
Exploring Lifted Planning Encodings in
Essence Prime

Joan ESPASA, a Jordi COLL, b Ian MIGUEL, a and Mateu VILLARET c

a School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK
e-mail: {jea20,ijm}@st-andrews.ac.uk

b Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
e-mail: jordi.coll@lis-lab.fr

c Departament d’Informàtica, Matemàtica Aplicada i Estadı́stica
Universitat de Girona, E-17003 Girona, Spain

e-mail: mateu.villaret@udg.edu

Abstract. State-space planning is the de-facto search method of the automated
planning community. Planning problems are typically expressed in the Planning
Domain Definition Language (PDDL), where action and variable templates de-
scribe the sets of actions and variables that occur in the problem. Typically, a plan-
ner begins by generating the full set of instantiations of these templates, which in
turn are used to derive useful heuristics that guide the search. Thanks to this suc-
cess, there has been limited research in other directions.

We explore a different approach, keeping the compact representation by directly
reformulating the problem in PDDL into ESSENCE PRIME, a Constraint Program-
ming language with support for distinct solving technologies including SAT and
SMT. In particular, we explore two different encodings from PDDL to ESSENCE

PRIME, how they represent action parameters, and their performance. The encod-
ings are able to maintain the compactness of the PDDL representation, and while
they differ slightly, they perform quite differently on various instances from the
International Planning Competition.

Keywords. Automated Planning, Constraint Programming, Modelling, Reformulation

1. Introduction

Given a model of the environment, a planning problem asks us to find a sequence of
actions that leads from an initial state to a given goal state. These models are typically
expressed in the Planning Domain Definition Language [1] (PDDL). The user describes
the problem in terms of predicates, actions and functions with parameters. In turn, these
parameters can be instantiated with a set of defined objects.

A simple example of a planning problem is a logistics problem, expressed in PDDL
in Figure 1, where we must transport Bob and Alice from the city of Barcelona to the
airport, so they are finally able to embark on a plane that will take them home. The initial
state is that both Alice and Bob are at Barcelona, the goal is having them embarked in a
plane at the Airport, and the possible actions are move (change person of location) and
embark (person into plane at a location).

Artificial Intelligence Research and Development
M. Villaret et al. (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA210117

66

In spite of having a compact model representation, having read the model, a planner
typically begins by producing a totally grounded representation. The action of grounding
(or instantiation) will replace all variables that represent parameters in actions by their
possible values, creating all the possible instantiations of the actions. After grounding,
no variables are left free and all valid instantiations of predicates and functions in the
actions are computed. The size of the fully grounded planning problem is exponential in
the maximum number of arguments of all the actions.

Depending on the original problem and how the task is grounded, this growth can
result in an instance that cannot be efficiently handled. There have been approaches that
try to alleviate this grounding problem in various ways. For example, one could ground
only relevant parts of the problem [2,3], make clever representations of actions [4] or
simplify the input problem [5]. The opposite of grounded planning would be lifted plan-
ning, where grounding is fully avoided. Grounding is normally seen as a necessary step,
and there are very few approaches to lifted planning that skip grounding entirely [6,7,8].
These approaches are not that popular mainly due to the efficiency of computing in-
formative heuristics on a grounded representation, which are difficult to compute at the
lifted level. Also, reasoning at a more abstract level is typically more difficult.

Herein we try to avoid grounding as much as possible by using the expressivity of
ESSENCE PRIME [9], a declarative constraint modelling language. Moreover, we take
advantage of SAVILE ROW [10], a sophisticated constraint reformulation tool supporting
ESSENCE PRIME that is able to generate SAT and SMT [11], or CSP [12] instances.

Our contributions in this paper are two different lifted encodings from PDDL to
ESSENCE PRIME, which differ in how they represent action parameters. The encodings
maintain the compactness of the PDDL representation, and while they differ slightly, they
perform quite differently. We also report results with backend solvers for SAT, SMT and
for a lazy clause generation [13] (LCG) constraint solver. The rest of the paper proceeds
as follows. In Section 2 we recall the theoretical framework. In Section 3 we propose
the encodings from PDDL to ESSENCE PRIME. Section 4 is devoted to experimental
evaluation of the encodings. Finally, Section 5 discusses future work and concludes.

