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Abstract8

9

1. Spatial capture-recapture (SCR) methods use the location of detectors (camera traps,10

hair snares, live-capture traps) and the locations at which animals were detected (their11

spatial capture histories) to estimate animal density. Despite the often large expense12

and effort involved in placing detectors in a landscape, there has been relatively little13

work on how detectors should be located. A natural criterion is to place traps so as to14

maximize the precision of density estimators, but the lack of a closed-form expression15

for precision has made optimizing this criterion computationally demanding.16

2. Recent results by Efford and Boulanger (2019) show that precision can be well ap-17

proximated by a function of the expected number of detected individuals and expected18

number of recapture events, both of which can be evaluated at low computational cost.19

We use these results to develop a method for obtaining survey designs that optimize20

this approximate precision for SCR studies using count or binary proximity detectors,21

or multi-catch traps.22

3. We show how the basic design protocol can be extended to incorporate spatially-varying23

distributions of activity centres and animal detectability. We illustrate our approach24

by simulating from a camera trap study of snow leopards in Mongolia and comparing25

estimates from our designs to those generated by regular or optimized grid designs.26

Optimizing detector placement increased the number of detected individuals and re-27

captures, but this did not always lead to more precise density estimators due of less28

precise estimation of the effective sampling area. In most cases the precision of density29

estimators was comparable to that obtained with grid designs, with improvement in30

some scenarios where approximate CV (D̂) < 20% and density varied spatially.31

4. Designs generated using our approach are transparent and statistically grounded. They32

can be produced for survey regions of any shape, adapt to known information about33

animal density and detectability, and are potentially easier and less costly to implement.34

We recommend their use as good, flexible candidate designs for SCR surveys when35

reasonable knowledge of model parameters exists. We provide software for researchers36

to construct their own designs, in the form of updates to design functions in the R37

package oSCR.38
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1 Introduction39

Spatial capture-recapture (SCR) models are commonly used to estimate animal abundance and40

distribution from surveys that use detectors at fixed locations to record the presence of marked41

animals at those locations, in the form of spatial capture histories (Borchers & Efford, 2008;42

Royle, Chandler, Sollmann, & Gardner, 2014). Detection data can be collected by camera43

traps, hair snares and scat surveys, live-capture traps, area searches, or acoustic detectors,44

with presence recorded accordingly as an image, DNA sample, animal, or audio recording.45

SCR methods jointly estimate the parameters of a spatial model quantifying expected animal46

activity centre density at all points in the survey region, and a detection model that quantifies47

the probabilities of detection, given the activity centre locations and the detector locations.48

All SCR surveys have to decide where to place detectors to best address survey objectives.49

For wildlife surveys, the focus is often animal density or abundance, and survey designs ideally50

minimize the mean square error of density (or abundance) estimators, equal to the square of the51

bias plus the variance. SCR estimators have been shown to be unbiased under a wide range of52

detector arrangements (Efford, 2019a; Efford & Boulanger, 2019; Sun, Fuller, & Royle, 2014), so53

that designs that maximize the precision of density (or abundance) estimators – or equivalently,54

minimize the coefficient of variation of the density estimator CV (D̂) – could reasonably be55

considered optimal (Efford & Boulanger, 2019; Royle et al., 2014).56

The SCR survey design goal we consider here is to choose the locations of a fixed number57

of detectors in a survey region so as to minimize CV (D̂), without any further constraints on58

detector locations (for example, that these must lie on a regular grid). There is currently no59

method for doing this, which is surprising given the monetary cost and effort involved in setting60

up an SCR survey. The reason is that until recently the only way to calculate variance (as61

well as bias) with a given design was by computationally demanding simulation, requiring that62

an SCR model be fit to each of a large enough number of simulated datasets to achieve stable63

estimates. This allows small numbers of candidate designs to be compared (Clark, 2019; Efford,64
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2019b; Kristensen & Kovach, 2018; Sollmann, Gardner, & Belant, 2012; Sun et al., 2014), but65

optimizing detector locations requires potentially thousands of evaluations, and this has been66

computationally prohibitive. As a result, decisions about how to modify candidate designs and67

when to stop the design process have been left to subjective judgement. Exceptions are Royle et68

al. (2014) and Dupont, Royle, Nawaz, and Sutherland (2020), who considered designs optimizing69

a suite of objective functions, which are either related only indirectly to the main objective of70

estimating animal density precisely by focusing on detection parameters, or relied on simplifying71

assumptions that are untested and available only for certain types of detection models.72

As a result, most SCR surveys use some combination of broad guidelines on detector spacing73

and layout to generate a small set of candidate designs, possibly followed by a simulation-based74

comparison of these candidate designs on statistical criteria such as relative bias and precision.75

Being general, guidelines typically recommend highly regular designs that arrange detectors76

in a regularly-spaced grid, or else in clusters, with the spacing between detectors chosen so77

that individual animals have a reasonable chance of being detected at more than one detector78

(Clark, 2019; Efford & Fewster, 2013). The motivation for using these designs is that they can be79

expected to return unbiased density estimates with relatively good precision under a wide range80

of conditions (Efford & Fewster, 2013). However, placing detectors at regular intervals may be81

impossible in some survey areas, and better designs may be achievable without the constraint82

of regular spacing even if that spacing is feasible (Dupont et al., 2020).83

The only way to compute bias in SCR-based density estimates remains by computationally84

intensive simulation, but a recent approximation of CV (D̂) (Efford & Boulanger, 2019) pro-85

vides a sensible, computationally feasible design criterion for optimizing detector locations with86

unbiased estimators. Their approximation is87

CV (D̂) ≈ 1/
√

min{E(n), E(r)} (1)

where both the expected number of first captures E(n) and recaptures E(r) can be evaluated88

quickly using numerical integration over a habitat mask of the survey region. Two main uses for89
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the approximation are suggested: fast comparison of candidate designs, and optimizing detector90

spacing for a regular grid of detectors by numerically finding the spacing for which E(n) = E(r).91

