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ABSTRACT

Context. Modelling the formation of cloud condensation nuclei (CCNs) is key for predicting cloud properties in planet and brown
dwarf atmospheres. The large diversity of exoplanets (rocky planets, mini-Neptunes, giant gas planets) requires a fundamental approach
to cloud formation modelling in order to allow a full analysis of observational data contributing to exoplanet characterisation.
Aims. We aim to understand the onset of cloud formation and study the formation of TiO2-CCNs. The formation of (TiO2)N clusters as
precursors to extrasolar cloud formation is modelled by two different methods in order to understand their potential, identify underlying
shortcomings, and to validate our methods. We propose potential spectral tracers for TiO2-CCN formation.
Methods. We applied three-dimensional Monte Carlo (3D MC) simulations to model the collision-induced growth of TiO2-molecules
to (TiO2)N-clusters in the free molecular flow regime of an atmospheric gas. We derived individual, time-dependent (TiO2)N cluster
number densities. For T = 1000 K, the results are compared to a kinetic approach that utilises thermodynamic data for individual
(TiO2)N clusters.
Results. The (TiO2)N cluster size distribution is temperature dependent and evolves in time until a steady state is reached. For
T = 1000 K, the 3D MC and the kinetic approach agree well regarding the cluster number densities for N = 1 . . . 10, the vivid onset
of cluster formation, and the long transition into a steady state. Collision-induced growth and evaporation simulated using a 3D MC
approach enables a faster onset of cluster growth through nucleation bursts. Different size distributions develop for monomer-cluster
and for cluster-cluster growth, with the largest clusters appearing for cluster-cluster growth.
Conclusions. The (TiO2)N cluster growth efficiency has a sweet-spot temperature at ≈1000 K at which CCN formation is triggered.
The combination of local thermodynamic conditions and chemical processes therefore determines CCN formation efficiency. The onset
of cloud formation may be observable through the (TiO2)4, (TiO2)5, and (TiO2)6 vibrational lines, which may be detectable with the
Mid-Infrared Instrument on the James Webb Space Telescope or the Extremely Large Telescope’s mid-IR imager, but more complete
line-list data are desirable.

Key words. planets and satellites: atmospheres – planets and satellites: composition – planets and satellites: gaseous planets –
opacity – molecular processes

1. Introduction

Cloud formation has emerged as one of the major obstacles to
fully benefitting from observations of exoplanetary and brown
dwarf atmospheres and efforts are therefore gearing up to under-
stand fundamental processes in enough detail to allow the
development of efficient model descriptions (Helling 2020).
Exoplanet cloud modelling approaches include a variety of
parametrizations from imposing cloud particle properties as an
opacity source (e.g. Roman et al. 2021; Parmentier et al. 2020)
and adding gravitational settling and mixing (Lines et al. 2019),
to kinetic modelling (Lee et al. 2016; Lines et al. 2018) as part
of radiation-hydrodynamics atmosphere simulations. The data
driven retrieval is also hampered by the need for a fast repre-
sentation of clouds as opacity sources (e.g. Barstow 2020; Colón
et al. 2020; Lacy & Burrows 2020) and it is utilised routinely for
atmospheric abundance measurements (e.g. Nikolov et al. 2018;
Spake et al. 2020).

Modelling the formation of cloud condensation nuclei
(CCNs) is key to modelling cloud formation in brown dwarf and
exoplanet atmospheres because it determines when and where
cloud formation sets in. Given that the formation of exoplanet
CCNs is largely unexplored, Ormel & Min (2019) introduced
the nucleation rate (CCN formation rate) as a parameter into
their physical model for cloud formation and transport, and they
demonstrate that the nucleation rate is rather ill constrained by
present observations for giant gas planets. On Earth, the CCN
rate can be adjusted according to detailed observations of sand
storms, bush fires, salt spray, and other factors. Nevertheless,
the effect of CCN on cloud formation is the largest source of
uncertainty in climate modelling on Earth, as described by the
Intergovernmental Panel on Climate Change (IPCC) (Stocker
et al. 2013).

The James Webb Space Telescope (JWST) guaranteed-time
observer (GTO) target list contains a substantial number of gas
giants, including HD 189733b, WASP-43b, and WASP-121b, in
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addition to the rocky planets of the TRAPPIST-1 system, for
example. In order for cloud formation to occur in gas giants,
brown dwarfs, and hot rocky planets, cloud condensation nuclei
need to form from the gas phase. The quest for the primary
condensate is not new and leads back to the Asymptotic Giant
Branch (AGB) star dust formation modelling (Sedlmayr 1994).
Withing the research of AGB star mass loss, this idea has
recently been re-addressed by Boulangier et al. (2019). Using the
modified classical nucleation theory with surface tension values
for a wide variety of materials, Lee et al. (2018) suggest that a
considerable range of CCN materials may be available to kick-
off cloud formation in exoplanet and brown dwarf atmospheres.
However, little information exists about their formation mech-
anisms in astrophysical environments. Works by Patzer et al.
(1999, 2005), Lam et al. (2015), Decin et al. (2017) and Gobrecht
et al. (2018) explore the formation of corundum (Al2O3 solid)
through the study of Al-O clusters, and Boulangier et al. (2019)
propose the Al2O3 solid as the most efficient condensation seed
in AGB stars. Chang et al. (2013) explore the formation of Fe–
C–H ring molecules (FeC2Hn and FeC3Hn for n = 0, 2, 4) while
Patzer et al. (2014) explore Ti–C clusters (TixCy, x, y= 1 . . .4).
Chang et al. (2005), considering the neutral and charged inor-
ganic cage molecules Kr@Y12@Zq

20 (Y = Ni, Pd; Z = As, Sb,
Bi; q = 0,−1,−3), report a stable system where a krypton atom
is enclosed by a fullerene-like inorganic double cage. Only the
exploration of the Ti–O clusters by Jeong et al. (2000) followed
by Lee et al. (2015) led to the application of the cluster data to
exoplanet cloud formation studies as part of kinetic cloud forma-
tion modelling by Woitke & Helling (2004), Helling & Woitke
(2006), Helling et al. (2019) and Samra et al. (2020). The most
exhaustive study of the formation process of CCN has been
conducted for the Earth’s atmosphere, where simulations can
be paired with laboratory works and in-situ measurements for
the H2SO4-complex (Svensmark et al. 2013, 2016, 2017, 2020;
Dunne et al. 2016). Recently, a 3D particle Monte Carlo (3D MC)
approach has been developed to model the early stages of CCN
formation for the Earth’s atmosphere (Köhn et al. 2018, 2020).
This model, which tracks single molecules and clusters in a 3D
space, captures fluctuations that are not included in most mod-
els but are essential for the formation of stable clusters (Olenius
et al. 2018).

This paper focuses on the study of seed formation in exo-
planet and brown dwarf atmospheres, and in particular on the
formation of TiO2 nucleation. TiO2 has long been debated as
a primary seed forming species (Sedlmayr 1994; Helling &
Fomins 2013) and we aim to explore the formation of TiO2-
CCN by two different methods and compare the results. Here
we couple methods developed within astrophysics with models
developed for terrestrial atmospheric science in order to study
the growth of TiO2 clusters. The two methods are the 3D particle
Monte Carlo approach where we expand the approach presented
by Köhn et al. (2018), and the kinetic approach that solves a
set of rate equations that require thermodynamic data for the
individual clusters (Sedlmayr 1994). We use the Monte Carlo
approach to gain more in-depth understanding about the onset of
the nucleation process, the transition from a time-dependent to a
stationary process, as well as the effect of reaction efficiencies.
We are particularly interested in the time evolution of individual
and cumulative cluster nucleation rates in 3D space.

