a

non-Δ entry, then we take 𝜏 = cg(Θ,𝑀′), where 𝑀′ consists entirely of Δs. Otherwise, we take𝜏 = cg(Θ′,𝑀), where Θ′ is obtained from Θ by replacing 𝜃𝑞 = (𝑚,𝑚 + 𝑑)♯ with (𝑚,𝑚 + 2𝑑)♯.
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If all 𝜃𝑞 are equal to Δℕ, then, since 𝜎 is non-trivial, 𝑀 must be of type RT2; we then take 𝜏 =
cg(Θ,𝑀′), where𝑀′ is obtained from𝑀 by increasing the parameter 𝑖 = μin0(𝑀), and (if 𝑛 ⩾ 2)
replacing any 2 in row 2 by Δ. □

Theorem 4.3. Let 𝑛 ⩾ 1.
(i) Cong(Φ𝑛 ) contains no infinite ascending chains.
(ii) Cong(Φ𝑛 ) contains infinite descending chains.
(iii) Cong(Φ𝑛 ) contains infinite anti-chains.
Proof.

(i) We need to show that a weakly increasing sequence 𝜎1 ⊆ 𝜎2 ⊆ ⋯ of congruences must be
eventually constant. WritingΠ𝑖 = (Θ𝑖,𝑀𝑖) for the C-pair corresponding to each 𝜎𝑖 , it follows
from Theorem 3.7 (see Remark 3.8) thatΠ1 ⩽𝐶 Π2 ⩽𝐶 ⋯. Since a C-pair defines at most two
congruences, it is sufficient to show that this sequence of C-pairs is eventually constant. It is
well known, and follows from (3.1), that there are no infinite ascending chains of congruences
on ℕ. It follows that the sequenceΘ1 ⩽𝐶 Θ2 ⩽𝐶 ⋯ is eventually constant. It remains to show
that the sequence𝑀1 ⩽𝐶 𝑀2 ⩽𝐶 ⋯ is eventually constant aswell. Recall that in aC-matrix𝑀
every row is eventually constant; say row 𝑞 ends with an infinite sequence of the symbol 𝐿𝑞.
Gather these symbols into a sequence lim𝑀 ∶= (𝐿0, … , 𝐿𝑛). Note that there are only finitely
many limit sequences. Let 𝑘 ∈ ℕ be such that the sequence lim𝑀𝑘, lim𝑀𝑘+1, … is constant.
Note that any𝑀𝑡 with 𝑡 > 𝑘 can only differ from𝑀𝑘 in finitely many places, corresponding
to the entries where 𝑀𝑘𝑞𝑖 ≠ 𝐿𝑞. Since the set of possible C-matrix entries is finite, it follows
that our sequence of C-matrices is eventually constant, as required.

(ii) This follows immediately from the absence of atoms (Theorem 4.1). It also follows from the
obvious fact that ℕ has infinite descending chains of congruences, or that Φ𝑛 has infinite
descending chains of ideals and hence Rees congruences.

(iii) For 𝑙 ∈ {2, 3, … }, let 𝜎𝑙 ∶= cg(Π𝑙), where

Then each𝑀𝑙 has type RT7. For distinct 𝑘, 𝑙 ⩾ 2, we have
min 𝜃𝑙0 = 1 > 0 = μin0(𝑀𝑘) and

μin1(𝑀𝑙) − μin0(𝑀𝑙) = 𝑙 − 1 ≠ 𝑘 − 1 = μin1(𝑀𝑘) − μin0(𝑀𝑘),
so that condition (b) of Theorem3.7(i) fails. It follows that𝜎𝑘 and𝜎𝑙 are incomparable. There-
fore the set {𝜎2, 𝜎3, … } is an anti-chain in Cong(Φ𝑛 ). □

Theorem 4.4. For 𝑛 ⩾ 1, every element of Cong(Φ𝑛 ) is covered by only finitely many elements, but
there are elements of Cong(Φ𝑛 ) that cover infinitely many elements.
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Proof. Beginning with the second assertion, let𝑀 ∶= (Δ)𝐧0×ℕ, let Θ ∶= (∇ℕ, Δℕ, … , Δℕ), and for
each prime 𝑝 let Θ𝑝 ∶= ((0, 𝑝)♯, Δℕ, … , Δℕ). Then cg(Θ,𝑀) covers all cg(Θ𝑝,𝑀).
For the first assertion, let 𝜎1 be an arbitrary congruence of Φ𝑛 . The trivial congruence has no

covers since Cong(Φ𝑛 ) has no atoms (Theorem 4.1), so for the rest of the proof we assume that𝜎1 is non-trivial. Suppose 𝜎2 ∈ Cong(Φ𝑛 ) covers 𝜎1. For 𝑡 = 1, 2, let Π𝑡 = (Θ𝑡,𝑀𝑡) be the C-pair
associated with 𝜎𝑡, noting that Π1 ⩽𝐶 Π2 by Theorem 3.7. We will prove that, given 𝜎1, there are
only finitely many possible choices for 𝜎2 by showing that there are only finitely many choices forΠ2.
For 𝑡 = 1, 2, let 𝑟𝑡 be the largest index of a non-trivial row inΠ𝑡, bywhichwemean that 𝜃𝑡𝑟𝑡 ≠ Δℕ

or (𝑀𝑡𝑟𝑡,0,𝑀𝑡𝑟𝑡,1, … ) ≠ (Δ, Δ,… ). Note that 0 ⩽ 𝑟1 ⩽ 𝑟2. We first claim that 𝑟1 = 𝑟2. To prove this,
suppose to the contrary that 𝑟1 < 𝑟2.
∙ If 𝜃2𝑟2 ≠ Δℕ, then we alter Π2 to obtain a new pair Π3 = (Θ3,𝑀3) as follows. We replace 𝜃2𝑟2 =

(𝑚,𝑚 + 𝑑)♯ by (𝑚,𝑚 + 2𝑑)♯, and we change all symbols in row 𝑟2 of𝑀2 to Δ. If 𝑟2 = 1, then we
also change any 𝜇 entries in row 0 to Δ. Then 𝜎1 ⊊ cg(Π3) ⊊ 𝜎2, contradicting the assumption
that 𝜎2 covers 𝜎1.∙ If 𝑟2 ⩾ 2 and 𝜃2𝑟2 = Δℕ, then row 𝑟2 of 𝑀2 must contain symbols distinct from Δ, and hence is
of type RT9. Replace the leftmost 𝑁-symbol in this row by Δ to obtain a new C-pair Π3, which
then satisfies 𝜎1 ⊊ cg(Π3) ⊊ 𝜎2, a contradiction again.∙ If 𝑟2 = 1 and 𝜃21 = Δℕ, then𝑀2 must be of type RT2. Hence 𝜃20 = Δℕ, and then from 𝜎1 ⊊ 𝜎2 we
conclude that 𝜃10 = Δℕ and that row 0 of𝑀1 consists entirely of Δs, contradicting the assump-
tion that 𝜎1 is non-trivial.

With the claim proved, we now write 𝑟 ∶= 𝑟1 = 𝑟2.
Case 1: 𝜃1𝑟 ≠ Δℕ. Since 𝜃1𝑟 ⊆ 𝜃2𝑟 ⊆ 𝜃2𝑟−1 ⊆ ⋯ ⊆ 𝜃20 , there are only finitely many choices for the

congruences 𝜃𝑟0, … , 𝜃2𝑟 , all of which are non-trivial. Given such a choice of these congruences, let0 ⩽ 𝑖 ⩽ 𝑟 and write𝑚 ∶= min 𝜃2𝑖 . There are only finitely many choices for𝑀2𝑖0, … ,𝑀2𝑖,𝑚−1 and for𝑀2𝑖𝑚 = 𝑀2𝑖,𝑚+1 = … , that is, there are only finitely many choices for row 𝑖 of 𝑀2. Consequently,
there are only finitely many possibilities for𝑀2.
Case 2: 𝑟 ⩾ 2 and 𝜃1𝑟 = Δℕ. In this case, row 𝑟 of𝑀1 is of type RT9, say

If 𝜃2𝑟 ≠ Δℕ, say 𝜃2𝑟 = (𝑚,𝑚 + 𝑑)♯, then we modify Π1 by replacing 𝜃1𝑟 = Δℕ by the congruence 𝜃3𝑟
on ℕ with min 𝜃3𝑟 = max(𝑘,𝑚) and per 𝜃3𝑟 = 2𝑑, to produce a C-pair Π3 with 𝜎1 ⊊ cg(Π3) ⊊ 𝜎2,
and hence a contradiction.
So now suppose 𝜃2𝑟 = Δℕ. Then row 𝑟 of 𝑀2 is also of type RT9. If this differed from row 𝑟 of𝑀1 in more than one place, then we could replace the first such entry in𝑀2 by the corresponding

entry in𝑀1, to obtain a contradiction in the usual way. So in fact there is at most one difference
between the two 𝑟th rows, and hence only finitely many choices for row 𝑟 of 𝑀2. Now fix some
such choice, and note that𝑀2𝑟𝑖,𝑀2𝑟,𝑖+1, … are all 𝑁-symbols.
Subcase 2.1: 𝑟 ⩾ 3. In this case the verticality conditions tell us that𝑀2𝑞𝑗 = 𝑅 for all 0 ⩽ 𝑞 < 𝑟

and 𝑗 ⩾ 𝑖. There are therefore only finitely many ways to complete the matrix 𝑀2, and the con-
gruences 𝜃20, … , 𝜃2𝑟−1 are then completely determined by the 𝑅s in𝑀2.
Subcase 2.2: 𝑟 = 2. If 𝜃11 ≠ Δℕ, then the argument from Case 1 remains valid and shows there

are only finitely many possibilities for rows 0 and 1 of Π2, including the associated congruences
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on ℕ. So suppose now that 𝜃11 = Δℕ, which means that 𝑀1 is of type RT2. If also 𝜃21 = Δℕ, then𝑀2 is also of type RT2, and since 𝜎1 ⊆ 𝜎2 wemust have μin0(𝑀2) ⩽ μin0(𝑀1); there are therefore
only finitely many choices for𝑀2. So now suppose 𝜃21 ≠ Δℕ, say 𝜃21 = (𝑚,𝑚 + 𝑑)♯, and note thatmin 𝜃20 ⩽ 𝑚. Thenwith 𝑙 ∶= max(𝑚, μin0(𝑀1)), wemodifyΠ1 toΠ3 by replacing 𝜃10 = 𝜃11 = Δℕ by𝜃30 = (𝑙, 𝑙 + 𝑑)♯ and 𝜃31 = (𝑙 + 1, 𝑙 + 1 + 𝑑)♯, and obtain 𝜎1 ⊊ cg(Π3) ⊊ 𝜎2, a contradiction again.
Case 3: 𝑟 = 1 and 𝜃11 = Δℕ. The C-matrix 𝑀1 is of type RT2, since its row 1 cannot consist

entirely of Δs. It then follows that the type of𝑀2 is one of RT2 or RT4–RT7. If𝑀2 is of type RT2
then μin0(𝑀2) ⩽ μin0(𝑀1), and hence there are only finitely many choices for Π2. In any of the
remaining row types,we canmodifyΠ2 by doublingper 𝜃20 = per 𝜃21 , and changing all the 𝜉-entries
to 𝜇, to obtain a C-pair Π3 with 𝜎1 ⊊ cg(Π3) ⊊ 𝜎2, and a contradiction.
Case 4: 𝑟 = 0 and 𝜃10 = Δℕ. Since row 1 of Π1 is trivial, and since 𝜃10 = Δℕ, 𝑀1 can only have

type RT1. But then 𝜎1 = ΔΦ𝑛 , a contradiction.
This exhausts all the cases, and completes the proof of the theorem. □

Remark 4.5. We observed in the proof that the trivial congruence has no covers; so too, obviously,
does the universal congruence. However, these are not the only such congruences. For example, it
is easy to see that the Rees congruence 𝑅𝐼 corresponding to an ideal of the form 𝐼 = 𝐼𝑞0 for 𝑞 ∈ 𝐧0
has no covers. Indeed, the C-pair associated to 𝑅𝐼 is

One then proceeds, as in the proof of Theorem 4.1, to show that for any congruence 𝜎 ⊋ 𝑅𝐼 , we
have 𝜎 ⊋ 𝜏 ⊋ 𝑅𝐼 for some 𝜏 ∈ Cong(Φ𝑛 ). This is done by analysing the C-pair (Θ,𝑀) correspond-
ing to 𝜎, and considering separate cases according to whether any of the congruences 𝜃𝑞+1, … , 𝜃𝑛
is non-trivial.

Theorem 4.6. For 𝑛 ⩾ 1, the lattice Cong(Φ𝑛 ) contains five-element diamond and pentagon sub-
lattices, and hence is not modular (or distributive).

Proof. For 𝑛 ⩾ 2, define four C-chains:
Θ1 ∶= (∇ℕ,∇ℕ, (0, 2)♯, Δℕ, … , Δℕ), Θ3 ∶= (∇ℕ,∇ℕ, (1, 2)♯, Δℕ, … , Δℕ),
Θ2 ∶= (∇ℕ,∇ℕ,∇ℕ, Δℕ, … , Δℕ), Θ4 ∶= (∇ℕ,∇ℕ, (1, 3)♯, Δℕ, … , Δℕ),

and three C-matrices:
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F IGURE 5 Diamond and pentagon sublattices in Cong(Φ𝑛 ) for 𝑛 ⩾ 2. See the proof of Theorem 4.6 for more
details

F IGURE 6 Diamond and pentagon sublattices in Cong(Φ1 )
Then the following are all valid C-pairs:

(Θ1,𝑀1), (Θ1,𝑀2), (Θ2,𝑀1), (Θ2,𝑀2), (Θ3,𝑀2), (Θ3,𝑀3), (Θ4,𝑀1),
and furthermore the pairs (Θ1,𝑀1) and (Θ4,𝑀1) are exceptional. By Theorem 3.7, the resulting
congruences are ordered as shown in Figure 5. Moreover, it is easy to check that their meets and
joins are as indicated in the figure.
For 𝑛 = 1, we cannot use exceptional congruences to construct pentagon and diamond sub-

lattices. Nonetheless, examples of such sublattices are shown in Figure 6, with the congruences
indicated by their associated C-pairs. As a curiositywemention that for 𝑛 ⩾ 2 the latticeCong(Φ𝑛 )
contains the analogue of this pentagon (with the remaining rows consisting entirely of Δs, and
their corresponding congruences on ℕ trivial), but not of the diamond, as the latter relies on the
fact that for 𝑛 = 1 both 𝜇 and Δ in row 1 correspond to the trivial restriction. □

We used the pentagon sublattices displayed in Figures 5 and 6 to show that Cong(Φ𝑛 ) is not
modular for 𝑛 ⩾ 1. In fact, these show something more. Consider a lattice 𝐿, and write ≺ for the
covering relation in 𝐿. Recall [16] that 𝐿 is upper or lower semimodular if for all 𝑎, 𝑏 ∈ 𝐿 we have

𝑎 ∧ 𝑏 ≺ 𝑎 ⇒ 𝑏 ≺ 𝑎 ∨ 𝑏 or 𝑎 ≺ 𝑎 ∨ 𝑏 ⇒ 𝑎 ∧ 𝑏 ≺ 𝑏, (4.7)

respectively.
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Theorem 4.8. For 𝑛 ⩾ 1, the lattice Cong(Φ𝑛 ) is neither upper nor lower semimodular.
Proof. Consider the diamond sublattice of Cong(Φ𝑛 ) displayed in Figure 5 (for 𝑛 ⩾ 2) or Figure 6
(for 𝑛 = 1), and label the congruences in the following way:

It sufices to show that 𝜎1 ≺ 𝜎2 ≺ 𝜎3. Indeed, then (𝑎, 𝑏) = (𝜎2, 𝜏1) or (𝑎, 𝑏) = (𝜎2, 𝜏2) will wit-
ness the failure of the first and second implications in (4.7), respectively. Checking these covering
relations is fairly routine. We just give the details for 𝜎1 ≺ 𝜎2 in the case 𝑛 ⩾ 2.
So suppose𝜎1 ⊆ 𝜎 ⊆ 𝜎2 for some𝜎 ∈ Cong(Φ𝑛 ), where𝑛 ⩾ 2, and letΠ be theC-pair associated

to 𝜎. As in Remark 3.8, 𝜎1 ⊆ 𝜎 ⊆ 𝜎2 implies (Θ4,𝑀1) ⩽𝐶 Π ⩽𝐶 (Θ1,𝑀1). It then follows by the
form of these pairs that Π is in fact one of (Θ4,𝑀1) or (Θ1,𝑀1), and hence that 𝜎 is one of

cg(Θ4,𝑀1), cgx(Θ4,𝑀1), cg(Θ1,𝑀1), cgx(Θ1,𝑀1).
But 𝜎1 = cgx(Θ4,𝑀1) is contained in neither cg(Θ4,𝑀1) nor cg(Θ1,𝑀1), so it follows that 𝜎 is one
of cgx(Θ4,𝑀1) = 𝜎1 or cgx(Θ1,𝑀1) = 𝜎2. This completes the proof that 𝜎1 ≺ 𝜎2. □

5 GENERATORS OF CONGRUENCES OF 
𝚽𝒏

It follows immediately from Theorem 4.3(i) that every congruence of Φ𝑛 is finitely generated. We
can in fact do better than that, and in Theorem 5.7 belowwe show that the number of pairs needed
to generate an arbitrary congruence is bounded above by ⌈ 5𝑛2 ⌉. As a stepping stone, Theorem 5.2
classifies the principal congruences. The main technical result needed for all these calculations is
the following:

Lemma 5.1. Let Π be a C-pair, let Ω ⊆ Φ𝑛 × Φ𝑛 , and let Π′ be the C-pair corresponding to Ω♯.
Then:

(i) cg(Π) = Ω♯ if and only ifΩ ⊆ cg(Π) andΠ ⩽𝐶 Π′;
(ii) ifΠ is exceptional, then cgx(Π) = Ω♯ if and only ifΩ ⊆ cgx(Π),Ω ⊈ cg(Π) andΠ ⩽𝐶 Π′.
Proof. For the direct implication in each part the inequality Π ⩽𝐶 Π′ follows from Remark 3.8,
and the remaining (non-)inclusions are obvious. So we just need to prove the converse.

