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Abstract. We present a mathematical study of the emergence of phenotypic heterogeneity in
vascularized tumors. Our study is based on formal asymptotic analysis and numerical simulations
of a system of nonlocal parabolic equations that describes the phenotypic evolution of tumor cells
and their nonlinear dynamic interactions with the oxygen, which is released from the intratumoral
vascular network. Numerical simulations are carried out both in the case of arbitrary distributions
of intratumor blood vessels and in the case where the intratumoral vascular network is reconstructed
from clinical images obtained using dynamic optical coherence tomography. The results obtained
support a more in-depth theoretical understanding of the eco-evolutionary process which underpins
the emergence of phenotypic heterogeneity in vascularized tumors. In particular, our results offer a
theoretical basis for empirical evidence indicating that the phenotypic properties of cancer cells in
vascularized tumors vary with the distance from the blood vessels, and establish a relation between
the degree of tumor tissue vascularization and the level of intratumor phenotypic heterogeneity.
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1. Introduction. Spatial variability in the intratumoral concentration of oxy-
gen plays a pivotal role in the emergence and development of phenotypic heterogeneity
among tumor cells [3, 42, 68, 71, 92]. This is exemplified in a growing body of exper-
imental and clinical studies demonstrating that tumor cells with different phenotypic
properties occupy tumor regions which are characterized by different oxygen levels.
In particular, hypoxic parts of the tumor (i.e., regions where oxygen levels are below
normal physiological levels) are mainly populated by slow-dividing cells, which display
higher levels of hypoxia-inducible factors, such as HIF-1 [39, 57, 75, 84, 91, 93, 100].

On the other hand, fast-dividing cells with lower levels of expression of hypoxia-
inducible factors are primarily detected in well-oxygenated parts of the tumor tissue
(i.e., the tumor border in avascular tumors and the regions in the vicinity of blood
vessels in vascularized tumors) [39, 93, 84]. This impinges on anti-cancer treatment
by making it impossible for single biopsies to exhaustively portray the phenotypic
composition of the whole tumor tissue [18, 78, 99].

Previous empirical and theoretical work has suggested that this may be the out-
come of eco-evolutionary dynamics driven by interactions between oxygen molecules
and tumor cells [3, 35, 38, 62, 68, 69]. In particular, it has been hypothesized that
the nonlinear interplay between impaired oxygen delivery caused by structural ab-
normalities present in the tumor vasculature [34, 51, 52, 75, 95|, limited oxygen dif-
fusion and oxygen consumption by tumor cells may lead to the creation of distinct
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ecological niches in which tumor cells with different phenotypic characteristics can be
selected [3, 20, 36, 46, 49, 61].

In this paper, we use a spatially explicit phenotype-structured model to elu-
cidate the eco-evolutionary dynamics that underpin the emergence of phenotypic
heterogeneity in vascularized tumors. Building upon the modeling framework that
we developed in [64, 65], the model comprises a nonlocal parabolic partial differen-
tial equation (PDE) that governs the local phenotypic distribution of cells within
the tumor tissue. Similar PDEs modeling the evolutionary dynamics of space- and
phenotype-structured populations have recently received increasing attention from the
mathematical community—see, for instance, [1, 2, 10, 13, 14, 15, 19, 28, 47, 50, 70].

The equation for the evolution of the local phenotypic distribution of tumor cells is
coupled with a parabolic PDE that governs the local concentration of oxygen, whereby
a spatially heterogeneous source term captures the presence of intratumoral blood ves-
sels which bring oxygen into the tumor tissue. Different possible definitions of such a
source term are considered, including definitions that are derived from clinical images
obtained using dynamic optical coherence tomography (D-OCT) [82]—i.e., a nonin-
vasive imaging technique that enables the visualization of cutaneous microvasculature
in 2D tissue sections with a width of and at a depth of up to several millimeters [73].

Compared to previous related studies [64, 65], our model takes into account the
effect of movement and phenotypic variation of tumor cells and, in addition, it does
not rely on a quasi-stationary equilibrium assumption for the oxygen concentration.
Furthermore, while these previous studies are mainly focused on avascular tumors,
in this paper we consider vascularized tumors and systematically assess the impact
of the degree of tumor tissue vascularization on the level of phenotypic heterogeneity
of tumor cells, which is mathematically quantified through suitable diversity indices.
Moreover, numerical solutions of the model equations are here integrated with the
results of formal asymptotic analysis in order to achieve more robust and precise
biological conclusions. Taken together, these elements of novelty widen considerably
the range of application of the results of our study and support a more in-depth
theoretical understanding of the eco-evolutionary process which leads to the emergence
of phenotypic heterogeneity in vascularized tumors.

The paper is organized as follows. In section 2, we introduce the equations of
the model and the underlying modeling assumptions. In section 3, we carry out
a formal asymptotic analysis of evolutionary dynamics. In section 4, we present a
sample of numerical solutions that confirm the results of our formal analysis, and we
discuss their biological implications. Section 5 concludes the paper and provides a
brief overview of possible research perspectives.