Section 2 outlines our approach and the required theoreti-
cal background for both methods applied. Section 3 presents
the results on the TiO2-cluster formation, their individual abun-
dances, size distributions, and the effect of the reaction effi-
ciency α. Section 4 presents the comparison of the results from

both methods, MC and rate equations approach. We discuss our
results in Sect. 5 and conclude with Sect. 6.

2. Approach

We approach the modelling of the formation of TiO2 cloud
condensation nuclei (CCNs) by applying two different meth-
ods, a 3D MC approach (Sect. 2.2) and a steady-state approach
utilizing thermodynamic cluster data (Sect. 2.3) in order to
understand TiO2 cluster formation as a necessary step to the for-
mation of TiO2 nucleation seeds. The MC approach enables the
study of the formation dynamics of the cluster growth, which is
not accessible by a steady-state approach. Each method makes
assumptions and requires certain input data that we outline in
the following.

2.1. Terminology

As this work combines expertise from astrophysics and Earth
science, there can be a confusion due to the difference in how
various terms are applied. Here we explain how we use cer-
tain terms. A “cluster” is a collection of monomers sticking
together through physical or chemical interaction. “Nucleation”
is the formation of a thermodynamically stable cluster (i.e. cross-
ing the critical size), the genesis of clusters of all other sizes
is referred to as formation. “Cloud condensation nuclei” (CCN)
are clusters large enough that they can be activated by another
gas with a given supersaturation to form cloud drops (on Earth
this gas is water). “Growth efficiency” and “sticking probability”
is used interchangeably to indicate the probability that a colli-
sion between clusters leads to growth. “Reaction” refers to all
processes changing the cluster size.

2.2. Three-dimensional Monte Carlo simulation of TiO2 seed
formation

We use the particle 3D MC code introduced by Köhn et al.
(2018). This code tracks individual particles in a 3D space and in
time, and hence allows a detailed study of the nucleation process,
including rare events and fluctuations for individual cluster sizes.
The computational time is large and it scales with the number of
particles considered.

Monte Carlo particles: The particles that are considered in
the 3D MC simulations are characterized by size, composition,
and their position in Cartesian coordinates. TiO2 monomers and
clusters can be traced. The largest cluster size achieved in the
present 3D MC simulations is N > 105 monomer units per
cluster for a simulation covering t = 109s. The TiO2 monomer
mass and radius are mTiO2 ≈ 1.326206 × 10−25 kg and rTiO2 ≈
0.199 nm, respectively. The definition of cluster radii for sizes
larger than the monomer (N > 1) is challenging, and we note
that larger clusters can be more compact than smaller clusters
with less elongated structures. This is explored in Fig. 1 where
the results from different methods to calculate a cluster diame-
ter are shown. To allow for comparison, the interacting volume
of each cluster is calculated with the respective method and the
radius of a sphere with the equivalent volume is plotted. The
interacting volume of each cluster is larger than the geometrical
volume assuming spherical particles because of van der Waals
forces determining the actual chemical interaction. The interact-
ing volume is calculated by finding the axes of the smallest box
that contains the cluster of size N and adding the Van der Waals
interaction length of 1.6 Å (Koch & Manzhos 2017) to each of
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Fig. 1. Top: different cluster radius definitions. Blue line: radius based
on the maximal inter-atomic distance from DFT (density functional the-
ory) simulations (Berardo et al. 2014). Orange line: Radius based on the
ConvexHull volume approximation of cluster geometry from Berardo
et al. (2014) with added Van der Waals interaction distance. Green
line: R(N) = R(1) · 3√N (Eq. (5)). Purple line: radius based on volume
of smallest box containing cluster with added Van der Walls interac-
tion distance. Bottom: Cluster number densities from MC code using
different radius definitions. Solid lines: R(N) = R(1) · 3√N (Eq. (5)); dot-
ted lines: box approximation/van-der-Waals radius (purple line in upper
panel).

the axes. The volume of that extended box is the interacting vol-
ume of the cluster. For a different method, plotted in orange,
the volume was calculated using Delaunay triangulation and the
ConvexHull algorithm as described by Barber et al. (1996). This
algorithm uses polygons to approximate the surface of the clus-
ter and therefore gives a smaller volume than the approximation
through a box. After determining the sphere equivalent radius
from this volume, the Van der Waals interaction length is added
to account for the interaction distance that is larger than the
physical dimensions spanned by the atomic cores of the clus-
ter. In our 3D MC simulations, the cluster collisions are treated
as a hit-and-stick coagulation process between clusters, hence
contractions, compactification, or expansion are omitted.

Monte Carlo cluster growth: The frequency with which clus-
ter collisions may occur depends on the ambient density. Figure 2
demonstrates that exoplanet atmospheres that fall into the ther-
modynamic regime of giant gas planets shown here are mainly
in the hydrodynamic regime of a free molecular flow. Hence, the
collision frequencies of the clusters in our 3D MC model will

Fig. 2. Knudsen number, Kn = lMFP/(2a) (lMFP – mean free path, a –
particle radius) for different exoplanet and brown dwarf DRIFT-Phoenix
model atmosphere results, except for Jupiter and Venus. The number
Kn indicates whether the cluster interactions occur through diffusion
(Kn < 1) or in a free molecular flow (Kn > 1). Exoplanet and brown
dwarf atmospheres are predominately in the regimes of a free molecular
flow (Kn > 1). Knudsen numbers for Earth’s atmosphere and typical
cloud particle sizes are ≈10−5 and therefore fall in the turbulent, viscous
case.

be determined by their mean free path. We note that diffusion
is commonly assumed to determine the collision frequencies in
molecular-dynamic simulations for Earth atmosphere nucleation
studies (see e.g. Köhn et al. 2018, 2020), which is supported by a
Knudsen number of 10−15 for Earth’s atmosphere (and hence as
an example for rocky planets).

The calculation of the time interval, ∆t, between two pos-
sibly constructive cluster collisions is therefore guided by an
analysis of the Knudsen number (Fig. 2). The Knudsen number
(Kn = lMFP/(2a); lMFP – mean free path, a – particle radius) is
derived for results from DRIFT-Phoenix model atmosphere sim-
ulations (Witte et al. 2009, 2011). Results include the hydrostatic
(Tgas, pgas)-structures, which are calculated consistently with
cloud formation, chemical equilibrium, and gas and cloud radia-
tive transfer. As a result, the cloud structure can be described
by mean particle size, a, material volume fraction, and element
depletion. The maximum MC time step is therefore defined as

max(∆t) =
lMFP

vrel
, (1)

with the local thermal velocity vrel(T ), and the mean free path
lMFP within the gas (see e.g. Eq. (10) in Woitke & Helling 2003).
Hence for temperatures between 500 K and 2000 K, max(∆t) lies
on the order of 107 s; for better numerical resolution, we have
chosen ∆t = 100 s. The clusters move with their local thermal
velocity for a time ∆t. If their location overlaps after ∆t, they
are considered to merge. The merging can occur between clus-
ters of different sizes and a monomer only (polymer-monomer)
or between all available sizes (polymer-polymer). Such a merg-
ing of two MC particles depends on their collision probability
but also on the stickiness (i.e. reactiveness) of the two interacting
clusters. This is parameterised as a sticking probability, α. The
effect of the sticking probability on the cluster growth is tested by
simulating different sticking probabilities α ∈ [0, 1] and check-
ing for r ≤ α with a random number r ∈ [0, 1) once two particles
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overlap. Only if this condition is fulfilled are two MC particles
merged (coagulated in Earth science terms) by adding their vol-
umes and their masses. After coagulation, a new monomer is
added if the total number of individual particles is less than
103 such that d ftot/dt ∼ 0 for the total particle density ftot. By
adding monomers to the simulation domain, we simulate a con-
stant influx of monomers whilst we keep the total particle density
constant. As such, we take into account that cloud formation
requires the transport, diffusion, and mixing of particles.

