
electronics

Article

Raymarching Distance Fields with CUDA

Avelina Hadji-Kyriacou and Ognjen Arandjelović *

����������
�������

Citation: Hadji-Kyriacou, A.;

Arandjelović, O. Raymarching

Distance Fields with CUDA.

Electronics 2021, 10, 2730. https://

doi.org/10.3390/electronics10222730

Received: 22 September 2021

Accepted: 1 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK; oa7+lhk@st-andrews.ac.uk
* Correspondence: oa7@st-andrews.ac.uk

Abstract: Raymarching is a technique for rendering implicit surfaces using signed distance fields. It
has been known and used since the 1980s for rendering fractals and CSG (constructive solid geometry)
surfaces, but has rarely been used for commercial rendering applications such as film and 3D games.
Raymarching was first used for photorealistic rendering in the mid 2000s by demoscene developers
and hobbyist graphics programmers, receiving little to no attention from the academic community
and professional graphics engineers. In the present work, we explain why the use of Simple and Fast
Multimedia Library (SFML) by nearly all existing approaches leads to a number of inefficiencies,
and hence set out to develop a CUDA oriented approach instead. We next show that the usual data
handling pipeline leads to further unnecessary data flow overheads and therefore propose a novel
pipeline structure that eliminates much of redundancy in the manner in which data are processed
and passed. We proceed to introduce a series of data structures which were designed with the specific
aim of exploiting the pipeline’s strengths in terms of efficiency while achieving a high degree of
photorealism, as well as the accompanying models and optimizations that ultimately result in an
engine which is capable of photorealistic and real-time rendering on complex scenes and arbitrary
objects. Lastly, the effectiveness of our framework is demonstrated in a series of experiments which
compare our engine both in terms of visual fidelity and computational efficiency with the leading
commercial and open source solutions, namely Unreal Engine and Blender.

Keywords: rendering; sphere tracing; ray tracing; graphics; photorealism; CUDA kernels; acceleration

1. Introduction

The focus of the present work is the development of a realtime 3D rendering engine
using Raymarching in CUDA and the optimization techniques required to improve the
processing and memory costs compared to conventional rendering techniques so that it can
be used without case specific tuning on complex scenes while maintaining a high degree of
photorealism.

Raymarching (also known as sphere tracing) is a technique which can be used to
determine the intersection of a ray with an implicit surface by marching a ray through a
distance field [1,2]. Given a point in space, a ray, and a signed distance function (SDF) for
the distance between a point in space and the closest intersection with geometry in the
scene, an iterative march ray forward through the scene is done until a surface is intersected
or a predicate for ray termination met. Unlike ray tracing, which requires exact analytical
intersection functions, it is possible to use SDFs of non exact geometry such as fractals,
procedurally generated isosurfaces, volumetric textures, heightmaps, as well as typical
analytical surfaces (primitives such as spheres, triangles, cubes, etc.). This extra flexibility
makes raymarching highly attractive.

However, raymarching is rarely used in industry as a technique for rendering surfaces
and has instead been adopted and developed by hobbyists. One such example would
be in demoscene, where raymarching is a popular technique used to render everything
from vast landscapes to simple structures where often the entire raymarching pipeline
sits in a single fragment shader making it remarkably lightweight and viable for less
performant platforms.

Electronics 2021, 10, 2730. https://doi.org/10.3390/electronics10222730 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10222730
https://doi.org/10.3390/electronics10222730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222730
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222730?type=check_update&version=1

Electronics 2021, 10, 2730 2 of 26

In this paper, we introduce a series of contributions. Firstly, we analyse relevant
previous work, both in the published academic literature and the non-published open
source realm, and argue that the existing approaches’ nearly universal adoption of the
SFML (Simple and Fast Multimedia Library) leads to wastefulness and inefficiency. Hence,
we make a case for a CUDA oriented approach instead. Within this context, we next
show that the commonly employed data handling pipeline leads to further unnecessary
data flow overheads and therefore introduce a novel pipeline that eliminates much of the
observed data redundancy. To make the most out of the new pipeline, we next proceed to
describe a series of data structures which were developed with the specific aim of exploiting
the pipeline’s strengths in terms of efficiency while requiring visually high performant
solutions (i.e., a high degree of photorealism), as well as the accompanying models and
optimizations that ultimately result in an engine which is capable of photorealistic and real-
time rendering on complex scenes and arbitrary objects. Its performance is demonstrated
and analysed thereafter.

Related Work and Context

Raymarching is a technique for rendering implicit surfaces using geometric distance.
Given a signed distance function (SDF) returning the distance to an object from a given
point in space, sphere-tracing marches along a ray towards the closest intersection point
of the surface iteratively. This technique can be used to find intersections with a variety
of surfaces including fractals, procedurally generated isosurfaces, volumetric textures,
heightmaps, as well as typical analytical surfaces.

Raymarching was first described by Hart et al. in 1989 [1] and was used to render
3D Julia sets. The paper laid the foundations for the technique and discussed issues such
as minimum ray incrementation with thin surfaces, avoiding bad distance estimates with
bounding volumes, and maximum ray incrementation, as well as methods to calculate
surface normals. The original implementation of raymarching was specific to fractals and
did not explore other surface types in depth. The subsequent work by Hart [2] explored
raymarching in much more depth with the focus being on the technique itself as opposed
to its specific application for fractal rendering. This paper established conventions in
raymarching which largely persist to this day.

The next significant advancement in raymarching development was made by Quilez [3]
whose 4 kilobyte raymarcher was capable of rendering a complex, realistic scene in near
real time. Quilez discussed the pros and cons of ray marching distance fields and demon-
strated techniques unique to distance field rendering such as arbitrary combination and
instantiation of objects, infinite repetition, space deformation, surface detailing and shape
blending. It is the first work which discusses lighting in raymarched scenes.

Quilez can be credited as person who introduced raymarching to the demoscene
community, with his “Making a simple apple with maths” raymarcher [4] being the most
forked code on the glsl.heroku OpenGL sandbox, and Shadertoy, co-developed by Quilez,
now hosts numerous self-contained raymarching shaders. Quilez’s website [5] also con-
tains dozens of articles on raymarching which are considered as the de facto reference for
construction of raymarching shaders.

Raymarching offers a number of benefits as compared with ray tracing and rasteriza-
tion, some of which are:

• Compactness. As we noted already, raymarching is highly lightweight both in size
of codebase and memory footprint. A raymarcher can be contained entirely in a
fragment shader program and can be executed on a variety of hardware and platforms
such as WebGL, OpenGL ES, and OpenGL.

• Performance. Raymarching is an excellent approximation for ray-tracing, making it a
lightweight solution for determining geometry intersection in a rendering pipeline.
Raymarching also approximates cone-tracing which makes it a lightweight solution
for direct and indirect lighting computation.

Electronics 2021, 10, 2730 3 of 26

• Quality. Since raymarching can ‘emulate’ a ray-tracing pipeline, it is possible to
achieve the same level of photorealism as ray-tracing which has become the standard
for high-fidelity offline rendering. Raymarching can take advantage of existing anti-
aliasing techniques such as MSAA (multisample anti-aliasing), PPAA (post-processing
antialiasing) and TAA (temporal anti-aliasing), as well as supporting interpolation
based anti-aliasing similar to sub-pixel AA used by 2D font rasterizers for decades
without the need of multi-sampling.