In this paper we show how this approximation can be combined with optimization methods to92

determine detector locations that maximize the approximate precision of density estimates,93

without constraint to a regular layout. The resulting detector locations reflect the best available94

balance between a wide spacing that results in few recaptures but detects many individuals, and95

clustering detectors close together so that an animal seen on one detector will likely be seen at96

others (Royle et al., 2014; Sollmann et al., 2012). We call these min(n, r) designs.97

Calculations of E(n) and E(r) remain fast even if their inputs vary spatially, for example as98

a function of covariates. Our design procedure can thus be extended to provide designs for any99

extension to the basic SCR model that permits fast evaluation of E(n) and E(r). We illustrate100

this by developing designs incorporating non-uniform animal density and spatially-varying de-101

tection covariates. We show that the accuracy of the CV (D̂) approximation remains good when102

density varies spatially, extending the results of previous simulations assuming constant den-103

sity (Efford & Boulanger, 2019), and supporting the use of the approximation in this extended104

context.105

Using the CV (D̂) approximation as a design criterion relies heavily on the accuracy of the106

approximation not depending on detector configuration, except through the expected number107

of first captures and recaptures. We show that although designs that maximize approximate108

precision lead to greater sample sizes than regular grid designs, these gains are often offset by109

lower precision in other estimators, most notably those related to the effective area surveyed,110

which are not accounted for in the approximation. Nevertheless, min(n, r) designs are com-111

petitive with regular grid designs in most cases and sometimes outperform them, particularly112

when animal activity centre density varies spatially. They have the benefit of flexibility, being113

applicable to study regions of any shape, and can be expected to be easier and less costly to114

implement, owing to detectors being more clustered.115
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We illustrate the application of our proposed approach by revisiting a camera trap survey116

of snow leopards in the Tost Mountains of Mongolia. Using an existing survey provides a117

background context and plausible ranges for model parameters, and allows for comparison with118

actual design practices, all of which are useful for illustration and interpretability.119

2 Materials and Methods120

2.1 Components of the SCR model121

Spatial capture-recapture (SCR) models comprise a spatial model of the population and a spatial122

model of the detection process. These are fitted jointly to the capture histories of detected123

individuals to provide estimates of, among other quantities, the density of individuals within124

an area, the effective area surveyed, and population size (Borchers & Efford, 2008; Royle et al.,125

2014).126

The spatial model of the population describes the distribution of activity centres in the127

landscape, each animal represented by its activity centre. Locations of animal activity centres128

are assumed to be generated by a Poisson process with density (“intensity”) D(x) at a point129

x on a habitat mask A representing the survey region. The mask (or state space) is a two-130

dimensional polygon large enough that animals living outside the mask have a negligible chance131

of being detected, often obtained by adding a buffer region around detector locations. Density132

may be constant over space, corresponding to a random uniform distribution of animals in133

space, or may vary as a function of spatially-varying covariates. The number N of activity134

centres in A can either be treated as a Poisson random variable, in which case the number135

of activity centres N and their locations follows a Poisson point process, or as a single, fixed136

realization of that variable, in which case the activity centre locations follow a binomial point137

process. The approximation in (1) assumes a Poisson point process; for a binomal point process138

CV (D̂) ≈
√

1/min{E(n), E(r)} − 1/(DA) (Efford & Boulanger, 2019). In what follows we139

assume a Poisson point process, but our approach is also applicable to the binomial case.140

The detection process assumes a survey in whichK detectors are placed in a region containing141
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animals, each of which possesses an activity centre, for S survey occasions. The expected142

number of encounters of an individual whose activity centre is x at a particular detector k143

in occasion s is a decreasing function of the distance between the detector and the activity144

centre, dk(x). Various functional forms are assumed for this relationship, commonly a half-145

normal λ(dk(x)) = λ0 exp[−dk(x)/(2σ
2)], where λ0 is the cumulative encounter hazard for a146

detector at the centre of an animal’s home range and σ is a scale parameter determining how147

quickly the encounter rate decreases with distance between detector and activity centre. Both148

parameters may also vary as a function of spatially-varying covariates measured at detector149

locations, although a more natural way to make σ depend on spatial covariates is almost always150

to model conductance of (or resistance to) movement as a function of spatial covariates, as in151

Sutherland, Fuller, and Royle (2015). The expected number of encounters over all detectors for152

an animal whose activity centre is x in occasion s is Λs(x) =
∑

k
λ(dk(x)) and over all occasions153

Λ(x) =
∑

s
Λs(x). The effective sampling area covered by a survey is a =

∫

x
p.(x) dx, where154

p.(x) is the probability that an animal with an activity centre at x is detected at least once155

during the survey. Conceptually, the effective sampling area downweights the area contribution156

of regions of the habitat mask where the detection probabilities p.(x) are low.157

Encounter data are collected as capture histories recording the presence of individual animals158

at detectors in each survey occasion. The exact format of the capture histories depends on the159

kind of detectors used. We use the same three used by Efford and Boulanger (2019), all of160

which assume that a detector can detect multiple animals at each occasion. Then, animals can161

be detected (a) at most once across all detectors in each occasion (“multi-catch traps”); (b) at162

most once at each detector in each occasion (“binary proximity detectors”); or (c) any number163

of times at each detector in each occasion (“count proximity detectors”).164

2.2 Design objectives165

Royle et al. (2014) considered four design objectives – minimizing the trace of the variance-166

covariance matrix of the MLEs of detection model parameters; minimizing var(ˆ̄p), the variance167
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of the MLE of the mean detection probability (the probability that an animal in A is detected168

by the survey); maximizing the mean detection probability; and minimizing var(N̂c), where169

N̂c = n/ ˆ̄p is a conditional estimator of N and n is the number of animals detected – while170