(i) Since cg(Π) is a congruence, it follows from Ω ⊆ cg(Π) that Ω♯ ⊆ cg(Π). It follows from this
(and Remark 3.8) that Π′ ⩽𝐶 Π. Together with Π ⩽𝐶 Π′, it follows that Π′ = Π. Thus, Ω♯ is
either cg(Π) or else possibly cgx(Π) if Π is exceptional; but the latter is ruled out by Ω♯ ⊆
cg(Π).
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(ii) The proof is almost identical to the previous part. In the first step, cg(Π) is replaced by cgx(Π).
In the last step we use Ω ⊈ cg(Π) to rule out Ω♯ = cg(Π). □

Wenowdetermine the principal congruences onΦ𝑛 , for which it suffices by symmetry to deter-
mine (𝒂, 𝒃)♯ where 𝒂 ∈ 𝐷𝑞𝑖 and 𝒃 ∈ 𝐷𝑟𝑗, 𝑞 ⩾ 𝑟, and 𝑖 ⩽ 𝑗 when 𝑞 = 𝑟. The congruences will be
described by means of their associated C-pairs in the usual manner; additionally, we will omit
rows 𝑞 + 1,… , 𝑛, as these consist entirely of Δs and have Δℕ as their associated congruence on ℕ.
For a permutation 𝜋 ∈ 𝑞, we write ⟨⟨𝜋⟩⟩ for the normal closure of 𝜋 in 𝑞, that is, the smallest
normal subgroup of 𝑞 containing 𝜋.
Theorem5.2. Let𝑛 ⩾ 1, and let𝒂 = (𝑖, 𝛼) ∈ 𝐷𝑞𝑖 ,𝒃 = (𝑗, 𝛽) ∈ 𝐷𝑟𝑗 be two elements ofΦ𝑛 with 𝑞 < 𝑟,
or 𝑞 = 𝑟 and 𝑖 ⩽ 𝑗.
(i) If 𝛼 = 𝛽 and 𝑖 = 𝑗 (that is, 𝒂 = 𝒃), then (𝒂, 𝒃)♯ = ΔΦ𝑛 = cg(Θ,𝑀), where 𝑀 = (Δ)𝐧0×ℕ and𝜃𝑠 = Δℕ for all 𝑠.
(ii) If 𝛼 = 𝛽 and 𝑖 < 𝑗, then (𝒂, 𝒃)♯ = cg(Θ,𝑀), where 𝑀 = (Δ)𝐧0×ℕ and 𝜃𝑠 = (𝑖, 𝑗)♯ for all 𝑠 =0,… , 𝑞.
(iii) If 𝑞 ⩾ 2 and (𝛼, 𝛽) ∉ H , then (𝒂, 𝒃)♯ = 𝑅𝐼𝑞𝑖∪𝐼𝑟𝑗 = cg(Θ,𝑀), where 𝑀𝑠𝑙 = 𝑅 precisely when

𝐷𝑠𝑙 ⊆ 𝐼𝑞𝑖 ∪ 𝐼𝑟𝑗 and 𝑀𝑠𝑙 = Δ otherwise, and where 𝜃𝑠 = (𝑚𝑠,𝑚𝑠 + 1)♯ (0 ⩽ 𝑠 ⩽ 𝑞) for 𝑚𝑠 the
first index of an 𝑅-entry in row 𝑠 of𝑀.

(iv) If 𝑞 ⩾ 3, 𝑖 = 𝑗, (𝛼, 𝛽) ∈ H and 𝛼 ≠ 𝛽, then with𝑁 ∶= ⟨⟨𝜕(𝛼, 𝛽)⟩⟩we have (𝒂, 𝒃)♯ = cg(Θ,𝑀)
for the C-pair

(v) If 𝑞 ⩾ 3, 𝑖 < 𝑗, (𝛼, 𝛽) ∈ H and 𝜕(𝛼, 𝛽) ∈ 𝑞 ⧵ {id𝑞}, then with 𝑁 ∶= ⟨⟨𝜕(𝛼, 𝛽)⟩⟩ we have(𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(vi) If 𝑞 ⩾ 3, 𝑖 < 𝑗, (𝛼, 𝛽) ∈ H and 𝜕(𝛼, 𝛽) ∉ 𝑞 , then with 𝑑 ∶= 𝑗 − 𝑖 we have(𝒂, 𝒃)♯ = cgx(Θ,𝑀) for the exceptional C-pair
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(vii) If 𝑞 = 2, 𝑖 = 𝑗, (𝛼, 𝛽) ∈ H and 𝛼 ≠ 𝛽, then (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(viii) If 𝑞 = 2, 𝑖 < 𝑗, (𝛼, 𝛽) ∈ H and 𝛼 ≠ 𝛽, then with 𝑑 ∶= 𝑗 − 𝑖 we have (𝒂, 𝒃)♯ = cgx(Θ,𝑀) for
the exceptional C-pair

(ix) If 𝑞 = 1 and 𝑖 ⩽ 𝑗, and if (𝛼, 𝛽) belongs to one of 𝑅𝐼1 ⧵ (𝜆1 ∪ 𝜌1), 𝜆1 ⧵ 𝜇1 or 𝜌1 ⧵ 𝜇1, then with𝜉 ∶= 𝑅, 𝜆 or 𝜌, respectively, we have (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(x) If 𝑞 = 1, 𝑟 = 0 and 𝑖 > 𝑗, and if (𝛼, 𝛽) belongs to one of 𝑅𝐼1 ⧵ (𝜆1 ∪ 𝜌1), 𝜆1 ⧵ 𝜇1 or 𝜌1 ⧵ 𝜇1, then
with 𝜉 ∶= 𝑅, 𝜆 or 𝜌, respectively, we have (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(xi) If 𝑞 = 0 and 𝑖 ⩽ 𝑗, and if (𝛼, 𝛽) belongs to one of 𝑅𝐼0 ⧵ (𝜆0 ∪ 𝜌0), 𝜆0 ⧵ Δ𝐷0 or 𝜌0 ⧵ Δ𝐷0 , then
with 𝜉 ∶= 𝑅, 𝜆 or 𝜌, respectively, we have (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(xii) If 𝑞 = 𝑟 = 1 and 𝑖 = 𝑗, and if (𝛼, 𝛽) belongs to one of𝜇1 ⧵ (𝜇↑ ∪ 𝜇↓),𝜇↑ ⧵ Δ𝐷1 or𝜇↓ ⧵ Δ𝐷1 , then
with 𝜁 ∶= 𝜇, 𝜇↑ or 𝜇↓, respectively, we have (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(xiii) If 𝑞 = 𝑟 = 1, 𝑖 < 𝑗 and (𝛼, 𝛽) ∈ 𝜇1 ⧵ Δ𝐷1 , then (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair



TWISTED PARTITIONMONOIDS and THEIR LATTICES 21

(xiv) If 𝑞 = 1, 𝑟 = 0, 𝑖 ⩽ 𝑗 and �̂� = 𝛽, then (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(xv) If 𝑞 = 1, 𝑟 = 0, 𝑖 = 𝑗 + 1 and �̂� = 𝛽, then (𝒂, 𝒃)♯ = cg(Θ,𝑀) for the C-pair

(xvi) If 𝑞 = 1, 𝑟 = 0, 𝑖 > 𝑗 + 1 and �̂� = 𝛽, then with 𝑑 ∶= 𝑖 − 𝑗 − 1 we have (𝒂, 𝒃)♯ = cg(Θ,𝑀) for
the C-pair

The above exhaust all principal congruences on Φ𝑛 .
Proof. In each part, write Π = (Θ,𝑀) for the stated C-pair, and let Π′ = (Θ′,𝑀′) be the C-pair
associated to (𝒂, 𝒃)♯.
The proof for each part follows the same basic pattern. For all parts, except (vi) and (viii),

we use Lemma 5.1(i), and it is routine to verify that (𝒂, 𝒃) ∈ cg(Π). In parts (vi) and (viii) we
use Lemma 5.1(ii) instead, and it is equally routine to verify that (𝒂, 𝒃) ∈ cgx(Π) ⧵ cg(Π). It then
remains to check that Π ⩽𝐶 Π′, which amounts to showing that

𝜃𝑠 ⊆ 𝜃′𝑠 and 𝑀𝑠𝑘 ⩽𝐶 𝑀′𝑠𝑘 for all 𝑠 ∈ 𝐧0 and 𝑘 ∈ ℕ.
The first inequality is vacuously true when 𝜃𝑠 = Δℕ. Likewise, the second inequality needs to be
verified only when𝑀𝑠𝑘 ≠ Δ, and, furthermore, by Remark 3.10, when𝑀𝑠𝑘 >𝐶 𝑀𝑠,𝑘−1 (or 𝑘 = 0).
Below we give some representative proofs; the rest are similar. It will be convenient to

write 𝜎 ∶= (𝒂, 𝒃)♯.
(vii) As just noted, we only need to check that 𝑀′2𝑖 ⩾𝐶 2 and 𝑀′1𝑖,𝑀′0𝑖 ⩾ 𝜇. From the form of(𝒂, 𝒃), we have 𝜎2𝑖 ≠ Δ𝐷2 . (The 𝜎𝑠𝑘 notation is explained in Remark 3.6.) It follows from Table 2

that𝑀′2𝑖 ≠ Δ, and so from Figure 4 that𝑀′2𝑖 ⩾𝐶 2. Combining this with the verticality conditions
in Definition 3.2, it follows that 𝑀′1𝑖 ⩾𝐶 𝜇, and then by examining the row types in Table 1 that𝑀′0𝑖 ⩾𝐶 𝜇.
(viii) As this part involves an exceptional congruence, a little more work is required. As in

part (vii), we need to show that𝑀′1𝑖,𝑀′0𝑖 ⩾ 𝜇, but this time we also need to show that 𝜃′𝑠 ⊇ 𝜃𝑠 for𝑠 = 0, 1, 2.
Beginning with the latter, first note that since 𝑀′ ⩽𝐶 𝑀 (as 𝜎 ⊆ cgx(Π)), row 2 of 𝑀′ consists

entirely of Δs. Thus, by the form of (𝒂, 𝒃), this pair can only belong to 𝜎 via (C9); it follows that𝑀′ is exceptional, with x(𝑀′) = 2. In particular, we have 𝜃′2 = (𝑚,𝑚 + 2𝑒)♯ for some 𝑚 ⩾ 0 and𝑒 ⩾ 1, and moreover we have (𝑚,𝑚 + 𝑒)♯ ⊆ 𝜃′1 (see Definition 3.4). Since (𝒂, 𝒃) = ((𝑖, 𝛼), (𝑗, 𝛽))
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belongs to 𝜎 via (C9), we have (𝑖, 𝑖 + 𝑑) = (𝑖, 𝑗) ∈ (𝑚,𝑚 + 𝑒)♯, and so 𝑖 ⩾ 𝑚 and 𝑒 ∣ 𝑑, which
gives 𝜃2 ⊆ 𝜃′2. The reverse inclusion follows from Θ′ ⩽𝐶 Θ, and so 𝜃′2 = 𝜃2 = (𝑖, 𝑖 + 2𝑑)♯. Also,𝜃0 = 𝜃1 = (𝑖, 𝑖 + 𝑑)♯ = (𝑚,𝑚 + 𝑒)♯ ⊆ 𝜃′1 ⊆ 𝜃′0. Moving on to the matrix entries, since x(𝑀′) = 2
and 𝑖 = min 𝜃′2, it follows from Definition 3.4 that𝑀′1𝑖 ⩾ 𝜇, and then again by examining the row
types that𝑀′0𝑖 ⩾ 𝜇 as well.
(x) We consider the case in which (𝛼, 𝛽) ∈ 𝜆1 ⧵ 𝜇1, the others being similar. Referring to The-

orem 2.2, this means that �̂� L 𝛽( = 𝛽) but �̂� ≠ 𝛽. Examining Definition 3.3, it follows that(𝒂, 𝒃) ∈ 𝜎 via (C2) or (C4), so that 𝑀′1𝑖 = 𝑀′0𝑗 ∈ {𝜆, 𝑅}, and so 𝑀′1𝑖,𝑀′0𝑗 ⩾𝐶 𝜆. As usual this is all
we need to show regarding the matrix entries.
Examining Table 1, and remembering that per 𝜃′𝑠 = 1 if 𝜉 ≠ 𝜇 in row 𝑠 ⩽ 1 of 𝑀′, and that an

entry >𝐶 𝜇 can only appear aftermin 𝜃′𝑠, we see that 𝜃′1 ⊇ (𝑖, 𝑖 + 1)♯ = 𝜃1 and 𝜃′0 ⊇ (𝑗, 𝑗 + 1)♯ = 𝜃0.
(xvi) Since (𝒂, 𝒃) ∈ 𝜎, and since 𝒂 and 𝒃 belong to the D-classes 𝐷1𝑖 and 𝐷0𝑗 in different rows,

we see that𝑀′1𝑖 = 𝑀′0𝑗 ⩾𝐶 𝜇, and again this takes care of the matrices.
Since 𝜃′1 ⊆ 𝜃1 = (𝑖 + 1, 𝑖 + 1 + 𝑑)♯ and 𝜃′0 ⊆ 𝜃0 = (𝑗 + 1, 𝑗 + 1 + 𝑑)♯, we have 𝑖 < min 𝜃′1 and𝑗 < min 𝜃′0. Thus, since (𝒂, 𝒃) ∈ 𝜎 ∩ (𝐷1𝑖 × 𝐷0𝑗), 𝑀′ is of type RT2, RT5 or RT7. Since 𝑖 > 𝑗 + 1

we can rule out types RT2 and RT5, and so

𝜃′0 = (𝑗 + 1, 𝑗 + 1 + 𝑒)♯ and 𝜃′1 = (𝑖 + 1, 𝑖 + 1 + 𝑒)♯ for some 𝑒 ⩾ 1 with 𝑖 ≡ 𝑗 + 1 (mod 𝑒).
Thus, since we wish to show that 𝜃′0 ⊇ 𝜃0 and 𝜃′1 ⊇ 𝜃1, it remains to show that 𝑒 ∣ 𝑑 = 𝑖 − 𝑗 − 1.
But this follows from 𝑖 ≡ 𝑗 + 1 (mod 𝑒). □