Modern raymarchers tend to be entirely self contained in a single fragment shader
which is drawn onto a rectangle. OpenGL is usually used as the backend to set up a simple
scene onto which the raymarched scenes are projected onto; this makes GLSL the obvious
choice for the fragment shader program. However, GLSL operates at a very high level and
OpenGL gives very little control on how the program itself is run on the GPU, which makes
optimisation difficult and can result in unavoidable divergence between GPU threads
when computed. An alternative is to use OpenGL as the backend for projection and texture
management, but perform raymarching itself using a different technology with finer grain
control over the computation; OpenCL and CUDA are both excellent choices which support
OpenGL interoperability. Using a compute-focused language for real-time raymarching
has not been explored yet. Granskog explored raymarching with CUDA [6] with the focus
being offline rendering as opposed to real time, whereas Keeter [7] described real-time
rendering of implicit surfaces with CUDA and OpenGL using a technique orthogonal
to raymarching. Granskog’s engine is fairly primitive compared with that which we
develop in the present paper and is only be able to deal with simple colouring of surfaces
and multibounce lighting. Keeter, on the other hand, unlike us, makes scene specific
assumptions, making his work not applicable to real-time performance on general scenes,
again in contrast to the engine we introduce.

To summarize previous work and contextualize our contribution, there are two types
of CUDA ray marchers: real-time but achieving minimal photorealism (e.g., Granskog’s [6]),
and non-realtime but implementing photorealistic light transport (e.g., using offline ren-
derers). The approach we introduce in the the present achieves real-time rendering with
photorealistic results which has only been done previously using GLSL shaders (for ex-
ample, Quilez’s WebGL shaders) or within limited scope and practicability experiments
using high level shaders (Cg in Unity or shader graphs in Unreal) for just some parts of a
mostly rasterized scene. The closest work to ours is Code Parade’s ‘Marble Marcher’ GLSL
based game (https://codeparade.itch.io/marblemarcher accessed on 4 November 2021)
which is highly limited by its fractal focus, and restricted in photorealism and the type of
scenes it can handle in real time. What sets CUDA apart from GLSL, and what makes the
framework developed in the present paper significant, is how closely married it is to many
features of the C++ language such as dynamic allocation, the use of function pointers, and
templating which opens many more possibilities for a unified graphics pipeline, whereas
prior GLSL approaches would require a new shader to be made to change the scene in
ways that could not be achieved through simple parameterisation.

2. Proposed Framework

For both rasterization and ray tracing engines, there are multiple pipeline architectures,
all with different strengths and weaknesses. However, raymarching is largely unexplored
territory in this regard. The pipeline developed herein is summarized in Figure 1. Unlike
most graphical engines, the render pipeline for this engine resides mostly on the graphics
card, eliminating one of the bottlenecks present in many graphics engines: data transfer
and API calls from host to device.

https://codeparade.itch.io/marblemarcher

Electronics 2021, 10, 2730 4 of 26

Figure 1. The render pipeline for the proposed engine resides mostly on the graphics card, eliminating
one of the bottlenecks due to data transfer and API calls from host to device. Light and object are
stored in vectors on the host and copied once per frame to device memory. Textures are uploaded
into VRAM and exposed using a texture object descriptor.

In a typical raster engine data such as textures, meshes and shader code are uploaded
and cached in device VRAM (video random access memory), but the model that controls
how these data are assembled in a 3D world is completely controlled by the host. The
host assembles all this data with what are known as “draw calls”. A draw call itself often
consists of multiple API commands, such as binding textures, switching shader programs
or specifying vertex buffers. A bottleneck occurs when the host issues commands faster
than the device can complete the work. One solution to this would be batching large
amounts of work into a single call, known as instancing; for example, draw calls in a
loop where only some parameters change between each iteration can be replaced by a
single draw call that also takes a list of the precomputed parameters for all instances in an
array. Instancing only works in cases where only minor parameters are changed between
each instance, such as object transforms or more abstract parameters used by shaders.
Instancing, however, is not suitable to render different types of objects: it would not be
possible to batch draw calls corresponding to drawing a tree with draw calls corresponding
to a table, or in cases where the objects require different shaders or different buffers to
be bound.

Our engine has no concept of draw calls which eliminates the CPU bottleneck totally.
Instead of issuing commands which need to be processed by the graphics driver, the engine
instead uploads arrays of parameters in batches directly from host memory into device
memory on the GPU which the model uses to generate the scene. The model itself is
defined in device code, in contrast to a raster engine where the application model is defined
by the commands issued by host code.

2.1. OpenGL (Open Graphics Library) and CUDA Interoperability

By itself, CUDA kernels have no way of interfacing with a render target or display
context, making real-time rendering using only the CUDA API not possible. To overcome
this issue, the data produced by the kernel (in this case, a 2D image texture written to by
the kernel) must be copied from a CUDA device address space to some address space that
the display driver can access.

The first solution that we considered was to use SFML (Simple and Fast Multimedia
Library) as an interface to display the texture every frame. Figure 2a shows the flow of
data between video memory and system memory and between the various address spaces
within. This approach is simple to set up as SFML handles the copying, binding and
uploads using a simple interface as well as providing useful functions to set up windows
and capture user input. However, this resulted in data redundancy and unnecessary copy
overhead, causing frame latencies of >20 ms for a 1080p texture which set a framerate
maximum of under 60 frames per second. The simplicity of SFML resulted in major
performance overheads meaning a more performant, and low level, approach was required.

Electronics 2021, 10, 2730 5 of 26

Since CUDA supports interoperability with OpenGL, it is possible to write directly
from a CUDA kernel into a pre-prepared OpenGL Pixel Buffer Object. This requires manual
setup of the PBO (Pixel Buffer Object) for each frame with numerous OpenGL calls to
prepare the PBO, followed by CUDA calls to bind the PBO into CUDA address space.
This added complexity, however, eliminates the four serial copies, eliminates four of the
redundant texture objects, and allows for a single parallel written directly into the PBO.
Figure 2b shows a diagram of this much more efficient system.

(a) (b)
Figure 2. (a) SFML frame memory, and (b) OpenGL-CUDA frame memory.

Once the PBO is written to in the OpenGL address space, the PBO needs to be drawn
to the screen. There are are a couple different approaches: the first approach would be to
prepare a Vertex Buffer Object (VBO) representing a rectangle that covers the screen with
UV coordinates normalised to [0 . . . 1] in both axes and then use a trivial vertex shader and
fragment shader to display the rectangle with the PBO as a texture to screen. The second
approach—used herein—is to create an explicit Frame Buffer Object (FBO) for which the
PBO can be built into every frame, avoiding the need for using the rasterization hardware
of the GPU to display the texture. This requires significantly more setup than the SFML
approach but allows for greater control over the rendering pipeline, e.g., the choice of the
bit depth of buffers for a trade-off between memory usage and quantization artefacts.

2.2. Texture Loading

Probably the most natural approach to loading and accessing textures in the present
context utilizes OpenGL-CUDA interoperability to expose bound OpenGL textures to
the CUDA kernel. After loading a texture into memory, the texture is mapped to an
OpenGL texture object which must be bound every frame with OpenGL calls and mapped
to a CUDA resource prior to kernel launch, and then unbound and unmapped after the
kernel is finished. This method is similar to the process used by typical raster based
renderers. However, it was found to be unsuitable for this renderer—the binding process
added overhead, limited the number textures which could be simultaneously loaded, and
required all CUDA resources to be declared in global scope meaning the number of textures
used needed to be hardcoded.