Dupont et al. (2020) maximized p̄m, the mean probability that an animal is detected on two or171

more detectors. All except the fourth criterion in Royle et al. (2014) relate only indirectly to172

obtaining precise estimates of animal density or abundance. The fourth is an appealing design173

objective but cannot be calculated in closed form. Royle et al. (2014) provide an approximation,174

but this involves calculating all three of the other criteria as inputs, relies on asymptotic variance175

calculations that are only valid for Gaussian hazard detection models with Bernoulli observa-176

tions, and approximates the variance-covariance matrix of the detection model parameter MLEs177

with the inverse of the expected Fisher information matrix under a standard Poisson GLM with178

fixed N .179

Efford and Boulanger (2019) provide the much simpler approximation in (1), with expected180

numbers of first captures E(n) and recaptures E(r) given by181

E(n) =

∫

x

[1− exp(−Λ(x))]D(x)dx (all detectors) (2)

and

E(r) =

∫

x

Λ(x)D(x)dx− E(n) (count proximity detectors) (3)

E(r) =

∫

x

S
∑

s=1

K
∑

k=1

[1− exp{−λ(dk(x))}]D(x)dx− E(n) (binary proximity detectors) (4)

E(r) =

∫

x

S
∑

s=1

[1− exp(−Λs(x))]D(x)dx− E(n) (multi-catch traps) (5)

Our approach can be applied to all three detector types, but for brevity we focus on count182

proximity detectors (eq. (3)) in the remainder of the paper. The approximation has no formal183

derivation but relies on two intuitions. The first is that natural variation in animal abundance184

sets an effective lower bound on how small CV (D̂) can be, so that if the number of animals185

is assumed to be Poisson distributed with parameter n, as is commonly done, then this lower186
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bound equals 1/

√
n. The second is that recaptures decrease variance in D̂. An exact relationship187

holds for a simple two-stage mark-recapture study. In that case, population size is estimated188

with the Lincoln-Petersen estimator N̂ = n1/(r/n2) where n1 and n2 are number of captures189

at each visit and r is number of recaptured animals that were marked. The variance of this190

estimator is approximated by 1/r (Seber et al., 1982).191

Simulations reported in Efford and Boulanger (2019) show that values of CV (D̂) obtained by192

approximation closely matched those obtained by simulation across a number of problem settings193

assuming square arrays and uniform density of activity centres. For some detector geometries,194

the approximation underestimated CV (D̂), in the case of linear detector arrays by 25%. Efford195

and Boulanger (2019) suggest that in such cases the approximation should be modified by196

a constant correction factor whose value is determined by simulation. To test whether the197

approximation also holds for heterogeneous density, we extended the same simulation experiment198

to include two spatially-varying density surfaces, one in which density was concentrated in the199

centre of the survey region, and one in which density increased with latitude and longitude, so200

that the highest densities were in the buffer region of the habitat mask, and assessed the quality201

of the approximation in these conditions (see Supplementary Material A for further details).202

2.3 Optimization203

Optimization requires the specification of potential camera locations, a convenient form for204

which is a grid of points over the survey region, excluding the buffer (Fig. 1a). A small spacing205

between potential detector locations provides greater flexibility for optimization, but spatial206

recaptures (detecting the same animal at different detectors) at very small distances provide207

little information about the shape of the detection function. Adequate spacing is crucial when208

optimizing any design criterion that treats all spatial recaptures as equivalent (e.g. min(n, r) and209

p̄m designs) because the total number of spatial recaptures is maximized by placing detectors as210

close together as is allowed by the spacing. This reduces spatial coverage (and thus, n) and leads211

to many recaptures at relatively uninformative fractions of σ, both of which serve to inflate the212
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CV of the effective sampling area a. Guidelines from simulations with square grids (Efford and213

Boulanger (2019), also our Fig. 2) cannot be applied directly to the choice of spacing of possible214

detector locations, but suggest a minimum spacing no less than σ/2. We used a slightly more215

conservative spacing of 2σ/3.216

Selecting a design minimizing (1) involves a difficult combinatorial optimization problem for217

which exact methods are not available. The solution space consists of all
(

M

K

)

possible ways of218

allocating K detectors across a discretized grid of M possible locations. This is typically an219

enormous number (with 500 possible locations and 50 cameras, there are 1069 possible designs),220

precluding enumeration; in addition the objective function is non-linear. Various stochastic or221

approximate solution methods might be used. We initially used a modified Federov algorithm222

as implemented in Royle et al. (2014), but these tended to produce isolated small clusters of223

detectors that can be expected to be biased (Clark, 2019) and for which CV (D̂) was poorly224

approximated (Fig. 1c). We then used a standard genetic algorithm implemented in the R225

package kofnGA (Wolters, 2015), following Dupont et al. (2020), that is much less susceptible226

to this problem (Fig. 1e). The algorithm begins by generating a population of random designs,227

typically several hundred. These are evaluated using the design criterion, with good designs228

selected preferentially and with replacement. Selected designs are randomly paired, and each229

design in a pair exchanges some proportion of its locations with its partner to create two new230

designs. A final mutation step potentially replaces, with a small probability, each location with231

a randomly selected one. Over all pairs, these new designs constitute the next population, which232

again undergoes selection, location exchange, and mutation. The process continues for a fixed233

number of iterations or until convergence is achieved.234

As the optimization relies only on expected values of n and r, it has no inbuilt way of avoiding235

“pathological” designs (Efford & Boulanger, 2019) in which detectors cover too small an area,236

or are spaced too far apart, for reliable and unbiased estimates of SCR model parameters. To237

prevent the optimizer straying toward, or selecting, these designs, we added a large penalty term238
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to the objective function in (1), incurred by any designs that do not satisfy some pre-defined239

desirable criteria. Since these are mainly used to rule out undesirable designs, various criteria are240

possible (Efford & Boulanger, 2019). We constrained designs to have at least as many detectors241

separated by 2.5-3.5σ and 3.5-4.5σ as a regular 2σ grid, to encourage reliable estimation of σ242