Besides the short-term interaction due to the collision of
TiO2 clusters, long-term interactions are caused by the fact that
TiO2 clusters are dipoles. TiO2 has a dipole moment of approxi-
mately 7D (Brünken et al. 2008) where D ≈ 3.33 × 10−30 C m
is the Debye unit of the electric dipole moment. Small TiO2
clusters show dipole moments with similar values to the TiO2
monomer (e.g. (TiO2)3 and (TiO2)4), or no dipole moment like
the symmetric dimer (TiO2)2. However, the dipole contribu-
tion to the velocity is on the order of vdip ∼ 2p∆t/(r3 · m) ≈
10−26 m s−1 for r = lMFP, ∆t = 107 s and m = mTiO2 , which is much
smaller than the thermal velocity that is on the order of several
hundreds of m s−1; hence the dipole contribution is negligible.

Monte Carlo cluster evaporation: Clusters not only undergo
constructive growth processes but can also evaporate if they are
thermally unstable. The most unstable cluster is called the crit-
ical cluster, N∗, and all clusters larger than N∗ will preferably
grow and therefore be thermally stable. After every time step ∆t,
we check the probability of evaporation, γ · ∆t, for particles that
consist of more than one monomer. If r ≤ 1 − exp (−γ · ∆t) for
a random number r ∈ [0, 1), evaporation is simulated by emit-
ting a single monomer randomly. We note that clusters are not
arranged as a collection of smaller clusters but as a collection of
monomers; hence the probability of a polymer escaping is quite
small and we only model the emission of single monomers from
large clusters.

The evaporation frequency, γ, for clusters of size R(N) and
mass m(N) is described according to Yu (2005) as

γ =

√
8πkBT (m(1) + m(N))

m(1)m(N)
(R(1) + R(N))2 n∞a,sol(T )

× exp
(

2M1σ(T )
%(N) · R · TR(N)

)
, (2)

where n∞a,sol is the phase-equilibrium vapour density for TiO2

with respect to the solid TiO2[s] phase (Woitke et al. 2018), the
surface tension σ (Lee et al. 2015), and the density %(N,T ) of the
clusters of size N are

n∞a,sol[m
−3] =

10−1

kBT [K]

× exp
[
−7.70443 · 104

T [K]
+ 40.3144

−2.59140 × 10−3 · T [K] + 6.02422 × 10−7 · T [K]2

− 6.86899 × 10−11 · T [K]3
]

(3)

σ[N m−1] = (535.124 − 0.04396 · T [K]) × 10−3 (4)

%(N) =
4m(N)

4πR(N)3 , R(N) = R(1) · 3√
N, (5)

with a monomer radius of R(1) = rTiO2 ≈ 0.199 nm and a
monomer mass of m(1) = mTiO2 ≈ 1.326× 10−25 kg. Boltzmann’s
constant is kB ≈ 1.38 × 10−23 J K−1, T is the temperature, M1 ≈
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Fig. 3. Evaporation frequency γ(N) (Eq. (2)) for TiO2 clusters as a
function of their size N for different gas temperatures.

80 g mol−1 is the molar mass of TiO2, and R ≈ 8.31 J (mol k)−1

is the universal gas constant. Thus, the formation of clusters is
determined by the relation between the collision and evaporation
frequencies, which are both increasing functions of tempera-
ture. Using the evaporation rate (2) is the standard approach to
include evaporation (Seinfeld & Pandis 2006; Yu 2005) as exper-
imental evaporation rates are hard to obtain. For H2SO4–H2O
clusters, we have validated this approach against experimental
results (Köhn et al. 2018).

Figure 1 (top panel) compares the values used in the 3D
MC simulation (green line, Eq. (5)) to other representations of
cluster diameters. Numerical checks (Fig. 1, lower panel) of the
effect of these cluster radius differences showed little effect of
these uncertainties on the results of the present study; hence
the assumption of spherical particles works sufficiently well
although small particles deviate from a spherical form.

By applying the surface tension we assume our clusters to
have a non-planar surface. The Kelvin effect (i.e. the curvature)
is taken into account through the exponential term in Eq. (2)
(Kelvin equation), which models the effect of the cluster surface
curvature. The same effect is accounted for in the rate equa-
tion approach (Sect. 2.3) when the surface energy of cluster N
is expressed as Eq. (4.14) in Helling & Fomins (2013).

Figure 3 shows the evaporation frequency (Eq. (2)) for TiO2
clusters as a function of constituting monomers N for different
temperatures. The strong temperature dependence suggests that
evaporation will be negligible for T ≤ 1000 K whilst evaporation
becomes dominant for T ≥ 2000 K.

Monte Carlo cluster formation rates: The time evolution of
the formation rate of clusters larger than size N is derived from
our 3D MC results as

JN(t) =
f≥N(t)

t
, (6)

where f≥N(t) is the number density of clusters above a given size
N as a function of time t within the volume V (1 cm−3 for the
present simulations). Thus, the number of clusters of size N is
f = N(t) · V (see Fig. 4).

2.3. Kinetic seed formation through rate equations

The kinetic, steady-state approach describes the temporal evolu-
tion of the size distribution function as (Helling & Fomins 2013)
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d f (N, t)
dt

=

I∑
i = 1

Jc
i (N, t) −

I∑
i = 1

Jc
i (N + i, t), (7)

where f (N) is the number density of a molecular cluster con-
taining N i-mers contributing to the growth of the particle and
Jc

i (N, t) is the effective flux (or transition rate) for the growth of
the particle of size N − i to size N due to all associating or dis-
sociating reactions involving an i-mer of the condensing species.
This stationary flux through cluster space is

Jc
i (N, t) =

Ri∑
ri−1

(
f (N − i, t)

τgr(ri,N − i, t)
− f (N, t)
τev(ri,N, t)

)
, (8)

summing over all chemical reactions ri in which an i-mer is
involved. Equation (8) is equivalent to Eq. (15) in Köhn et al.
(2018), both giving the number of seed particles cm−3 s−1. The
growth time τgr(ri,N − i, t) is the time by reaction ri leading
from cluster size N − i to cluster size N. The evaporation time
τev(ri,N, t) is the time leading from size N to size N − i,

1
τgr(ri,N − i, t)

= A(N − i)α(ri,N − i)vrel(nf(ri),N − i) nf(ri) (9)

1
τev(ri,N, t)

= A(N) β(ri,N) vrel(nr(ri),N) nr(ri). (10)