2. Preliminaries on Automated Planning

This paper considers numeric planning problems, which extend propositional planning
with numeric state variables. We formally define the numeric planning problem only in
terms of the grounded representation of the problem.

Definition 1 (Numeric Planning Problem). A planning problem can be defined as a tuple
∏ = 〈B,O,F,X ,A, I,G〉, where: B is a set of names for all the objects, O is a set of object
state variables, F is a set of propositional state variables, X is a set of numeric state
variables, A is a set of actions, I is the initial state and G is the goal.

An action a ∈ A is defined as a tuple a = 〈Prea,Eff a〉, where Prea refers to the
precondition and Eff a to the effects of the action.

Definition 2 (State). Given a planning problem ∏, a state is a variable-assignment (or
valuation) function over state variables O∪F ∪X , which maps each o ∈ O to an object
in B, each f ∈ F into a truth value, and each x ∈ X to an integer. A state is represented
a set of ordered pairs {(v1,z1),(v2,z2), . . . ,(vn,zn)}, where each vi is the variable and zi
the value mapped to it.

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime 67

An object condition has the form ζ ⊗b, where ζ is an expression over O, ⊗∈{=, �=}
and b is an object in B. A numeric condition has the form ζ ⊗ k, where ζ is a linear
integer arithmetic expression over X , ⊗ ∈ {≤,<,=,>,≥} and k is an integer constant.

Preconditions (Pre) and the goal G are sets (conjunctions) of object conditions, nu-
meric conditions and propositions. Action effects (Eff) are sets of assignments to propo-
sitional variables, assignments to object variables and increase/decrease/assign a numeric
variable by a numeric expression. A conditional effect is a pair 〈c,e〉 where c is a set of
object, numeric and propositional conditions; and e is an effect. e is applied only if c is
satisfied in the state where the action is applied.

An action a is applicable in a state s only if its preconditions are satisfied in s (s |=
Prea) and the applied numeric, object and propositional effects do not induce conflicting
assignments. The outcome after the application of an action a will be the state where
variables that are assigned in Eff a take their new value, and variables not referenced in
Eff a keep their current values.

A sequence of actions 〈a0, . . . ,an−1〉 is called a plan. We say that the application of
a plan starting from the initial state I brings the system to a state sn. If each action is
applicable in the state resulting from the application of the previous action and the final
state satisfies the goal (i.e., sn |= G), the sequence of actions is a a valid plan. A planning
problem has a solution if a valid plan can be found for the problem.

3. Encodings

In this section we propose various encodings for a numeric planning problem. First we
will explain how the planning as satisfiability approach works, then in what kind of input
we will receive the planning problem and finally the proposed encodings.

3.1. Planning as Satisfiability

As is typical in the planning as SAT or as CSP approaches [14,15,16], we will solve the
planning problem by considering a sequence of CSPs φ0, φ1, φ2, . . . , where φi encodes
the existence of a plan that allows to reach a goal state from the initial state in i steps.
The solving procedure will test the satisfiability of φ0, φ1, φ2, and so on, until a satisfiable
formula φn is found, proving the existence of a valid plan of n steps.

Each φ formula will need variables to represent the state for each step and need to
define the values of the variables in the initial step. Then, it will also need some variables
to represent which action is executed at each step. We will need to make sure that if an
action is executed, its precondition holds with respect to the problem variables. We will
need to make sure that the goal conditions are met and we will do it by adding some
constraints on the variables representing the state of the final step. Finally, we will need
to make frame axioms explicit, i.e. constraints that specify that if no action has modified
a variable, it keeps its value between steps. Semantics such as the ∀ or ∃-step [17] allow
parallel actions, but here just one action will be executed per time step.

3.2. Planning Domain Definition Language (PDDL)

In contrast to the formal definition of a planning problem given in Section 2, PDDL al-
lows the specification of problems in a lifted manner. Although being normally repre-
sented this way, most solving approaches ground the problems.