The drawbacks of using OpenGL to manage textures led us to a more performant
design in the form of bindless textures [8]. This is an object oriented approach that uses
the CUDA API to upload textures into VRAM and exposes them using a texture object
descriptor. This solution eliminates the need for binding and mapping to occur every
frame, allows for a dynamic number of textures to be specified at runtime, and allows for
all textures to be exposed to the kernel simultaneously.

Electronics 2021, 10, 2730 6 of 26

All textures are created as mipmapped texture objects; a simple kernel can be run
to asynchronously compute the mipmaps for each texture during loading. Textures are
managed by BindlessTexture objects which utilise C++ templating to support textures of
different formats (e.g., unsigned char, unsigned short, etc.) and internal formats (float1,
float4, uchar4, etc.). Once a texture has been loaded, it is stored in a linked list to keep track
of the texture objects and mipmap arrays which need to be freed on program closure (or
when no longer needed). To read a texture from device code, the only value that needs to
be known is the “tex” variable.

2.3. Material Format

A Material object holds information on how to shade a surface:

• albedo—the surface colour in linear, floating point RGB.
• metalness—a value in the range [0 . . . 1] corresponding to how ‘metalic’ a surface is in

regard to specular and diffuse shading.
• roughness—a linear value from [0 . . . 1] corresponding to the smoothness of surface

reflections and light scattering.
• F0—the base reflectivity when metalness is set to zero in linear, floating point RGB.

This often corresponds to a ’specular’ term in some PBR shaders (while others do not
include this at all) and is included to allow for more complex material behaviours.

• triplar—a boolean value corresponding to XZ planar mapping (false) or triplanar
mapping (true) for textures.

• normalStrength—a linear floating point value which scales normal deflection from
normal map textures, useful when displacing a surface at a ’less steep’ angle than the
normal map is designed for.

• albedoTex—the texture descriptor of the sRGB albedo map (or −1 when not used).
The texture is multiplied by the albedo value.

• normalTex—the texture descriptor for the linear detail normal map (or −1 when not
used).

• roughnessTex—the texture descriptor for the linear roughness map (or −1 when not
used). The texture is multiplied by the roughness value.

• metalnessTex—the texture descriptor for the linear metalness map (or −1 when not
used). The texture is multiplied by the metalness value.

• heightmapTex—the texture descriptor for the linear displacement heightmap (or −1
when not used). This texture is not used for shading but is instead used by an object
SDF to add real geometric displacement.

• ambietTex—the texture descriptor for the linear ambient occlusion map (or −1 when
not used).

The Material object has two constructors which are accessible from both host and
device code. The first constructor takes albedo, metalness, roughness and F0 values as
arguments, assigning them as member-initialisers. The body of this constructor also sets all
texture descriptors to −1 to specify the material as textureless by default, as well as setting
the texture projection mode to planar and normal strength to 1. The second constructor,
however, only takes albedo, roughness and metalness as parameters and calls the first
constructor with these values as well as a default F0 value of [0.04, 0.04, 0.04] which is
considered to be the ‘standard’ base reflectance for most non-metal dielectrics (i.e., plastics,
organic materials).

2.4. Light Format

A Light object holds information on the lights present in a scene:

• position—a homogeneous 3D vector for the position of a light. When the 4th com-
ponent is of value 1, the light represents a point light and a value of 0 represents a
directional light with the first three components corresponding to the light direction.
In the material editor, this is displayed as two separate values; a 3D position vector
and a boolean value.

Electronics 2021, 10, 2730 7 of 26

• colour—a homogeneous 3D vector for the colour of the light. The 4th component
corresponds to the inverse of the light intensity. In the material editor, this is displayed
as two separate values; a linear colour RGB value and a linear intensity value.

• attenuation—a 3 component vector corresponding to constant, linear and quadratic
attenuation for the light. If a light is a sky light, the attenuation values are ignored
and a value of [1,0,0] is used since the light is considered to be infinitely distant.

• hardness—a linear value corresponding to the ’softness’ of shadows cast by the light.
A minimum value of 3 is considered maximum softness without artefacts and a
maximum value of 128 is considered to cast perfectly sharp shadows.

• radius—a linear value corresponding to the maximum distance that a light can illumi-
nate.

• shadowRadius—a linear value corresponding to the maximum distance that a light
can cast shadows.

• shadows—a boolean value to enable (true) or disable (false) shadow casting.

Lights are stored in a vector on the host and copied once per frame to device memory
in the same fashion as materials. The first two lights in the vector are special and are used
to calculate the ‘sky’ and ‘fog’. The light editor can add and remove lights dynamically at
run time.

2.5. Ray Format

Rays are objects used to represent a ray in device code. Information needed for the
ray marching and lighting algorithms are stored inside the ray object:

• t—a floating point value representing the distance that the ray has currently marched
to.

• h—a floating point value corresponding to the closest intersection distance from the
most recent ray evaluation.

• marches—an integer for the current number of march iterations.
• evaluations—an integer for the current number of SDF evaluations.
• p—a 3D vector containing the current position of the ray in space.
• materialId—an integer corresponding to the material of the closest object.
• rayType—a bitfield enum value for the ray’s current purpose which can be any

combination of the following:

– camera (0x00001)—used for rays cast from the camera.
– shadow (0x00010)—used for rays cast from a surface towards a light to calculate

light occlusion or for rays used to calculate ambient occlusion.
– reflection (0x00100)—used for singular rays that are cast for sharp specular

reflections. (currently not used)
– transmission (0x01000)—used for rays that compute transparent transmissions

(camera | transmission) or subsurface scattering (camera|shadow). (currently
not used)

– normal (0x10000)—used for rays which calculate surface normals.

There are three device functions which are used by the ray marching algorithm:

• evaluate—a function that takes the SDF material identifier and distance sample and
then returns the distance. This function increments the evaluation value and sets
materialId and h if the distance is less than the previous value of h.

• isRay—a function that returns true if the ray is of the same type as the type argument.
• isOnlyRay—a function that returns true if and only if the ray is of the same type as

the type argument only.

2.6. Surface Map
2.6.1. Signed Distance Function

A signed distance function in its simplest form takes a point in space and returns the
signed distance from that point to the surface of that object. A library of primitive SDFs

Electronics 2021, 10, 2730 8 of 26

has been implemented for a wide range of implicit surfaces and for the purpose of the
experiments in the present work; these are included in the accompanying code. Each SDF
takes different parameters to reflect the different modifiable characteristics for each surface
type (e.g., the orientation of a plane, radius of a sphere, angle of a cone, etc.). All SDFs
do, however, share regular characteristics: the first parameter is always the position of the
sample point in space, all return a bound for the distance field (although most are exact),
and all implicit surfaces have the origin at [0, 0, 0].

2.6.2. Map Function

In a ray marching algorithm, the purpose of the map function is to return the distance
from a point in space to the closest surface, i.e., it can be said that the map function samples
the minimum of all 3D distance fields. The distance field for a scene is defined as the
overlapping minimum of all signed distance field functions evaluated at p. However,
to enable more complex scenes, the map function used in this renderer takes different
parameters:

• ray—a Ray object of the current ray being marched. This is required to update
materials as well as to provide different functionality for the map function based on
the type of ray.