2. Description of the model. We model the evolutionary dynamics of cancer
cells in a region of a vascularized tumor, which is approximated as a bounded set 2 C
R? with smooth boundary 02, where d = 1,2, 3 depending on the biological scenario
under study. The spatial position of the tumor cells is described by a vector r € €,
while the phenotypic state of the cells is modeled by a scalar variable z € [0, 1] C R,
which represents the normalized level of expression of a hypoxia-inducible factor. The
phenotypic distribution of tumor cells at time ¢ > 0 and position r is described by
the function n(t,r, z), while the function s(¢,r) describes the oxygen concentration at
time ¢ and position r.

At each time ¢, we define the local cell density and the local mean phenotypic
state of tumor cells, respectively, as
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(2.1) I(t,r) ::/O n(t,r,z)de and X(¢r):= I(tlr)/o zn(t,r,z)dz.

Moreover, we define the total cell number and the fraction of cells in the phenotypic
state z within the tumor, respectively, as

(2.2) N(t) ::/Ql(t,r) dr and F(t,x):= ﬁ/ﬂn(t,r,x)dr.

2.1. Dynamic of tumor cells. Tumor cells divide, die, move randomly (i.e.,
undergo undirected, spontaneous migration) and undergo spontaneous epimutations,
that is, heritable phenotypic changes that occur randomly due to nongenetic instabil-
ity and are not induced by any selective pressure [48]. The dynamic of the local cell
phenotypic distribution n(¢, r, z) is governed by the following boundary value problem
subject to a suitable initial condition:

on = R(z,I(t,r),s(t,r))n + ad2,n + BAm  inQx(0,1),
—— ——

cell division and death spontaneous random
epimutations movement
1
(2.3) I(t,r) ::/ n(t,r,z)dz,
0

8&6”('7 70) = 8;71(, ) 1) = 07

Ven-a=0 on 09,

where @ is the unit normal to 0 that points outward from 2.

The first diffusion term on the right-hand side of the nonlocal parabolic equa-
tion (2.3); describes the effect of changes in the local phenotypic distribution due
to spontaneous epimutations, which occur at rate a [23, 63]. The second diffusion
term models the effect of cell random movement and the parameter 5 represents the
cell motility. The function R(z,I(t,r),s(t,r)) models the fitness of tumor cells in
the phenotypic state x at position r and time ¢ under the local environmental con-
ditions given by the cell density I(¢,r) and the oxygen concentration s(t,r) (i.e., the
phenotypic fitness landscape of the tumor). In particular, we define the function R as

(2.4) R(x,I,s) = p(x, s) — k1.

Definition (2.4) models a biological scenario whereby tumor cells die at position r
and time ¢ due to competition for limited space at rate x I(¢,r), with the parameter
% being related to the local carrying capacity of the tumor. Moreover, the function
p(x, s(t, r)) is the division rate of cells in the phenotypic state x at position r and
time ¢ under the oxygen concentration s(t,r). Building upon the modeling strategy
presented in [64], we define the cell division rate as

(2.5) p(x,s) = f(x) + g(x, s).

In (2.5), the function g(z, s(t,r)) represents the rate of cell division via aerobic path-
ways under the oxygen concentration s(t,r), while the function f(z) models the rate
of cell division via anaerobic pathways. Based on the biological evidence and ideas
presented in [3, 8, 43, 61, 98], we let cells with a lower level of expression of the hypoxia-
inducible factor (i.e., cells in phenotypic states  — 0) be characterized by a higher
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rate of cell division via aerobic pathways, while we assume cells with a higher level of
expression of the hypoxia-inducible factor (i.e., cells in phenotypic states z — 1) to
be characterized by a higher rate of cell division via anaerobic pathways. Therefore,
we assume the functions f(x) and g(z, s) to be smooth and such that

(2.6) f(0)=0, f(x)>0 Vzel0,1),

(2.7) g(1,s) =0 Vse[0,00), 0yg(z,s)<0 V(x,s)e€(0,1] x (0,00).
Moreover, we make the following natural assumptions
(2.8) g(xz,0) =0 Vze|0,1], Js9(z,s)>0 V(z,s)€][0,1)x (0,00).

2.2. Dynamic of oxygen. We let oxygen enter the tumor through intratumoral
blood vessels, diffuse in space, decay over time and be consumed by tumor cells which
divide via aerobic pathways. In this scenario, the dynamic of the oxygen concentration
s(t,r) is governed by the following boundary value problem:

1
Ors = BsAps — s /g(x,s) n(t,r,z)der — Ags + q(t,r) in Q,
—— 0 ~—~ ——

(29) diffusion decay inflow from
consumption by tumor cells blood vessels

Ves-1=0 on 09,

subject to a suitable initial condition and coupled to the nonlocal parabolic equa-
tion (2.3);.