(Fig. 1).243

2.4 Case study: camera trap survey of snow leopards in Tost, Mongolia244

The Tost Mountains are a rugged mountain range occupying an area of ∼2100km2 and are245

separated from nearby ranges by several kilometers of steppe that discourage snow leopard246

movement between ranges, so that in previous analyses the area has been treated as closed.247

Camera trap surveys have been conducted since 2009 as part of long-term snow leopard moni-248

toring projects (K. Sharma et al., 2014). Snow leopards have large home ranges of 80-700 km2 in249

size (Johansson, Simms, & McCarthy, 2016) and this, together with difficult terrain and harsh250

environments, have historically made assessment challenging and only amenable to camera trap251

surveys, of which a fairly large number have been carried out (e.g. Alexander, Gopalaswamy,252

Shi, & Riordan, 2015; McCarthy et al., 2008; K. Sharma et al., 2014; R. K. Sharma, Bhatnagar,253

& Mishra, 2015).254

A camera trap survey of Tost conducted in 2012 (K. Sharma et al., 2014) collected 14255

first captures and 40 recaptures using an array of 40 camera traps, placed predominantly in256

areas of rugged terrain (Supplementary Material B). Potential locations for placing cameras257

were subjectively identified by regional experts based on landscape features suggesting broadly258

favourable snow leopard habitat. Camera trap locations were identified by surveying 2-5 km259

on foot in the mountains around each potential location and searching for fresh snow leopard260

signs (scrapes, urine markings) or, in the absence of such markings, favourable features such as261

paths along ridgelines, overhanging rocks or steep canyon walls. Emphasis was thus on selecting262

broad areas, and precise camera locations, where the possibility of capturing snow leopards was263

high. Cameras were typically tightly spaced, with 25% of cameras being within 2km of another264
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Figure 1: Illustration of optimizing SCR design; (a) potential detector locations with spacing
σ/2; designs selected by (b) a modified Federov algorithm, (c) a modified Federov algorithm with
additional constraints on detector spacing, (d) a genetic algorithm, which returns the same design
with or without constraints, (e) a typical grid design with 2σ spacing. Designs (b), (c), and (d)
all have E(n) = E(r) = 62.8, and thus expected CV (D̂) = 12.6%, but simulated CV (D̂)’s are
30, 15.8, and 16.5%. The design in (b) suffers from inadequate spacing and cluster size, which
inflates CV (â) (27, 9, and 9% respectively). The modified Fedorov algorithm tends towards
these designs unless constrained, while a genetic algorithm does not. A regular grid design gives
fewer recaptures (E(n) = 71, E(r) = 48) and hence has a higher approximate CV (D̂) = 14.4%.
Despite this, its simulated CV (D̂) = 15.8% is at least as good as optimized designs, because of
more precise estimates of CV (â) = 8% not accounted for in the approximation.
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camera and 70% of cameras within 4km. Cameras were left in the field for an average of 105.45265

(SE=11.81) days and took 7-20 days to set up.266

We first generated min(n, r) designs1 for the survey region under the assumption of constant267

animal activity centre density across the survey region and setting values for SCR model pa-268

rameters that allowed us to cover the entire area with a regular grid of 60 detectors spaced 2σ269

apart, while returning expected sample sizes broadly similar to those observed in the real study270

(20 individuals detected and 24 recaptures, using actual camera locations). We set the activity271

centre density at 2/100 km2, towards the higher end of known snow leopard density estimates.272

Importantly, detector locations in min(n, r) designs are unaffected by changes in mean animal273

density, which simply changes the numbers of first captures and recaptures proportionately. The274

same configurations of detectors (for example, those reported in Fig. 3) would be obtained for275

any choice of mean activity centre density, although these may result in very different values276

of CV (D̂). All min(n, r) designs were generated using the genetic algorithm described in the277

previous section. We used 50 generations (designs typically converged considerably earlier than278

this), a population size of 1000 and a mutation rate of 1%.279

Detection function parameters were set to σ = 3km and encounter rate λ0 = 1, again on the280

basis of ballpark similarity to previous studies and to provide roughly the desired number of first281

captures and recaptures. A buffer of 3σ was used with a spacing of 2σ/3 = 2km between mask282

points (or, equivalently, the centroids of mask cells). Potential camera locations were specified283

using a grid of points with the same spacing used in the habitat mask.284

For this “baseline” case we generated min(n, r) designs for 20-, 40-, and 60-camera arrays.285

Cameras were treated as count proximity detectors, except in one set of results where we assessed286

the effect of detector type. For each design we report and discuss differences in the expected287

number of first captures E(n), recaptures E(r), approximate CV, and detector locations. We288

then varied SCR model parameters one at a time, and generated further sets of survey designs.289

1All code and output are available at https://github.com/iandurbach/optimal-secr-design.
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We changed λ0 and σ to 50%, 150%, and 200% of their baseline values of λ0 = 1 and σ = 3, and290

changed the buffer from a baseline of 3σ to zero to simulate the treatment of the survey region291

as closed, as had been assumed in previous analyses.292

We then generated designs for three extensions to the basic SCR model: one with spatial293

covariate on density, one with a spatial covariate on detectability, and one with spatial covariates294

on both density and detectability. Designs for a model with spatially-varying density assumed295

that expected animal activity density depended on a standardized terrain ruggedness index i.e.296