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime68

(define (domain transport)

(:types person aircraft - locatable

location - object)

(:predicates (at ?p - locatable ?l - location)

(in ?p - person ?a - aircraft))

(:functions (seats ?p - aircraft) - number)

(:action move

:parameters (?p - person ?from ?to - location)

:precondition (at ?p ?from)

:effect (and (not (at ?p ?from)) (at ?p ?to)))

(:action embark

:parameters (?p - person ?l - location ?a - aircraft)

:precondition (and (at ?p ?l) (at ?a ?l) (> (seats ?a) 0))

:effect (and (not (at ?p ?l)) (in ?p ?a) (decrease (seats ?a) 1))))

(define (problem example)

(:domain transport)

(:objects plane - aircraft

Bob Alice - person

Barcelona Airport - location)

(:init (at Bob Barcelona) (at Alice Barcelona)

(at plane Airport) (= (seats plane) 2))

(:goal (and (in Bob plane) (in Alice plane))))

Figure 1. Domain and problem file in PDDL, representing the problem of moving Bob and Alice from
Barcelona to a plane in the airport. A valid plan for the problem would be: (move Bob Barcelona

Airport), (move Alice Barcelona Airport), (embark Bob Airport plane) and (embark Alice

Airport plane).

A fluent, in the area of automated planning, refers to a variable that represents some
attribute of the problem and changes over time. Roughly speaking, our framework will
be numeric planning. More concretely, our formalism will derive from PDDL 2.1 [18],
without temporal semantics or metric optimizations. We also consider functional strips
semantics [19], incorporated in the recent revisions of the PDDL. This means that, apart
from reasoning with integer fluents, we will be able to have actions that work with objects
and refer to attributes of these objects. Therefore, a fluent declared as (location ?p

- object) - place will be able to express where objects are, and expressions like (=
(location plane) (location person)) or (> (fuel plane) 10) will be valid.

Even though planning formalisms do not consider templates, they are widely used
in PDDL to make the representation compact. Types are also used in PDDL to make the
problem more readable and to give more information to the planners. It can be seen in
Figure 1 how types, templates for actions, predicates and functions are expressed. As
our input will be a problem defined in the PDDL language, we will need to directly
consider them. In fact, the instantiations of the predicate templates will correspond to
the predicate state variables of the planning problem at hand, and the instantiations of
the function templates will correspond to the object and numeric state variables of the
planning problem, depending on its return type.

Templates can be state variable templates or action templates. These are comprised
of a name and a sequence of typed parameters, or “ordinary” variables. For example,
consider (location ?p - object) - place, being an object state variable template.
Its name is location and its parameters, the sequence [?p], where the only parameter

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime 69

?p has the name p and the object type. The domain of this object state variable is the
set of objects with type place in the problem.

For instance, in the PDDL specification, expressions such as preconditions and ef-
fects can also contain variables, belonging to the action template parameters. For ex-
ample, the effect (and (not (at ?p ?from)) (at ?p ?to)) belonging to the move
action template in Figure 1 contains three variables: p, from and to.

3.3. Basic Encoding

In this section we describe formulas φh, that is, the existence of a valid plan with h ac-
tions. Again, our purpose in this work is to encode PDDL instances into ESSENCE PRIME

in a lifted manner. Roughly, a grounded representation would have a Boolean variable
stating whether action move alice Barcelona airportt is performed in a given time step
t. Instead, for each time step t, we will have an integer variable stating which action
template is applied and an integer variable per parameter of each action template stating
what particular object is used as parameter of that action. Moreover, and for each time
step t, we will also have a Boolean or Integer ESSENCE PRIME variable (CP variable)
for each concrete instantiation of each state variable template.

To express the encoding, we will need some auxiliary definitions. Let E be the set
of types specified in the PDDL model. Each object b ∈ B has a type associated with it.
Also, each type e ∈ E has a domain associated to it, being Domaine ⊆ B. Let AT be the
set of action templates in the PDDL problem. Similarly, OT , FT and XT will be the sets
of object, propositional and numeric state variable templates, respectively.