In the parabolic equation (2.9)1, the parameter (4 is the oxygen diffusion coef-
ficient, 75 is a conversion factor linked to the rate of oxygen consumption by tumor
cells, A5 is the natural decay rate of oxygen, and the source term ¢(t,r) models the
influx of oxygen from the intratumoral blood vessels. We let w C Q be the set of
points within the tumor tissue which are occupied by blood vessels and, since we do
not consider the formation of new blood vessels, we assume w to be given and remain
constant in time. Therefore, we use the following definition

(2.10) q(t,r) .= S(t,r) 1,(r),

where 1, is the indicator function of the set w and S(¢,r) is the rate of inflow of
oxygen through intratumoral blood vessels at position r € w and time ¢.

Remark 2.1. In this paper, we do not take into account the effect of mechanical
interactions between tumor cells and blood vessels and we do not allow tumor cell to
extravasate. Therefore, focusing on the case of intratumoral blood vessels of small
size, we implicitly make the following simplifying assumptions: (i) a point r can be
simultaneously occupied by blood vessels and tumor cells; (ii) cell movement is not
affected by the presence of blood vessels. Therefore, we do not impose any condition
on n(t,r,z) in w.

3. Formal analysis of evolutionary dynamics. In order to obtain an analyt-
ical description of the evolutionary dynamics of tumor cells, in this section we carry
out a formal asymptotic analysis of the behavior of the solution to the problem given
by (2.3) subject to a suitable initial condition, under the assumption

(3.1) s(t,r) = s™(r),
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where s°°(r) is a given smooth positive function. We note that assumptions (2.6)—(2.8)
ensure that

(3.2) 0<p(z,s) <oo V(z,s)€0,1] x (0,00).

Moreover, focusing on an intratumor phenotypic fitness landscape R(a:, I, s°°) defined
according to (2.4) with a single peak at each position r and time ¢, we let the cell
division rate p be a smooth function that satisfies the additional concavity assumption
(3.3) d2.p(x,s) <0 VY(x,s)€[0,1] x (0,00).

Typical values of the epimutation rate « are one or two orders of magnitude larger
than the rate of somatic DNA mutation [27, p. 45], which is about 10712571 [29],
and typical values of the cell diffusivity 3 are about 10712 em?2s~! [88, 96]. Hence,
spontaneous epimutations and random cell movement occur on slower time scales
compared to cell division and death. To capture this fact, we introduce a small
parameter € > 0 and assume both o :=¢? and 3 := 2.

Following previous studies on the long-time behavior of nonlocal PDEs and in-
tegrodifferential equations modeling the dynamics of continuously structured popu-
lations [12, 22, 25, 26, 50, 66, 70, 77], we use the time scaling ¢ — é in the balance
equation (2.3); complemented with (3.1), which gives the following nonlocal PDE for
the local cell phenotypic distribution n(é, r,z) =n.(t,r,x)

(3.4) e0mn. = R(z,I.(t,r),s®(r)) ne + 2 02,n. + €° Apne.

Considering the asymptotic regime € — 0 is equivalent to studying the behavior of
ne(t,r,x) over many cell generations and in the case where spontaneous epimutations
and random cell movement induce small changes in the local phenotypic distribution.

Moreover, in agreement with much of the previous work on the mathematical
analysis of the evolutionary dynamics of continuously structured populations [76], we
consider the case where at time ¢ = 0 tumor cells that occupy the same position are
mainly in the same phenotypic state; that is, at every position r the initial local cell
phenotypic distribution n.(0,r,x) is a sharp Gaussian-like function with mean value
z%(r) and integral I.(0,r). Hence, we assume

(3.5) ne(0,r,z) = euero)/e

with u?(r, z) being a smooth, uniformly concave function of z for every r € € such
that

(3.6) 0<I.(0,r) < o0
and
ul(r,z)/e _*
(3.7) eus(ma)/ —=1(0,x) g0y () VY r€Q

in the sense of measures, where dzo(y)() is the Dirac delta distribution centered at
20(r).

Building upon the method presented in [12, 26, 66, 76, 77], we make the real
phase WKB (Wentzel-Kramers—Brillouin) ansatz [11, 30, 32]

(3.8) ne(t,r,z) = eteBra)/e,
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Substituting this ansatz into (3.4) and using
One = e "nedue, Vine = 'n.Viue, 0Opn. =e 'n.dyue,
1 2 1 2 1 2 1. a2
Aprng = (5_ \Vru6|> Ne +& nApue, 0O5,ne = (5_ 8Iu€> ne + e n.05, U,
we obtain

(3.9) Oty = R(x,[a(t,r), sw(r)) + (Opue)? + |Vru5|2 +¢e (331% + Arug)

subject to the initial condition uc(0,r,z) = u2(r, z), with v2(r, z) given by (3.5).

Letting ¢ — 0 in (3.9) we formally obtain the following equation for the leading-
order term u of the asymptotic expansion for u.:

(3.10) Owu = R(z, I(t,r),s(r)) + (0pu)® + |Veul? in Q x (0,1),

where I(¢,r) is the leading-order term of the asymptotic expansion for I.(¢,r).