The densities nf(ri) and nr(ri) are the number density of the
molecule of the growth (forward) process and of the evapora-
tion (reverse) process for reaction ri, respectively (Patzer et al.
1998). The surface A(N) is the surface of the cluster of size N.
The average relative velocity between the growing or evaporat-
ing TiO2 molecule and the cluster is vrel, and is defined as the
thermal velocity

vrel =

√
kBT
2π

(
1

mN
+

1
mTiO2

)
. (11)

The reaction efficiencies for growth and evaporation via reac-
tion ri are given through α(ri,N − i) and β(ri,N). We note that
α can also be referred to as the sticking probability. Equa-
tion (10) corresponds to Eq. (2) in the 3D MC approach, except
that the thermal stability does not enter Eq. (10). Instead, we
use the thermodynamic properties of the clusters according to
Eq. (12). The challenge is that the growth and evaporation effi-
ciency coefficients, α(ri,N) and β(ri,N), are often unknown
for the different cluster sizes N, which is why we perform
3D MC simulations in addition to the kinetic approach. As
Eq. (10) corresponds to Eq. (2), hence γ ∼ τ−1

ev , we can esti-
mate β= γ/(A(N)vrel(nr(ri),N) nr(ri)). For T = 1000 K, β is on the
order of ≈10−1–100 for all considered sizes. Hence, we primar-
ily use β= 1 when comparing the MC approach and the kinetic
model.

For further considerations, we need to introduce a reference
equilibrium state. In that, we follow Patzer et al. (1998) who
show in their Appendix A that if the temperatures of all com-
ponents are equal, the supersaturation ratio of a cluster of size
N with respect to the bulk is S N = (S 1)N. Hence, phase equi-
librium between monomers and between the clusters and the
bulk solid, plus simultaneous chemical equilibrium in the gas
phase, plus thermal equilibrium (i.e. all components have the
same temperature) characterise this equilibrium state. In such
local thermodynamic equilibrium (LTE) between the gas phase

and the clusters, where
◦
f(N) is the equilibrium number density,

the principle of detailed balance holds for a single microscopic
growth process and its respective reverse, that is, the evapora-
tion process. This implies that under the condition of detailed

balance,
◦
f (N − 1)/τgr(N − 1) =

◦
f (N)/τev(N), which allows us

to express the evaporation rate by the growth rate. The equilib-
rium number densities for the clusters and the monomers are
◦
f (N − i),

◦
f (N), n

◦
f(ri), and n

◦
r(ri). The law of mass action links

these equilibrium particle densities to Gibbs free energies,


◦
f(N − i) n

◦
f(ri)

◦
f(N) n◦ r(ri)

 = exp
(
∆◦−fG(ri,N,Td(N))

R Td(N)

)
. (12)

The energy ∆◦−fG(ri,N,Td(N)) (kJ mol−1) is the Gibbs free energy
of formation and it can be calculated from the standard molar
Gibbs free energy of formation of all reaction participants at the
temperature Td(N) = Tgas, which is

∆◦−fG(ri,N,Td(N)) = ∆◦−fG(N,Td(N)) − ∆◦−fG(N − i,Td(N))
+∆◦−fG(nr(ri),Td(N)) (13)
−∆◦−fG(nf(ri),Td(N)).

Assuming LTE, the equilibrium cluster size distribution is there-
fore expressed by a Boltzmann distribution,

◦
f(N) =

◦
f(1) exp

(
−∆G(N)

RT

)
, (14)

with
◦
f (1) being the equilibrium density of the monomer (here

TiO2).
The difference in energy ∆G(N) is the free energy change

due to the formation of a cluster of size N from the saturated
vapour. It is related to the standard molar Gibbs free energy of
formation of the N-cluster ∆◦−fG(N) by

∆G(N) = ∆◦−fG(N,T ) + RT ln
(

psat(T )
p◦−

)
− N ∆◦−fG1(s,T ). (15)

The energy ∆◦−fG1(s),T is the standard molar Gibbs free energy
of the formation of the solid phase, and p◦− is the pressure of the
standard state. Most often, p◦− is the atmospheric pressure on the
Earth at which psat and ∆◦−fG(N,T ) were measured. The right hand
side of Eq. (15) now contains quantities that can be determined
from lab experiments or quantum-chemical calculations.

No assumptions were necessary with respect to size-
independent surface tensions as required in classical nucleation
theory, which is the droplet model applied in Sect. 2.2. We note
that only a classical nucleation approach (droplet model) requires
the consideration of the so-called Kelvin effect. An exponential
(Eq. (2), also Eq. (18) in Powell et al. 2018) corrects the satura-
tion vapour pressure, pvap, data that is derived for flat surfaces.
The Kelvin effect is therefore used to include some representa-
tion of the curvature of the clusters for the evaporation process.
The use of thermodynamic cluster data in combination with the
assumption of detailed balance conveniently side-steps calculat-
ing evaporation such that the concept of surface tension is not
required to describe the effect of surface curvature on thermal
stability.
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3. Three-dimensional Monte Carlo dynamics:
(TiO2)N cluster formation results

The results from the 3D MC simulations for TiO2 cluster for-
mation are presented for a set of local gas temperatures of
T = 500 K, 1000 K, 1500 K, and 2000 K and a local total gas
density of ftot,gas = 103 cm−3 of these TiO2 clusters. These ther-
modynamic values are representative of the region where cloud
particle seed formation may occur in exoplanet and brown dwarf
atmospheres (e.g. Lee et al. 2015; Helling et al. 2017). The 3D
MC simulations are run for a fixed volume of V = 1 cm3 as the
computational domain in which the total number of particles
remains constant for each run, namely 103 particles per cm3.
By assuring ftot,gas = const, each simulation is run under iso-
baric conditions such that T = const. Our studies are therefore not
affected by changing thermodynamic conditions and all 3D MC
results presented here are caused by particle interaction alone.

For each temperature, we explore two cases for cluster
growth: a) cluster–monomer growth (i.e. polymer–monomer),
and b) cluster–cluster growth (i.e. polymer–polymer) where clus-
ter growth can proceed by inter-cluster coagulations of all sizes.
The growth tree is visualised in Fig. A.1 to help understand the
presented results. In order to address the effect of parameter
uncertainty, different growth efficiencies (sticking probabilities)
α= 1.0, 0.1 and a random value rand were tested.

3.1. Cluster size distribution in a homogeneous TiO2 gas: the
effect of temperature and reaction efficiency

Figure 4 shows the (TiO2)N cluster size distribution for dif-
ferent temperatures and different reaction efficiencies (sticking
probabilities, α) in a pure TiO2 gas. The top panel shows
the distributions for N = 1–50 and α= 1 for monomer–cluster
(denoted as polymer–monomer) and cluster–cluster (polymer–
polymer) growth scenarios at three different times. The middle
panel shows the full size distribution for all six scenarios at
1000 K (three different values of α for monomer–cluster and
cluster–cluster growth) at the same time (t = 4 × 108 s), while
the bottom panel shows cluster size distributions at tempera-
tures of 500, 1000, and 1500 K for both monomer–cluster and
cluster–cluster scenarios for α= 1 and α= rand at the same time
(t = 1.7 × 107 s). These times are chosen as the highest possible
time that is shared between all the shown simulations.