Let V be the set O∪F ∪X , representing the set of all state variables, without taking
their type into account. VT will represent the set of all state variable templates. For x ∈
AT ∪VT , let Parametersx be the sequence [z1, . . . ,zn], representing the parameters of the
template. For each parameter zi, let Typezi be the type associated to zi, and Namezi its
name. Let l(k) → Z be an injective function defined for all k ∈ B∪ A. It serves as a
labelling function, that maps an object or action to a unique integer. This will be useful
to later encode objects and object state variables as integers and integer state variables
respectively. We will start by introducing the following CP variables:

statet
v ∀v ∈V,∀t ∈ 0..h (1)

actiont ∀t ∈ 1..h (2)

paramt
a,i ∀a ∈ AT ,∀i ∈ Parametersa,∀t ∈ 1..h (3)

Variables statet
v hold the value of state variable v in step t. This representation corre-

sponds to a new CP variable for each grounded state variable. Variables actiont ex-
press which action is scheduled at time step t. The domain of these actiont variables is
{l(a) | a ∈ AT}, being the set of integers the labelling function l assigns to the problem
action templates. Finally, variables paramt

a,i denote the value of i-th parameter in action
template a at each step t. Each of these variables will have a domain of the parameter
type. Note that variables introduced in (2) and (3) correspond to the action templates.
With this representation there is no need to ground all the possible instantiations of the
actions, and the solver will be responsible for choosing which action template is executed
and with which parameters. We state initial and goal states:

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime70

state0
v = z ∀(v,z) ∈ I (4)

gh ∀g ∈ G (5)

where G is a conjunction of conditions on state variables, and gh is the ESSENCE PRIME
translation of these conditions on CP variables stateh

v for all variables v in the conditions
of G. Note that the initial state must be fully specified.

Frame axioms express that, if a given state variable has changed from one time step
to the next, it is because an action that is able to change it has been executed.

statet−1
v �= statet

v →

∨

∀a ∈ AT ,
∀m ∈ modi f y(a,v)

⎛

⎝actiont = l(a) ∧
∧

∀(j,o)∈m

paramt
a, j = l(o)

⎞

⎠ ∀t ∈ 1..h,
∀v ∈V (6)

Given an action template a and a state variable v, the function modi f y(a,v) returns the set
of all combinations of parameter assignments (expressed as a pair (j,o)) that make action
a modify variable v. For instance, the state variable at(Bob,Barcelona) is modified by
action template move, with the following set of parameter assignments:

{{(p,Bob),(from,Barcelona),(to,airport)}, {(p,Bob),(from,airport),(to,Barcelona)}, ...}

Finally, actions are expressed

actiont = l(a)→ Pret
a ∧Eff t

a ∀a ∈ AT ,∀t ∈ 1..h (7)

Preconditions are sets of conditions and effects are sets of assignments. When translating
Pret

a and Eff t
a into ESSENCE PRIME, we use the element global constraint to access the

corresponding state variables according to the values given to the action parameters. The
translation of conditions and state variable assignments to ESSENCE PRIME is straight-
forward. However, conditions and right hand sides of assignments will consult the state
variables of time t − 1, and left hand side of the assignments will update state variables
of time t. For instance, when considering the effect on the number of free seats in the
embark action: seats[embark a[k],k] = seats[embark a[k],k-1]-1.

3.4. Encoding Compaction

Approximations such as the ∀-step or ∃-step semantics [17] allow parallel actions as
long as they are not interfering. For now our encoding assumes that one action will be
executed per time step. With one action executed per time step, we can see that most
of the variables from (3) are rarely used. That is, only the parameters belonging to the
selected action are used, and the others are ignored. Here we introduce two variants of
the encoding with the aim of reducing the total number of variables: Type sharing and
Max Parameters. They differ in how parameters are treated, as shown in Figure 2.

Before explaining the encodings, we introduce the concept of a substitution (or re-
naming) σ : a partial mapping from variables to variables. It can be represented as a func-
tion by a set of bindings of variables to variables. That is, if σ = {x1 �→ y1, . . . ,xn �→ yn},
then σ(xi) = yi for all i in 1..n, and σ(x) = x for every other variable. Using an infix

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime 71

Original PDDL representation

fly(?p - plane ?from ?to - loc) unload(?p - plane ?x - package)

load(?p - plane ?x - package)

Standard encoding

fly(p f ly,1,p f ly,2,p f ly,3)

unload(punload,1,punload,2)

load(pload,1,pload,2)