Since u? is a uniformly concave function of x and, under assumption (3.3), R is a

concave function of z as well, we expect u to be a concave function of x [12, 70, 77].
Therefore, we formally have that there exists a unique locally dominant phenotypic

state Z(t,r), which is such that u(t,r,Z(t,r)) = m[ax] u(t,r,z) and
zc|0,1

(3.11) Ozu(t,r,z(t,r)) = 0.

Moreover, (3.2) and (3.6) ensure that 0 < I.(¢,r) < co and, therefore, letting ¢ — 0
in (3.8) gives the constraint

(3.12) u(t,r,z(t,r)) =0 V (t,r) € (0,00) x 2
Evaluating (3.10) at z = Z(¢,r) and using (3.11) along with (3.12) yields
(3.13) R(z(t,r),I(t,r),s>(r)) =0.
Differentiating (3.11) with respect to ¢ yields

Orpu(t, v, Z(t, 1)) + 02, u(t, v, z(t,r)) & Z(t,r) = 0,

and, using the fact that 92 u(t,r,z(t,r)) < 0, we can formally rewrite the above
equation as

(3.14) Oy (t,r) = —(0% u(t,r,z(t,r)) *Ospu(t, v, Z(t,1)).

Furthermore, differentiating both sides of (3.10) with respect to x, evaluating the
resulting equation at = Z(t,r), and using (3.11) along with (3.12) gives

dwul(t, T, Z(t,r)) = 9, R(Z(t,r), I(t,r), s (r)).

Substituting the latter equation into (3.14) we formally obtain the following equation
for Z(t,r):

(3.15) O (t,r) = —(0%,u(t,r,z(t,r))) "L 0. R(Z(t,r), I(t,1), s (r)).
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Combining (3.13) and (3.15) we find that the steady-state values of I(¢,r) and
Z(t,r), say, I°°(r) and z°°(r), need to satisfy

R(z%(r), I°(r), s> (r)) = 0,
9o R(z%(r), I (r), 5(r)) = 0.

Substituting (2.4) into the above system of equations, we formally obtain

p(F°(r), 5 (r)) — KI®(r) = 0, °(r) = %p(i‘m(r), 5 (r)),
(3.16) :} _
Dup(z(r), s(r)) =0, 7(r) = ar%ronaxzi(x, 57(r)).

Taken together, these formal results indicate that, in the framework of the assumptions
considered in this section, we can expect the local cell phenotypic distribution at
steady-state n®(r, x) to be of the form

(3.17) n>(r,z) = I7°(r) 0z00 (r)(T),

with the local cell density I°°(r) and the locally dominant phenotypic state Z°°(r)
both given by (3.16). This also implies that the local mean phenotypic state of the
tumor cells at steady-state, say, X*°(r), coincides with z°°(r), that is,

1 1
X>(r) := FT(I‘)/O xn™(r,z)dz = °°(r).

4. Numerical solutions. In this section, we construct numerical solutions to
the problem given by (2.3) and (2.9) subject to suitable initial conditions. First,
we describe the setup of numerical simulations and the model parameterization (see
section 4.1). Then, we present a sample of numerical solutions that confirm the re-
sults of the formal analysis of evolutionary dynamics carried out in section 3. We
consider both the case of an arbitrary distribution of blood vessels (see section 4.2)
and the case where the blood vessel distribution is reconstructed from clinical im-
ages obtained via D-OCT (section 4.3). Finally, we use numerical solutions of the
model equations to assess the impact of tumor tissue vascularization on intratumor
phenotypic heterogeneity (see section 4.4).

4.1. Setup of numerical simulations and model parameterization. Build-
ing upon the modeling strategy presented in [64], we define the functions f(z) and
g(x, s) that compose the cell division rate p(z, s) as

S
u+s

(4.1) fl@):=¢p [1 - (1- x)2] and g(z,s):=7 (1-27), ¢<n9.

In (4.1), the parameters ¢ > 0 and 7 > 0 model the maximum rate of cell division via
anaerobic and aerobic pathways, respectively, while ;> 0 is the Michaelis-Menten
constant of oxygen. The assumption ¢ < v is based on empirical evidence indicating
that higher levels of expression of hypoxia-inducible factors correlate with lower rates
of cell division [16, 17, 61]. Definitions (4.1) satisfy the general assumptions (2.6)—(2.8)
and (3.3) and allow for a detailed quantitative characterization of the evolutionary
dynamics of tumor cells based on the formal results presented in section 3. Moreover,
they lead to a phenotypic fitness landscape of the tumor R(zx, I, s) that is close to the
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approximate fitness landscapes which can be inferred from experimental data through
regression techniques [55, 74, 90]. In fact, substituting (4.1) into (2.5), after a little
algebra we find

(4.2) p(x,s) = a(s) = b(s) (x — h(s))*,
where
2
s ) ¥
4.3) a(s):= + , b(s):=p+ , s) 1=
(4.3) a(s) L P (s):==¢ Yts o
n+s u+s

Here, a(s(t,r)) is the maximum fitness, h(s(t,r)) is the fittest phenotypic state, and
b(s(t,r)) is a nonlinear selection gradient at position r and time ¢ under the environ-
mental conditions corresponding to the oxygen concentration s(t,r).