• d_materialVector—the device material vector to allow for accessing heightmap tex-
tures to displace surfaces.

• offset—used by the normal calculation algorithm and ambient occlusion algorithm
to scatter the points at which to sample the distance field without affecting the ray
position itself.

2.7. Raymarching Algorithm

Raymarching is an iterative root-finding approximation of ray tracing given a field of
geometric distances, see Figure 3. The process of building a frame comprises:

• Ray Generation Program—Generate camera rays given camera position, direction and
focal length.

• March Calculation—March rays towards intersections given a map function.
• Normals Calculation—Compute normals and apply detailing.
• Surface Normal—Compute the surface normals from the distance field gradient given

a map.
• Detail Normals—Use surface normals and material ID to deflect normals using a

texture.
• Shade Intersection Pixel—Determine pixel colour using normals, materials and lights.
• Shading & Shadows—First shading pass using the Cook–Torrance BRDF (bidirectional

reflectance distribution function), emitting only shadow rays towards lights and
sampling the distance field for ambient occlusion.

• Specular Environment Shading—Compute specular reflections of the ‘skybox’, emit-
ting only one shadow ray per camera ray, randomly distributed in a specular lobe.

• Diffuse Environment Shading—Compute diffuse lighting from the ‘skybox’, emitting
only one shadow ray per camera ray, randomly distributed in a hemisphere oriented
from the surface normal.

• Shade Sky & Fog—Determine colour of sky from camera ray direction and light
colours and linearly interpolate between the shaded surface colour and sky colour
based on intersection distance for fog.

• Tone Mapping—Map the unclamped linear color space into a clamped sRGB color
space to approximate HDR (high dynamic range) imagery.

• Temporal AA—Use data from the previous frame to apply anti-aliasing.
• Write Pixel—Write computed pixel colours to the Pixel Buffer.

Electronics 2021, 10, 2730 9 of 26

Figure 3. The iterative mechanism of raymarching to find an intersection. The blue object is the
implicit surface. The black line is the ray. The red point is the ray origin and purple point is the
detected intersection. The red circles represent the distances sampled from the distance field and the
green curves represent the ‘march forward’ each iteration.

2.7.1. Ray Generation Program

The ray generation program is a function that computes ray origins and ray directions
for camera rays. To build a frame of pixel width w and pixel height h, the kernel is launched
with w × h threads, where each thread emits one initial camera ray. These threads are
grouped into 8× 8 tiled blocks, consisting of two 32 thread wraps which are computed
as SIMD (single instruction, multiple data) vectors. Given the ID of a thread within a
block, and the ID of a block within the grid, it can be determined which pixel each thread
corresponds to in 2D space, giving screen space coordinates. From these integer coordinates,
floating point UV coordinates are computed, such that the top left pixel has coordinates
[−1, 1] and the bottom right pixel has coordinates [1,−1]. Then, ray directions become:

rd0 = [rd0
x rd0

y rd0
z]

T =
[u v f]T√

u2 + v2 + f 2
, (1)

where u, v, f are, respectively, the x coordinate of the UV, the y coordinate of the UV and
the camera focal length, and rd0 is a 3D direction vector. This process creates a ‘virtual
matrix’ of vectors spanning across all threads representing a pinhole camera with focal
length f oriented towards [0, 0, 1]. To orient the rays in the direction specified by the virtual
camera, they must be transformed using two rotation matrices. Given the camera angles φ,
θ, the following transformation gives the correctly oriented ray direction rd:

rd =

 rdx
rdy
rdz

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·
 1 0 0

0 cos φ − sin φ
0 sin φ cos φ

 rd0
x

rd0
y

rd0
z

 (2)

The only other vector needed to define a camera ray is ro which is simply the 3D
vector corresponding to the camera position. From this, any position p along this ray can
be computed as p = ro + rd · t.

2.7.2. March Calculation

The first march calculation performed with camera rays is the determination of the
intersections of each ray and the implicit surface union defined by the map function. In
its simplest form, the march function can be defined using a recurrence relation with an

Electronics 2021, 10, 2730 10 of 26

intersection occurring at ro + rd · t if t = t0, t1, . . . , tn converges as n → ∞ (otherwise, no
intersection occurs):

march = lim
n→∞

tn (3)

t0 = tmin (4)

tn = tn−1 + hn−1 (5)

hn = map(ro + rd · tn) (6)

where tmin represents the near clipping plane. However, it is computationally impossible to
iterate infinitely, so, instead, we impose a maximum iteration depth nmax for n, a maximum
tmax limit for t (the far clipping plane), and a short circuit intersection distance hmin for h.
This results in a modified set of recurrence relations:

march = tnmax (7)

tn =

{
tn−1, if tn−1 > tmax

tn−1 + hn−1, otherwise
(8)

hn =

{
0, if |hn−1| < hmin

map(ro + rd · tn), otherwise
(9)

These formulae hold true for when all surfaces defined by map have bounded or
exact distance fields, but this is not true for all surface types; for example, a heightmap
displaced plane will often give over estimations and underestimations for the distance
field, which could potentially cause a ray to pass through high frequency displacements
in the surfaces without detecting an intersection. To prevent this from happening, it is
possible to change hn expression for the map case such that the result of the map function
is multiple by a coefficient k where 0 < k ≤ 1 . The smaller this coefficient is, the less likely
an overestimation is to happen but with the cost of requiring more marches to reach an
intersection than for a coefficient of exactly 1. The solution to this is to vary the value of
k between neighbouring pixels and between consecutive frames and then use temporal
anti-aliasing techniques to remove the resulting high frequency noise with Monte Carlo
integration [9].

2.7.3. Normal Calculation

The normal of an implicit surface is defined via the three partial derivatives of the
map function where the distance field is equal to zero (i.e., at an intersection point). At
point p:

normals(p) =
[

∂

∂x
map(p),

∂

∂y
map(p),

∂

∂z
map(p)

]
= ∇map(p) (10)

However, this requires that an analytical derivative for the map can be computed,
which itself requires analytical derivatives for all SDFs. This is not necessarily possible as
some surfaces may not have an analytical derivative or have an analytical derivative which
would translate to performant device code.

Instead of obtaining the exact normal, it is possible to instead obtain an approximation,
e.g., using forward differences or central differences. However, this results in a total of six
map evaluations for the three partial derivatives, which could result in a lot of overhead
for particular complex scenes. If we assume that map(p) << 1 due to p being at an

Electronics 2021, 10, 2730 11 of 26

intersection, it is possible to obtain the normal using only three evaluations of the map
function when using the forward difference approach:

normals(p) ≈ normalize

 map(p + h, 0, 0)
map(p + 0, h, 0)
map(p + 0, 0, h)

 (11)

However, normals obtained in this way will be less numerically accurate. Instead, by
using the Tetrahedron technique, it is possible to obtain surface normals with the same
accuracy as the central difference approach using only four evaluations. This approach
samples the distance field at four equidistant vertices of a tetrahedron giving four direc-
tional derivatives that can be summed together to give the approximation of the normal at
the zero-isosurface:

normals(p) ≈ normalize

(
3

∑
i=0

kimap(p + hki)

)
(12)

This technique is adopted in the proposed renderer for normal evaluation. One
drawback (and of the previously discussed techniques) is that the normal value is inaccurate
at sharp intersections of multiple surfaces. One way to avoid this would be to evaluate
only the SDF of the closest object in place of the map. This can be achieved by altering the
map function to take a ‘mask’ value such that only SDFs with the material ID obtained in
the march step contribute to the distance field.