Our next result, Theorem 5.7, shows that every congruence on Φ𝑛 can be generated by at most⌈ 5𝑛2 ⌉ pairs. As the proof is somewhat technical, we begin by considering some examples, all with𝑛 = 4.
Example 5.3. Consider the Rees congruence 𝑅𝐼 , where 𝐼 ∶= 𝐼33 ∪ 𝐼12 ∪ 𝐼00. Then 𝑅𝐼 = cg(Π) for
the C-pair

We claim that 𝑅𝐼 = {(𝒂, 𝒃), (𝒄, 𝒅)}♯ for any 𝒂 ∈ 𝐷33, 𝒃 ∈ 𝐷12, 𝒄 = (0, 𝛾) ∈ 𝐷00, 𝒅 = (0, 𝛿) ∈𝐷00, with (𝛾, 𝛿) ∉ L ∪ R. Indeed, first note that by Theorem 5.2(iii) and (xi) we have(𝒂, 𝒃)♯ = 𝑅𝐼33∪𝐼12 and (𝒄, 𝒅)♯ = 𝑅𝐼00 . And then, since 𝑅𝐼1 ∨ 𝑅𝐼2 = 𝑅𝐼1∪𝐼2 for any ideals 𝐼1, 𝐼2, we
have

𝑅𝐼 = 𝑅𝐼33∪𝐼12 ∨ 𝑅𝐼00 = (𝒂, 𝒃)♯ ∨ (𝒄, 𝒅)♯ = {(𝒂, 𝒃), (𝒄, 𝒅)}♯.
Many other pairs of pairs could be chosen to generate 𝑅𝐼 . For example, 𝒅 could be replaced by any
element from 𝐼 ⧵ 𝐷00.
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Example 5.4. Consider the C-pair Π = (Θ,𝑀) defined by

Fix arbitrary partitions 𝛼 ∈ 𝐷3, 𝛽 ∈ 𝐷2, and 𝛾, 𝛿 ∈ 𝐷1 such that (𝛾, 𝛿) ∈ 𝜇↓ ⧵ Δ𝐷1 . We claim that
cg(Π) = Ω♯, where

Ω = {((9, 𝛼), (13, 𝛼)), ((8, 𝛽), (12, 𝛽)), ((6, 𝛾), (8, 𝛾)), ((1, 𝛾), (1, 𝛿))}.
To show this, letΠ′ = (Θ′,𝑀′) be theC-pair associated toΩ♯. It is easy to check that each pair fromΩ belongs to cg(Π). Thus, it suffices by Lemma 5.1(i) to show thatΠ ⩽𝐶 Π′. Again, it is enough to
show that

𝑀′11 ⩾𝐶 𝜇↓, 𝑀′12,𝑀′01 ⩾𝐶 𝜇 and 𝜃𝑞 ⊆ 𝜃′𝑞 for 𝑞 = 0, 1, 2, 3.
By Theorem 5.2(xii), the C-matrix corresponding to the congruence ((1, 𝛾), (1, 𝛿))♯ is of type RT2,
with 𝑖 = 1 and 𝜁 = 𝜇↓. Since ((1, 𝛾), (1, 𝛿))♯ ⊆ Ω♯, it follows that 𝑀′11 ⩾𝐶 𝜇↓ and 𝑀′12,𝑀′01 ⩾𝐶 𝜇.
This takes care of the matrix entries, and in particular we have𝑀′ = 𝑀.
Turning to the C-chains, first note that the pair ((9, 𝛼), (13, 𝛼)) ∈ Ω♯ tells us that (9, 13) ∈ 𝜃′3

(see Remark 3.6). It follows that 𝜃′3 ⊇ (9, 13)♯ = 𝜃3, and we similarly obtain 𝜃′𝑞 ⊇ 𝜃𝑞 for 𝑞 = 1, 2.
Since 𝑀′ = 𝑀, it follows that Π′ is of type RT2 or RT5, and since 𝜃′1 = (6, 8)♯ ≠ Δℕ the former is
ruled out. It then follows (by the definition of type RT5) that 𝜃′0 = (5, 7)♯ = 𝜃0.
Example 5.5. Consider again the C-pair Π = (Θ,𝑀) from Example 5.4, and keep the notation
for the partitions 𝛼, 𝛽, 𝛾, 𝛿 defined there. Note in fact that Π is exceptional, with exceptional row
x(𝑀) = 2. This time let 𝜂 ∈ 𝐷2 be such that 𝛽 H 𝜂 but 𝛽 ≠ 𝜂, and set

Ξ = {((9, 𝛼), (13, 𝛼)), ((8, 𝛽), (10, 𝜂)), ((6, 𝛾), (8, 𝛾)), ((1, 𝛾), (1, 𝛿))}.
Note that the only place in which Ξ differs from Ω is the second component of the second gener-
ating pair. Note also that ((8, 𝛽), (10, 𝜂)) ∈ cgx(Π) ⧵ cg(Π). Thus, we can show that cgx(Π) = Ξ♯
by showing that Π ⩽𝐶 Π′, this time by applying Lemma 5.1(ii), where Π′ is the C-pair associated
to Ξ♯. We establish𝑀 ⩽𝐶 𝑀′, and the inclusions 𝜃𝑞 ⊆ 𝜃′𝑞 for 𝑞 ≠ 2, as in Example 5.4. For 𝜃2 ⊆ 𝜃′2
we use the pair ((8, 𝛽), (10, 𝜂)), and argue as in case (viii) in the proof of Theorem 5.2.

Example 5.6. Consider the C-pair
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We claim that cg(Π) = Ω♯, where Ω consists of:

(a) any pair from 𝐷36 × 𝐷23, and any pair from 𝐷12 × 𝐷00 satisfying the conditions of Theo-
rem 5.2(x) with 𝜉 = 𝑅;

(b) any pair from 𝐷11 × 𝐷11 as in Theorem 5.2(xii) with 𝜁 = 𝜇;
(c) any pair from 𝐷22 × 𝐷22 as in Theorem 5.2(vii), and any pairs from 𝐷34 × 𝐷34, 𝐷35 × 𝐷35,𝐷46 × 𝐷46, 𝐷47 × 𝐷47 and 𝐷48 × 𝐷48 as in Theorem 5.2(iv) with 𝑁 = 3, 3, 4, 4 and 4,

respectively;
(d) any pair from 𝐷49 × 𝐷4,11 as in Theorem 5.2(ii).

Indeed, once again we have Ω ⊆ cg(Π), so by Lemma 5.1(i) it remains to check that Π ⩽𝐶 Π′,
where Π′ is the C-pair of Ω♯. As in Example 5.3, the pairs from (a) above generate the Rees con-
gruence associated to the ideal class 𝐼(Ω♯) = 𝐼36 ∪ 𝐼23 ∪ 𝐼12 ∪ 𝐼00, and hence ‘fix’ the 𝑅s of 𝑀′;
these also fix the congruences 𝜃′𝑞 for 𝑞 ≠ 4. The pair in (b) fixes the 𝜇 label. The pairs in (c) fix the𝑁-symbols. Finally, the pair in (d) fixes the congruence 𝜃′4.
Here is the main result of this section. Its constructive proof allows one to find a generating set

of suitably bounded size for an arbitrary congruence.

Theorem 5.7. Let 𝑛 ⩾ 1.
(i) Every Rees congruence on Φ𝑛 can be generated by at most ⌈𝑛+12 ⌉ pairs.
(ii) Every congruence on Φ𝑛 can be generated by at most ⌈ 5𝑛2 ⌉ pairs.
Proof.

(i) Let 𝐼 be an ideal of Φ𝑛 . If 𝐼 = ∅, then 𝑅𝐼 = ΔΦ𝑛 = ∅♯. So suppose 𝐼 ≠ ∅, so that𝐼 = 𝐼𝑞1𝑖1 ∪⋯ ∪ 𝐼𝑞𝑘𝑖𝑘 for some set of incomparable elements (𝑞1, 𝑖1), … , (𝑞𝑘, 𝑖𝑘) of the poset(𝐧0, ⩽) × (ℕ, ⩾). Now,
𝑅𝐼 = 𝑅𝐼𝑞1𝑖1∪𝐼𝑞2𝑖2 ∨ 𝑅𝐼𝑞3𝑖3∪𝐼𝑞4𝑖4 ∨⋯ , (5.8)

where the last term in the join is either 𝑅𝐼𝑞𝑘𝑖𝑘 or 𝑅𝐼𝑞𝑘−1𝑖𝑘−1∪𝐼𝑞𝑘𝑖𝑘 , depending on the parity of 𝑘.
Since 𝑘 ⩽ 𝑛 + 1 and each Rees congruence in (5.8) is principal by Theorem 5.2(iii), (ix)–(xi),
the assertion follows.

(ii) Let 𝜎 ∈ Cong(Φ𝑛 ) be arbitrary, and let Π = (Θ,𝑀) be the associated C-pair, so that 𝜎 is one
of cg(Π) or cgx(Π). We create a set Ω with Ω♯ = 𝜎, and with |Ω| appropriately bounded, as
follows. Keeping Lemma 5.1 in mind, we ensure that:∙ each pair from Ω belongs to 𝜎;∙ some pair from Ω does not belong to cg(Π) if 𝜎 = cgx(Π) is exceptional;∙ each entry𝑀𝑞𝑖 of the C-matrix𝑀 is ‘fixed’ by some pair (𝒂, 𝒃) fromΩ, in the sense that the(𝑞, 𝑖)-th entry of the C-matrix corresponding to (𝒂, 𝒃)♯ is ⩾𝐶 𝑀𝑞𝑖;∙ each congruence 𝜃𝑞 from the C-chain Θ is also suitably fixed by a pair from Ω.

We now proceed to construct the set Ω, as a union Ω ∶= Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, in four steps. As in
part (i), the (possibly empty) ideal 𝐼 ∶= 𝐼(𝜎) has the form 𝐼 = 𝐼𝑞1𝑖1 ∪⋯ ∪ 𝐼𝑞𝑘𝑖𝑘 , where 𝑘 ⩾ 0 and
the (𝑞𝑡, 𝑖𝑡) are incomparable. Let 𝑚 = max(𝑞1, … , 𝑞𝑘), with the convention that 𝑚 = −1 if 𝑘 = 0,
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and note that 𝑘 ⩽ 𝑚 + 1. Note also that
𝑚 = −1 ⇔ 𝑘 = 0 ⇔ 𝐼 = ∅ ⇔ 𝑀 has no 𝑅-entries.

In what follows, the ‘type’ (i)–(xvi) of a pair (𝒂, 𝒃) ∈ Φ𝑛 × Φ𝑛 refers to the enumeration in Theo-
rem 5.2
Step 1. As in part (i), we construct a set Ω1 ⊆ 𝜎 such that 𝑅𝐼 = Ω♯1 and |Ω1| = ⌈ 𝑘2 ⌉. This fixes

any 𝑅-entries of𝑀, and also fixes the associated congruences 𝜃0, … , 𝜃𝑚; each is of the form 𝜃𝑞 =(𝑖𝑞, 𝑖𝑞 + 1)♯ where 𝑖𝑞 is the position of the first 𝑅 in row 𝑞.
Step 2. Next we construct a set Ω2 ⊆ 𝜎 to fix any non-trivial congruences among 𝜃𝑚+1, … , 𝜃𝑛.

For any 𝑞 ∈ {𝑚 + 1,… , 𝑛} with 𝜃𝑞 non-trivial, Ω2 contains a suitable pair of type (ii) unless 𝜎 is
exceptional and 𝑞 = x(𝑀) in which case we include a pair of type (vi) or (viii) as appropriate. In
any case, we have |Ω2| ⩽ 𝑛 − 𝑚.
Step 3. Next we construct a set Ω3 ⊆ 𝜎 to fix the entries in rows 0 and 1 of𝑀 that are distinct

from Δ and 𝑅. Depending on the row type RT1–RT7 of𝑀, Ω3 consists of the following pairs:
RT1: no pairs are required (because 𝜃0 and 𝜃1 have been fixed by Ω2);
RT2: one pair of type (xii) or (xv);
RT3: atmost one pair of type (xi); the clause ‘atmost’ appears here as no such pair is neededwhen𝜉 = 𝑅 (since the 𝑅s were fixed by Ω1), similar comments apply in the remaining cases;
RT4: at most one pair of type (ix) or (xiii);
RT5: one pair of type (xii) or (xv), and at most one of type (ii) or (xi);
RT6: if 𝜁 ≠ Δ, then one pair of type (xii), and at most one of type (ii) or (xi); if 𝜁 = Δ and 𝜉 ≠ 𝜇,

then at most one pair of type (x); if 𝜁 = Δ and 𝜉 = 𝜇, then one pair of type (xv) and one of
type (ii);

RT7: one pair of type (xvi), and at most one of type (xi).

By construction we have

|Ω3| ⩽ {1 if𝑚 ⩾ 0
2 if𝑚 = −1. (5.9)

Step 4. Finally, we construct a setΩ4 ⊆ 𝜎 of pairs of type (iv) or (vii) to fix the𝑁-symbols in𝑀.
As in the proof of Theorem 5.2 (see also Example 5.6), we need only include one pair for each
distinct 𝑁-symbol appearing in𝑀. We claim that

|Ω4| ⩽ ⎧⎪⎨⎪⎩
2𝑛 − 2 if𝑚 = 𝑛
2𝑚 if 0 ⩽ 𝑚 ⩽ 𝑛 − 1
1 if𝑚 = −1.