We let the rate of inflow of oxygen through intratumor blood vessels to be constant
in time and the same for all vessels; i.e., we define the function S(¢,r) in (2.10) as

(4.4) S(t,r) = S, > 0.

Moreover, we consider different definitions of the set w which represent different dis-
tributions of the blood vessels, as detailed in the next subsections. Unless otherwise
explicitly stated, numerical simulations are carried out using the parameter values
listed in Table 1, which are chosen to be consistent with the existing literature.

We define © := [0,L] x [0,L] and choose L = 0.5. Under the parameter choice of
Table 1, this value of L is equivalent to considering a square region of a 2D cross-section
of a vascularized tumor of area 2.5 x 1073 em?. Moreover, we assume t € [0, T], with
the final time T such that the numerical solutions are sufficiently close to equilibrium
at the end of simulations. Finally, we use the notation r = (r1,r2).

We complement (2.3) and (2.9) with the following initial conditions:

(z—0

(4.5) n(0,r,x) = 10% e~ - VreQ and s(0,r) = Sp 1,(r),

where Sy = 6.3996 x 10~ gem ™2 [54]. The initial conditions (4.5) correspond to a
biological scenario whereby at time ¢ = 0 tumor cells are uniformly distributed across
Q) and are mainly in the intermediate phenotypic state = 0.5, while the oxygen is
concentrated in correspondence of the blood vessels.

TABLE 1
Parameter values used in numerical simulations.

Parameter Biological meaning Value Reference
m Michaelis—Menten constant of oxygen 1.5 x 107 gem—2 [20]
B Cell motility 10718 em?2 st [88, 96]
Bs Oxygen diffusivity 2x107% em?2s~1 [45]
v Maximum rate of cell division via aerobic 1x 1074 st [20, 97]

pathways
K Rate of cell death due to competition for space 2 x 10713 em? s~ cells™1  [59, 64]
Ns Conversion factor for cell consumption of oxygen 2 x 10711 gcells—1! [20, 64]
« Rate of spontaneous phenotypic changes 10~13 s—1 [27, 29]
As Rate of natural decay of oxygen 2.78 x 1076 s~ 1 [24]
¢ Maximum rate of cell division via anaerobic 1x 1075 st [43]
pathways
Sy Constant rate of inflow of oxygen through 6.3996 x 10~7 gem 2571 [54]

blood vessels
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Numerical solutions are constructed using a uniform discretization of the square
[0,L] x [0,L] as the computational domain of the independent variable r and a uni-
form discretization of the set [0, 1] as the computational domain of the independent
variable x. We also discretize the interval [0, T] with a uniform step. The method
for constructing numerical solutions is based on an explicit finite difference scheme in
which three-point and five-point stencils are used to approximate the diffusion terms
in z and r, respectively, and an explicit finite difference scheme is used for the reaction
terms [58]. All numerical computations are performed in MATLAB.

4.2. Numerical solutions for arbitrary blood vessel distributions. Sub-
stituting (4.2) into (3.16) gives the following expressions for the local cell density and
the locally dominant phenotypic state at steady-state

e’} — JOO( 0 _ a(soo(r)) —00 — 500( 00 _ ')
(4.6) I®(r)=1%°(s>(r)) = — and Z°(r) = z*°(s*(r)) = h(s™(r)),
where a(s*™) and h(s*) are the maximum fitness and the fittest phenotypic state
defined according to (4.3).

In agreement with the results of the formal analysis of evolutionary dynamics
carried out in section 3 (cf. the expression (3.17) of the local cell phenotypic distri-
bution at steady-state), the numerical results displayed in Figure 1 show that the cell
density I(T,r) and the mean phenotypic state X (T,r), which are computed using
the numerical solution n(T,r,z) of (2.3), coincide with I°°(r) and Z°°(r), which are
computed through (4.6) choosing s*(r) = s(T,r, z), where s(T,r,x) is the numeri-
cal solution of (2.9). Moreover, the numerical solution n(T,r, z) is concentrated as a
sharp Gaussian-like function (data not shown) with maximum at the mean phenotypic
state X (T,r) (vid. insets in the fourth panels of Figure 1).

The numerical results of Figure 1, which refer to the blood vessel distribution
displayed in the first panel of the figure, indicate that the oxygen concentration is
maximal in the vicinity of the blood vessels and decreases monotonically with the
distance from the blood vessels. Accordingly, the cell density is higher in the re-
gions in close proximity to the blood vessels and the mean phenotypic state increases
from values close to z = 0 (i.e., low levels of expression of the hypoxia-inducible fac-
tor) to values close to x = 1 (i.e., high levels of expression of the hypoxia-inducible
factor) moving away from the blood vessels. These results communicate the biologi-
cal notion that spatial inhomogeneities in the distribution of oxygen—which emerge
spontaneously as a result of the nonlinear interplay between the spatial distribution
of the blood vessels, the reaction-diffusion dynamics of the oxygen, and the consump-
tion of oxygen by the cells—create environmental conditions that favor the selection
of cells with different phenotypic characteristics in different regions of vascularized
tumors, thus leading to the emergence and development of intratumor phenotypic
heterogeneity.