Set of parameters

{p f ly,1, p f ly,2, p f ly,3,
punload,1, punload,2, pload,1, pload,2}

Type Sharing

fly(pplane,1, ploc,1,ploc,2)

unload(pplane,1,ppackage,1)

load(pplane,1,ppackage,1)

Set of parameters

{pplane,1, ppackage,1, ploc,1, ploc,2}

Max parameters

fly(p1,p2,p3)

unload(p1,p2)

load(p1,p2)

Set of parameters

{p1, p2, p3}

Figure 2. Example of how parameters are shared in the various encodings for the planes domain. For each
encoding (standard, type sharing, max parameters), the corresponding set of parameters is shown below.

notation and given any expression τ containing variables, τσ is τ with all the contained
variables replaced, as specified by σ . For example, given a substitution σ = {p �→ q} and
the term representing an effect τ = (and (not (at ?p ?from)) (at ?p ?to)), the
result of τσ would be (and (not (at ?q ?from)) (at ?q ?to)).

3.4.1. Type Sharing

Although actions can have many parameters, they typically have few parameters of the
same type. Therefore, in this encoding each action parameter of a given type is replaced
by a new parameter that is shared by all the actions that need a parameter of that type.

Let Ce for each e ∈ E be the maximum number of parameters on all actions that
share type e. Then, variables introduced in (3) are substituted with

paramt
e,i ∀e ∈ E,∀i ∈ 1..Ce,∀t ∈ 1..h (8)

Example 1. If the PDDL action that has most parameters with the place type
is an action such as move(?p - person, ?from - place, ?to - place), then
Cplace = 2. Then, the previous Equation will introduce parameter variables paramt

person,1,
paramt

place,1 and paramt
place,2 for each time step.

Given an action template a ∈ AT , a parameter q ∈ Parametersa and its type Typeq ∈
E, let pos(q,a) = [z | z ∈ Parametersa,Typez = Typeq]. That is, the subsequence of
parameters of a that have the same type as q.

Then, we can define a substitution σa for every action a ∈ AT , such that

σa = {parama,q �→ parame,i |
q ∈ Parametersa,e = Typeq, i ∈ 1..|pos(q,a)| , pos(q,a)[i] = q} (9)

Finally, to Equation (7) is modified to use these new parameter variables

actiont = l(a)→ Pret
aσa ∧Eff t

aσa ∀a ∈ AT ,∀t ∈ 1..h (10)

Following Example 1, this will substitute all appearances on the Pre and Eff of ?p by
paramperson,1 and so on.

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime72

depots(3) driverlog(10) planes(8) zenotravel(9) total

RanTanPlan-SMT(LIA) 1 (4809.4) 7 (3174.8) 3 (4600.2) 8 (945.4) 19

SR-SAT T. Sharing 3 (1354.3) 10 (53.6) 8 (758.9) 4 (4049.6) 25

SR-SAT Max. Par 2 (2614.1) 10 (814.1) 0 (7200.0) 7 (2143.5) 19

SR-LCG T. Sharing 2 (3293.8) 7 (2631.1) 3 (4708.8) 7 (1633.2) 19

SR-LCG Max. Par 1 (5763.0) 0 (*) 0 (*) 4 (4087.1) 5

SR-SMT(BV) T. Sharing 3 (889.9) 10 (205.0) 8 (462.2) 9 (142.8) 30

SR-SMT(BV) Max. Par 0 (*) 0 (*) 0 (*) 0 (*) 0
Table 1. For each domain and configuration: left, number of solved instances; right, mean solving time in
seconds, counting timeouts as 7200 seconds. We only consider the subset of instances solved by some setting,
and the subset sizes are next to domain name. All instances for cells with (*) have run out of memory.