(5.10)

To see this, first recall that the 𝑁-symbols in row 𝑞 ⩾ 2 are the non-trivial normal subgroups
of 𝑞. Thus, the number of possible distinct 𝑁-symbols in rows 2, … , 𝑛 are 1, 2, 3, 2, 2, 2, … , 2,
respectively. When 𝑚 ⩾ 1, it follows from the verticality conditions in Definition 3.2 that only
rows 2, … ,𝑚 + 1 can have 𝑁-symbols, so that |Ω4| ⩽ 2𝑚; furthermore, when 𝑚 = 𝑛, there is no
row 𝑚 + 1, so the upper bound is 2𝑛 − 2. When 𝑚 = 0 we have |Ω4| = 0(= 2𝑚); indeed, here𝑀 is necessarily of type RT3 (with 𝜉 = 𝑅), and the verticality conditions prevent 𝑀 from having
any 𝑁-symbols. Finally, when 𝑚 = −1 (that is, 𝐼 = ∅), 𝑀 can have any of types RT1–RT7 (with
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𝜉 ≠ 𝑅), and 2 can occur in any of types RT2–RT7, but no other 𝑁-symbols can occur, meaning
that |Ω4| ⩽ 1.
This completes the definition of the set Ω ∶= Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, and, as explained above, we

have 𝜎 = Ω♯. It remains to check the size of Ω. By construction, and recalling that 𝑘 ⩽ 𝑚 + 1, we
have

|Ω| = |Ω1| + |Ω2| + |Ω3| + |Ω4| ⩽ ⌈𝑚+12 ⌉ + (𝑛 − 𝑚) + |Ω3| + |Ω4|.
It is now amatter of checking that this is bounded above by ⌈ 5𝑛2 ⌉, which we do by combining (5.9)
and (5.10). When𝑚 = 𝑛, we have

|Ω| ⩽ ⌈𝑛+12 ⌉ + 0 + 1 + (2𝑛 − 2) = ⌈ 5𝑛−12 ⌉.
When 0 ⩽ 𝑚 ⩽ 𝑛 − 1, we have

|Ω| ⩽ ⌈𝑚+12 ⌉ + (𝑛 − 𝑚) + 1 + 2𝑚 = ⌈𝑚+12 ⌉ + 𝑛 + (𝑚 + 1) ⩽ ⌈𝑛2 ⌉ + 2𝑛 = ⌈ 5𝑛2 ⌉.
When 𝑚 = −1, similar calculations give |Ω| ⩽ 𝑛 + 4. When 𝑛 ⩾ 3 we have 𝑛 + 4 ⩽ ⌈ 5𝑛2 ⌉. Thus,
the proof is complete except when𝑚 = −1 and 𝑛 ⩽ 2.
Now suppose 𝑚 = −1 and 𝑛 = 2, and that Ω as constructed above has size 𝑛 + 4 = 6. Since⌈ 5𝑛2 ⌉ = 5, it suffices to show that at least one pair from Ω is redundant. By maximality of |Ω| we

must have |Ω3| = 2, so examining the cases in Step 3 we see that 𝑀 has one of types RT5–RT7.
In type RT5 the second pair is either of type (ii) or (xi); in the first case the pair is redundant
because such a pair already comes fromΩ2; in the second case the pair of type (xi) fixes 𝜃0, so the
corresponding pair from Ω2 is redundant. Types RT6 and RT7 are treated in similar fashion.
Finally, when 𝑚 = −1 and 𝑛 = 1, we have |Ω| ⩽ 𝑛 + 4 = 5, and we need to show this can be

reduced to ⌈ 5𝑛2 ⌉ = 3. First note that in this case we haveΩ4 = ∅ as there are no𝑁-symbols when𝑛 = 1, so in fact |Ω| ⩽ 4. If we had |Ω| = 4, then we could remove a pair fromΩ as in the previous
case. □

Remark 5.11. We observe that there is no uniform constant bound (independent of 𝑛) for the
numbers of pairs needed to generate congruences on Φ𝑛 . Indeed, for any 𝑛 ⩾ 2, consider the con-
gruence 𝜎 = cg(Π), for the C-pair

If 𝜎 = Ω♯, thenΩmust contain at least one pair from𝐷𝑞,𝑞−2 × 𝐷𝑞,𝑞−2 for each 𝑞 = 2,… , 𝑛, because
otherwise Ω would be wholly contained in the congruence defined by the C-pair obtained fromΠ by replacing the entry𝑀𝑞,𝑞−2 = 𝑞 by Δ. Hence |Ω| ⩾ 𝑛 − 1, and the assertion is proved.
Congruences minimally generated by more than 𝑛 − 1 pairs can easily be constructed, as in

Example 5.6.
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TABLE 3 The specification of finitary row types in an fC-matrix

Type Row(s) Conditions
fRT1 0 ⩽ 𝑘 ⩽ 𝑑 + 1

fRT2 0 ⩽ 𝑖 < 𝑘 ⩽ 𝑑,𝜁 ∈ {𝜇, 𝜇↑, 𝜇↓, Δ}
fRT3 0 ⩽ 𝑘 < 𝑙 ⩽ 𝑑 + 1,𝜁 ∈ {𝜇, 𝜇↑, 𝜇↓, Δ}
fRT4 0 < 𝑘 < 𝑙 − 1 ⩽ 𝑑

fRT5 𝑞 ⩾ 2, 0 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑑 + 1,{id𝑞} ≠ 𝑁𝑖 ⩽ ⋯ ⩽ 𝑁𝑘−1,𝑁𝑖, … ,𝑁𝑘−1 ⊴ 𝑞

6 CONGRUENCES OF FINITE TWISTED PARTITIONMONOIDS 𝚽𝒏,𝒅
We now turn our attention to the finite 𝑑-twisted partition monoids Φ𝑛,𝑑 = (𝐝0 × 𝑛) ∪ {𝟎} intro-
duced in Subsection 2.4. Their congruences were described in [4], by viewingΦ𝑛,𝑑 as a quotient of
Φ𝑛 and deploying the Correspondence Theorem. In the course of this argument several simplifi-
cations take place: One can dispense with C-chains; C-matrices become finite; several row types
are not possible; and there are no exceptional matrices/congruences.

Definition 6.1 (Finitary C-matrix). A matrix𝑀 = (𝑀𝑞𝑖)𝐧0×𝐝0 is a finitary C-matrix, or fC-matrix
for short, if the following are satisfied:

∙ The entries𝑀𝑞𝑖 are drawn from {Δ, 𝜇↑, 𝜇↓, 𝜇, 𝑅} ∪ {𝑁 ∶ {id𝑞} ≠ 𝑁 ⊴ 𝑞, 2 ⩽ 𝑞 ⩽ 𝑛}.∙ Rows 0 and 1 of𝑀 must be of one of the finitary row types fRT1–fRT4 shown in Table 3.∙ Every row 𝑞 ⩾ 2must be of type fRT5 from Table 3.∙ An 𝑁-symbol cannot be immediately above Δ, 𝜇↑, 𝜇↓ or another 𝑁-symbol.∙ Every entry equal to 𝑅 in row 𝑞 ⩾ 1must be directly above an 𝑅 entry from row 𝑞 − 1.
Definition 6.2 (Congruence corresponding to a finitary C-matrix). The congruence asso-
ciated with a finitary C-matrix 𝑀 is the relation cg(𝑀) on Φ𝑛,𝑑 consisting of all pairs((𝑖, 𝛼), (𝑗, 𝛽)) ∈ Φ𝑛,𝑑 × Φ𝑛,𝑑 such that one of the following holds, writing 𝑞 = rank𝛼 and𝑟 = rank 𝛽:
(fC1) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = Δ, 𝑖 = 𝑗 and 𝛼 = 𝛽;
(fC2) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝑅;
(fC3) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝑁, 𝑖 = 𝑗, 𝛼 H 𝛽 and 𝜕(𝛼, 𝛽) ∈ 𝑁;
(fC4) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇↓, �̂� = 𝛽 and 𝛼 L 𝛽;
(fC5) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇↑, �̂� = 𝛽 and 𝛼 R 𝛽;
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(fC6) 𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇, �̂� = 𝛽, and either (𝑞, 𝑖) = (𝑟, 𝑗) or 𝑖 − 𝑗 = min𝑞(𝑀) − min𝑟(𝑀);
as well as the pairs:

(fC7) ((𝑖, 𝛼), 𝟎), (𝟎, (𝑖, 𝛼)) with𝑀𝑞𝑖 = 𝑅;
(fC8) (𝟎, 𝟎).
Here is the classification of congruences:

Theorem 6.3 [4, Theorem 7.3]. For 𝑛 ⩾ 1 and 𝑑 ⩾ 0, the congruences on the 𝑑-twisted partition
monoid Φ𝑛,𝑑 are precisely cg(𝑀), where𝑀 is any finitary C-matrix.

The analogue of Theorem 3.7, describing the inclusion ordering for congruences of Φ𝑛,𝑑, also
simplifies considerably for Φ𝑛,𝑑. In particular, only part (i) applies as there are no exceptional
congruences. The main complication remaining is caused by the matching 𝜇s in rows 0 and 1. To
handle these we use the μin0(𝑀) and μin1(𝑀) notation introduced before Theorem 3.7, which
here applies to fC-matrices of types fRT2 and fRT4. Also, in the absence of C-chains, we writemin𝑞(𝑀), for 𝑞 = 0, 1, to denote the smallest 𝑖 ∈ {0, … , 𝑑} such that 𝑀𝑞𝑖 = 𝑅 if it exists, andmin𝑞(𝑀) ∶= 𝑑 + 1 otherwise. We have μin1(𝑀) − μin0(𝑀) = min1(𝑀) − min0(𝑀) in types fRT2
and fRT4.

Theorem 6.4 [4, Theorem 7.4]. Let 𝑛 ⩾ 1 and 𝑑 ⩾ 0, and let 𝑀1 and 𝑀2 be any two fC-matrices
for Φ𝑛,𝑑 . Then cg(𝑀1) ⊆ cg(𝑀2) if and only if both of the following hold:
(a) 𝑀1 ⩽𝐶 𝑀2;
(b) If𝑀1 has type fRT2 or fRT4, then at least one of the following holds:

(b1) min0(𝑀2) ⩽ μin0(𝑀1) andmin1(𝑀2) ⩽ μin1(𝑀1), or
(b2) 𝑀2 also has type fRT2 or fRT4, andmin1(𝑀2) − min0(𝑀2) = min1(𝑀1) − min0(𝑀1).

Remark 6.5. The congruences of the 0-twisted partition monoid Φ𝑛,0 are particularly easy to
understand, and these will play an important role in subsequent sections when looking at
Φ𝑛,𝑑 for arbitrary 𝑑. When 𝑑 = 0, the fC-matrices are simply fC-columns, and they come in
two families (with {id𝑞} ≠ 𝑁 ⊴ 𝑞 in row 𝑞 ⩾ 2 in the second), and four individual ‘sporadic’
matrices:

(6.6)

Denoting the congruences associated to the first two types by 𝑅𝑞 and 𝑅𝑁 , and reusing existing
symbols to denote the four sporadic congruences by 𝜇↑, 𝜇↓, 𝜇 and 𝜇2 , the congruence lattice
Cong(Φ𝑛,0) is shown in Figure 7.
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F IGURE 7 The Hasse diagram of Cong(Φ𝑛,0); Rees congruences are indicated in blue outline, ‘sporadic’
congruences in red, and we abbreviate Δ = ΔΦ𝑛,0 and ∇ = ∇Φ𝑛,0

7 PROPERTIES OF THE CONGRUENCE LATTICE Cong(𝚽𝒏,𝒅)
Let us compare the properties of the lattice Cong(Φ𝑛,𝑑) with those of Cong(Φ𝑛 ) established in
Section 4. Since the monoids Φ𝑛,𝑑 are finite, so are their congruence lattices; we shall compute
their sizes exactly in Section 9. So, trivially, Cong(Φ𝑛,𝑑) has no infinite ascending/descending/
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F IGURE 8 A five-element diamond sublattice of Cong(Φ𝑛,𝑑), where 𝑑 > 0. See the proof of Theorem 7.1 for
more details

anti-chains; also, every element has finitely many covers, and is in turn covered by finitely many
elements. The lattice continues to have a single co-atom, as in (4.2), and additionally it has a single
atom, which is defined by the fC-matrix

In one marked contrast with Cong(Φ𝑛 ), this time we have the following:
Theorem 7.1. Let 𝑛 ⩾ 2.
(i) The lattice Cong(Φ𝑛,0) is distributive.
(ii) For 𝑑 > 0, the lattice Cong(Φ𝑛,𝑑) is modular but not distributive.
Proof.

(i) This follows by direct inspection of Figure 7.
(ii) To prove non-distributivity, we exhibit a five-element diamond sublattice of Cong(Φ𝑛,𝑑) in

Figure 8. To simplify the diagram, we only indicate the bottom-right 2 × 2 corner of each fC-
matrix; all other entries are Δ. Verification of meets and joins are straightforward with the
help of Theorem 6.4. To prove modularity we need to show that Cong(Φ𝑛,𝑑) does not contain
a sublattice isomorphic to the pentagon. This is rather involved, occupies the remainder of
this section and is finally accomplished in Proposition 7.8. □

We begin our work towards Proposition 7.8 with some preliminaries that gauge the extent to
which the inclusion ordering on Cong(Φ𝑛,𝑑) differs from the ⩽𝐶 ordering on fC-matrices.
Definition 7.2. Let𝑀 be an fC-matrix, and let 𝜎 ∶= cg(𝑀). We say that a pair of entries𝑀𝑞𝑖 and𝑀𝑟𝑗 of𝑀 arematched if (𝑞, 𝑖) ≠ (𝑟, 𝑗),𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇 and 𝜎 ∩ (𝐷𝑞𝑖 × 𝐷𝑟𝑗) ≠ ∅.
We note that if𝑀𝑞𝑖 = 𝑀𝑟𝑗 are matched then necessarily {𝑞, 𝑟} = {0, 1}. We also note that every𝜇 entry in row 0 is matched, whereas those in row 1 can be matched or unmatched. However,
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there can be at most one unmatched 𝜇 in𝑀, corresponding to 𝜁 = 𝜇 in types fRT2 and fRT4 (see
Table 3).
We now have the following obvious consequence of Definition 6.2:

Lemma 7.3. Let 𝜎 = cg(𝑀) ∈ Cong(Φ𝑛,𝑑), and let 𝐷𝑞𝑖 and 𝐷𝑟𝑗 be two distinct D-classes. Then𝜎 ∩ (𝐷𝑞𝑖 × 𝐷𝑟𝑗) ≠ ∅ if and only if either𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝑅 or else𝑀𝑞𝑖 = 𝑀𝑟𝑗 = 𝜇 are matched.
Next we consider the behaviour of the join and the intersection of two congruences restricted

to a single D-class. We observe that since Φ𝑛,𝑑 has a zero element, the ideal class 𝐼(𝜎) of any
congruence 𝜎 coincides with the class of 𝟎, and is non-empty in particular.
Lemma 7.4. Let 𝜎1, 𝜎2 ∈ Cong(Φ𝑛,𝑑), and let 𝑞 ∈ 𝐧0 and 𝑖 ∈ ℕ. If (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 ≠ 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖
then 𝜎𝑡 ∩ (𝐷𝑞𝑖 × 𝐷𝑟𝑗) ≠ ∅ for some 𝑡 = 1, 2 and some (𝑟, 𝑗) ≠ (𝑞, 𝑖).
Proof. Consider an arbitrary (𝒂, 𝒃) ∈ (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 ⧵ (𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 ). This means that there
exists a sequence 𝒂 = 𝒂1, 𝒂2, … , 𝒂𝑚 = 𝒃 such that the successive pairs belong to 𝜎1 ∪ 𝜎2, and
not all the terms belong to 𝐷𝑞𝑖 . Let (𝒂𝑙, 𝒂𝑙+1) ∈ 𝜎𝑡 be any pair where 𝒂𝑙 ∈ 𝐷𝑞𝑖 and 𝒂𝑙+1 ∉ 𝐷𝑞𝑖 .
If 𝒂𝑙+1 ∈ 𝐷𝑟𝑗 for some (𝑟, 𝑗) we are finished. Otherwise 𝒂𝑙+1 = 𝟎. But then 𝐷𝑞𝑖 ⊆ 𝐼(𝜎𝑡), which
implies 𝜎𝑡↾𝐷𝑞𝑖 = ∇𝐷𝑞𝑖 , and therefore (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 = ∇𝐷𝑞𝑖 = 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 , a contradiction. □

Lemma 7.5. Let 𝜎1, 𝜎2 ∈ Cong(Φ𝑛,𝑑), and 𝑞 ∈ 𝐧0, 𝑖 ∈ ℕ. Then:
(i) (𝜎1 ∩ 𝜎2)↾𝐷𝑞𝑖 = 𝜎1↾𝐷𝑞𝑖 ∩ 𝜎2↾𝐷𝑞𝑖 ;
(ii) (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 = 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 , with the only possible exceptions when 𝑞 ∈ {0, 1} and𝑀1𝑞𝑖,𝑀2𝑞𝑖 ∈ {Δ, 𝜇↓, 𝜇↑, 𝜇}.
Proof. (i) is obvious. (ii) follows from Lemmas 7.3 and 7.4, and the observation that if either𝑀1𝑞𝑖
or𝑀2𝑞𝑖 equals 𝑅 then (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 = ∇𝐷𝑞𝑖 = 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 . □

Next we move on to the ideal class 𝐼(𝜎).
Lemma 7.6. For any 𝜎1, 𝜎2 ∈ Cong(Φ𝑛,𝑑) the following hold:
(i) 𝐼(𝜎1 ∩ 𝜎2) = 𝐼(𝜎1) ∩ 𝐼(𝜎2);
(ii) If 𝑞 ⩾ 2, then 𝐷𝑞𝑖 ⊆ 𝐼(𝜎1 ∨ 𝜎2) if and only if 𝐷𝑞𝑖 ⊆ 𝐼(𝜎𝑡) for some 𝑡 = 1, 2.
Proof. (i) is obvious. For (ii) notice that for 𝑞 ⩾ 2 we either have 𝐷𝑞𝑖 ⊆ 𝐼(𝜎𝑡), or else there are no𝜎𝑡-relationships between 𝐷𝑞𝑖 and Φ𝑛,𝑑 ⧵ 𝐷𝑞𝑖 . □

Webring these results together into the following description of the fC-matrices for the intersec-
tion and join of two congruences. The meets and joins between the matrix entries are computed
under the ordering ⩽𝐶 as depicted in Figure 4.
Lemma 7.7. Let 𝜎1, 𝜎2 ∈ Cong(Φ𝑛,𝑑) with 𝜎𝑡 = cg(𝑀𝑡), and furthermore let 𝜎1 ∩ 𝜎2 = cg(𝑀∩),𝜎1 ∨ 𝜎2 = cg(𝑀∨). For 𝑞 ∈ 𝐧0 and 𝑖 ∈ ℕ, the following hold:
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(i) 𝑀∩𝑞𝑖 = 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖 , except when 𝑞 = 0, 𝑀10𝑖 = 𝑀20𝑖 = 𝜇, but the matching entries in row 1 are in
different positions in𝑀1 and𝑀2, in which case𝑀∩𝑞𝑖 = Δ.