4.3. Numerical solutions for blood vessel distributions reconstructed
from clinical images. The plots in Figure 2 demonstrate that the qualitative behav-
ior of the numerical results in Figure 1 remains unchanged when spatial distributions
of the intratumor blood vessels reconstructed from clinical images are considered.
These are the plots of the oxygen concentration s(T,r), the cell density I(T,r), and
the mean phenotypic state X (T, r) obtained by solving numerically the problem given
by (2.3) and (2.9) subject to the initial conditions (4.5), with w defined according to
the distributions of blood vessels provided by the clinical images displayed in the first
column of the figure, which were obtained via D-OCT and correspond to three cross
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Fic. 1. First row. Plots of the oxzygen concentration s(T,r) (second panel), the cell density
I(T,r) (third panel), and the mean phenotypic state X (T,r) (fourth panel) obtained by solving
numerically the problem given by (2.3) and (2.9) subject to the initial conditions (4.5), with the
set w corresponding to the parts of Q2 highlighted in red in the first panel and with the parameter
values listed in Table 1. Second row. Plots of the oxygen concentration s(T,r1,0.4) (second panel),
the cell density I(T,r1,0.4) (third panel, blue line), and the mean phenotypic state X (T,r1,0.4)
(fourth panel, blue line). The plot of the ozygen distribution s(T,r) is displayed in the first panel,
where the white, dashed line highlights the 1D cross-section corresponding to ro = 0.4. The red
lines in the third and fourth panels highlight I°°(r) and T°°(r) computed through (4.6) choosing
s°(r) = s(T,r,z). The inset in the fourth panel displays the plot of the mean phenotypic state
X(T,71,0.4) (blue line) and of the mazimum point of n(T,r1,0.4,z) (green line). Third and fourth
rows. Same as the second row but for ro = 0.2 (third row) and ro = 0.07 (fourth row). The oxygen
concentration s(T,r) is in units of 10~7 gem ™2, the cell density I(T,r) is in units of 108 cellscm ™2,
and the spatial variables r1 and ro are in units of cm.

sections of a malignant melanoma at a depth of 0.02 cm (top panel), 0.03 cm (central
panel) and 0.04 cm (bottom panel) from the surface of the epidermis [82, Fig. 5].

These results also indicate that increasing levels of tumor vascularization (from
top to bottom panel in the first column) lead to a more homogeneous spatial distri-
bution of oxygen (second column), which correlates with a more uniform cell density
(third column) and a less diverse mean phenotypic state (fourth column). This sug-
gests the existence of a relationship between the level of tumor tissue vascularization
and the level of intratumor phenotypic heterogeneity, which is systematically investi-
gated in the next subsection.
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Fic. 2. First row. Plots of the oxzygen concentration s(T,r) (second panel), the cell density
I(T,r) (third panel), and the mean phenotypic state X(T,r) (fourth panel) obtained by solving
numerically the problem given by (2.3) and (2.9) subject to the initial conditions (4.5), with the set
w reconstructed from the blood vessel distribution provided by the clinical image displayed in the first
panel, where the intratumoral vascular network is highlighted in red, and with the parameter values
listed in Table 1 except for ns = 2 x 10710 gcell~1. Second and third rows. Same as the first row
but for a different clinical image. Clinical images are taken from [82, Figure 5(d-f)] under Creative
Commons licence https://creativecommons.org/licenses/by-nc/4.0/. These images correspond to
three cross sections of a malignant melanoma at a depth of 0.02 ¢cm (first row), 0.03 cm (second
row) and 0.04 cm (third row) from the surface of the epidermis. The ozygen concentration s(T,r)
is in units of 1077 gem™2, the cell density I(T,r) is in units of 108 cellscm™2, and the spatial
variables r1 and ro are in units of cm.

4.4. Numerical solutions to assess the impact of tumor tissue vascu-
larization on intratumor phenotypic heterogeneity. In order to systematically
assess the impact of tumor tissue vascularization on the level of intratumor pheno-
typic heterogeneity, we carry out numerical simulations considering first increasing
numbers of regularly distributed blood vessels, which correspond to increasing values
of the vascular density ¢ defined as

]
(4.7) 0= 1qp
and then different random distributions of blood vessels characterized by increasing
levels of vessel clustering for a fixed vascular density. We quantify the level of in-
tratumor phenotypic heterogeneity through the following continuum versions of the
equitability index E(t) (defined as a rescaled Shannon diversity index) and the Simp-
son diversity index D(t) [86, 87]

-1

(4.8) E(t):= —/0 F(t’fo)glf])\%(g(t’x) dz and D(t):= </0 F2(t,z) dx) ,
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where the total cell number N(t) and the fraction F(¢,z) of cells in the phenotypic
state & within the tumor are defined according to (2.2).