D(x) = exp(α0D+αDR(x)), where R(x) is the value of the ruggedness covariate at x and α0D is297

chosen so that mean animal density across the study area is the same as in the uniform density298

case. For this set of designs we jointly varied the size of the array (20, 40, or 60 cameras) and299

the relationship between density and ruggedness (αD ∈ {−1, 1, 3}), with other parameters held300

fixed at their baseline values (λ0 = 1, σ = 3, 3σ buffer).301

Optimal designs for a model with spatially-varying detector covariates assumed that ex-302

pected encounter rate depended on longitude i.e. λ0(x) = exp(α0λ0
+ αλ0

x1), where x1 is the303

longitudinal component of x. We jointly varied the size of the array (20, 40, or 60 cameras) and304

the relationship between baseline encounter rate and longitude (αλ0
∈ {−0.75, 0.75, 1.5}), with305

other parameters held fixed at baseline values. Where animal density was uniform we used the306

baseline value D = 2/100 km2; where both density and detectability varied spatially we used307

αD = 1 and αλ0
∈ {−0.75, 0.75, 1.5}.308

We generated sets of designs using two other approaches, again recording E(n), E(r), ap-309

proximate and simulated CV, detector locations, and between-detector spacings for each design.310

The first uses a regular grid of detectors with 2σ spacing between traps. We generated a reg-311

ular grid of K detectors by creating a grid covering the survey region and choosing a subset of312

K points – an initial grid point and its K − 1 nearest neighbours. The initial grid point was313

chosen randomly when detection was uniform, at the point of highest density or detectability314

when either these varied spatially, and at the point of highest density when both varied. This315
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encourages a square grid as far as permitted by the irregular survey area and starting point,316

and places the array in sensible parts of the survey region.317

The second approach uses a regular grid with detector spacing chosen to minimize approx-318

imate CV (D̂), using the optimalSpacing function in the secrdesign package (Efford, 2019b).319

This calculates E(n) and E(r) at various detector spacings and finds the optimal spacing by320

linear interpolation. We calculated the optimal spacing for each unoptimized grid generated by321

the first method, and then generated a new grid of detectors using the same process as before.322

Where the optimal spacing was too large to place the desired number of cameras in the survey323

region, it was set to the largest spacing that would allow the cameras to be placed.324

For each scenario and design, we compared approximate CV to an empirical estimate of325

CV (D̂) obtained from simulation. In each case, we simulated 1000 animal populations and326

associated capture histories, fitted an appropriate SCR model to each capture history, and327

calculated the CV of the fitted density estimates. Simulated populations, capture histories, and328

fitted models included spatially-varying density and detection in those scenarios that made use329

of them. Models were fitted using the R package secr (Efford, 2020).330

3 Results331

3.1 Approximation accuracy332

The approximation of CV (D̂) was slightly less accurate when density varied spatially but re-333

mained broadly reliable (Fig. 2). Underestimation of CV (D̂) occurred with small detector334

spacing (0.25σ), and this underestimation was more severe for one of two non-uniform den-335

sity scenarios. With detector spacing of < 1σ, the approximation remained good so long as336

approximate CV (D̂) < 20% when density was uniform, with a stricter condition approximate337

CV (D̂) < 15% if density varied spatially. Approximation accuracy was relatively poor for a338

scenario where density increased with latitude and longitude, because the highest-density areas339

were part of the buffer region of the habitat mask and not accessible to detectors. Although not340

practically likely, this demonstrates that the approximation is somewhat sensitive to the density341
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surface when this varies spatially.342

3.2 Designs under uniform animal density and habitat use343

In the baseline scenario, with only 20 detectors, recaptures were the limiting factor and so344

detectors were placed close together (Fig. 3a). As detectors were added spacing between cameras345

increased to detect more animals, until a spatially well-balanced arrangement broadly resembling346

a space-filling design was obtained (Fig. 3c).347

Restarting the optimization process from different starting points led to different designs348

that for the most part shared the same aggregate properties (Fig. 3d-f; Supplementary material349

C). When animal density is assumed uniform, it makes little difference exactly where a camera is350

located, as long as aggregate properties such as detector spacing are preserved. Visible differences351

between the two designs were greatest in the 20-detector case, but both designs returned very352

similar approximate CV (D̂)’s (Table 1).353

In reality the Tost survey region is closed due to boundaries of steppe that snow leopards354

avoid. We therefore simulated a scenario with no buffer region (Fig. 3g-i). Shrinking the buffer355

to zero pulled traps away from the border and towards the centre of the study area, because356

detectors at or near the border would include areas of known absence in their detection range357

and thus be inefficient.358

Changing the encounter rate intercept parameter λ0 or the scaling parameter σ had a similar359

effect (Fig. 3j-l for λ0, m-o for σ). Decreasing either of these lowered the frequency of recaptures360

and so caused detectors to be more concentrated (Fig. 3j,m). Increases had the opposite effect,361

causing detectors to be more spread out (Fig. 3k and n). Large values of σ resulted in many362

detectors being placed along the boundary of the survey area, with relatively few detectors in363

the interior (Fig. 3n,o).364

Designs for binary proximity detectors and especially multi-catch traps tend to be more365

clustered together than count proximity detectors, given the same background conditions (Fig.366

3p-r). This happens because binary proximity detectors treat multiple detections of the same367
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Figure 2: Approximation of precision of CV (D̂) (solid lines, circles) compared to simulated
precision (dashed lines, triangles) for square grids over a range of detector spacings for (a)
uniform density of activity centres, (b) density concentrated in the centre of survey region,
decreasing with distance from centre (c) density increasing with latitude and longitude, so that
the highest densities are in the buffer of the habitat mask. Experimental setup is as for Efford
and Boulanger (2019) except that density varies spatially. See Supplementary Material A for
further details and results. Approximation accuracy is less robust when density varies spatially
but remains broadly reliable.
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Figure 3: Examples of min(n, r) survey designs for an SCR survey of snow leopards in Tost,
Mongolia. All plots assume uniform activity centre density across the survey region. Grid cells
are 2 × 2km and detectors are indicated in red. “Baseline” conditions refer to setting λ0 = 1
and σ = 3, with a 3σ buffer. These and the number of detectors are independently varied in the
sub-plots to demonstrate how optimal designs respond to changes in input parameters.
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CV(D̂) (actual) CV(D̂) (approx) CV(â)
Scen Min Grid G+O Min Grid G+O Min Grid Gr+O