(ii) 𝑀∨𝑞𝑖 = 𝑀1𝑞𝑖 ∨ 𝑀2𝑞𝑖 , with possible exceptions for 𝑞 ∈ {0, 1},𝑀1𝑞𝑖,𝑀2𝑞𝑖 ∈ {Δ, 𝜇↑, 𝜇↓, 𝜇}, and at least
one of𝑀1𝑞𝑖,𝑀2𝑞𝑖 equals 𝜇, in which case we may have𝑀∨𝑞𝑖 = 𝑅.

Proof. (i) By Lemma 7.5(i), the restriction (𝜎1 ∩ 𝜎2)↾𝐷𝑞𝑖 is uniquely determined by the 𝜎𝑡↾𝐷𝑞𝑖 .
Therefore, we can only have 𝑀∩𝑞𝑖 ≠ 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖 when 𝑀∩𝑞𝑖 is not uniquely determined by(𝜎1 ∩ 𝜎2)↾𝐷𝑞𝑖 . As in Remark 3.6, the latter is only the case when 𝑞 = 0 and (𝜎1 ∩ 𝜎2)↾𝐷0𝑖 = Δ𝐷0𝑖 ,
or when 𝑞 = 𝑛 and (𝜎1 ∩ 𝜎2)↾𝐷𝑛𝑖 = ∇𝐷𝑛𝑖 . The first alternative rapidly leads to the assertion,
by eliminating the possibility 𝑀𝑡𝑞𝑖 = Δ for some 𝑡 = 1, 2. For the second, suppose 𝑛 = 𝑞 and(𝜎1 ∩ 𝜎2)↾𝐷𝑞𝑖 = ∇𝐷𝑞𝑖 . Then𝑀1𝑞𝑖,𝑀2𝑞𝑖,𝑀∩𝑞𝑖 ∈ {𝑆𝑛, 𝑅}, and, using Lemma 7.6(i),

𝑀∩𝑞𝑖 = 𝑅 ⇔ 𝐷𝑞𝑖 ⊆ 𝐼(𝜎1 ∩ 𝜎2) = 𝐼(𝜎1) ∩ 𝐼(𝜎2) ⇔ 𝑀1𝑞𝑖 = 𝑀2𝑞𝑖 = 𝑅,
which implies𝑀∩𝑞𝑖 = 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖 .
(ii) Reasoning as in (i), we see that the only exceptions to𝑀∨𝑞𝑖 = 𝑀1𝑞𝑖 ∨ 𝑀2𝑞𝑖 may arise if:

∙ (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 ≠ 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 ; or∙ 𝑀∨𝑞𝑖 is not uniquely determined by (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 .
We begin with the first option. Here Lemma 7.5(ii) gives 𝑞 ∈ {0, 1} and 𝑀1𝑞𝑖,𝑀2𝑞𝑖 ∈ {Δ, 𝜇↑, 𝜇↓, 𝜇}.
If in fact 𝑀1𝑞𝑖,𝑀2𝑞𝑖 ∈ {Δ, 𝜇↑, 𝜇↓}, then there would be no 𝜎𝑡-relationships between 𝐷𝑞𝑖 and
Φ𝑛,𝑑 ⧵ 𝐷𝑞𝑖 (𝑡 = 1, 2), and hence (𝜎1 ∨ 𝜎2)↾𝐷𝑞𝑖 = 𝜎1↾𝐷𝑞𝑖 ∨ 𝜎2↾𝐷𝑞𝑖 , a contradiction. Thus, at least one
of𝑀1𝑞𝑖,𝑀2𝑞𝑖 equals𝜇. But then if𝑀∨𝑞𝑖 > 𝑀1𝑞𝑖 ∨ 𝑀2𝑞𝑖 , we can only have𝑀∨𝑞𝑖 = 𝑅 (see Figure 4, remem-
bering that 𝜆 and 𝜌 do not appear in fC-matrices).
For the second option, as in (i), we have 𝑞 = 0 and (𝜎1 ∨ 𝜎2)↾𝐷0𝑖 = Δ𝐷0𝑖 , or 𝑞 = 𝑛 and(𝜎1 ∨ 𝜎2)↾𝐷𝑛𝑖 = ∇𝐷𝑛𝑖 . In the first of these alternatives we have:

𝑀∨0𝑖 = 𝜇 ⇔ (𝜎1 ∨ 𝜎2) ∩ (𝐷0𝑖 × 𝐷1𝑗) ≠ ∅ for some 𝑗 ∈ ℕ
⇔ 𝜎𝑡 ∩ (𝐷0𝑖 × 𝐷1𝑗) ≠ ∅ for some 𝑡 = 1, 2, 𝑗 ∈ ℕ
⇔ 𝑀𝑡0𝑖 = 𝜇 for some 𝑡 = 1, 2.

And in the second alternative, using Lemma 7.6(ii), we have

𝑀∨𝑛𝑖 = 𝑅 ⇔ 𝐷𝑛𝑖 ⊆ 𝐼(𝜎1 ∨ 𝜎2)
⇔ 𝐷𝑛𝑖 ⊆ 𝐼(𝜎𝑡) for some 𝑡 = 1, 2
⇔ 𝑀𝑡𝑛𝑖 = 𝑅 for some 𝑡 = 1, 2,

and as in (i) this leads to𝑀∨𝑛𝑖 = 𝑀1𝑛𝑖 ∨ 𝑀2𝑛𝑖 , completing the proof. □

We are now ready to demonstrate the non-existence of pentagons in Cong(Φ𝑛,𝑑), which is the
final step in the proof of Theorem 7.1.
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Proposition 7.8. For 𝑛 ⩾ 1 and 𝑑 ⩾ 0, the lattice Cong(Φ𝑛,𝑑) does not contain a sublattice isomor-
phic to the pentagon.

Proof. Seeking a contradiction, supposeCong(Φ𝑛,𝑑) does in fact contain the following five-element
sublattice, with (non-)inclusions, meets and joins as indicated:

First we claim that there exists (𝒂, 𝒃) ∈ 𝜎3 ⧵ 𝜎2 with 𝒂, 𝒃 ≠ 𝟎. To see this, let (𝒄, 𝒅) ∈ 𝜎3 ⧵ 𝜎2
be arbitrary. Certainly 𝒄 and 𝒅 are not both 𝟎, say 𝒄 ≠ 𝟎; take 𝒂 ∶= 𝒄. If 𝒅 ≠ 𝟎 we take 𝒃 ∶= 𝒅, so
suppose instead that 𝒅 = 𝟎. Since 𝜎2 ≠ ΔΦ𝑛,𝑑 , we may take any 𝒃 ∈ 𝐼(𝜎2) ⧵ {𝟎}, with the required
conditions easily checked.
With the claim established, for the rest of the proof we fix some (𝒂, 𝒃) ∈ 𝜎3 ⧵ 𝜎2 with𝒂 ∈ 𝐷𝑞𝑖 and 𝒃 ∈ 𝐷𝑟𝑗 . Notice immediately from (𝒂, 𝒃) ∉ 𝜎1 ∩ 𝜎2 = 𝜎1 ∩ 𝜎3, and from𝜎3 ⊆ 𝜎1 ∨ 𝜎3 = 𝜎1 ∨ 𝜎2 that

(𝒂, 𝒃) ∉ 𝜎1 and (𝒂, 𝒃) ∈ 𝜎1 ∨ 𝜎2. (7.9)

From here the proof will proceed in two stages: First we will consider the situation where(𝒂, 𝒃) ∈ D ; and then afterwards we consider (𝒂, 𝒃) ∉ D , with the additional assumption that the
restrictions of 𝜎2 and 𝜎3 to every D-class coincide.
Stage 1: 𝒂, 𝒃 ∈ 𝐷𝑞𝑖(= 𝐷𝑞𝑗). From (𝒂, 𝒃) ∈ 𝜎3↾𝐷𝑞𝑖 ⧵ 𝜎2↾𝐷𝑞𝑖 , we obtain

𝑀3𝑞𝑖 > 𝑀2𝑞𝑖. (7.10)

We claim that

𝑀∩𝑞𝑖 ≠ 𝑀1𝑞𝑖 ∧ 𝑀𝑡𝑞𝑖 or 𝑀∨𝑞𝑖 ≠ 𝑀1𝑞𝑖 ∨ 𝑀𝑡𝑞𝑖 for some 𝑡 = 2, 3. (7.11)

Indeed, if not, then 𝑀1𝑞𝑖,𝑀2𝑞𝑖,𝑀3𝑞𝑖,𝑀∩𝑞𝑖,𝑀∨𝑞𝑖 would form a homomorphic image of the the pen-
tagon. Furthermore,𝑀2𝑞𝑖 <𝐶 𝑀3𝑞𝑖 , and it quickly follows that in fact these entries form a pentagon.
This is a contradiction, because the lattice of allowable entries in any fixed position in an fC-matrix
has no pentagons (see Figure 4), and (7.11) is proved.
Now, use Lemma 7.7 to observe that

𝑀∩𝑞𝑖 ≠ 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖 ⇒ 𝑀∩𝑞𝑖 <𝐶 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖 ⩽𝐶 𝑀1𝑞𝑖 ∧ 𝑀3𝑞𝑖,
and 𝑀∨𝑞𝑖 ≠ 𝑀1𝑞𝑖 ∨ 𝑀3𝑞𝑖 ⇒ 𝑀∨𝑞𝑖 >𝐶 𝑀1𝑞𝑖 ∨ 𝑀3𝑞𝑖 ⩾𝐶 𝑀1𝑞𝑖 ∧ 𝑀2𝑞𝑖.
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Thus (7.11) is equivalent to

𝑀∩𝑞𝑖 <𝐶 𝑀1𝑞𝑖 ∧ 𝑀3𝑞𝑖 or 𝑀∨𝑞𝑖 >𝐶 𝑀1𝑞𝑖 ∨ 𝑀2𝑞𝑖.
Consider the first of these alternatives, that is, 𝑀∩𝑞𝑖 <𝐶 𝑀1𝑞𝑖 ∧ 𝑀3𝑞𝑖 . By Lemma 7.7(i) this can

only happenwhen 𝑞 = 0 and𝑀10𝑖 = 𝑀30𝑖 = 𝜇. But this implies 𝜎3↾𝐷0𝑖 = Δ𝐷0𝑖 , in contradictionwith(𝒂, 𝒃) ∈ 𝜎3 ⧵ 𝜎2 ⊆ 𝜎3 ⧵ ΔΦ𝑛,𝑑 . Therefore we conclude that

𝑀∨𝑞𝑖 >𝐶 𝑀1𝑞𝑖 ∨ 𝑀2𝑞𝑖. (7.12)

Lemma 7.7(ii) gives us all the situations inwhich (7.12)may happen. For the purposes of this proof
we organise the cases as follows:

∙ 𝑞 = 1,𝑀11𝑖 = 𝑀21𝑖 = 𝜇 and both are matched;∙ 𝑞 = 1,𝑀11𝑖 is one of Δ, 𝜇↑, 𝜇↓ or an unmatched 𝜇, and𝑀21𝑖 = 𝜇;∙ 𝑞 = 1,𝑀11𝑖 = 𝜇 and𝑀21𝑖 is one of Δ, 𝜇↑, 𝜇↓ or an unmatched 𝜇;∙ 𝑞 = 0,𝑀10𝑖 ∈ {Δ, 𝜇} and𝑀20𝑖 = 𝜇;∙ 𝑞 = 0,𝑀10𝑖 = 𝜇 and𝑀20𝑖 = Δ.
Note that in the first three cases, if 𝑀21𝑖 = 𝜇 then 𝑀31𝑖 = 𝑅 by (7.10). Likewise, in the last two
cases, 𝑀30𝑖 = 𝑅 always (remembering that (𝒂, 𝒃) ∈ 𝜎3↾𝐷𝑞𝑖 ⧵ Δ𝐷𝑞𝑖 for the fifth). In all five cases,
Lemma 7.7(ii) gives 𝑀∨𝑞𝑖 = 𝑅. Throughout what follows we will make use of the following rela-
tion:

𝜇 ∶= {(𝑙, 𝛾), (𝑚, 𝛿)) ∶ 𝛾, 𝛿 ∈ 𝐼1, 𝛾 = 𝛿, 𝑙,𝑚 ∈ 𝐝0}.
Case 1: 𝑞 = 1,𝑀11𝑖 = 𝑀21𝑖 = 𝜇 and both are matched. Suppose𝑀11𝑖 = 𝜇 is matched with𝑀10𝑙 = 𝜇,
and 𝑀21𝑖 = 𝜇 is matched with 𝑀20𝑢 = 𝜇. From 𝑀31𝑖 = 𝑅 and 𝜎2 ⊆ 𝜎3 it follows that 𝑀30𝑢 = 𝑅. We
split into subcases depending on the relationship between 𝑙 and 𝑢.
Subcase 1.1: 𝑙 = 𝑢. Note that there are no 𝜎𝑡-relationships (𝑡 = 1, 2) between 𝑋 ∶= 𝐷1𝑖 ∪ 𝐷0𝑙

and Φ𝑛,𝑑 ⧵ 𝑋. Hence
(𝜎1 ∨ 𝜎2)↾𝑋 = 𝜎1↾𝑋 ∨ 𝜎2↾𝑋 = 𝜇↾𝑋 ≠ ∇𝑋 = (𝜎1 ∨ 𝜎3)↾𝑋,

a contradiction.
Subcase 1.2: 𝑙 < 𝑢. This implies𝑀10𝑢 ≠ Δ. If𝑀10𝑢 = 𝜇 then it is matched to some𝑀11𝑣 = 𝜇 with𝑣 > 𝑖. But then𝑀30𝑢 = 𝑀31𝑣 = 𝑅, and so

(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑢 × 𝐷1𝑣) = 𝜇 ∩ (𝐷0𝑢 × 𝐷1𝑣) ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑢 × 𝐷1𝑣),
a contradiction. If𝑀10𝑢 = 𝑅 then

(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑢 × {𝟎}) = 𝐷0𝑢 × {𝟎} ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑢 × {𝟎}),
a contradiction.
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Subcase 1.3: 𝑙 > 𝑢. This time𝑀30𝑙 = 𝑅, and hence
(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑙 × 𝐷1𝑖) = 𝜇 ∩ (𝐷0𝑙 × 𝐷1𝑖) ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑙 × 𝐷1𝑖),

a contradiction.
Case 2: 𝑞 = 1,𝑀11𝑖 is one ofΔ, 𝜇↑, 𝜇↓ or an unmatched𝜇, and𝑀21𝑖 = 𝜇. If𝑀21𝑖 = 𝜇 is unmatched,

then there are no 𝜎𝑡-relationships (𝑡 = 1, 2) between 𝐷1𝑖 and Φ𝑛,𝑑 ⧵ 𝐷1𝑖 , and hence
∇𝐷1𝑖 = 𝜎∨↾𝐷1𝑖 = (𝜎1 ∨ 𝜎2)↾𝐷1𝑖 = 𝜎1↾𝐷1𝑖 ∨ 𝜎2↾𝐷1𝑖 = 𝜇↾𝐷1𝑖 ,

a contradiction. So suppose that 𝑀21𝑖 = 𝜇 is matched with 𝑀20𝑙 = 𝜇. Since 𝑀31𝑖 = 𝑅 and𝜎3 ∩ (𝐷0𝑙 × 𝐷1𝑖) ⊇ 𝜎2 ∩ (𝐷0𝑙 × 𝐷1𝑖) ≠ ∅, we have 𝑀30𝑙 = 𝑅. If 𝑀10𝑙 = Δ a similar argument to the
above, but this time restricting to 𝐷0𝑙 ∪ 𝐷1𝑖 , leads to a contradiction. If 𝑀10𝑙 = 𝜇, and is matched
with𝑀11𝑢 = 𝜇, then necessarily 𝑢 > 𝑖, so that𝑀31𝑢 = 𝑅, and therefore

(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑙 × 𝐷1𝑢) = 𝜇 ∩ (𝐷0𝑙 × 𝐷1𝑢) ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑙 × 𝐷1𝑢),
a contradiction. Finally, if𝑀10𝑙 = 𝑅 then

(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑙 × {𝟎}) = 𝐷0𝑙 × {𝟎} ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑙 × {𝟎}),
a contradiction.
Case 3: 𝑞 = 1, 𝑀11𝑖 = 𝜇, and 𝑀21𝑖 is one of Δ, 𝜇↑, 𝜇↓ or an unmatched 𝜇. As in Case 2, 𝑀11𝑖 = 𝜇

must be matched to some𝑀10𝑢 = 𝜇. Next note that
𝜎2↾𝐷1𝑖 = (𝜎1 ∩ 𝜎2)↾𝐷1𝑖 = (𝜎1 ∩ 𝜎3)↾𝐷1𝑖 = 𝜇↾𝐷1𝑖 ∩ 𝜎3↾𝐷1𝑖 .