2.7.4. Ambient Occlusion

Ambient occlusion is the process of decreasing the luminosity of ambient light in
the crease and crevices of geometry to simulate the effect occlusion of light based on
object proximity. In a typical raster renderer, this is done using Screen Space Ambient
Occlusion (SSAO) which uses the depth buffer and surface normals to approximate this
effect. However, this can lead to unrealistic looking results. To improve the accuracy of
AO in this renderer, the distance field itself is used to approximate occlusion; this process
works by sampling equally spaced points perpendicular to the surface and calculating the
weighted sum of deltas of surface distances with distance field distances to approximate
how occluded that surface is from surrounding geometry.

2.7.5. Shadow Occlusion

In computer graphics, light sources are often modelled as point sources. Hence,
shadows cast by the light are always sharp, as a point on a surface is either fully occluded
by other geometry (in shade) or not at all (fully lit). This differs from reality where light
sources have a spatial extent, and a point in space can be partially occluded. This results
in soft shadows with penumbra. In a raster engine, this can be achieved by applying a
distance based low pass filter to the shadow map which must be recomputed every frame
to allow for dynamic geometry and lighting. However, in a raymarching based renderer, it
is possible to use the distance field to approximate soft shadows.

To cast hard shadows from a light in a raymarching engine, the following algorithm is
used:

• Determine point p on the zero-isosurface of the distance field.
• Cast a shadow ray at point p and raymarch to light position pl , determining the

intersection t.
• If t < |p− pl | point p is fully occluded, otherwise the point is fully lit.

With a simple modification, it is possible to transform the hard shadow algorithm
into one that supports soft shadows without any extra performance cost; instead of only

Electronics 2021, 10, 2730 12 of 26

tracking t to determine occlusion, the algorithm also tracks the minimum penumbra factor
resn at each raymarch iteration. The penumbra factor is calculated as:

resn = min
(

resn−1,
kh
t

)
, (13)

where res0 is initialised with a value of 1 (no occlusion), k is a coefficient for the shadow
hardness, and h, t are the surface distance and ray position coefficient as defined in the
raymarching recurrence relations. Hence, the recurrence relations for the soft shadow
casting algorithm are:

So f tMarch = resnmax (14)

res0 = 1 (15)

resn = min
(

resn−1,
khn−1

tn−1

)
. (16)

2.8. Lighting Model

Once the ray surface intersection has been determined, along with the surface ma-
terial, surface normals and detail normals for all data needed to shade a pixel have been
obtained. Our renderer uses a Physically Based Rendering (PBR) lighting model based
on the Cook–Torrance BRDF [10] which more accurately represents the real world than
Phong’s model [11].

2.8.1. Cook–Torrance Based BRDF

For a lighting model to be considered PBR, it must:

1. use the microfacet surface model,
2. conserve energy when reflecting light, and
3. use a physically based BRDF such as Cook–Torrance.

The microfacet surface model is a statistical approximation for a surface’s roughness
given a roughness parameter. The sharpness of specular reflections of a surface is propor-
tional to the probability of the halfway vector h being aligned with microfacet normals n f
where the halfway vector is defined as [12]:

h =
l + v
‖l + v‖ (17)

where l, v are the incoming light and view vectors, respectively. This model also, conve-
niently, ensures energy conservation such that the energy of outgoing light from a surface
cannot exceed the energy of incoming light. Phong’s model [11], probably the most com-
mon reflectance model used, fails in this respect and thus produces obviously unrealistic
shading. To ensure the conservation of energy, the diffuse shading component kd should
be multiplied by 1− ks, where ks is the specular counterpart [10].

The reflectance equation describes the outgoing light Lo as the sum of emitted light
Le and reflected light. Reflected light is the sum of all incoming light Li multiplied by
the surface reflection fr (the BRDF) and the cosine of the incident angle. This leads to the
following expression:

Lo = Le +
∫

Ω
(frLi)(ωi · n)dωi, (18)

where Ω is the unit hemisphere aligned with surface normal n [13]. For the surface
reflectance function fr, herein we adopted the Cook–Torrance BRDF [10], which is the
weighted sum of the Lambertian diffuse and Cook–Torrance specular terms:

fr = kd fLambert + ks fCookTorrance (19)

Electronics 2021, 10, 2730 13 of 26

where kd and ks are the weightings of the diffuse and specular terms, respectively, and
kd + ks = 1 so as to ensure the conservation of energy. The Lambertian diffuse term is
simply described as the surface albedo c normalized for integration over the hemisphere.
This gives the the Lambertian term:

fCookTorrance =
c
π

(20)

The Cook–Torrance specular term is more complex. It is defined as the product of
three functions D,F,G divided by fourfold the product of the dot product between the
surface normal n and the outgoing light direction ωo with the dot product of the surface
normal and the negative of the incoming light direction ωi:

fCookTorrance =
DFG

4(ωo · n)(ωi · n)
(21)

The three functions are used to approximate different parts of a surface’s reflective
properties. D, the normal distribution function, approximates the probability of surface
microfacets being aligned with the halfway vector based on the surface roughness. G, the
geometry function, describes the self-shadowing property of microfacets, where rough sur-
faces may have some microfacets that occlude light reflections caused by other microfacets.
F, the Fresnel equation, describes the ratio of surface reflections at different surface angles.

For the normal distribution function, the Trowbridge–Reitz GGX approximation is
used [14,15]. Given the surface normal n, halfway vector h and roughness parameter α:

DGGXTR(n, h, α) =
α2

π
(
(n · h)2(α2 − 1) + 1

)2 (22)

At low roughness, there is a highly concentrated number of microfacets that are
aligned with the halfway vector, causing a bright specular highlight in a small radius.
At high roughness, it is more likely to find microfacets aligned with the halfway vector
over a larger radius, causing the size of the specular highlight to decrease with increasing
roughness while the highlight intensity decreases.

The Geometry function uses the Schlick-GGX function [16] to calculate the self shad-
owing probability along a particular vector based on roughness, as well as using Smith’s
method to compute the incoming and outgoing light self shadowing probabilities. Given
surface normal n, view vector v, light vector l and roughness α, the following formulas are
used to compute the geometry function G:

G(n, v, l, α) = GSchlick(n, v, k)GSchlick(n, l, k) (23)

GSchlick(n, i, k) =
n · i

(n · i)(1− k) + k
(24)

k =
(α + 1)2

8
(25)

The Fresnel equation describes the ratio of light reflected over light that gets refracted
which is dependent on the relative viewing angle of the surface. A surface has a base
reflectivity given by F0 which determines the reflectivity of the surface when the view and
normal vectors are aligned; this value is based off the wavelength-dependent indices of
refraction, but our approximation only uses base reflectance values for the red, green and
blue wavelengths. The base reflectance value is precomputed and is often near zero for
non-metals and near one for metals (being somewhere in between for semiconductors).

Electronics 2021, 10, 2730 14 of 26

The equation used is the Fresnel–Schlick approximation [17], which models specularity
as having a fifth power weighting at grazing angles (a commonly used approximation for
specularity):

F(h, v, F0) = F0 + (1− F0)(1− h · v)5 (26)

The value F0 = 0.04 is the default for materials in this engine for non-metals, and is
equal to the albedo for metallic surfaces (i.e., when the metalness parameter is equal to 1).
However, custom values may be used as described in Section 2.3. The Fresnel equation is
also used for the diffuse coefficient component, where kd = 1− F.