The results obtained varying the vascular density ¢ are summarized by the plots
in Figure 3, which display the equitability index and the Simpson diversity index at
the end of numerical simulations as functions of . Both diversity indices are relatively
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Fia. 3. Plots of the equitability index E(T) and the Simpson diversity index D(T) for different
definitions of the set w characterized by different values of the vascular density o defined according
to (4.7). The equitability index and the Simpson diversity index are computed numerically through
formulas (4.8) using the numerical solutions of the problem given by (2.3) and (2.9) subject to the
initial conditions (4.5), with the parameter values listed in Table 1. The insets display sample plots
of the ozygen distributions s(T,r) (top panel) and the mean phenotypic state X (T,r) (bottom panel)
corresponding to different values of 0. The Simpson diversity index D(T) is in units of 10%, the
vascular density o is in units of 10~%, the oxygen concentration s(T,r) is in units of 10~7 gem ™2,
and the spatial variables r1 and ro are in units of cm.
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low for small values of the vascular density, increase and reach a maximum value for
intermediate values of the vascular density—notice that both E(T) and D(T) attain
their maximum at the same value of p—and then decrease again for high values of
the vascular density. This is due to the fact that, as shown by the insets in Figure
3, for low blood vessel densities the oxygen concentration s(T,r) is uniformly low
throughout Q and, therefore, the mean phenotypic state X (T, r) is uniformly close to
x =1 (cf. the insets related to ¢ = 0.4 x 1073); for intermediate blood vessel densities
the oxygen concentration is more heterogeneously distributed and, as a consequence,
the mean phenotypic state is more diverse (cf. the insets related to o = 2.5 x 1073);
for high blood vessel densities the oxygen concentration is relatively high throughout
the tumor tissue and the mean phenotypic state is on average close to x = 0 (cf. the
insets related to o = 8.1 x 1073).

The results obtained varying the level of blood vessel clustering for a fixed vascular
density p are summarized by the plots in Figure 4, which display the oxygen distri-
bution s(T,r) and the mean phenotypic state X (T,r), along with the corresponding
fraction of cells in each phenotypic state F(T, z) and diversity indices E(T) and D(T).
These results refer to an intermediate value of ¢ that corresponds to the maximum
of the equitability index and the Simpson diversity index displayed in Figure 3 (i.e.,
0 =25 x 10~*). Both diversity indices decrease as the level of blood vessel clustering
increases (cf. the values of E(T) and D(T) in the insets of the panels in the third
column of Figure 4). In fact, for lower levels of blood vessel clustering the oxygen
concentration s(T,r) is more heterogeneously distributed and, as a consequence, the
mean phenotypic state X (T,r) is more diverse and the cell phenotypic distribution
across ) given by F(T,z) is rather uniform (cf. the plots in the first row of Figure
4). On the other hand, for higher levels of blood vessel clustering, the oxygen con-
centration is relatively high in the regions in close proximity to the clusters of blood
vessels and relatively low throughout the rest of tumor tissue. As a result, the mean
phenotypic state is mostly close to z = 1 with the exception of the regions near the
clusters of blood vessels where it is close to x = 0, and the cell phenotypic distribution
across the whole tumor is approximatively bimodal, with a high peak at x =1 and a
low peak at 2 = 0 (cf. the plots in the third row of Figure 4).

5. Conclusions and research perspectives. Intratumor phenotypic hetero-
geneity poses a major obstacle to anti-cancer therapy [18, 23, 42, 60, 69, 85]. It
has been hypothesized that the emergence of phenotypic heterogeneity among can-
cer cells within malignant tumors is an eco-evolutionary process driven by spatial
variability in the distribution of abiotic factors, which supports the creation of dis-
tinct ecological niches whereby cells with different phenotypic characteristics can be
selected [3, 53, 68, 92]. In particular, oxygen is one of the key abiotic components
of the tumor microenvironment that are implicated in the emergence of intratumor
phenotypic heterogeneity [42, 64, 92].

In this paper, we have undertaken a mathematical study of the eco-evolutionary
dynamics of tumor cells within vascularized tumors. Our study is based on formal
asymptotic analysis and numerical simulations of a nonlocal PDE model that describes
the phenotypic evolution of tumor cells and their nonlinear dynamic interactions with
the oxygen, which is released from the intratumoral vascular network.