If𝑀31𝑖 ∈ {𝑅, 𝜇}, it follows that 𝜎2↾𝐷1𝑖 = 𝜇↾𝐷1𝑖 , and so𝑀21𝑖 = 𝜇. By (7.10), the only other possibility
is for𝑀31𝑖 ∈ {𝜇↑, 𝜇↓} and𝑀21𝑖 = Δ; but in this case 𝜎2↾𝐷1𝑖 = 𝜇↾𝐷1𝑖 ∩ 𝜎3↾𝐷1𝑖 = 𝜎3↾𝐷1𝑖 , and so𝑀21𝑖 =𝑀31𝑖 , a contradiction. We therefore conclude that 𝑀21𝑖 = 𝜇, which is then unmatched, and also𝑀31𝑖 = 𝑅. If𝑀20𝑢 = Δ, then there are no 𝜎𝑡-relationships (𝑡 = 1, 2) between 𝐷0𝑢 ∪ 𝐷1𝑖 and the rest
of Φ𝑛,𝑑, and the usual argument (using 𝑀31𝑖 = 𝑅) again yields a contradiction. Also, we cannot
have 𝑀20𝑢 = 𝜇, since 𝑢 < 𝑖 already, and there is no suitable fC-matrix. But if 𝑀20𝑢 = 𝑅, then also𝑀30𝑢 = 𝑅, and hence

(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑢 × 𝐷1𝑖) = 𝜇 ∩ (𝐷0𝑢 × 𝐷1𝑖) ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑢 × 𝐷1𝑖),
a contradiction.
Case 4: 𝑞 = 0,𝑀10𝑖 ∈ {Δ, 𝜇} and𝑀20𝑖 = 𝜇. Suppose𝑀20𝑖 = 𝜇 is matched to𝑀21𝑗 = 𝜇. From𝑀30𝑖 =𝑅 and 𝜎2 ⊆ 𝜎3 it follows that𝑀31𝑗 = 𝑅. Therefore (𝜎3 ⧵ 𝜎2)↾𝐷1𝑗 ≠ ∅, which is the situation treated

in Cases 1–3.
Case 5: 𝑞 = 0,𝑀10𝑖 = 𝜇 and𝑀20𝑖 = Δ. Let𝑀10𝑖 = 𝜇 be matched with𝑀11𝑢 = 𝜇. If𝑀21𝑢 is Δ, 𝜇↑, 𝜇↓

or an unmatched 𝜇, there are no 𝜎𝑡-relationships (𝑡 = 1, 2) between𝐷0𝑖 ∪ 𝐷1𝑢 and the rest ofΦ𝑛,𝑑,
and this leads to the usual contradiction. If𝑀21𝑢 = 𝜇 is matched to𝑀20𝑙 = 𝜇 then necessarily 𝑙 > 𝑖
and so 𝑀30𝑙 = 𝑅; from 𝜎2 ⊆ 𝜎3 it follows that 𝑀31𝑢 = 𝑅 as well, and this takes us back to Case 1.
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Finally, if𝑀21𝑢 = 𝑅, then also𝑀31𝑢 = 𝑅, and so
(𝜎1 ∩ 𝜎3) ∩ (𝐷0𝑖 × 𝐷1𝑢) = 𝜇 ∩ (𝐷0𝑖 × 𝐷1𝑢) ≠ ∅ = (𝜎1 ∩ 𝜎2) ∩ (𝐷0𝑖 × 𝐷1𝑢),

a contradiction. This completes the proof of this case, and indeed of Stage 1.
Stage 2: (𝒂, 𝒃) ∉ D , but 𝜎2↾𝐷𝑠𝑙 = 𝜎3↾𝐷𝑠𝑙 for all 𝑠 ∈ 𝐧0 and 𝑙 ∈ ℕ. Since (𝒂, 𝒃) ∈ 𝜎3 and(𝒂, 𝒃) ∉ D it follows from Lemma 7.3 that one of the following holds:

∙ 𝑀3𝑞𝑖 = 𝑀3𝑟𝑗 = 𝑅 or∙ 𝑀3𝑞𝑖 = 𝑀3𝑟𝑗 = 𝜇 are matched.
Case 1:𝑀3𝑞𝑖 = 𝑀3𝑟𝑗 = 𝑅. By the assumptions for this stage,𝜎2↾𝐷𝑞𝑖 = 𝜎3↾𝐷𝑞𝑖 = ∇𝐷𝑞𝑖 and 𝜎2↾𝐷𝑟𝑗 =𝜎3↾𝐷𝑟𝑗 = ∇𝐷𝑟𝑗 . On the other hand, since (𝒂, 𝒃) ∈ (𝜎3 ⧵ 𝜎2) ∩ (𝐷𝑞𝑖 × 𝐷𝑟𝑗), we cannot have 𝑀2𝑞𝑖 =𝑀2𝑟𝑗 = 𝑅. Without loss assume that𝑀2𝑞𝑖 ≠ 𝑅. As in Remark 3.6 wemust have 𝑞 = 𝑛 and𝑀2𝑛𝑖 = 𝑛.

If𝑀1𝑛𝑖 ≠ 𝑅, then there are no 𝜎𝑡-relationships (𝑡 = 1, 2) between𝐷𝑛𝑖 and Φ𝑛,𝑑 ⧵ 𝐷𝑛𝑖 , contradicting(𝒂, 𝒃) ∈ 𝜎1 ∨ 𝜎3 = 𝜎1 ∨ 𝜎2; therefore 𝑀1𝑛𝑖 = 𝑅. But then (𝒂, 𝟎) ∈ (𝜎1 ∩ 𝜎3) ⧵ (𝜎1 ∩ 𝜎2), a contra-
diction.
Case 2: 𝑀3𝑞𝑖 = 𝑀3𝑟𝑗 = 𝜇 are matched. Without loss we may assume that 𝑞 = 0 and 𝑟 = 1, and

we note that 𝑖 < 𝑗. By (7.10) we have𝑀20𝑖 = Δ. From 𝜎2↾𝐷1𝑗 = 𝜎3↾𝐷1𝑗 it follows that𝑀21𝑗 = 𝜇. This
entry cannot be matched to 𝑀20𝑖 , because (𝒂, 𝒃) ∈ (𝜎3 ⧵ 𝜎2) ∩ (𝐷0𝑖 × 𝐷1𝑗). On the other hand, it
cannot be matched to any other entry in row 1, as that would violate 𝜎2 ⊆ 𝜎3. We conclude that𝑀21𝑗 = 𝜇 is unmatched.
Since (𝒂, 𝒃) ∈ 𝜎1 ∨ 𝜎3 = 𝜎1 ∨ 𝜎2, there must be 𝜎1-relationships between 𝐷0𝑖 and another D-

class, and also between 𝐷1𝑗 and another D-class. In particular,𝑀10𝑖,𝑀11𝑗 ∈ {𝜇, 𝑅}, and if𝑀11𝑗 = 𝜇
then this is matched in 𝑀1. We cannot have 𝑀10𝑖 = 𝑀11𝑗 = 𝑅, as this would imply (𝒂, 𝒃) ∈ 𝜎1,
in contradiction with (7.9). For the same reason we cannot have 𝑀10𝑖 = 𝑀11𝑗 = 𝜇 matched to
each other.
Subcase 2.1: 𝑀10𝑖 = 𝜇. This is necessarily matched to some 𝑀11𝑙, and (since either 𝑀11𝑗 = 𝑅

or else 𝑀11𝑗 = 𝜇 is not matched to 𝑀10𝑖) we have 𝑙 < 𝑗. Since 𝑀21𝑗 = 𝜇 is unmatched, it follows
that𝑀11𝑙 = Δ = 𝑀20𝑖 . Thus, there are no 𝜎1 ∨ 𝜎2-relationships between𝑋 ∶= 𝐷0𝑖 ∪ 𝐷1𝑙 and the rest
of Φ𝑛,𝑑. But this contradicts (𝒂, 𝒃) ∈ 𝜎1 ∨ 𝜎3 = 𝜎1 ∨ 𝜎2, since 𝒂 ∈ 𝑋 and 𝒃 ∉ 𝑋.
Subcase 2.2:𝑀10𝑖 = 𝑅. As noted above, here we must have𝑀11𝑗 = 𝜇, and this must be matched

to some𝑀10𝑙 = 𝜇with 𝑙 < 𝑖. This timewehave𝑀20𝑙 = Δ, and since𝑀21𝑗 = 𝜇 is unmatched, it follows
that there are no 𝜎1 ∨ 𝜎2-relationships between 𝐷0𝑙 ∪ 𝐷1𝑗 and the rest of Φ𝑛,𝑑. This leads to the
same contradiction as in the previous subcase.
This completes the proof of this case, Stage 2, and of the proposition. □

Remark 7.13. Our proof that the lattice Cong(Φ𝑛,𝑑) is modular involved showing that it contains
no pentagon sublattices. Another way one might hope to show a congruence lattice is modular
is to use a classical result of Jónsson [10]. Specifically, it follows from [10, Theorem 1.2] that if𝜎◦𝜏◦𝜎 = 𝜏◦𝜎◦𝜏 for all congruences 𝜎 and 𝜏 on some algebra 𝐴, then Cong(𝐴) is modular. One
might therefore wonder if Jónsson’s condition holds in Cong(Φ𝑛,𝑑), but it turns out that it does
not (apart from trivially small cases). For example, suppose 𝑛 ⩾ 2 and 𝑑 ⩾ 1, and consider the
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congruences 𝜎 = cg(𝑀1) and 𝜏 = cg(𝑀2) of Φ𝑛,𝑑, for the fC-matrices

Let 𝛼, 𝛽 ∈ 𝐷1 be such that �̂� ≠ 𝛽. Then
(�̂�, 0) 𝜏 (𝛼, 1) 𝜎 (𝛽, 1) 𝜏 (𝛽, 0),

and hence ((�̂�, 0), (𝛽, 0)) ∈ 𝜏◦𝜎◦𝜏. We claim that ((�̂�, 0), (𝛽, 0)) ∉ 𝜎◦𝜏◦𝜎. To see this suppose
(�̂�, 0) 𝜎 𝒂 𝜏 𝒃 𝜎 𝒄 where 𝒂, 𝒃, 𝒄 ∈ Φ𝑛,𝑑.

By the form of 𝜎 and 𝜏, we must have 𝒂 = (�̂�, 0), and then either 𝒃 = (�̂�, 0) or else 𝒃 = (𝛾, 1) for
some 𝛾 ∈ 𝐷1 with 𝛾 = �̂�. In the first case it follows that 𝒄 = (�̂�, 0); in the second, 𝒄 belongs to the
ideal class 𝐼(𝜎). In both cases it follows that 𝒄 ≠ (𝛽, 0). Hence 𝜏◦𝜎◦𝜏 ≠ 𝜎◦𝜏◦𝜎, as desired.
Remark 7.14. We conclude with a brief overview of the properties of Cong(Φ𝑛,𝑑) for 𝑛 ⩽ 1. When
𝑛 = 0, the monoid Φ𝑛,𝑑 is isomorphic to the finite nilpotent monoid ℕ∕(𝑑 + 1, 𝑑 + 2)♯ of order𝑑 + 2, and its congruence lattice is a chain of length 𝑑 + 2. For 𝑛 = 1 and 𝑑 = 0 the lattice
Cong(Φ1,0) is a three-element chain. For 𝑛 = 1 and 𝑑 > 0 we have three families of fC-matrix:

The lattice Cong(Φ1,𝑑) is modular: The proof of Proposition 7.8 is valid for 𝑛 = 1, even though
many of its cases do not arise. And the lattice remains non-distributive, as witnessed by the dia-
mond from Figure 6, which ‘survives’ in all Cong(Φ1,𝑑) for 𝑑 ⩾ 1. In fact [4, Figure 7] shows the
Hasse diagram of Cong(Φ1,4), in which many copies of the diamond are seen. (The pentagon in
Figure 6 of course does not survive in any Φ1,𝑑.)