Effect of varying number of detectors
(a) 60 61 47 30 33 31 32 25 22
(b) 27 24 24 21 23 22 16 14 11
(c) 20 19 20 17 18 18 11 11 8

Effect of random starts
(d) 57 50 46 30 33 31 28 23 22
(e) 25 24 24 21 23 22 15 14 12
(f) 20 19 19 17 18 18 12 11 8

Effect of zero buffer
(g) 58 63 44 30 34 34 29 25 22
(h) 26 25 24 21 23 24 16 13 12
(i) 20 20 20 18 19 20 11 11 8

Effect of varying encounter rate λ0

(j) 30 44 28 24 33 26 17 25 13
(k) 16 16 16 14 15 15 8 7 6
(l) 15 14 15 14 14 15 7 5 4

Effect of varying movement parameter σ
(m) 149 88 49 39 36 36 35 26 20
(n) 13 13 14 12 13 13 7 5 4
(o) 11 12 12 10 11 12 4 4 4

Effect of detector type
(p) 21 21 22 19 22 21 9 12 8
(q) 20 19 20 18 20 19 11 10 7
(r) 21 19 19 17 18 18 12 10 7

Table 1: Comparing approximations of CV (D̂) (col. 4-6) with values obtained by simulation
(col. 1-3), for each of the scenarios in Fig. 3. Min = min(n, r) designs; Grid = regular grid
designs with 2σ spacing; G + O = regular grid designs with optimal spacing; see Section 2.4 for
details. Approximate and simulated values are close when CV (D̂) < 20%. Optimized min(n, r)
designs provide more first captures and recaptures than grid designs, but can still have lower
(simulated) precision because their effective sampling areas are less precisely estimated (CV (â),
col. 7-9).
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density. As a result, min(n, r) designs remained better than regular 2σ grids in most scenarios394

involving spatially-varying density, although again usually only by a small margin. Substantial395

improvements were achieved in some scenarios where areas of high density and high detectability396

differered substantially (Fig. 4h,i). These scenarios are not biologically plausible but illustrate397

some of the potential drawbacks of regular designs in more complex environments.398

Detectors were more concentrated when covariate relationships were stronger (cf. Fig. 4,399

b,e,h vs. c,f,i), but the increase was not extreme. The incentive of detecting new individuals400

encouraged clusters of detectors to form away from high-density or high-detectability areas, once401

these areas had been exploited. Detector locations spanned the majority of the covariate space,402

even in quite extreme scenarios (Fig. 5). Good coverage of covariate space is important because403

unbiased estimates of density depend on covariate relationships being accurately estimated, and404

this is much more likely if the covariate space has been well sampled.405

Covariate coverage is not part of the objective function, and so not something that is un-406

der direct control of the optimizer. In our application covariate coverage was better when407

the density-ruggedness relationship was positive than when it was negative, because cells with408

high ruggedness were concentrated in one area while cells with low ruggedness were dispersed409

throughout the survey region. In the latter case, it was possible for clusters to be located so410

that they were far from one another and occupied areas of high density (low ruggedness). When411

the relationship was positive this was not possible. This means that covariate coverage should412

always be assessed, for example using rug plots such as Fig. 5.413
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Figure 4: Designs for scenarios involving spatially-varying density (D(x)) or detectability
(λ0(x)). Activity centre density depends on terrain ruggedness. Baseline encounter rates de-
pend inversely on longitude (highest in west), with activity centre density either uniform (d-f)
or also varying spatially (g-i). Panel labels give covariate coefficients, indicating the direction
of the assumed relationship. Grid cell colour indicates terrain ruggedness (a-c, g-i), with lighter
colours denoting higher values, or longitude values (d-f). Detectors are placed preferentially
where density or detectability is expected to be highest in order to maximize the number of ani-
mals detected. However, because recaptures must also be considered, concentration of detectors
in high density or detection areas is generally not extreme.
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Figure 5: Coverage of spatially-varying density and detectability covariates by min(n, r) designs.
Points plot covariate values at the detector locations in Fig. 4a-f, with the curve showing the
functional form of the assumed relationship between density and ruggedness. Coverage is better
for positive values of αD in our case study because the method initially places detectors in
high-density patches, before spreading into lower-density patches.
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CV(D̂) (actual) CV(D̂) (approx) CV(â)

Scen Min Grid G+O Min Grid G+O Min Grid Gr+O

Designs with spatially-varying density

(a) 25 24 30 19 22 21 12 11 6
(b) 19 20 20 17 19 18 7 8 5
(c) 15 19 15 15 16 15 3 8 4

Designs with spatially-varying detection

(d) 24 22 25 20 21 24 12 8 3
(e) 23 21 40 21 21 25 11 10 4
(f) 23 22 35 22 23 25 8 9 3

Designs with spatially-varying density and detection

(g) 18 19 19 16 17 18 7 6 5
(h) 24 36 25 18 32 23 14 21 13
(i) 41 62 54 23 76 52 30 41 36

Table 2: Comparing approximations of CV (D̂) (col. 4-6) with values obtained by simulation
(col. 1-3), for each of the scenarios in Fig. 4. Min = min(n, r) designs; Grid = regular grid
designs with 2σ spacing; G + O = regular grid designs with optimal spacing; see Section 2.4 for
details. In contrast to uniform scenarios, optimized designs have higher (simulated) precision
than grid designs in scenarios where their effective sampling areas are estimated with similar
precision (CV (â), col. 7-9).