In the top panel, we see that the monomer–cluster scenario
and the cluster–cluster scenario develop in two fundamentally
different ways. The former has a Gaussian-like shape with a
well-defined mean cluster diameter while the latter looks more
like a power-law that reaches larger sizes than the monomer–
cluster cases but also has more free monomers. When only
growth via monomers is allowed, an abundance of dimers is
formed as can be seen for t = 3 × 107 s. Due to the replenish-
ment mechanism for monomers, a new monomer is created for
each collision (as long as the total number of clusters is below the
starting amount of 1000). So, the formation of a dimer effectively
consumes (at least) one monomer. This depletes the amount of
monomers and makes the resulting distribution look more like
the growth of an initial burst of newly formed aerosols. For the
cluster–cluster cases, more large clusters are formed and these
are effective at scavenging the monomers that are then replen-
ished (nearly) 1:1. Due to the replenishing mechanism, the total
cluster mass increases during the simulations at different rates
for the two scenarios. In the α= 1 cases for 1000 K after 4× 108 s
seconds, there is a total amount of monomers (free + bound
in clusters) of 55 406 for the cluster–cluster simulation and of
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Fig. 4. TiO2 cluster size distribution in a homogeneous TiO2 bath gas
under exoplanet atmosphere conditions at ftot,gas = 103 cm−3. Top: clus-
ter size distributions for T = 1000 K at different times for a constant
α= 1.0 for poly–mono and poly–poly. Middle: cluster size distributions
for T = 1000 K and various α at t = 4 × 108 s (rand – random choice of
the sticking probability). Bottom: comparison of size distributions for
different temperatures after ≈1.7 × 107 s.

8372 for the monomer–cluster simulation. We note that these
are monomers and there are never more than 1000 clusters in
the simulation; however, since we add monomers to the simula-
tion domain, whenever the total particle number (monomers and
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107 s, which corresponds to the JN≥20 peak time for polymer–polymer
cluster growth (see Fig. 6, bottom right). Bottom: the values are eval-
uated until different total run times t to capture the polymer–monomer
peaks at t = 0.99 × 109 s (see Fig. 6, bottom left).

clusters) declines below 1000, the total number of free and bound
monomers can reach values above 1000 monomers.

The middle panel allows a comparison of the different
sticking probabilities. At the shown time, (t = 4 × 108 s), the dis-
tributions for all three cluster–cluster scenarios are very similar,
indicating that they have reached steady-state conditions except
for the very largest clusters that still continue to grow. For the
monomer–cluster scenarios, the α= 0.1 scenario is less devel-
oped than the two others, which is to be expected if a steady state
has not yet been reached. Since only growth via monomers is
expected, it makes sense that this scenario develops more slowly
than the cluster–cluster cases.

In the bottom panel, we see the effect of temperature. For
α= 1 and monomer-polymer collisions very little has happened
for 500 K whereas the 1000 K distribution has grown to larger
sizes. Higher temperatures cause more collisions, which pro-
duces larger clusters. The trend of increasing concentrations
going from 500 K to 1000 K is similar for α= rand with cluster–
cluster collisions allowed. If the temperature is increased further
to 1500 K, the distributions shift towards lower sizes again in
both shown scenarios. This is because the evaporation increases

drastically (see Fig. 3); for T = 1000 K the evaporation probabil-
ity is 10−9 to 10−10 s−1 for small clusters while for T = 1500 K it
has increased to 1 s−1, yielding ≈1000 K as the most efficient
temperature for TiO2 nucleation (Boulangier et al. 2019). No
size distributions for T = 2000 K are shown since very little hap-
pens at that temperature because of the very large evaporation
frequency.

Thus the formation of clusters is determined by the rela-
tion between the collision and evaporation frequencies, which
are both increasing functions of temperature. If the temperature
is too low nothing happens because there are too few collisions,
but if it becomes too high then evaporations dominate. This is
consistent with results found by Lee et al. (2015).

Figure 5 elucidates the interplay between collisions and
evaporations by showing the timescale for both processes as a
function of cluster size (N) for T = 1000 K, α= 1, with and with-
out cluster–cluster growth. These are the timescales observed in
the actual simulations which, for evaporation, can be compared
with the evaporation frequency calculated in Fig. 3. The way the
characteristic times are calculated is by looking for how long it
takes for a given size N to increase or decrease and averaging this
over a time interval (see the figures for the exact times). There-
fore, any increase in for example N = 2 is counted as growth, but
it might as well be evaporation from N = 3.

We see that the times are very close to each other for the
monomer–cluster and cluster–cluster scenarios, respectively. The
upper panel shows the growth and evaporation times averaged
over the time until N = 20 peaks in the cluster–cluster case (cf.
Fig. 6, bottom right). It is obvious here that the larger sizes
develop much faster for the cluster–cluster case. In the bottom
panel, the cluster-cluster data is the same, but the monomer–
cluster data is extended until the time where N = 20 peaks for
that scenario. We note here, like for the cluster size distributions,
that the peak of the action is not at the largest nor smallest sizes
but around N = 5 . . . 10.

3.2. Temporal evolution of formation rates

Figure 6 shows the formation rate (Eq. (6)) of clusters of dif-
ferent sizes in pure TiO2. The top panels show the early stages
of formation rates of clusters larger than size N = 2, 5, and 20
for times up to 1 × 107 s for T = 1000 K and 1500 K and for
monomer–cluster scenarios (left) and cluster–cluster (right). The
middle panel shows the same but for T = 500 K and 1000 K
and extended up to 1 × 109 s. The bottom panel focuses on the
T = 1000 K case and includes clusters larger than 20, with times
up to 2 × 109 s. From the top panel, we notice that at 1500 K
the formation rate of both cluster sizes is initially larger than for
1000 K even though we previously saw that the size distribution
was further developed for 1000 K. This shows how the collision
dynamics determines the cluster growth. The early part of the
temporal evolution is dominated by collisions and an abundance
of monomers. As time goes on fewer monomers are available,
the evaporations take over, and we notice how the formation rate
for N ≥ 2 becomes larger for the 1000 K case. In general there
is a much larger overshoot of the formation rates for the 1500 K
cases before they find a more stable level.

In the middle panels where the time frame is extended
to t = 109 s, we see that the 1000 K cases actually also over-
shoot but are slower not only to increase but also to relax. For
clusters of N ≥ 2, the formation rates for 500 K and 1000 K
eventually become nearly identical while for N ≥ 5 the value
for 1000 K remains significantly larger than that for 500 K in
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Fig. 6. Time evolution of the cluster formation rate, JN (cm−3 s−1), for different temperatures and sticking probabilities. Left column: for clusters
larger than N = 2, 5, 20 from polymer–monomer cluster growth. Right column: for clusters larger than N = 2, 5, 20 from polymer–polymer cluster
growth. Top: early time evolution until t = 107 s for T = 500 K, 1000 K; only J>2 and J>5 appear. Middle: intermediate time evolution until t = 109 s
for T = 500 K, 1000 K, for J>2 and J>5. Bottom: long-term evolution until t = 2 × 109 s for J>2, J>5, and also J>20 for T = 1000 K only. No clusters
>20 have yet formed for T = 500 K.

the monomer–cluster case, while in the cluster–cluster case the
values find the same final level.

The lower panels allow for a detailed comparison of the
different sticking probabilities at 1000 K. In the left panel
(monomer–cluster cases), for N ≥ 2 there is very little difference

between α= 1 and rand while α= 0.1 clearly lags behind for the
early parts of the simulation. The difference between the sticking
probabilities becomes clearer as we look at the larger sizes. For
N ≥ 20, the largest probability produces the largest production
rate for the full duration of the simulation. Looking at the right
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hand side panel (cluster–cluster collisions), all the production
rates for different sticking probabilities become similar much
faster. We now understand why the size distributions in Fig. 4
are almost the same for the cluster–cluster cases and only α= 0.1
is smaller than the others for monomer-cluster cases. While the
different values of α affect the temporal evolution, the end result
remains the same.

