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ABSTRACT
We consider how the trajectory of an interstellar precursor mission would be affected by
the gravity of the Sun in Newtonian and Milgromian dynamics (MOND). The solar gravity
is ≈50 per cent stronger in MOND beyond a distance of ≈7000 astronomical units, the
Sun’s MOND radius. A spacecraft travelling at 0.01 of light speed reaches this distance after
11.1 years. We show that the extra gravity in MOND causes an anomalous deceleration that
reduces its radial velocity by ≈3 cm s−1 and the two-way light travel time from the inner
Solar System by ≈0.1 s after 20 years. A distinctive signature of MOND is that the gravity
from the Sun is not directly towards it. This is due to the nonlinear nature of MOND and the
external gravitational field from the rest of the Galaxy, which we self-consistently include in
our calculations. As a result, the sky position of the spacecraft would deviate by up to 0.2 mas
over 20 years. This deviation is always in the plane containing the spacecraft trajectory and
the direction towards the Galactic centre. By launching spacecraft in different directions, it is
possible to test the characteristic pattern of angular deviations expected in MOND. This would
minimize the chance that any detected anomalies are caused by other processes like drag from
the interstellar medium. Such confounding factors could also be mitigated using an onboard
accelerometer to measure non-gravitational forces. We briefly discuss how the gravity theories
could be conclusively distinguished using a Cavendish-style active gravitational experiment
beyond the Sun’s MOND radius.

Key words: gravitation – space vehicles – proper motions – ISM: general – solar neighbour-
hood – dark matter.

1 IN T RO D U C T I O N

The Breakthrough Starshot initiative has prompted a closer look
at the challenges involved in reaching another star (Merali 2016).
Along the way, much exciting science will become possible, for
instance dramatically improved trigonometric parallaxes to stars
across the Local Group (Jaffe et al. 1979; Etchegaray 1987). Here,
we focus on the fact that several thousand astronomical units
(several kAU) from the Sun, its gravitational field is weaker than
the gravity typically experienced by stars and gas in the outskirts of
galaxies. Such matter behaves in a very unusual way: galaxy rotation
curves are asymptotically flat instead of following the expected
Keplerian decline beyond the extent of their luminous matter (e.g.
Babcock 1939; Rubin & Ford 1970; Rogstad & Shostak 1972;
Roberts & Whitehurst 1975).

These acceleration discrepancies are conventionally attributed to
haloes of cold dark matter surrounding each galaxy (Ostriker &
Peebles 1973). However, this has led to several problems (Kroupa
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2012, 2015). In the Local Group, the most serious are the existence
of satellite galaxy planes (Pawlowski 2018) and high-velocity
dwarfs (Banik & Zhao 2018c). Both problems are rather immune
to baryonic physics because they involve lengthscales of several
hundred kpc and relate to the motion of galaxies as a whole.
This was recently demonstrated for the satellite plane problem by
approximately including the main way in which baryonic physics
affects it (Pawlowski et al. 2019). A highly anisotropic satellite
system also exists around Centaurus A (Müller et al. 2018).

These problems might indicate that galaxies are actually governed
by Milgromian dynamics (MOND; Milgrom 1983). In MOND, the
gravitational field strength g at distance r from an isolated point mass
M transitions from the Newtonian GM/r2 law at short range to

g =
√

GMa0

r
for r �

r
M︷ ︸︸ ︷√
GM

a0

. (1)

MOND introduces a0 as a fundamental acceleration scale of nature
below which the deviation from Newtonian dynamics becomes
significant. Empirically, a0 ≈ 1.2 × 10−10 m s−2 to match galaxy
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rotation curves (Begeman, Broeils & Sanders 1991). With this
value of a0 , MOND continues to fit galaxy rotation curves very well
using only their directly observed baryonic matter (Kroupa et al.
2018; Li et al. 2018). Moreover, it is likely that MOND can explain
the Milky Way and Andromeda satellite planes as having formed
out of tidal debris expelled during a past interaction between these
galaxies (Banik, O’Ryan & Zhao 2018).

MOND was originally developed for non-relativistic systems. A
relativistic generalization was eventually found (TeVeS, Bekenstein
2004), but this particular model has been falsified by the simulta-
neous detection of gravitational waves and their electromagnetic
counterpart (Virgo & LIGO Collaborations 2017). While these
results severely constrain relativistic generalizations of MOND,
they certainly do not rule out all possible ways to make MOND
consistent with Lorentz invariance (Sanders 2018). Indeed, the latter
work provides a simple way to do exactly that.

Although MOND was designed with galaxy data in mind, its
central prediction is that departures from Newtonian dynamics arise
below a particular acceleration scale rather than e.g. beyond a partic-
ular distance (Famaey & McGaugh 2012, fig. 10). Thus, MOND can
be tested in a rather small system if it has a sufficiently low mass. In
particular, the MOND radius of the Sun is rM = 7 kAU (equation 1).
This is much smaller than the 268 kAU distance between the Sun
and its nearest star, Proxima Centauri (Gaia Collaboration 2018).
Therefore, interstellar missions will necessarily probe the MOND
regime.