4 Discussion414

The optimization of approximate CV (D̂) provides statistically grounded guidance on selecting415

detector locations for SCR surveys. The way in which designs change in response to changes416

in survey variables (the number of cameras available) or exogenous variables (encounter rate,417

animal density, movement, buffer size) represents the best available balance between the com-418

peting objectives of maximizing the number of animals detected and maximizing the number of419

recaptures. Designs generated in this way are transparent and objective. They can be adapted420

for survey regions of any shape, adapt to known information about animal density, detectability,421

and movement, and are generally more clusterered designs that may be easier and less costly to422

implement than standard grid designs.423

The current approximation of CV (D̂) is highly accurate when CV (D̂) < 15% under both424

uniform and non-uniform animal density, and remains within a few percent of simulated values425

so long as CV (D̂) < 20%. However, any discrepency almost always overestimates precision, and426

by a slightly larger margin for irregular detector arrays than for regular one. This reduces the427
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gains provided by optimizing min{E(n), E(r)} and in our scenarios involving uniform animal428

density was often sufficient to reverse it, although differences between optimized and regular429

grid designs were small in all scenarios except near-pathological ones. The CV (D̂) of optimized430

designs can be worse than that of regular 2σ designs, even if they result in more first captures431

and recaptures, because the effective sampling area of these designs is generally smaller and less432

precisely estimated, owing to less precise estimates of detection function parameters, particularly433

σ, that are not accounted for in the approximation. Other approaches that optimize simple434

functions of sample size or detection probability are likely to face similar challenges. Further435

investigation may lead to improvements in the approximation but, until then, min(n, r) designs436

should not be considered optimal, but rather good, flexible candidate designs to be compared437

with other designs using simulation.438

Other factors known to cause poor approximation accuracy are small detector spacing,439

“pathological designs” in which detectors cover too small an area, or are spaced too far apart,440

and linear detector arrays (Efford & Boulanger, 2019). Small detector spacings appear attractive441

because they provide greater flexibility for optimization and generally offer more recaptures, but442

spatial recaptures at very small distances provide little information on σ, and this ultimately443

negatively affects CV (D̂). We suggest a minimum spacing no less than σ/2. Narrower spacing444

may very occasionally be warranted for species that are nearly impossible to recapture (?, e.g.),445

although in these cases serious consideration should be given as to whether the data collected446

will be adequate for the use of SCR. Pathological designs can be removed from consideration447

by heavily penalizing any designs that do not satisfy some pre-defined criteria. Since these are448

used only to rule out undesirable designs, various criteria are possible (Efford & Boulanger,449

2019). For example, we constrained designs to have at least as many detectors separated by450

2.5-3.5σ and 3.5-4.5σ as a regular 2σ grid. Linearity of detectors can in principle be assessed451

and corrected for at each step of the optimization process, but currently the only way to do452

this is with computationally intensive simulation that renders optimization impractical. One453
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possibility is to summarize the linearity of an irregular array in a way that allows the correction454

factor in Efford and Boulanger (2019) to be inferred in a meaningful and computationally feasi-455

ble way, but we have not pursued this here. Very few of our designs exhibited signs of linearity.456

Using simulation to carry out post hoc checks of CV (D̂), with minor manual adjustments to457

detector placements to break linear arrangements where necessary (also guided by simulation),458

is probably sufficient in the majority of cases.459

The precision of density estimates appears to be robust over a wide range of detector place-460

ments, so long as problems of pathological designs are avoided. Regular designs return CV (D̂)’s461

within a few percent of each other over a wide variety of detector spacings (Efford and Boulanger462

(2019), Fig. 2) and our designs were in turn almost always within a few percent of these. Reg-463

ular 2σ designs provide an excellent, robust default design. The primary benefit of min(n, r)464

designs is that they lead to estimators with comparable precision to the best currently available465

alternatives, while being applicable to any survey region and with the potential to incorporate466

information about animal behaviour that may in some cases improve precision. Large improve-467

ments in precision, however, are probably achievable only by using more detectors or increasing468

survey duration in the majority of cases. Better choices of detector locations will not be able to469

remedy fundamental deficiencies in animal density or detection rates.470

Designs that maximize the precision of density estimators without accounting for the possi-471

bility of bias run the risk of returning biased estimates of density. If this bias is substantial it472

may outweigh any gains made by reducing variance. Bias is unlikely to be a problem when activ-473

ity centres are assumed to be uniformly distributed, as several studies have demonstrated that a474

variety of SCR surveys are unbiased under these conditions (Efford, 2019a; Efford & Boulanger,475

2019; Sun et al., 2014). We assessed the bias of each of our designs including spatially-varying476

density and detection (those in Fig. 4) using simulation (see Supplementary Material D for de-477

tails), and results indicated that these designs returned estimates of density that exhibited little478

or no bias. We recommend that designs assuming spatially-varying covariates always include479
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a post hoc assessment of the coverage of covariates, as well as post hoc assessments of possible480

bias. If the optimized design does not achieve good coverage, we recommend reverting back481

to simpler designs with regular spacing, or manually adjusting detector locations to improve482

covariate coverage, followed by a reassessment of CV (D̂). It is also possible to build covariate483

coverage into the optimization as an objective in its own right, although we have not explored484

this here.485

Optimal designs place detectors in locations that exploit particular features of animal den-486

sity and detectability, represented by parameters like λ0, σ, and coefficients for any spatial487

dependencies. While our approach extends to a number of more advanced SCR variants, these488

will require reasonable knowledge about the parameters of those models, which may only rarely489

be available before the survey is conducted. Many SCR surveys are designed with little or no490

knowledge of what values these parameters might take on, and optimized designs may be ex-491

pected to perform worse than regular designs if parameter values are poorly chosen. We have492

not investigated this issue in detail for all parameters, but recalculated the approximate CV (D̂)493

of all designs using values of λ0, σ, or α1 up to 50% smaller (or 50% larger) than the values494

used to generate the designs. The approximate CV of min(n, r) designs remained better than495

any other candidate designs for almost all conditions (Supplementary Material E). Still, we rec-496

ommend that optimized designs for any SCR variant only be used where there is good existing497