Combining all the above formulae:

Lo =
∫

Ω

(
(1− F)

c
π

+
DFG

4(ωo · n)(ωi · n)

)
(Liωi · n)dωi (27)

Light radiance Li is calculated with the light colour ldehomogenized, the polynomial
attenuation model coefficients AConstant, ALinear, and AQuadratic, distance d, and light radius
r, which leads to:

Li =

(ldehomogenized

AConstant + dALinear + d2 AQuadratic

)(
r− d

r

)
(28)

ldehomogenized =

[
lr
lw

,
lg

lw
,

lb
lw

]
(29)

where
[
lr, lg, lb, lw

]T is the homogeneous light colour vector. The second term in the
radiance equation is responsible for interpolating the light radiance down to zero as the
distance coefficient approaches the light radius. This allows for a smooth transition to zero
radiance as the distance of the surface to the light reaches the radius, allowing for the light
to be skipped when beyond the maximum radius.

2.8.2. Texture Mapping

Texture mapping is the process of wrapping a 3D surface in a 2D texture. In a typical
raster engine, this is done by assigning UV coordinates to the vertices of a mesh; the UV
coordinates correspond to the x, y coordinates of the texture being used. These values are
then interpolated between per fragment and are used to sample the texture. This approach,
however, is not suitable for procedural rendering since there are no meshes being used.
Instead, we must use projection techniques to map a texture to an arbitrary point in space
based on procedural surface information.

Planar projection mapping is one such technique. This takes two of the three coordi-
nates of a point on the zero-isosurface and uses them to sample the 2D texture. The default
axis for planar projection mapping in this raymarching engine is the xz-axis, since this is
the same axis as the ‘floor plane’. To obtain the texture colour for position p in space and
texture sampling function sample(u, v), the following formula is used for planar projection
texture mapping:

textureplanar(p) = sample(px, pz) (30)

Planar projection is suitable for planar surfaces, such as floors, walls, ceilings, etc, but
it is unsuitable for more complex surfaces such as spheres as this will cause the textures
to stretch as the angle between the surface normal and the normal of the projection plane
increases. A solution to this is to apply planar mapping in three perpendicular planes
and apply interpolation based on the surface normal alignment. This is called triplanar
mapping, also known as round cube mapping. To do this, we require both the position p

Electronics 2021, 10, 2730 15 of 26

and surface normal n. This gives a simple formula with three texture lookups weighted by
the absolute normal contribution for that axis.

texturetriplanar(p, n) =
|nx|sample(py, pz) + |ny|sample(px, pz) + |nz|sample(px, py)

|nx|+ |ny|+ |nz|
(31)

This function can be further parameterized with a ‘hardness’ parameter k which allows
for the contribution of each planar texture sample to be weighted more or less heavily
based on alignment. By taking the kth power of the absolute normal, the following formula
for weighted triplanar mapping emerges:

texturetriplanar(p, n, k) =
|nx |ksample(py, pz) + |ny|ksample(px , pz) + |nz|ksample(px , py)

|nx |k + |ny|k + |nz|k
(32)

Triplanar mapping is suitable for shading since it results in a maximum of three sam-
ples per texture per camera ray. However, it is not suitable for the sampling of heightmaps
in the map function, as the texture lookups happen each iteration during marching, which
results in a much larger memory bandwidth overhead than simple biplanar mapping
which uses only one texture lookup.

2.8.3. Global Illumination

Global Illumination (GI) is the process of modelling light bounces to allow for indirect
lighting illumination. GI improves the realism of a scene (in comparison to uniform ambient
lighting across a scene) at the cost of additional processing.

The GI solution that was implemented for this renderer only takes into account the
lighting contribution of the ‘sky’ with only a single bounce towards the sky hemisphere.
In typical raster based renderers, the sky itself does not contribute to the illumination
of surfaces but instead is modelled as one or more directional lights used to cast light
(normally a ‘sun’ light casting a strong yellow-white light and a vertical directional ‘sky’
light casting a weaker bluish tone), e.g., as in Source Engine. This solution, however, results
in inaccurate shadowing and can result in a much darker scene. The solution we propose
comprises the creation of a virtual skybox of infinite directional lights casting inwards
towards the scene and then sampling the skybox over a hemisphere directed away from
the surface normal to contribute the diffuse contribution of the sky.

To sample the skybox in this way, we must cast shadow rays uniformly distributed
over the normal hemisphere and calculate the radiance using Lambertian diffuse shading
scaled by the soft shadow contribution. The radiance for diffuse GI from the sky is
computed as:

GIdi f f use = kd
c
π

∫
Ω

sky(ωi)So f tMarch(p, ωi, 3)n ·ωidωi (33)

with a shadow hardness of k = 3 used to simulate the wide radius over which the sky is
being sampled.

Since numerically integrating fully over the hemisphere is computationally impossible,
we must instead sample the hemisphere uniformly. Given two random temporal samples
temporalx, temporaly, and the surface normal n, a random sample direction ωi is obtained
as follows:

Electronics 2021, 10, 2730 16 of 26

ωi = samplehemi(temporalx, temporaly, n) = {T, B, N} · H (34)

H = {cosφ sinθ, sinφ sinθ, cosθ} (35)

T =

{
{0, 0, 1} × N, i f |nz| < 0.999
{1, 0, 0} × N, otherwise

(36)

B = N × T (37)

φ = 2π temporalx (38)

θ = 0.5π temporaly (39)

The more samples taken per frame, the more accurate the lighting is at the cost of
increased computation. By taking only one sample per frame, the image has a distinct
checkerboard pattern when temporal AA is disabled, but when temporal AA is enabled, an
accurate image is produced within only a few frames owing to the effective Monte Carlo
integration over the hemisphere over time. The diffuse GI calculated here is added to the
pixel colour of the first shading pass.

2.8.4. Reflections

Real-time reflections are difficult to accurately produce for any rendering method,
often resulting in needing screen space techniques to approximate the reflections. The
approach we take is to sample the skybox in a similar fashion as with the GI algorithm; by
using the Cook–Torrance specular term (instead of the Lambertian diffuse term) and and
by sampling the skybox with a specular lobe distribution (instead of a uniform uni hemi-
sphere).

We can construct an equation for the specular global illumination in a similar way to
the diffuse equation using the specular term of the Cook–Torrance BRDF and a shadow
hardness based on the surface roughness α:

GIspecular = ks

∫
Ω

(
DFG

4(ωo · n)(ωi · n)

)
sky(ωi)So f tMarch

(
p, wi, 3 +

1
α

)
n ·ωidωi (40)

To sample the hemisphere in a biased specular lobe, a different sample function is
required. GGX Importance Sampling can be summarized by the following equations (note
that the sample function is almost identical to the hemisphere function with the addition of
the roughness parameter α):

ωi = sampleGGX(temporalx, temporaly, n, α) = {T, B, N} · H (41)

N = n (42)

cosθ =

√
1− temporalx

1 + (α2 − 1)temporaly
(43)

Like the diffuse GI, the specular reflections rely on temporal anti-aliasing for an
accurate result with Monte Carlo integration over time. The specular GI calculated here is
added to the pixel colour computed from the first shading pass and diffuse GI pass.