A general feature worth noting is that while the formation
rates approach a stable value, there are fluctuations around this
value. This is a feature of the MC simulations that is not captured
in other models.

3.3. Spatial distribution

Monte Carlo simulations have shown that the cluster formation
rates are affected by the stochastic nature of particle motion and
particle collisions (Köhn et al. 2020). For α= 1 and T = 1000 K,
Fig. 7 shows the spatial distribution of all clusters (top: projected
onto the xy-plane; middle: whole 3D distribution) at 2.2 × 109 s.
It shows that most (TiO2)N clusters remain rather small but that
there is one distinct cluster continuously growing (orange). Such
a large cluster has a significantly large surface area, which makes
it more likely to merge with other clusters in contrast to the less
probable collision of two small clusters.

The bottom panel in Fig. 7 shows the mean and maximum
radius of all clusters as a function of time. For the simulation
allowing polymer–polymer interactions, it shows that the mean
radius (orange line) hardly changes in time, limited below 2 nm
until t = 2 × 109 s, whilst the blue line depicts the creation of one
big particle (orange in the upper two panels). This one distinct
cluster forms very early in the nucleation process and subse-
quently becomes the dominantly growing cluster. The bursts in
growth seen in the maximum size is due to scavenging of other
large particles by the largest cluster.

The red and violet lines show the mean and maximum
radius when only monomers are allowed to attach to clusters.
In this case, Rmax and Rmean are of comparable size and do not
grow significantly until 2 × 109 s, staying smaller than Rmean for
polymer–polymer interactions.

Figure 8 shows the same spatial distribution for T = 1000 K
and α= 1 as in Fig. 7, but for different realisations of ran-
dom numbers throughout the whole simulation (e.g. checking
for evaporation). It shows that the formation of one big cluster
and of many small clusters is independent of the randomness of
the collision process. Figure 8 also shows the maximum clus-
ter size (left) and the mean cluster size (right) for three different
simulations with different seeds of random numbers. For all sim-
ulations, the maximum and mean cluster size show a very similar
temporal evolution. The maximum radius becomes ∼13 nm after
approx. 2 × 109 s (the orange cluster in the panels above) whilst
the mean radius for polymer–polymer and polymer–monomer
interactions and the maximum radius for polymer–monomer
interactions is limited to .2 nm.

4. Comparing Monte Carlo and kinetic results for
TiO2 cluster abundances

Figure 9 shows the cluster size distributions based on our kinetic
rate equation approach (Eq. (12), Sect. 2.3) for the cluster sizes
N = 1 . . . 10. These results utilise the thermodynamic cluster
data as presented in Lee et al. (2015), which are based on the set
of (TiO2)N cluster structures presented by Jeong et al. (2000).
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Fig. 7. Spatial distribution of clusters formed by polymer–polymer col-
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Combining Eqs. (7) and (8) results in

d f (N, t)
dt

=

N−1∑
i = 1

f (N − i)
τgr(N − i)

− f (N)
τev(N)

(16)
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d f (N + 1, t)
dt

=

N−1∑
i = 1

f (N)
τgr(N)

− f (N + i)
τev(N + i)

. (17)

This system of ordinary differential equations (ODEs) allows us
to consider the effect of cluster-monomer growth (for i = 1) and
cluster-cluster nucleation, similar to Sect. 3. All variables have
been defined in Sect. 2.3.

Equations (16) and (17) are solved for a temper-
ature of T = 1000 K. The initial monomer density of
fTiO2 = f (1) = 103 cm−3 is chosen in accordance with Fig. 4
in Lee et al. (2015), which is equal to the initial particle
density ftot used in our MC simulations. It is a representative
value for the gaseous TiO2 abundance in the atmospheric
regions where T = 1000 . . . 1500 K (and the gas pressure p ≈
10−6 × 10−4 dyn cm−2 for a model atmosphere of Teff = 1600 K,
log(g [cm s−2]) = 3) where TiO2-seed formation can be typically
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Fig. 9. Cluster size distributions f (N) [cm−3] as a result of kinetic
approach based on thermodynamic cluster data for clusters sizes
N = 1 . . . 10 for α= 1 for T = 1000 K, β= 1.0 for the top two panels,
and β= 10−5 for the bottom panel in order to visualise the relative
importance of cluster evaporation. The differences between the cluster-
monomer (top) and the cluster–cluster (bottom) results appear small
for the small clusters, and are amplified if the evaporation efficiency
is suppressed.

expected in brown dwarfs and gas giant exoplanets. Higher TiO2
number densities may occur for higher gas densities. As we focus
here on the comparison of two models, the kinetic nucleation
and the MC approach, and since MC simulations usually take
a significant amount of time (Köhn et al. 2018), here we offer
one example. In the future, we plan to extend our comparison to
other model atmospheres for example ftot = 10 or ftot = 108 cm−3.

4.1. Results from thermodynamic cluster formation modelling

Analogously to the 3D MC simulations in Sect. 3, we explore
cluster growth by cluster–monomer and by cluster–cluster pro-
cess for the first 10 (TiO2)N clusters. For T = 1000 K, the solution
of Eqs. (16) and (17) is shown in Fig. 9. As previous work
(Boulangier et al. 2019) and our MC approach have demonstrated
for the considered cases, the growth of TiO2 clusters is more
dominant than the evaporation frequency at 1000 K, which is
why we focus on this temperature in the following. Both cases
look rather similar, except for the larger cluster sizes that appear
earlier if cluster growth proceeds via cluster–cluster collisions.
In order to understand the importance of cluster evaporation,
we have solved the kinetic model for negligible evaporation
(β= 10−5) such that the growth of clusters is the only relevant
process. Large and size-dependent differences occur regarding
the relaxation timescale to a steady state if the evaporation
probability is decreased (i.e. suppressed) uniformly for all clus-
ters (Fig. 9, bottom panel). The artificial suppression of cluster
evaporation demonstrates that larger clusters become increas-
ingly more stable against destruction compared to the smaller
clusters, driving the cluster size distribution away from an equi-
librium distribution. We conclude that the maximum cluster size
of N = 10 monomers is still too small for the divergence of the
monomer–cluster and the cluster–cluster growth to appear as
pronounced as in our 3D MC simulations.

4.2. Comparison of 3D MC and thermodynamic cluster
formation modelling

Our study of (TiO2)N cluster formation as a precursor for nucle-
ation seed formation in exoplanet and brown dwarf atmospheres,
as well as in AGB star envelopes, points towards considerable
timescales before a steady-state solution can be reached. The
timescale shortens if all possible clusters participate into the
growth process, instead of cluster growth by monomer addition
only. This finding is consistently confirmed by both approaches,
the molecular-dynamics 3D MC and thermodynamic cluster for-
mation modelling as shown in Figs. 6 and 9. Köhn et al. (2020)
have further demonstrated that a decreasing gas density does not
considerably affect the timescale on which the steady-state for-
mation rate is reached, and that the gas density does not affect
the value of the steady-state formation rate. The study by Köhn
et al. (2020) addresses H2SO4–H2O cluster growth for Earth
atmosphere conditions, however.