8 GENERATORS OF CONGRUENCES OF 
𝚽𝒏,𝒅

The results of Section 5 also have analogues for the finite monoids Φ𝑛,𝑑. Note that in Φ𝑛,𝑑 the
non-zero principal ideals are

𝐼𝑞𝑖 ∶= ⋃{𝐷𝑟𝑗 ∶ 0 ⩽ 𝑟 ⩽ 𝑞, 𝑖 ⩽ 𝑗 ⩽ 𝑑} ∪ {𝟎} for 𝑞 ∈ 𝐧0 and 𝑖 ∈ 𝐝0.
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Theorem8.1. Let𝒂 = (𝑖, 𝛼) ∈ 𝐷𝑞𝑖 and 𝒃 = (𝑗, 𝛽) ∈ 𝐷𝑟𝑗 , both considered as elements ofΦ𝑛,𝑑, where𝑞 ⩾ 𝑟, and 𝑖 ⩽ 𝑗 if 𝑞 = 𝑟.
(i) If 𝛼 = 𝛽 and 𝑖 = 𝑗 (that is, 𝒂 = 𝒃), then (𝒂, 𝒃)♯ = ΔΦ𝑛,𝑑 . We also have (𝟎, 𝟎)♯ = ΔΦ𝑛,𝑑 .
(ii) If [𝑞 ⩾ 2 and (𝒂, 𝒃) ∉ H ] or if [𝑞 = 𝑟 ⩽ 1 and [𝑖 ≠ 𝑗 or �̂� ≠ 𝛽]] or if [𝑞 = 1, 𝑟 = 0 and [𝑗 ⩾ 𝑖

or �̂� ≠ 𝛽]], then (𝒂, 𝒃)♯ = 𝑅𝐼𝑞𝑖∪𝐼𝑟𝑗 . We also have (𝒂, 𝟎)♯ = 𝑅𝐼𝑞𝑖 .
(iii) If 𝑞 ⩾ 3, (𝒂, 𝒃) ∈ H and 𝒂 ≠ 𝒃, then with 𝑁 ∶= ⟨⟨𝜕(𝛼, 𝛽)⟩⟩ we have (𝒂, 𝒃)♯ = cg(𝑀) for the

fC-matrix

(iv) If 𝑞 = 2, (𝒂, 𝒃) ∈ H and 𝒂 ≠ 𝒃, then (𝒂, 𝒃)♯ = cg(𝑀) for the fC-matrix

(v) If 𝑞 = 𝑟 = 1 and 𝑖 = 𝑗, and if (𝛼, 𝛽) belongs to one of 𝜇1 ⧵ (𝜇↑ ∪ 𝜇↓), 𝜇↑ ⧵ Δ𝐷1 or 𝜇↓ ⧵ Δ𝐷1 , then
with 𝜁 = 𝜇, 𝜇↑ or 𝜇↓, respectively, we have (𝒂, 𝒃)♯ = cg(𝑀) for the fC-matrix

(vi) If 𝑞 = 1, 𝑟 = 0, 𝑖 = 𝑗 + 1 and �̂� = 𝛽, then (𝒂, 𝒃)♯ = cg(𝑀) for the fC-matrix

(vii) If 𝑞 = 1, 𝑟 = 0, 𝑖 > 𝑗 + 1 and �̂� = 𝛽, then (𝒂, 𝒃)♯ = cg(𝑀) for the fC-matrix

The above exhaust all principal congruences on Φ𝑛,𝑑 .
Recalling once more the Correspondence Theorem, from Theorem 5.7 we obtain:

Corollary 8.2. Every congruence on Φ𝑛,𝑑 can be generated by at most ⌈ 5𝑛2 ⌉ pairs.
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Remark 8.3. When 𝑑 = 0 we can strengthen Corollary 8.2 considerably. Examining Figure 7, it is
clear that all congruences of Φ𝑛,0 are principal, with the possible exception of 𝜇 and 𝑅2 , and that
these are generated by two pairs. In fact, 𝜇 is also principal, as follows from Theorem 8.1(v). On
the other hand, since 𝑅2 = 𝑅1 ∪ 𝜇2 is the union of two proper sub-congruences, it follows that𝑅2 is minimally generated by two pairs. This is reminiscent of the situation with the ordinary
partition monoid 𝑛, whose congruences are all generated by at most two pairs [1].
Corollary 8.2 can be similarly improved for other values of 𝑑 relatively small compared to 𝑛.

Indeed, examining the proof of Theorem 5.7, congruences requiring many pairs to generate
involve ideals with many ‘corners’ and C-matrices with many distinct 𝑁-symbols, both of which
can only occur when 𝑑 is suitably large.

9 ENUMERATION OF CONGRUENCES OF 
𝚽𝒏,𝒅

This section is concerned with determining the numbers |Cong(Φ𝑛,𝑑)|. The main result is Theo-
rem 9.16, in which we obtain a closed form for |Cong(Φ𝑛,𝑑)|, and prove that the array formed by
these numbers has a rational generating function in two variables. Furthermore, we show that
for fixed 𝑛 ⩾ 0 or 𝑑 ⩾ 0, |Cong(Φ𝑛,𝑑)| is a polynomial in 𝑑 ⩾ 0 or 𝑛 ⩾ 4, respectively, and give the
asymptotic behaviour in Remark 9.19.
For 𝑛 ⩾ 1 and 𝑑 ⩾ 0 we write 𝑛,𝑑 for the set of all 𝐧0 × 𝐝0 fC-matrices, and 𝑐𝑛,𝑑 ∶= |𝑛,𝑑| for

the number of such matrices. It follows from Theorem 6.3 that |Cong(Φ𝑛,𝑑)| = 𝑐𝑛,𝑑 for all such 𝑛
and 𝑑.
We begin by recording the values of |Cong(Φ𝑛,𝑑)| for 𝑛 ⩽ 1:

Lemma 9.1. For all 𝑑 ⩾ 0 we have:
(i) |Cong(Φ0,𝑑)| = 𝑑 + 2;
(ii) |Cong(Φ1,𝑑)| = (3𝑑2 + 5𝑑 + 6)∕2.
Proof. This follows from Remark 7.14. For 𝑛 = 0 the result is explicitly stated, and for 𝑛 = 1 it is a
straightforward counting of the fC-matrices listed there. □

To deal with larger values of 𝑛, we assume until further notice that 𝑛 ⩾ 2. For any 𝑑 ⩾ 0
we express |Cong(Φ𝑛,𝑑)| in terms of certain numbers 𝑐𝑛,𝑑(𝜎). These numbers are defined recur-
sively in 𝑑, and are also indexed by congruences 𝜎 ∈ Cong(Φ𝑛,0) of the 0-twisted monoid Φ𝑛,0 as
described in Remark 6.5 and depicted in Figure 7. For brevity we writeΔ forΔΦ𝑛,0 , and the interval[Δ, 𝜎] appearing in the last line of the next result is in Cong(Φ𝑛,0).
Lemma 9.2. For 𝑛 ⩾ 2 and 𝑑 ⩾ 0 we have

|Cong(Φ𝑛,𝑑)| = ∑
𝜎∈Cong(Φ𝑛,0)

𝑐𝑛,𝑑(𝜎), (9.3)

where the numbers 𝑐𝑛,𝑑(𝜎) satisfy the following recursion:
𝑐𝑛,0(𝜎) = 1 for all 𝜎 ∈ Cong(Φ𝑛,0), (9.4)
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and, for 𝑑 ⩾ 1,

𝑐𝑛,𝑑(𝜎) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1 if 𝜎 = Δ, (9.5a)𝑑 + 1 if 𝜎 = 𝑅0, 𝜇↓, 𝜇↑, (9.5b)6𝑑 if 𝜎 = 𝜇, (9.5c)2𝑑2 + 5𝑑 if 𝜎 = 𝜇𝒮2 , (9.5d)
(9𝑑2 − 𝑑 + 4)∕2 if 𝜎 = 𝑅1, (9.5e)(13𝑑3 + 21𝑑2 + 2𝑑 + 12)∕6 if 𝜎 = 𝑅𝒮2 , (9.5f)∑
𝜏∈[Δ,𝜎]𝑐𝑛,𝑑−1(𝜏) otherwise. (9.5g)

Proof. Examining the defining conditions for fC-matrices given in Definition 6.1, we see that the
right-most column of an fC-matrix from 𝑛,𝑑 is itself an fC-matrix from 𝑛,0, as listed in (6.6).
(This is not necessarily the case for the non-final columns of fC-matrices.) These one-column
fC-matrices are in one-one correspondence with the congruences on Φ𝑛,0. For 𝜎 ∈ Cong(Φ𝑛,0),
let us write 𝑛,𝑑(𝜎) for the set of all 𝐧0 × 𝒅0 fC-matrices whose final column corresponds to the
congruence 𝜎, and let 𝑐𝑛,𝑑(𝜎) ∶= |𝑛,𝑑(𝜎)|. So of course

𝑐𝑛,𝑑 = ∑
𝜎∈Cong(Φ𝑛,0)

𝑐𝑛,𝑑(𝜎), (9.6)

and it remains to show that the numbers 𝑐𝑛,𝑑(𝜎) satisfy the recursion given by (9.4) and (9.5).
With (9.4) and (9.5a) being clear, we begin with (9.5b). In these cases, the only possible row type

is fRT3 with 𝑙 = 𝑑 + 1. Here, 𝜁 is Δ, 𝜇↑ or 𝜇↓, as appropriate, and 0 ⩽ 𝑘 ⩽ 𝑑 can be chosen arbi-
trarily.
For (9.5c), row types fRT2–fRT4 are possible. In type fRT2 we have 𝑘 = 𝑑, while 0 ⩽ 𝑖 ⩽ 𝑑 − 1

and 𝜁 ∈ {𝜇, 𝜇↑, 𝜇↓, Δ} can both be chosen arbitrarily; there are thus 4𝑑 possibilities here. In type
fRT3 we have 𝑙 = 𝑑 + 1 and 𝜁 = 𝜇, while 0 ⩽ 𝑘 ⩽ 𝑑 can be chosen arbitrarily, giving 𝑑 + 1 possi-
bilities. Similarly, there are 𝑑 − 1 possibilities in type fRT4. Adding gives 6𝑑.
For (9.5d), the same row types are possible as for (9.5c). For types fRT3 and fRT4 we again,

respectively, have 𝑑 + 1 and 𝑑 − 1 possibilities. For type fRT2, wemay choose some number of 2-
labels on row 2; let 𝑗 be minimal such that𝑀2𝑗 = 2, noting that 𝑗 ⩽ 𝑑. Then 𝑖 ⩽ 𝑗 ⩽ 𝑑 if 𝜁 = 𝜇 or𝑖 + 1 ⩽ 𝑗 ⩽ 𝑑 otherwise; this gives a total of∑𝑑−1𝑖=0 ((𝑑 − 𝑖 + 1) + 3(𝑑 − 𝑖)) = 2𝑑2 + 3𝑑 possibilities
with this type. Adding gives the desired formula.
Items (9.5e) and (9.5f) can be checked directly in similar fashion to (9.5d), but they also follow

from (9.5g) and induction on 𝑑. Indeed, although (9.5g) is only stated for 𝜎 ⊇ 𝑅2, we will shortly
prove that it holds for all 𝜎 ⊇ 𝑅1. For example, writing 𝑝(𝑑) = (9𝑑2 − 𝑑 + 4)∕2, the inductive step
in (9.5e) involves verifying that

𝑝(𝑑 − 1) + 𝑐𝑛,𝑑−1(𝜇) + 𝑐𝑛,𝑑−1(𝜇↑) + 𝑐𝑛,𝑑−1(𝜇↓) + 𝑐𝑛,𝑑−1(𝑅0) + 𝑐𝑛,𝑑−1(ΔΦ𝑛,0 ) = 𝑝(𝑑).
For (9.5g), consider an fC-matrix𝑀 ∈ 𝑛,𝑑(𝜎), where 𝜎 ⊇ 𝑅1. This means that column 𝑑 of𝑀

has𝑅s in the bottom two positions, and it follows that thematrix𝑀′ obtained from𝑀 by removing
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column 𝑑 belongs to 𝑛,𝑑−1. Moreover, by examining the row types, we see that the congruence 𝜏
on Φ𝑛,0 corresponding to column 𝑑 − 1 of𝑀′ satisfies 𝜏 ⊆ 𝜎, and the claim follows. □

It is clear from Lemma 9.2 that the numbers 𝑐𝑛,𝑑(𝜎) actually do not depend on 𝑛 in the follow-
ing sense. Recall that for𝑚 ⩾ 𝑛 the lattice Cong(Φ𝑛,0) naturally embeds as an ideal of Cong(Φ𝑚,0).
Furthermore, under this embedding, any congruence 𝜎 ∈ Cong(Φ𝑛,0) and its image inCong(Φ𝑚,0)
have the same label as per Figure 7 (using 𝑅𝑛 for the universal congruence on Φ𝑛,0). Thus, identi-
fying a congruence with its label, we have that 𝑐𝑛,𝑑(𝜎) = 𝑐𝑚,𝑑(𝜎), and we will write simply 𝑐𝑑(𝜎)
for this number.
Now suppose 𝜎 ∈ Cong(Φ𝑛,0) is any congruence strictly containing𝑅2 , and let 𝜎′ ∈ Cong(Φ𝑛,0)

be the unique congruence that 𝜎 covers. Then, for any 𝑑 ⩾ 1, two applications of (9.5g) give
𝑐𝑑(𝜎) = ∑

𝜏∈[Δ,𝜎]
𝑐𝑑−1(𝜏) = ∑

𝜏∈[Δ,𝜎′]
𝑐𝑑−1(𝜏) + 𝑐𝑑−1(𝜎) = 𝑐𝑑(𝜎′) + 𝑐𝑑−1(𝜎). (9.7)

(For the 𝜎 = 𝑅2 case, where 𝜎′ = 𝑅2 , recall from the proof of Lemma 9.2 that (9.5g) holds for any𝜎 ⊇ 𝑅1.) Also, for any 𝑑 ⩾ 0, (9.3) and (9.5g) give
|Cong(Φ𝑛,𝑑)| = ∑

𝜎∈Cong(Φ𝑛,0)
𝑐𝑑(𝜎) = ∑

𝜎∈[Δ,𝑅𝑛]
𝑐𝑑(𝜎) = 𝑐𝑑+1(𝑅𝑛). (9.8)

If we identify every 𝜎 ∈ Cong(Φ𝑛,0) satisfying 𝑅2 ⊆ 𝜎 with its position pos(𝜎) in the natural
sequence

𝑅2 , 𝑅2, 𝑅3 , 𝑅3 , 𝑅3, 𝑅4 , 𝑅4 , 𝑅4 , 𝑅4, 𝑅5 , 𝑅5 , 𝑅5, … ,
starting with pos(𝑅2 ) = 0, we can interpret the numbers 𝑐𝑑(𝜎) as a 2-dimensional array(𝑏(𝑘, 𝑑))𝑘,𝑑⩾0, where 𝑐𝑑(𝜎) = 𝑏(pos(𝜎), 𝑑). ‘Forgetting’ the first column (𝑏(𝑘, 0))𝑘⩾0, and ‘shifting’
the array by one to the left, we obtain a new array (𝑎(𝑘, 𝑑))𝑘,𝑑⩾0 featuring in the following:
Lemma 9.9. Let (𝑎(𝑘, 𝑑))𝑘,𝑑∈ℕ be the array defined recursively as follows:

𝑎(0, 𝑑) = (13𝑑3 + 60𝑑2 + 83𝑑 + 48)∕6 for 𝑑 ⩾ 0, (9.10)

𝑎(𝑘, 0) = 𝑘 + 8 for 𝑘 ⩾ 0, (9.11)

𝑎(𝑘, 𝑑) = 𝑎(𝑘 − 1, 𝑑) + 𝑎(𝑘, 𝑑 − 1) for 𝑘, 𝑑 ⩾ 1. (9.12)

Then, for all 𝑛 ⩾ 2 and 𝑑 ⩾ 0, we have

|Cong(Φ𝑛,𝑑)| = 𝑎(𝑘, 𝑑), where 𝑘 = 𝑘(𝑛) ∶=
⎧⎪⎨⎪⎩
1 if 𝑛 = 2,
4 if 𝑛 = 3,
3𝑛 − 4 if 𝑛 ⩾ 4.

(9.13)

Proof. The array (𝑎(𝑘, 𝑑))𝑘,𝑑∈ℕ = (𝑏(𝑘, 𝑑 + 1))𝑘,𝑑∈ℕ is obtained in the way explained before the
lemma. The polynomial featuring in (9.10) is obtained from that in (9.5f) by evaluating it at 𝑑 + 1.



42 EAST and RUŠKUC

The formula (9.11) follows, using (9.5g) and (9.4), from

𝑐1(𝜎) = ∑
𝜏∈[Δ,𝜎]

𝑐0(𝜏) = ∑
𝜏∈[Δ,𝜎]

1 = ||[Δ, 𝜎]|| = pos(𝜎) + 8.
The ‘Pascal’s triangle’ recurrence (9.12) is a direct translation of (9.7). Finally, the equality (9.13) is
a straightforward translation of (9.8), upon noting that

pos(𝑅𝑛) =
⎧⎪⎨⎪⎩
1 if 𝑛 = 2,
4 if 𝑛 = 3,
3𝑛 − 4 if 𝑛 ⩾ 4. □

The recurrence (9.10)–(9.12) for the 𝑎(𝑘, 𝑑) is sufficiently simple that it allows standardmethods
to be deployed to compute the generating function

𝐴(𝑥, 𝑦) ∶= ∑
𝑘,𝑑⩾0 𝑎(𝑘, 𝑑)𝑥

𝑘𝑦𝑑,
and even an exact closed form for 𝑎(𝑘, 𝑑), which we now proceed to do. While all the manip-
ulations are standard and elementary, the actual calculations have been performed using
Maple™ [13].
Recall that the generating functions for the constant sequence (1)𝑛⩾0 and for the power

sequence (𝑛𝑚)𝑛⩾0, for fixed𝑚 > 0, are given by
∑
𝑛⩾0 𝑥𝑛 = 11 − 𝑥 and

∑
𝑛⩾0 𝑛𝑚𝑥𝑛 = 𝑚∑

𝑗=0
{𝑚𝑗

} 𝑗! ⋅ 𝑥𝑗
(1 − 𝑥)𝑗+1 ,

where
{𝑚𝑗

}
denotes the Stirling number of the second kind; see [7, Equation (7.46)]. The generat-

ing function of any polynomial is then a linear combination of these functions. In particular, using
(9.10) and (9.11), the generating functions for the boundary sequences (𝑎(𝑘, 0))𝑘⩾0 and (𝑎(0, 𝑑))𝑑⩾0
in variables 𝑥 and 𝑦, respectively, are:
𝐵1(𝑥) ∶= ∑

𝑘⩾0 𝑎(𝑘, 0)𝑥
𝑘 = 8 − 7𝑥(1 − 𝑥)2 and 𝐵2(𝑦) ∶= ∑

𝑑⩾0 𝑎(0, 𝑑)𝑦
𝑑 = −2𝑦3 + 5𝑦2 + 2𝑦 + 8(1 − 𝑦)4 .