Our formal analytical results recapitulate the outcomes of previous theoretical
and experimental studies on intratumor phenotypic heterogeneity [5, 35, 42, 49] by
providing a mathematical formalization of the idea that local variations in the oxygen
concentration bring about local variations in the phenotypic fitness landscape of the
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Fic. 4. First row. Plots of the oxygen distribution s(T,r) (first panel), mean phenotypic state
X(T,r) (second panel), and fraction of cells in each phenotypic state F(T,x) defined via (2.2)
(third panel), for a definition of the set w corresponding to a random distribution of blood vessels
characterized by vascular density o = 25 x 10~% and a low level of blood vessel clustering. The values
of the corresponding equitability index E(T) and Simpson diversity index D(T), which are computed
numerically through formulas (4.8), are provided in the inset of the third panel. Second and third
rows. Same as the first row but for a definition of the set w corresponding to an intermediate
level (second row) and a high level (third row) of blood vessel clustering. The oxygen concentration
s(T,r) is in units of 1077 gem™2, the spatial variables 1 and v are in units of cm, and the Simpson
diversity index D(T) is in units of 10%.

tumor, which ultimately result in a heterogeneous intratumor phenotypic composition.
Numerical simulations of the model corroborate this conclusion and show that local
variations in the oxygen concentration, which are orchestrated by nonlinear dynamic
interactions between tumor cells and oxygen, promote the selection of cells in different
phenotypic states within the tumor depending on the distance from the blood vessels.
In particular, our results offer a theoretical basis for the biological evidence that
regions of the tumor tissue in the vicinity of blood vessels are densely populated
by proliferative phenotypic variants, while poorly oxygenated regions are sparsely
populated by hypoxic phenotypic variants [75, 84, 92, 93].
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Furthermore, the results of numerical simulations of the model establish a relation
between the degree of tissue vascularization and the level of intratumor phenotypic
heterogeneity, measured either as the equitability index or the Simpson diversity in-
dex. This supports the idea that maps of the intratumor vascular network, which can
be reconstructed from clinical images obtained via noninvasive imagine techniques,
such as D-OCT [56, 82] and many others [6, 34, 44, 72, 75], could be clinically rele-
vant, as they could be used to inform targeted anti-cancer therapy [68, 79, 80, 94].

Whilst we carried out numerical simulations considering a region of tumor tissue
of area 2.5 x 1073 cm?, which was chosen in agreement with clinical images provided
in [82], and using parameter values that are derived from specific cancer data sets,
given the robustness and structural stability of the results of formal asymptotic analy-
sis presented here, we expect the conclusions of this study about the emergence of
substantial intratumor phenotypic heterogeneity driven by eco-evolutionary processes
at the cellular scale to hold when larger tumor regions and different cancer data sets
are considered.

We conclude with a brief overview of possible research directions. In order to dis-
entangle and quantify the impact of different evolutionary parameters on the emer-
gence and development of intratumor phenotypic heterogeneity, it would be useful
to have exact solutions of (2.3) in the case where the intratumor phenotypic fitness
landscape is defined according to (2.4) and (4.2). This could be done by generalizing
the method developed in [4, 21, 63] to construct exact solutions of nonlocal parabolic
PDEs modeling the dynamics of well-mixed phenotype-structured populations to the
case where spatial structure is included.

In addition, along the lines of [83], further investigations on a possible link between
the topology of tumor vasculature and the level of intratumor phenotypic heterogene-
ity could be undertaken. Moreover, building upon the ideas presented in [8, 9], it
would be interesting to study the effect on the evolutionary dynamics of tumor cells
of fluctuations in the rate of oxygen inflow, which are known to influence intratumor
phenotypic heterogeneity [40, 68, 81]. It would also be interesting to include the effect
of temporal changes in the spatial distribution of intratumoral blood vessels, which
would make it possible to explore the influence of angiogenesis on the eco-evolutionary
dynamics of tumor cells in vascularized tumors. In this regard, it is a known fact that
cancer cells in hypoxic conditions produce and secrete proangiogenic factors which
induce the formation of new blood vessels departing from existing ones.

While the focus of this work has been on the impact of spatial variability in
the oxygen concentration on the emergence of intratumor phenotypic heterogeneity,
building on [31], it would be interesting to extend the modeling framework used here
to incorporate the effect of nonlinear dynamic interactions between tumor cells and
other abiotic factors, such as glucose and lactate, that are known to influence the
levels of intratumor phenotypic heterogeneity [36, 37, 41, 53, 67, 71, 81, 100].

Furthermore, although well suited to modeling the dynamics of large cell popu-
lations, PDE models like that considered here cannot capture adaptive phenomena
that are driven by stochasticity in the evolutionary paths of single cells. Therefore,
it would also be interesting to complement the results of our study with numerical
simulations of corresponding individual-based models which track the evolutionary
trajectories of single cells across a space of discrete phenotypic states, as similarly
done in [7, 21, 23, 89]. This would make it possible to have a more precise description
of the phenotypic evolution of tumor cells in cases where cell numbers are relatively
low and, therefore, stochastic fluctuations in single-cell phenotypic properties will
have a stronger impact on intratumor phenotypic heterogeneity.
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ally, we plan to extend the model considered here to carry out a mathematical
f the eco-evolutionary dynamics of tumor cells in metastatic tumors. In this
a modeling approach analogous to the one presented in [33], whereby different

metastatic sites are represented as distinct compartments and the metastatization

process

is modeled by allowing tumor cells to transition from one site to another

through the intratumor blood vessels seen as entry/exit locations, may prove useful.
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