3. Evaluation
3.1. Visual Fidelity

The real-time visual fidelity achieved by this renderer is comparable to offline high
fidelity techniques such as ray tracing, as well as surpassing techniques used by real-time
raster renderers in both performance and quality. All images in this section were rendered
at 1280 × 720 on an RTX 2080 Super. All comparisons were made against Blender engine
version 2.90 and UE4 version 4.25.3.

Electronics 2021, 10, 2730 17 of 26

3.1.1. Displacements

An insightful testing example is that of displaced planes rendering at very high framer-
ates. There are three techniques for displaying detailed surfaces with microdisplacements:
geometry displacement, parallax occlusion mapping and raymarching. We recreated a
scene from the demonstration scene in Blender and UE4 for the purposes of comparison,
see Figure 4.

The raymarched render of the carpet is produced with a frame duration of less than
8 ms and a video memory footprint of 1 GB (although this is mostly due to storing the
textures needed for the full demo even though only the carpet is visible). Owing to TAA, the
produced image is fairly photorealistic with fine detail. The main advantage of this method
is the high image fidelity without computing any actual geometry while still supporting
global shadowing and self shadowing. The primary disadvantage of this technique is
requiring expensive texture lookups on each iteration.

The image produced by ray tracing with Cycles is also photorealistic with outstanding
detail, although it took a whole 9 s with Nvidia OptiX acceleration to render with a peak
video memory footprint of 3 GB, which was mostly due to needing to store the data for
all vertices, which is the main disadvantage of this technique. Despite this, the image
produced is remarkably accurate, including the multibounce shadowing interactions within
the crevices of the carpet. The image produced with parallax occlusion mapping in UE4
is also as photorealistic and as performant as the raymarched image, taking under 9 ms
to produce the image with a video memory footprint of 400 MB. Like raymarching, no
actual geometry is computed, making it very lightweight. However, this technique comes
with significant disadvantages such as being unable to produce dynamic self shadows and
being unable to cast global shadows onto other objects of the scene. Another drawback is
the visible ‘stair-stepping’ of the surface when viewed up close and at sheer angles, where
the effect breaks down completely. This system also requires expensive texture lookups
like the raymarching solution.

From this example, it is clearly evident that raymarching is on par with parallax
occlusion mapping with regard to resource usage and is arguably of a better quality with
no visible artefacts when Temporal Anti-Aliasing is enabled for the raymarcher.

3.1.2. Fractals

Another revealing test case is the rendering of fractals, see Figure 5. The main free
renderer used for fractals is Mandelbulb3D (MB3D), a very cumbersome to use program
which only supports CPU based rendering and had remained, up until 2015, when it was
taken over by a new maintainer, closed source. Since the program takes no advantage of
hardware acceleration, it often takes several seconds to produce an image.

MB3D lacks many features present in our renderer, such as texture support, support
for other implicit surface types, HDR lighting, PBR shading, etc. MB3D works using a
similar technique called fixed step ray marching, where a binary search is performed with
fixed sample positions along a ray to determine the intersection surface.

Overall, MB3D is a poor candidate for the real-time rendering of fractals when com-
pared to our raymarching renderer that is able to render fractals in real time in under 10 ms
per frame in addition to supporting reflections, shadows, texturing and anti-aliasing.

Electronics 2021, 10, 2730 18 of 26

Figure 4. Raymarched displacement plane (top). Raytraced displacement plane rendered with
Blender Cycles (middle). Rasterized parallax occlusion mapping plane in UE4 (bottom).

Electronics 2021, 10, 2730 19 of 26

Figure 5. A power 4 Mandelbulb rendered in Mandelbulb3D (top) and our raymarcher (bottom).

3.2. Lighting

Shadow casting is an important feature of a realistic renderer. Regardless of the
technique used, it is costly to compute. We recreated a scene which includes multiple
spheres with different materials and 64 point lights all casting shadows to compare the
performance of our raymarcher and a commercially available engine, see Figures 6 and 7.

Both engines run at about 30 frames per second, giving comparable performance;
however, in UE4, the point lights are unable to cast shadows correctly on the floor plane due
to the drawbacks of parallax occlusion mapping. Both renderers produce similarly realistic
lights with specular reflections as well as shadow reflections which are both achieved
through temporal anti-aliasing. When the point light shadows are disabled, both engines
run at much higher frame rates at an upwards of 90+ frames per second.

Another important part of rendering realistic lighting is the ability to cast soft shadows.
We recreated another scene from the demo in UE4 and tried to match the lighting conditions
as close as possible.

It is clear to see that UE4 struggles to cast soft shadows in such a simple scene due to
the nature of rasterized shadow maps not taking into account shadow penumbras. Another
interesting phenomenon to note is that the sphere geometry is visible in UE4 in the shadows
due to meshes being comprised of triangles as opposed to raymarching where surfaces
have exact mathematical representations.

Electronics 2021, 10, 2730 20 of 26

It should also be noted that UE4 is running with frame durations of around 8 ms while
our raymarching renderer runs with around 6 ms frame durations, meaning the Monte
Carlo integration via TAA converges on realistic light conditions 20% faster in the proposed
renderer than UE4 for this scene.

Figure 6. Real-time shadows in the raymarching renderer (top) and UE4 (bottom).

Electronics 2021, 10, 2730 21 of 26

Figure 7. A comparison of soft shadows between our renderer (top) and UE4 (bottom).

3.3. Bounding Volume Optimisation

A scene may be filled with dozens or even hundreds of surfaces that all add significant
computation cost to the map function which may be evaluated at many millions of times
per frame. To help improve the performance of the renderer, it is important to minimise
the cost of the map function by ’skipping’ the evaluation of SDFs for objects that do not
contribute to minimal distance field. Optimisation through bounding volumes is one such
method which is explored in this work. The most performance intensive part of the demo
scene is an array of 20 primitives which are all fairly expensive to evaluate, see Figure 8.

When BV optimisation is enabled, the renderer runs with an average frame duration of
21 ms (48 frames per second) and 41 ms when disabled (24 frames per second) at 720p. The
clock cycle view clearly shows that the computation cost is relatively uniform across the
entire frame when optimisation is disabled; however, with bounding volume optimisation
enabled, the expensive computations are localised to areas of the frame where the complex
geometry is present.

Electronics 2021, 10, 2730 22 of 26

Figure 8. A comparison of the performance difference between bounding volume optimisation being
enabled (right) and disabled (left). The views shown are the final pass (top), kernel clock cycles
(middle), and SDF evaluation count per pixel (bottom).

A similar phenomenon can be observed in the SDF evaluation views where the outlines
of the bounding volumes are visible around the rows of primitives when enabled. It is also
evident that fewer evaluations occur in areas of shadow due to a decreased number of map
evaluations upon shadow rays converging on the casting surface.

Although a GPU is often considered SIMD, it is actually more accurate to describe
modern GPUs as MIMD since different Streaming Multiprocessors (SMs) can process
different instruction streams simultaneously over one or more thread warps per SM.
Combined with the fact that the GPU is saturated with threads for this workload (i.e., more
threads are scheduled than slots available to simultaneously compute them), the GPU
can finish computation of the cheaper parts of the frame early and distribute the more
expensive threads across the available SMs.