Straightforward manipulations of power series now give

𝐴(𝑥, 𝑦) = 𝐵1(𝑥) ⋅ (1 − 𝑥) + 𝐵2(𝑦) ⋅ (1 − 𝑦) − 𝑎(0, 0)1 − 𝑥 − 𝑦
= 11 − 𝑥 − 𝑦

( 𝑥1 − 𝑥 + −2𝑦3 + 5𝑦2 + 2𝑦 + 8(1 − 𝑦)3
). (9.14)

From this we can obtain an exact formula for 𝑎(𝑘, 𝑑) by writing down the power series for the
terms appearing in

11 − 𝑥 − 𝑦 = ∑
𝑖,𝑗⩾0

(𝑖 + 𝑗𝑖
)𝑥𝑖𝑦𝑗, 𝑥1 − 𝑥 = ∑

𝑖⩾1 𝑥𝑖, 1(1 − 𝑦)3 = ∑
𝑗⩾0

(𝑗 + 22
)𝑦𝑗,
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and finding the coefficient of 𝑥𝑘𝑦𝑑:

𝑎(𝑘, 𝑑) = 𝑘−1∑
𝑖=0

(𝑖 + 𝑑𝑖
) + 8 𝑑∑

𝑗=0
(𝑘 + 𝑗𝑘

)(𝑑 − 𝑗 + 22
) + 2 𝑑−1∑

𝑗=0
(𝑘 + 𝑗𝑘

)(𝑑 − 𝑗 + 12
)

+ 5 𝑑−2∑
𝑗=0

(𝑘 + 𝑗𝑘
)(𝑑 − 𝑗2

) − 2 𝑑−3∑
𝑗=0

(𝑘 + 𝑗𝑘
)(𝑑 − 𝑗 − 12

).
Using standard binomial coefficient identities this simplifies to

𝑎(𝑘, 𝑑) = (𝑘 + 𝑑𝑑 + 1
) + 8(𝑘 + 𝑑 + 3𝑘 + 3

) + 2(𝑘 + 𝑑 + 2𝑘 + 3
) + 5(𝑘 + 𝑑 + 1𝑘 + 3

) − 2(𝑘 + 𝑑𝑘 + 3
), (9.15)

where we adopt the convention that
(𝑠𝑡) = 0 for 𝑡 > 𝑠. Of course, this formula can also be proved

directly, by induction, using the recursive definition (9.10)–(9.12) of the 𝑎(𝑘, 𝑑).
We are now ready to state and prove the main result of this section:

Theorem 9.16.

(i) For 𝑛, 𝑑 ⩾ 0, the number of congruences of the twisted partition monoid Φ𝑛,𝑑 is as follows:
|Cong(Φ0,𝑑)| = 𝑑 + 2,
|Cong(Φ1,𝑑)| = 3𝑑2+5𝑑+62 ,
|Cong(Φ2,𝑑)| = 13𝑑4+106𝑑3+299𝑑2+398𝑑+21624 ,
|Cong(Φ3,𝑑)| = 13𝑑7+322𝑑6+3262𝑑5+17920𝑑4+58597𝑑3+115318𝑑2+127128𝑑+604805040 ,
|Cong(Φ𝑛,𝑑)| = (3𝑛+𝑑−43𝑛−5

) + 8(3𝑛+𝑑−13𝑛−1
) + 2(3𝑛+𝑑−23𝑛−1

) + 5(3𝑛+𝑑−33𝑛−1
) − 2(3𝑛+𝑑−43𝑛−1

)
for 𝑛 ⩾ 4.

(ii) The array
(|Cong(Φ𝑛,𝑑)|)𝑛,𝑑⩾0 has a rational generating function.

(iii) For any fixed 𝑛 ⩾ 0, the function ℕ → ℕ, 𝑑 ↦ |Cong(Φ𝑛,𝑑)|, is a polynomial. For 𝑛 ⩾ 4 this
polynomial has degree 3𝑛 − 1 and leading term 13𝑑3𝑛−1∕(3𝑛 − 1)!.

(iv) For any fixed 𝑑 ⩾ 0, the function {4, 5, … } → ℕ, 𝑛 ↦ |Cong(Φ𝑛,𝑑)|, is a polynomial of degree𝑑 + 1 with leading term (3𝑛)𝑑+1∕(𝑑 + 1)!.
Proof.

(i) This follows by combining (9.13) and (9.15). For |Cong(Φ𝑛,𝑑)| we rewrite the first term(3𝑛+𝑑−4𝑑+1
)
as

(3𝑛+𝑑−43𝑛−5
)
.

(ii) For simplicity, we will write 𝑐(𝑛, 𝑑) = |Cong(Φ𝑛,𝑑)|. A rational form for the generating func-
tion

𝐶(𝑥, 𝑦) ∶= ∑
𝑛,𝑑⩾0 𝑐(𝑛, 𝑑)𝑥

𝑛𝑦𝑑
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can be obtained by using a sequence of standard manipulations on the generating function𝐴(𝑥, 𝑦) = ∑𝑘,𝑑⩾0 𝑎(𝑘, 𝑑)𝑥𝑘𝑦𝑑, whose rational form is given in (9.14). Specifically, the follow-
ing steps need to be performed:∙ ‘Pick out’ the terms in 𝐴(𝑥, 𝑦) corresponding to the rows of (𝑎(𝑘, 𝑑))𝑘,𝑑⩾0 indexed by the
numbers of the form 𝑘 = 3𝑙 + 2 (𝑙 ⩾ 0). Formally, if the array (𝑓(𝑘, 𝑑))𝑘,𝑑⩾0 is defined by

𝑓(𝑘, 𝑑) =
{𝑎(𝑘, 𝑑) if 𝑘 ≡ 2 (mod 3)

0 otherwise,
then the generating function for this array is

𝐹(𝑥, 𝑦) ∶= ∑
𝑘,𝑑⩾0 𝑓(𝑘, 𝑑)𝑥

𝑘𝑦𝑑 = 13(𝐴(𝑥, 𝑦) + 𝜔𝐴(𝜔𝑥, 𝑦) + 𝜔2𝐴(𝜔2𝑥, 𝑦)),
where 𝜔 is a primitive cube root of unity in ℂ.∙ From 𝐹(𝑥, 𝑦) ‘remove’ the terms corresponding to rows 2 and 5 of (𝑎(𝑘, 𝑑))𝑘,𝑑⩾0. This
is done by recalling that the sequences (𝑎(2, 𝑑))𝑑⩾0 and (𝑎(5, 𝑑))𝑑⩾0 are polynomial,
as given by (9.15). So their generating functions 𝐴2(𝑦) ∶= ∑𝑑⩾0 𝑎(2, 𝑑)𝑦𝑑 and 𝐴5(𝑦) ∶=∑𝑑⩾0 𝑎(5, 𝑑)𝑦𝑑 can readily be computed, and then the desired generating function is

𝐺(𝑥, 𝑦) ∶= 𝐹(𝑥, 𝑦) − 𝑥2𝐴2(𝑦) − 𝑥5𝐴5(𝑦).
∙ Expanding and simplifying 𝐺(𝑥, 𝑦) we obtain a rational function of the form 𝑥2𝐻(𝑥3, 𝑦).∙ The underlying function 𝐻(𝑥, 𝑦) is nearly our desired generating function 𝐶(𝑥, 𝑦). How-
ever, it has no terms 𝑥𝑖𝑦𝑗 where 𝑖 = 0, 1, and the coefficient of a general term 𝑥𝑖𝑦𝑗 (𝑖 ⩾ 2)
is in fact 𝑐(𝑖 + 2, 𝑗). Hence, to obtain 𝐶(𝑥, 𝑦) we need to ‘shift’ 𝐻 by two, and ‘insert’ gen-
erating functions 𝐶𝑖(𝑦) ∶= ∑𝑑⩾0 𝑐(𝑖, 𝑑)𝑦𝑑 for each 0 ⩽ 𝑖 ⩽ 3:

𝐶(𝑥, 𝑦) = 𝑥2𝐻(𝑥, 𝑦) + 𝐶0(𝑦) + 𝑥𝐶1(𝑦) + 𝑥2𝐶2(𝑦) + 𝑥3𝐶3(𝑦).
∙ Polynomial expressions for 𝑐(𝑖, 𝑑), 0 ⩽ 𝑖 ⩽ 3, are given in part (i), and they can be converted
into the corresponding generating functions 𝐶𝑖(𝑦). Performing the above calculations in
Maple, the desired generating function is now:

𝐶(𝑥, 𝑦) = 1(𝑦 − 1)9(𝑥 − 1)(𝑦3 − 3𝑦2 + 𝑥 + 3𝑦 − 1)
((−𝑥2 + 𝑥 + 1)𝑦11

+(𝑥3 + 7𝑥2 − 8𝑥 − 12)𝑦10 + (−8𝑥3 − 19𝑥2 + 28𝑥 + 65)𝑦9
+(19𝑥3 + 28𝑥2 − 56𝑥 − 210)𝑦8 + (𝑥3 − 34𝑥2 + 69𝑥 + 450)𝑦7
+(−80𝑥3 + 45𝑥2 − 49𝑥 − 672)𝑦6 + (151𝑥3 − 32𝑥2 + 7𝑥 + 714)𝑦5
+(−𝑥5 + 𝑥4 − 122𝑥3 − 31𝑥2 + 27𝑥 − 540)𝑦4 + (𝑥5 − 𝑥4 + 31𝑥3 + 87𝑥2
−34𝑥 + 285)𝑦3 + (8𝑥5 − 8𝑥4 + 19𝑥3 − 76𝑥2 + 21𝑥 − 100)𝑦2
+(4𝑥5 − 4𝑥4 − 15𝑥3 + 31𝑥2 − 7𝑥 + 21)𝑦 + 𝑥5 − 𝑥4 + 3𝑥3 − 5𝑥2 + 𝑥 − 2).

(9.17)
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TABLE 4 The number of congruences on Φ𝑛,𝑑
𝒏 ⧵ 𝒅 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎
0 2 3 4 5 6 7 8 9 10 11 12
1 3 7 14 24 37 53 72 94 119 147 178
2 9 43 136 334 696 1294 2213 3551 5419 7941 11254
3 12 76 329 1105 3100 7608 16842 34353 65560 118404 204139
4 16 134 773 3456 12806 41054 117273 304889 732888 1648660 3503734
5 19 188 1281 6754 29413 110312 366724 1103538 3053642 7865696 19043434
6 22 251 1969 11930 59547 255132 965409 3293916 10294295 29832242 80951191
7 25 323 2864 19578 110012 529298 2242845 8544569 29728765 95627675 287192490
8 28 404 3993 30373 189556 1010840 4737070 19912815 76266840 269426820 886585245
9 31 494 5383 45071 309114 1808352 9279855 42636438 178144941 685232184 2450483412
10 34 593 7061 64509 482051 3068039 17102328 85221356 385570064 1603380636 6189136484

(iii) That all these functions are polynomial follows from (i), given that for fixed integers 𝑠 ∈ ℤ
and 𝑡 ∈ ℕ, (𝑑+𝑠𝑡

) = (𝑑+𝑠)(𝑑+𝑠−1)⋯(𝑑+𝑠−𝑡+1)𝑡! is a polynomial in 𝑑 of degree 𝑡. For the second
statement, it is clear that the highest power of 𝑑 is 𝑑3𝑛−1, that only the last four terms con-
tribute such power, and that the coefficient is (8 + 2 + 5 − 2)∕(3𝑛 − 1)! = 13∕(3𝑛 − 1)!.

(iv) This time we can rewrite the final formula from (i) as

|Cong(Φ𝑛,𝑑)| = (3𝑛 + 𝑑 − 4𝑑 + 1
) + 8(3𝑛 + 𝑑 − 1𝑑

) + 2(3𝑛 + 𝑑 − 2𝑑 − 1
)

+5(3𝑛 + 𝑑 − 3𝑑 − 2
) − 2(3𝑛 + 𝑑 − 4𝑑 − 3

).
This is clearly a polynomial in 𝑛, of degree 𝑑 + 1, which comes from the first term with coef-
ficient 3𝑑+1∕(𝑑 + 1)!. □

Remark 9.18. The first few polynomials in part (iv) are as follows, each valid (only) for 𝑛 ⩾ 4:
|Cong(Φ𝑛,0)| = 3𝑛 + 4, |Cong(Φ𝑛,1)| = 9𝑛2+27𝑛+162 , |Cong(Φ𝑛,2)| = 9𝑛3+45𝑛2+62𝑛+22 .

Remark 9.19. The leading terms of the polynomials in parts (iii) and (iv) lead directly to asymptotic
expressions:

∙ |Cong(Φ0,𝑑)| ∼ 𝑑, |Cong(Φ1,𝑑)| ∼ 3𝑑2
2 , |Cong(Φ2,𝑑)| ∼ 13𝑑4

24 and |Cong(Φ3,𝑑)| ∼ 13𝑑7
5040 , as 𝑑 → ∞,

∙ |Cong(Φ𝑛,𝑑)| ∼ 13𝑑3𝑛−1
(3𝑛−1)! as 𝑑 → ∞, for fixed 𝑛 ⩾ 4, and

∙ |Cong(Φ𝑛,𝑑)| ∼ (3𝑛)𝑑+1
(𝑑+1)! as 𝑛 → ∞, for fixed 𝑑 ⩾ 0.

The numbers of congruences of Φ𝑛,𝑑, for 0 ⩽ 𝑛, 𝑑 ⩽ 10, given by Theorem 9.16 are listed
in Table 4. As a verification of our results, we have computed the same numbers by gener-
ating and counting the fC-matrices, as well as by directly computing the congruences using
GAP [15, 17], although this latter computation is only feasible for smaller combinations of the
parameters.
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It is also interesting to compare the enumeration of congruences of Φ𝑛,𝑑 with those of the (un-
twisted) partition monoids 𝑛, as well as the classical transformation monoids, for example, the
monoids of full transformations 𝑛, partial transformations 𝑛 and partial bijections 𝑛, on the
set 𝐧. For the latter, the classical results of Mal’cev [12], Liber [11] and Šutov [18] (see also a more
recent, unified presentation in [6, Section 6.3]) show that for 𝑛 ⩾ 4 we have

|Cong(𝑛)| = |Cong(𝑛)| = |Cong(𝑛)| = 3𝑛 − 1.
Furthermore, Theorem 2.2 and Figure 1 show that even though the lattice Cong(𝑛) is more com-
plicated than in the case of transformations, its size |Cong(𝑛)| = 3𝑛 + 8 (𝑛 ⩾ 4) remains linear
in 𝑛. Our Theorem 9.16 can be viewed as continuing this theme: For 𝑛 ⩾ 4we have |Cong(Φ𝑛,0)| =3𝑛 + 4, a linear function, and, for higher 𝑑, the values (|Cong(Φ𝑛,𝑑)|)𝑛⩾4 at least retain the poly-
nomial behaviour, even though with an increasing degree.
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