3.4.2. Max parameters

An alternative approach is to share parameters independently of their types. That is, in-
stead of dedicated parameter variables for each action, we will only declare n parame-
ters, where n is equal to the number of parameters of the action with most parameters.
Formally, n = max({|Parametersa| | a ∈ AT}). These parameters will be representing
different types depending on which action is executed. Therefore, the domain of each
one will be the union of all possible objects. We will again substitute variables in (3) by

paramt
q ∀q ∈ 1..n,∀t ∈ 1..h (11)

Now, let σa be a substitution for every action a ∈ AT , such that σa = {parama,q �→
paramq|q ∈ Parametersa}. This substitution will replace the mentioned parameters in
the action by the new declared parameters in (11). Finally, Equation (7) is also modified
to use these new variables

actiont = l(a)→ Pret
aσa ∧Eff t

aσa ∀a ∈ AT ,∀t ∈ 1..h (12)

To improve the encoding, if using a CSP solver as a backend, a table constraint can
be added to the ESSENCE PRIME model to limit the possible values of the parameters,
depending on the action chosen. Hence, once an action has been decided, the domains of
the parameters are restricted to its declared types.

4. Experimental Evaluation

In this section we evaluate the performance of the presented encodings by solving a set of
numeric planning problems coming from the third IPC [20]. These domains contain in-
teger numeric fluents without quantified preconditions, as the rest of the domains contain
features that we still do not support. These domains are: Zenotravel, Driverlog, Depots.
The Planes domain from [21] is also considered since it has an interesting numerical
component. Although some domains give various optimization criteria, we only consider
the problem of finding a valid plan minimizing the total makespan, i.e. number of steps.
As noted, our approach reformulates the PDDL description to the ESSENCE PRIME lan-
guage. In turn, this ESSENCE PRIME model is given as input to SAVILE ROW [10] to

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime 73

generate a SAT, SMT or CSP model. Finally we use Glucose [22], Chuffed1 and Boolec-
tor [23] as the backend solvers. We validated the usefulness of the SAVILE ROW prepro-
cessing steps suchs as common subexpression elimination [24,25] or symmetry breaking
capabilities by turning them off and determining that solving times were significantly
increased, at least by a factor of two. To compare the presented encodings with a fully
grounded approach, we use the linear planning as SMT encoding provided by RanTan-
Plan [21]. The experiments were run on a AMD Opteron R© 6272 Processor. Each process
was given a limit of 4GB of memory and 1 hour timeout.

We do not consider the basic encoding without compacting action parameters, as it
behaves worse than the two proposed improvements. Table 1 shows the number of solved
instances and average solving time for each domain and each considered approach. We
can observe that there are differences in the performance of the different approaches in
the different domains, but the SR-SMT approach is generally better than the other ones.

The Depots domain seems too big, as all the approaches are only able to return a
solution for a very few instances. If we look at the Driverlog, Zenotravel and Planes
domains, the different approaches differ between them. The lifted approaches are gener-
ally better than RanTanPlan which uses grounding, but Zenotravel is harder for the lifted
approaches except for SR-SMT(BV). The Type Sharing encoding is better in general for
all solving approaches and all considered problems. Even though the Max. Parameters
encoding generates fewer parameters, it uses the maximum possible domain size for each
parameter. This could imply that parameters with small domain are encoded using un-
necessarily large domains, and could be the reason why we have many memory outs
with Max. Par. We have observed that the action parameters of Zenotravel instances have
relatively balanced domain sizes in comparison with the other domains, explaining why
SR-SAT Max. Par does not behave worse than SR-SAT T. Sharing in Zenotravel.

Summing up, we observe that lifted encodings with T. Sharing are generally better
than the grounded encoding, and in particular SR-SMT(BV) T. Sharing is the overall
best approach. However, further experiments are needed to identify to what extent this
is due to using a lifted encoding. Other aspects such as the used SMT theory or the
reformulations performed by SAVILE ROW could also play an important role.

5. Conclusions and Future Work

We have presented two lifted approaches to encoding planning problems as CSP, and
experimented with different solving back ends via SAVILE ROW. One configuration out-
performed the fully grounded linear encoding of RanTanPlan, which also solves numeric
planning as SMT. The relative performance of the two encodings depends on the num-
ber of action parameters and their domain sizes. In future work, a preprocess could se-
lect an encoding based on problem structure. The encodings could also be improved by
considering the symmetries between successive application of different actions, or by
incorporating the application of various actions in the same step.

Acknowledgements This work is supported by UK EPSRC EP/P015638/1 and
EP/V027182/1, by the MICINN/FEDER, UE (RTI2018-095609-B-I00), by the French
Agence Nationale de la Recherche, reference ANR-19-CHIA-0013-01, and by Archimedes
institute, Aix-Marseille University.