A comparison between our two methods can only be car-
ried out for the cluster sizes N = 1 . . . 10 because of the
presently available thermodynamic data for the kinetic approach.
For T = 1000 K, we compare the cluster–cluster results only.
Figure 10 separates the comparison for the small cluster
(N = 1 . . . 5) and the intermediate cluster sizes (N = 6 . . . 10)
because of their qualitative differences. Generally, the cluster
number densities for N = 1 . . . 10 and their time evolution agree
reasonably well between the 3D MC and the kinetic nucleation
approach. Both reach the steady-state values after a considerable
time, hence there is an individually constant number density for
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Fig. 10. Comparison of the cluster number densities for N = 1 . . . 5
(top) and N = 6 . . . 10 (bottom) resulting from the 3D Monte Carlo (3D
MC, solid) and from the kinetic approach (dotted) for α= 1, β= 1 and
T = 1000 K. Deviations are largest for the larger clusters as the kinetic
approach is limited to N = 10 as the maximum but the MC approach can
grow to N > 10, hence depleting the smaller cluster numbers.

all clusters shown. Both approaches predict the small clusters
to be the most abundant and the largest cluster sizes to be the
least abundant. Figure 10 shows that the density f (N = 10) of
10-mers after one year ∼3× 107 s is on the order 101 cm−3; using
an improved nucleation theory, which abandons equilibrium
assumptions, discards growth restrictions, and uses quantum
mechanical properties, Boulangier et al. (2019) find f (10) ≈
102–103 cm−3 after 1 yr for AGB wind conditions for an initial
mass density %Ti ≈ 2.84 × 10−15 kg m−3. As their %Ti is approx-
imately 35.5 times larger than %Ti ≈ 8 × 10−17 kg m−3, as used
in this work, we see that their values agree well with the values
obtained by our simulations. We also note that the nucleation
rate of clusters does not depend linearly but rather superlinearly
on the initial particle density (Dunne et al. 2016; Köhn et al.
2018).

Although the agreement between the MC and the kinetic
approach for T = 1000 K may seem a simple observation to
make, it is a very important result to emphasise as both meth-
ods approach the problem from rather different angles. The
characteristic material properties are only described by an evap-
oration frequency in the 3D MC (Eqs. (2) to (5)) whereas the
kinetic nucleation approach requires individual thermodynamic

properties for each cluster size (and ideally also their isomers;
Eq. (15)). However, the simplicity of the 3D MC approach is
offset by the immense computational time demand for a system
as small as 103 particles in 1 cm3.

For the case of α= 1 and β= 1, the individual cluster number
densities do not vary by more than a factor of 5 between 3D MC
and the kinetic approach in the steady state. As Fig. 4 shows,
there is no significant difference in the evolution of the size dis-
tributions and thus of the cluster number densities when using
α= rand instead of α= 1; for α= 0.1, the temporal evolution of
the number densities is delayed by a factor of ∼10 compared to
α= 1. All 3D MC cluster number densities are lower in steady
state than the kinetic results, except for N = 1 and N = 2. The
3D MC monomer density ( f (N = 1)) fluctuates around a nom-
inal value that results from the condition of keeping the total
number of particles within the 3D MC computational domain
constant. The divergence of the 3D MC monomer density (solid
purple line, top panel in Fig. 10) from the kinetic nucleation val-
ues (dashed purple line) occurs when other cluster sizes become
increasingly more abundant. That is when the 3D MC code
replenishes the monomers such that the total number density is
kept constant to the value of 103 cm−3.

All 3D MC cluster number densities in Fig. 10 are lower in
steady than the kinetic nucleation results (expect for N = 1, 2)
because the 3D MC simulations offer reaction paths to larger
cluster sizes N > 10 whereas the kinetic model as formulated in
Eqs. (16) and (17) is limited by N = 10. Therefore, the growth
of larger clusters of N > 10 will deplete the number of smaller
clusters of N < 10 in the 3D MC results, but not in the kinetic
nucleation results. All 3D MC cluster number densities in Fig. 10
for N > 1 overshoot the kinetic nucleation values during the
beginning of the nucleation process at t < 107.5 s, meaning
they form more efficiently at earlier times than with the kinetic
approach. That clusters appear faster with the 3D MC approach
than with the kinetic nucleation could be because the random-
ness of the MC code produces fluctuating collision rates that
deviate from the average values used by the kinetic nucleation
code. Since evaporation is so dominant for the smallest sizes,
faster growth due to an above average number of collisions can
result in faster growth rates for small clusters, as shown by
Olenius et al. (2018) and Köhn et al. (2020).

Another reason could be 3D effects in the MC simulations
due to local density inhomogeneities (as seen in Fig. 7), which
are not seen in a kinetic modelling approach. However, this find-
ing does suggest that processes that introduce an intermittent
density distribution of the gas-phase may have the same effect
on the cluster formation rate early on in the nucleation process.
Such a process is turbulence and its amplifying effect for chem-
ical reactions has been demonstrated in engineering as well as
in cloud formation modelling. Helling et al. (2004) simulated
turbulent cloud condensation by modelling driven turbulence on
mesoscopic scales in brown dwarf and exoplanet atmospheres. It
was demonstrated that the efficiency of seed formation increases
in a turbulent compared to a laminar gas, and that the forma-
tion of CCNs may occur in an event-like fashion. The amplifying
effect of a turbulent fluid field on chemical processes can gener-
ally be understood as a turbulent fluid field creating an increased
reactive surface compared to a laminar flow, an effect that has
been demonstrated for thermonuclear deflagration in supernovae
(Schmidt et al. 2005). Another effect that can produce this kind
of overshoot is a large injection of monomers, such as when a
host star rises on a planet. An initial burst of small clusters is
then dampened as larger clusters start to scavenge them or the
monomer concentration is depleted.
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5. Discussion

We have explored the formation of (TiO2)N clusters as pre-
cursors of cloud formation using a 3D MC approach and a
thermodynamic rate equation approach in order to validate both
approaches and to test assumptions that are needed on both sides.
The resulting cluster number densities are promisingly compara-
ble within a factor of 5. This conclusion is limited to the cluster
sizes for which thermodynamic data are available (N = 1 . . . 10).

Both approaches demonstrate that the time to approach a
steady-state cluster size distribution is substantial for a monomer
number density that is reasonable to expect for exoplanet and
brown dwarf atmospheres inside their thermodynamic seed for-
mation window. This suggests that the atmospheres of exoplanets
and brown dwarfs, as well as the optically thin parts of AGB out-
flows, may contain mainly monomers in the dynamic phase of
cluster formation, but that a more uniform cluster abundance can
be a fingerprint for the steady-state situation.

Jeong et al. (2000) provide the wavenumbers for the vibra-
tional transitions for their DFT Gaussian94 (TiO2)N cluster
simulations (DFT/B3P86/6-31G(d)) for cluster sizes N = 1 . . . 6,
which may serve as a guide for observational approaches to
disentangle the state of CCN formation in exoplanets, brown
dwarfs, or also for AGB stars similar to Decin et al. (2017).
Jeong et al. (2000) point out that larger clusters of size N
have higher intensities for IR-active vibrations than smaller clus-
ters. Although lower energy isomers of (TiO2)N , N = 3–6, exist
(Berardo et al. 2014; Lee et al. 2015), structural (geometric)
arguments support our assumption that the cluster growth pro-
ceeds via the ‘gaiter’-shaped clusters derived by Jeong et al.
(2000). The timescale for a metastable isomer to relax to its
global minimum structure can be long, in particular if the related
potential energy surfaces (PES) consist of more than one funnel
(Doye & Wales 1996). The number of funnels for the relaxation
of the (TiO2)n, n = 3–6, clusters is unknown, since we did not
perform a (computationally very demanding) scan of the PES.
However, based on their atomic coordination, a relaxation of
the (TiO2)n, n = 3–6, clusters used in this study involves a re-
arrangement (breaking and formation) of several bonds and is
likely to proceed via several funnels.