knowledge on the possible values of all the parameters of the model, and that simpler designs be498

used otherwise. In cases where knowledge extends only to σ, an optimal design is inappropriate499

and a regular-spaced design should be used.500

Our designs take no account of the cost, monetary or other, of implementing a particular501

design, and so may end up choosing a costly design on the basis of a small improvement in502

approximate precision. However, in our scenarios min(n, r) designs had smaller average spacing503

between detectors, were more clustered, and had shorter shortest paths through the detector504

array (Supplementary Material C), all of which suggest lower cost and easier implementation.505
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Design costs can be incorporated into the optimization process, either by rejecting or penalizing506

costly designs or by including cost minimization as a second objective, but we leave this to future507

work.508

5 Conclusion509

This paper presents an approach for choosing detector locations in SCR surveys so as to maxi-510

mize the expected precision of density estimates obtained from the later survey. The approach511

essentially combines the optimization framework used by Dupont et al. (2020), which employs512

a genetic algorithm to iterately improve candidate designs, with a new objective function using513

Efford and Boulanger (2019)’s approximation of the (standardized) precision of density, CV (D̂).514

Our approach can in principle be extended to any variant of SCR for which E(n) and E(r) can515

be rapidly evaluated. Software for constructing min(n, r) survey designs has been developed516

based on a modification of the design function Enrm in the R package secrdesign, which pro-517

vides a fast C implemention of E(n) and E(r) (see Supplementary Material F for details, and518

Supplementary Material G for a minimal working example). Optimization typically takes no519

more than a few minutes, even for quite large survey regions.520

The main benefits provided by min(n, r) designs are a transparent process that reduces the521

need for difficult and subjective design decisions, for example around detector spacing and clus-522

tering, flexibility with respect to survey region, the ability to include environmental covariates523

affecting density, detectability, and movement. Gains in precision are possible with min(n, r) de-524

signs, but these are typically modest and occur where precision is already high (CV (D̂) < 15%).525

Usually, the precision of optimized and regular grids are within a few percent of one another.526

There seems relatively little downside to including a min(n, r) design in the candidate set of527

designs when planning an SCR survey. Simulation is essential as a means of confirming the528

CV (D̂) of any design before final implementation (Efford & Boulanger, 2019).529

Optimal designs for SCR surveys have received very little attention, which is surprising given530
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the popularity of SCR and the cost and effort involved in conducting many surveys. Our paper531

develops optimized designs based on an intuitive and statistically grounded criterion, but also532

raises a number of questions deserving further attention. These include developing a better un-533

derstanding of the origins of the approximation; potential improvements to the approximation;534

more comprehensive comparisons of optimal and other design protocols; sensitivity analyses535

to misspecification of initial parameter values; designs accounting for individual-level (e.g. sex-536

specific) detection covariates; inclusion of design costs; and optimization of survey duration as537

well as location.538

Acknowledgements539

This work was done to support the Population Assessment of the World’s Snow Leopards540

(PAWS) initiative being coordinated by the Global Snow Leopard and Ecosystem Protection541

Program (GSLEP) through funding from the Global Environment Facility (Trans-boundary co-542

operation for snow leopard and ecosystem conservation project ID 5886), made available through543

United Nations Development Program and International Snow Leopard Trust. ID is supported544

in part by funding from the National Research Foundation of South Africa (Grant ID 90782,545

105782). We are grateful to the two anonymous reviewers for their detailed and helpful com-546

ments, which led to a substantially improved manuscript.547

Data Availability548

All code and output are available at https://doi.org/10.5281/zenodo.4074086 (Durbach,549

Borchers, Sutherland, & Sharma, 2020). This provides a permanent link to the version of the550

repository https://github.com/iandurbach/optimal-secr-design used to generate the re-551

sults in this paper.552

Authors’ contributions553

All authors conceived the work. DB, ID and CS designed the methodology. KS provided input554

29This	article	is	protected	by	copyright.	All	rights	reserved



A
cc

ep
te

d
 A

rt
ic

le
on snow leopard survey design, data on existing designs, and feedback on proposed designs. ID555

performed the simulations and wrote the paper. All authors contributed critically to the drafts556

and gave final approval for publication.557

References558

Alexander, J. S., Gopalaswamy, A. M., Shi, K., & Riordan, P. (2015). Face value: towards559

robust estimates of snow leopard densities. PLoS One, 10 (8), e0134815.560

Borchers, D. L., & Efford, M. (2008). Spatially explicit maximum likelihood methods for561

capture–recapture studies. Biometrics , 64 (2), 377–385.562

Clark, J. D. (2019). Comparing clustered sampling designs for spatially explicit estimation of563

population density. Population Ecology , 61 (1), 93–101.564

Dupont, G., Royle, J., Nawaz, M. A., & Sutherland, C. (2020). Towards optimal sampling565

design for spatial capture-recapture. Ecology , In press.566

Durbach, I., Borchers, D., Sutherland, C., & Sharma, K. (2020). iandurbach/optimal-secr-567

design: v1.0. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.4074086 doi:568

10.5281/zenodo.4074086569

Efford, M. (2019a). Non-circular home ranges and the estimation of population density. Ecology ,570

100 (2), e02580.571

Efford, M. (2019b). secrdesign: Sampling design for spatially explicit capture-recapture572

[Computer software manual]. Retrieved from https://CRAN.R-project.org/package=573

secrdesign (R package version 2.5.7)574

Efford, M. (2020). secr: Spatially explicit capture-recapture models [Computer software manual].575

Retrieved from https://CRAN.R-project.org/package=secr (R package version 4.2.2)576

Efford, M., & Boulanger, J. (2019). Fast evaluation of study designs for spatially explicit577

capture-recapture. Methods in Ecology and Evolution, 10 , 1529–1535.578

Efford, M., & Fewster, R. (2013). Estimating population size by spatially explicit capture–579

recapture. Oikos, 122 (6), 918–928.580
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