1https://github.com/chuffed/chuffed

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime74

References

[1] Haslum P, Lipovetzky N, Magazzeni D, Muise C. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers; 2019.

[2] Helmert M. Concise finite-domain representations for PDDL planning tasks. Artificial Intelligence.
2009;173(5-6):503–535.

[3] Gnad D, Torralba A, Domınguez M, Areces C, Bustos F. Learning How to Ground a Plan - Partial
Grounding in Classical Planning. In: AAAI; 2019. p. 7602–7609.

[4] Areces C, Bustos F, Dominguez MA, Hoffmann J. Optimizing Planning Domains by Automatic Action
Schema Splitting. In: ICAPS; 2014. p. 11–19.

[5] Masoumi A, Antoniazzi M, Soutchanski M. Modeling Organic Chemistry and Planning Organic Syn-
thesis. In: GCAI; 2015. p. 176–195.

[6] Penberthy JS, Weld DS. UCPOP: A Sound, Complete, Partial Order Planner for ADL. In: KR’92; 1992.
p. 103–114.

[7] Bofill M, Espasa J, Villaret M. Efficient SMT Encodings for the Petrobras Domain. In: ModRef. Lyon,
France; 2014. p. 68–84.

[8] Correa AB, Pommerening F, Helmert M, Francès G. Lifted Successor Generation Using Query Opti-
mization Techniques. In: ICAPS; 2020. p. 80–89.

[9] Nightingale P, Rendl A. Essence’ Description. 2016;ArXiv:1601.02865 [cs.AI].
[10] Nightingale P, Akgün Ö, Gent IP, Jefferson C, Miguel I, Spracklen P. Automatically improving constraint

models in Savile Row. Artificial Intelligence. 2017;251:35–61.
[11] Biere A, Heule M, van Maaren H, Walsh T. Handbook of Satisfiability. vol. 326. IOS press; 2021.
[12] Rossi F, Van Beek P, Walsh T. Handbook of constraint programming. Elsevier; 2006.
[13] Ohrimenko O, Stuckey PJ, Codish M. Propagation via lazy clause generation. Constraints An Int J.

2009;14(3):357–391.
[14] Kautz HA, Selman B. Planning as Satisfiability. In: ECAI; 1992. p. 359–363.
[15] van Beek P, Chen X. CPlan: A Constraint Programming Approach to Planning. In: Sixteenth National

Conference on AI and Eleventh Conference on Innovative Applications of AI; 1999. p. 585–590.
[16] Miguel I, Jarvis P, Shen Q. Flexible graphplan. In: ECAI; 2000. p. 506–510.
[17] Rintanen J, Heljanko K, Niemelä I. Planning as Satisfiability: Parallel Plans and Algorithms for Plan

Search. Artificial Intelligence. 2006;170(12-13):1031–1080.
[18] Fox M, Long D. PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. Journal

of Artificial Intelligence Research (JAIR). 2003;20:61–124.
[19] Geffner H. Functional STRIPS: a more flexible language for planning and problem solving. In: Logic-

based artificial intelligence. Springer; 2000. p. 187–209.
[20] Long D, Fox M. The 3rd International Planning Competition: Results and Analysis. Journal of Artificial

Intelligence Research (JAIR). 2003;20:1–59.
[21] Bofill M, Espasa J, Villaret M. The RANTANPLAN planner: system description. The Knowledge

Engineering Review (KER). 2016;31(5):452–464.
[22] Audemard G, Simon L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In: IJCAI; 2009. p.

399–404.
[23] Brummayer R, Biere A. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. In: TACAS;

2009. p. 174–177.
[24] Nightingale P, Akgün Ö, Gent IP, Jefferson C, Miguel I. Automatically improving constraint models

in Savile Row through associative-commutative common subexpression elimination. In: CP; 2014. p.
590–605.

[25] Nightingale P, Spracklen P, Miguel I. Automatically improving SAT encoding of constraint problems
through common subexpression elimination in Savile Row. In: CP; 2015. p. 330–340.

J. Espasa et al. / Exploring Lifted Planning Encodings in Essence Prime 75