Lastly, as a means of providing additional insight into the performance of our engine,
using an example scene shown in Figure 9, in Figures 10–14, we provide a series of
renderings, some of which illustrate the results of different intermediate computational
stages of a rending and others which quantify in an easily comprehensible manner the
associated computational burden.

Electronics 2021, 10, 2730 23 of 26

Figure 9. View 1: final, fully shaded render pass.

Figure 10. View 2: virtual depth buffer.

Figure 11. View 3: heatmap illustrating the march iteration count.

Electronics 2021, 10, 2730 24 of 26

Figure 12. View 4: heatmap illustrating the clock cycle count.

Figure 13. View 5: detailed surface normals.

Figure 14. View 6: heatmap illustrating the SDF evaluation count.

Electronics 2021, 10, 2730 25 of 26

4. Conclusions and Future Work

In this paper, we introduced what is to the best of our knowledge the first framework
for real-time 3D rendering of complex scenes in CUDA using raymarching. We developed
and described comprehensively a carefully engineered raymarching render engine, and
demonstrated its effectiveness and superiority over popular alternatives using a series
of empirical experiments. The performance and visual fidelity of the renderer is able to
match and surpass that of free and commercial software solutions, proving major promise
in the future of computer graphics. In addition, each element of the engine was discussed
in detail, with observation insights that should assist in future research on production
grade rendering pipelines. Lastly, we accompany our contribution with the full source
code of a working prototype (the code can be accessed via the following URL: https:
//oa7.host.cs.st-andrews.ac.uk/raymarching_code.zip accessed on 1 November 2021).

Our development opens multiple avenues for future work. One direction we would
like to explore involves experimenting with different pipelines for the raymarcher, e.g.,
experimenting with a draw call system like that used in OpenGL to draw objects into
a depth buffer with multiple separate smaller maps. This could effectively result in a
‘deferred raymarcher’ which could result in the support of mixed-mode rendering to
integrate rasterization of meshes into the pipeline.

Another direction for future work involves experimenting with the use of shadow
maps for lights and ambient light capture probes for global illumination which could be
computed at a different frequency from the primary view (i.e., at a low frame rate) to
allow for high frame rate computation of the world with lighting that updates at a slightly
slower rate.

Author Contributions: Conceptualization, A.H.-K.; methodology, A.H.-K. and O.A.; software,
A.H.-K.; resources, O.A.; writing—original draft preparation, A.H.-K. and O.A.; writing—review and
editing, A.H.-K. and O.A.; visualization, A.H.-K.; supervision, O.A.; project administration, O.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hart, J.C.; Sandin, D.J.; Kauffman, L.H. Ray tracing deterministic 3D fractals. In Proceedings of the 16th Annual Conference on

Computer Graphics and Interactive Techniques, Boston, MA, USA, 31 July–4 August 1989; pp. 289–296.
2. Hart, J.C. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 1996, 12, 527–545.

[CrossRef]
3. Quilez, I. Rendering Worlds with Two Triangles with Ray Tracing on the GPU. 2008. Available online: https://www.iquilezles.

org/www/material/nvscene2008/rwwtt.pdf (accessed on 10 June 2021).
4. Quilez, I. Making a Simple Apple with Maths. 2011. Available online: https://www.youtube.com/watch?v=CHmneY8ry84/

(accessed on 10 June 2021).
5. Quilez, I. Inigo Quilez: Articles. Available online: https://www.iquilezles.org/www/index.htm/ (accessed on 10 June 2021).
6. Granskog, J. CUDA ray MARCHING. 2017. Available online: http://granskog.xyz/blog/2017/1/11/cuda-ray-marching/

(accessed on 10 June 2021).
7. Keeter, M.J. Massively parallel rendering of complex closed-form implicit surfaces. ACM Trans. Graph. 2020, 39, 4. [CrossRef]
8. Mallett, I.; Seiler, L.; Yuksel, C. Patch Textures: Hardware Support for Mesh Colors. IEEE Trans. Vis. Comput. Graph. 2020, in press.

[CrossRef] [PubMed]
9. Jensen, H.W.; Christensen, N.J. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph. 1995,

19, 215–224. [CrossRef]
10. Cook, R.L.; Torrance, K.E. A reflectance model for computer graphics. ACM Trans. Graph. 1982, 1, 7–24. [CrossRef]
11. Lafortune, E.P.; Willems, Y.D. Using the Modified Phong Reflectance Model for Physically Based Rendering; Report CW 197; KU Leuven:

Leuven, Belgium, 1994.
12. Blinn, J.F. Models of light reflection for computer synthesized pictures. In Proceedings of the 4th Annual Conference on Computer

Graphics and Interactive Techniques, San Jose, CA, USA, 20–22 July 1977; pp. 192–198.
13. Nicodemus, F.E. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 1965, 4, 767–775. [CrossRef]
14. Trowbridge, T.; Reitz, K.P. Average irregularity representation of a rough surface for ray reflection. JOSA 1975, 65, 531–536.

[CrossRef]

https://oa7.host.cs.st-andrews.ac.uk/raymarching_code.zip
https://oa7.host.cs.st-andrews.ac.uk/raymarching_code.zip
http://doi.org/10.1007/s003710050084
https://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
https://www.iquilezles.org/www/material/nvscene2008/rwwtt.pdf
https://www.youtube.com/watch?v=CHmneY8ry84/
https://www.iquilezles.org/www/index.htm/
http://granskog.xyz/blog/2017/1/11/cuda-ray-marching/
http://dx.doi.org/10.1145/3386569.3392429
http://dx.doi.org/10.1109/TVCG.2020.3039777
http://www.ncbi.nlm.nih.gov/pubmed/33226950
http://dx.doi.org/10.1016/0097-8493(94)00145-O
http://dx.doi.org/10.1145/357290.357293
http://dx.doi.org/10.1364/AO.4.000767
http://dx.doi.org/10.1364/JOSA.65.000531

Electronics 2021, 10, 2730 26 of 26

15. Walter, B.; Marschner, S.R.; Li, H.; Torrance, K.E. Microfacet Models for Refraction through Rough Surfaces. In Proceedings of the
18th Eurographics Conference on Rendering Techniques, Grenoble, France, 25–27 June 2007; pp. 195–206.

16. Karis, B.; Games, E. Real Shading in Unreal Engine 4. 2013. Available online: https://www.bibsonomy.org/bibtex/203641889131
c93632e2790ab7d25aa9d/ledood (accessed on 31 October 2021).

17. Schlick, C. An inexpensive BRDF model for physically-based rendering. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA,
1994; Volume 13, pp. 233–246.

https://www.bibsonomy.org/bibtex/203641889131c93632e2790ab7d25aa9d/ledood
https://www.bibsonomy.org/bibtex/203641889131c93632e2790ab7d25aa9d/ledood

	Introduction
	Proposed Framework
	OpenGL (Open Graphics Library) and CUDA Interoperability
	Texture Loading
	Material Format
	Light Format
	Ray Format
	Surface Map
	Signed Distance Function
	Map Function

	Raymarching Algorithm
	Ray Generation Program
	March Calculation
	Normal Calculation
	Ambient Occlusion
	Shadow Occlusion

	Lighting Model
	Cook–Torrance Based BRDF
	Texture Mapping
	Global Illumination
	Reflections

	Evaluation
	Visual Fidelity
	Displacements
	Fractals

	Lighting
	Bounding Volume Optimisation

	Conclusions and Future Work
	References