The line opacity, Ak(N) · f (N) [10−8 cm−1 s−1], for the inte-
grated absorption coefficients data Ak [10−8 cm2 s−1], provided
by Jeong (2000) for N = 1 . . . 6, is shown in Fig. 11. The line
opacity is evaluated at two different times: t = 107 s (top panel)
when the cluster formation in very dynamic and for t = 109 s
(bottom panel) when the cluster formation has reached a steady
state (see Fig. 10). The line opacities are rather similar for both
cases such that an observational differentiation between the two
nucleation stages may be difficult. We note that cluster data are
re-evaluated all the time; however, what ultimately determines
the result is the number of clusters of a given size. The higher
abundance of the smaller clusters outweighs the stronger IR line
absorption cross sections of the larger clusters. It may however
be feasible at some point to observe TiO2 clusters and Fig. 11
indicates that clusters N = 4, 5, 6 would be the best candidates.
We therefore reproduce the detailed vibrational absorption spec-
trum, Ak [10−8 cm2 s−1], for (TiO2)4, (TiO2)5, and (TiO2)6 in
Fig. 12 (data from Appendix C in Jeong 2000).

For each of these line spectra, the bottom right panel shows
the Lorentz folded line spectra, which is constructed as follows.
For given N, we construct the Lorentzian LN,i(λ) = Ci2w/(4(λ −
λ0,i)2 + w2) for the wavelength λ0,i of the ith peak, where we
choose a fixed width of w= 1µm and where Ci is chosen such
that the maximum of LN,i agrees with the maximum of the
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Fig. 11. Line opacity, Ak(N) · f (N) [10−8 cm−1 s−1], for (TiO2)N clus-
ters N = 1 . . . 6 in the wavelength window relevant for potential JWST
observations. The (TiO2)N integrated line absorption coefficient, Ak
[10−8 cm2 s−1], data is from Appendix C in Jeong (2000). The 3D
MC cluster number density, f (N) [cm−3], is used for t = 107 s (top
panel) and t = 109 s (bottom panel). Both times show little difference
in opacity despite their different cluster number densities (Fig. 10).
(TiO2)4, (TiO2)5, and (TiO2)6 have the largest line opacity amongst the
N = 1 . . . 6 clusters. Their detailed line spectra are shown in Fig. 12.

ithline. Then for each N, the enveloped Lorentz profile is calcu-
lated as LN(λ) = max

i
LN,i(λ). As the total line spectrum depends

on the particle number for each individual N, we calculate the
total spectrum as the sum L4 + L5 + L6 (dashed line).

The (TiO2)4, (TiO2)5, and (TiO2)6 vibrational lines would
be well covered by JWST/MIRI (Mid-Infrared Instrument) for
λ < 45µm or by ELT (Extremely Large Telescope) instruments
like MIDIR (mid-IR imager). However, it may be difficult to
disentangle individual cluster lines but instead be more feasi-
ble to detect a subset of lines of different clusters for example
at the morning terminator of ultra-hot Jupiters. The morning ter-
minator of ultra-hot Jupiters can be expected to be cloud free,
hence optically thin to pressures of pgas ≈ 10−2 × 10−4 bar where
the atmospheric temperature reaches the 1000K-window. In the
future, the cross-correlation technique (e.g. Brogi & Line 2019;
Hood et al. 2020; Serindag et al. 2020) may be most suitable
to explicitly search for cloud condensation clusters in exoplanet
atmospheres if high-resolution opacity data for such clusters are
available.
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Fig. 12. Cluster line opacities. (TiO2)N clusters for N = 4, 5, 6 have the strongest IR vibrations line absorption coefficient, Ak [10−8 cm2 s−1],
according to Jeong et al. (2000) (their Eq. (3)) amongst their TiO2 cluster ensemble of N = 1 . . . 6. The data is reproduced from Appendix C in
Jeong (2000). The Lorentz profile folded lines of (TiO2)N N = 4, 5, 6 are shown in the lower right panel for t = 109s.

6. Conclusions

The study of (TiO2)N cluster formation presented here has used
a 3D MC and a kinetic approach that is based on thermodynamic
cluster data (kinetic nucleation). The 3D MC approach enables
the following insights into (TiO2)N cluster formation as key pre-
cursors for the formation of CCNs in exoplanet and brown dwarf
atmospheres, and in AGB star envelopes:

– Modelling the formation of (TiO2)N clusters by monomer–
cluster or by cluster–cluster collisions results in two funda-
mentally different cluster size distributions. The monomer-
cluster scenario has a Gaussian-like shape with a well-
defined mean cluster diameter. The cluster size distribution
appears power-law like if cluster–cluster growth is enabled;

– Larger clusters form faster by cluster–cluster collisions
instead of monomer–cluster collisions only;

– A sweet-spot temperature occurs for most efficient clus-
ter growth. This sweet-spot temperature value (1000 K for
TiO2, Boulangier et al. 2019) also depends on the gas den-
sity as both determine the collisional rates of the clusters.
Therefore, cloud formation in exoplanet and brown dwarf
atmospheres and the dust formation in AGB stars will be
triggered within this temperature range.

– The cluster size distributions are different for different tem-
peratures, which is driven by the interplay between growth
and evaporation processes;

– We tested the effect of missing material data by studying dif-
ferent sticking probabilities. This material data insufficiency
matters for the time evolution of the cluster size distributions
but not for the final steady-state results;

– The onset of cloud (or dust) formation may be traced by
observing (TiO2)4, (TiO2)5, and (TiO2)6 vibrational lines,
which are present at temperatures around 1000 K and may
be detectable with instruments such as JWST/MIRI (λ <
45µm) or ELT/MIDIR. A dedicated search applying cross-
correlation would be most desirable but requires a complete-
as-possible, high-resolution line list for each cluster.

A comparison of results from the 3D MC method and the
kinetic approach based on thermodynamic cluster data led to the
following conclusions:

– The 3D MC approach enables the study of the time-resolved
formation dynamics of the individual cluster growth, which
is not accessible to the kinetic steady-state approach;

– For T = 1000 K, both methods agree well regarding cluster
number densities for N = 1 . . . 10, the vivid onset of cluster
formation, and the long transition into a steady state;
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– The faster onset of cluster formation in the 3D MC compared
to the kinetic results from the increased collisional rates in
spots of increased gas density. A turbulent fluid field will
cause similar effects;

– Our comparison also supports the 3D MC approach for
H2SO4–H2O cluster formation by Köhn et al. (2018, 2020)
to model the early stages of CCN formation.
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Appendix A: Supplementary figures

Fig. A.1. Decision tree of how six initial monomers can grow. Top: Without cluster-cluster growth. Bottom: With cluster-cluster growth allowed.
In red we show those paths that do not appear in the polymer-monomer case. The slash notation in the bottom panel gives the individual number
of N-mers ordered by their position in the slash line. For polymer-polymer growth, all possible paths end up with one single 6-mer.
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