It has already been pointed out that such long-distance missions
could be used to constrain modified gravity theories (Christian &
Loeb 2017). Those authors considered a spacecraft travelling at
0.2 c, where c is the speed of light in vacuum. Here, we consider an
interstellar precursor mission (IPM) travelling at only 0.01 c. It is
not useful to launch such a mission specifically to reach our nearest
stellar system as this would take 420 years. During this time, tech-
nological progress would very likely enable much faster launches,
allowing future spacecraft to overtake earlier ones (Heller 2017).

Nonetheless, the extreme technical difficulties of true interstellar
missions imply that we must first fly IPMs of some kind. A socio-
political problem with such missions is the lack of obvious targets
with distances beyond 100 AU and below the 270 kAU distance to
the Sun’s nearest star, Proxima Centauri (Gaia Collaboration 2018).
Missions reaching 550 AU could use the Sun as a gravitational
telescope to magnify objects behind it (Eshleman 1979), but this
idea runs into several practical difficulties for imaging exoplanets
(Willems 2018).

Fortunately, the MOND radius of the Sun provides a scientifically
important intermediate goal of 7 kAU, especially if efforts to
directly detect cold dark matter continue to rule out ever more
of the available parameter space (e.g. Hoof, Geringer-Sameth &
Trotta 2018). In MOND, the trajectory of a spacecraft would start
to deviate from Newtonian mechanics as it approaches a distance
of rM . These deviations would be more significant at larger radii,
though they would be limited by the background gravitational field
from the rest of our Galaxy due to the external field effect (Milgrom
1986; Banik & Zhao 2018a). Nonetheless, significant deviations are
expected once the latest extragalactic rotation curve constraints are
imposed on the MOND interpolating function between the Newto-
nian and Milgromian regimes (Banik & Zhao 2018d, section 7.1).

In the short run, constraints on MOND from an IPM are unlikely
to be as precise as constraints obtained in other ways, in particular
from extragalactic rotation curves. Testing MOND with an IPM
thus serves a different purpose − to test whether gravity does in
fact depart from Newtonian expectations at low accelerations. If

Figure 1. The factor by which MOND boosts the radial component of the
Sun’s gravity above the Newtonian expectation. Positions are shown in units
of the MOND radius rM (equation 1). The gravitational field is expected to
be axisymmetric about the direction towards the Galactic Centre, which
we represent here using the x-axis (the Galactic Centre is towards positive
x.). The distance orthogonal to this direction is shown on the y-axis. For
numerical reasons, we could not obtain accurate results within ≈0.1 r

M
, a

region where Newtonian and Milgromian gravity should be almost identical.

one assumes that it does, rotation curve constraints are a more
promising way of constraining the limited number of MOND free
parameters.1 However, it is generally possible to explain rotation
curve data using an appropriately tuned distribution of dark matter,
even when the kinematic and photometric data come from different
galaxies (de Blok & McGaugh 1998).

This degeneracy can be broken by an IPM because its downrange
distance, though large by terrestrial standards, is still very small by
Galactic standards.2 Because the purported acceleration due to the
Galactic dark matter halo is of the order of a0 , dark matter would
have a negligible effect on the trajectory of an IPM compared to the
effects of MOND, which has an order of unity effect on the Sun’s
gravitational field beyond its MOND radius (Section 2.3).

We therefore consider 0.01 c IPMs travelling at various angles
to the direction of the Galactic Centre, which we suppose is the
direction of the external gravitational field on the Solar System. At
this speed, a spacecraft would reach the MOND radius of the Sun
in just over 11 years. Compared to true interstellar missions, the
lower speed of an IPM gives the Sun more time to gravitationally
decelerate the spacecraft, making it more sensitive to MOND
effects.

An important aspect of our results is that the Sun’s Milgromian
gravity does not point directly towards it. This has been shown
analytically in the external field dominated regime (Banik & Zhao
2018a). The force can be offset from the radial direction by as
much as 16

◦
(see their fig. 1). Consequently, an IPM would deviate

from its original launch direction in a characteristic way, something
that could potentially be detected by launching several missions in
different directions. This would also allow us to better distinguish
gravitational forces from other effects like accretion of dust and gas.
For instance, the MOND gravitational field should be axisymmetric
about the direction towards the Galactic Centre. This is in a rather
different direction to the velocity of the Sun with respect to the
interstellar medium (Francis & Anderson 2014). Nonetheless, there
is in principle no reason why multiple missions are necessary as
one could utilize the characteristic time dependence of the MOND
effects within a single mission.

1The ‘sharpness’ of the interpolating function and the value of a0 .
220 kAU ≈0.1 pc while the Galaxy’s virial radius is ≈200 kpc (Dehnen,
McLaughlin & Sachania 2006).
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After providing an order of magnitude estimate of how MOND
affects an IPM (Section 2.1), we briefly revisit the MOND governing
equations (Section 2.2) and explain how we solve them to yield
the Milgromian gravitational field of the Sun (Section 2.3). We
use this to integrate the trajectory of a spacecraft (Section 2.4)
in order to determine how much the MOND predictions differ
from the Newtonian ones regarding its radial velocity (Section 2.5),
downrange distance (Section 2.6) and sky position (Section 2.7).
We then consider the feasibility of detecting the Milgromian
perturbations to the spacecraft trajectory (Section 3.1) and how
additional onboard experiments could be used to more directly
constrain the behaviour of gravity at low accelerations (Section 3.2).
We also discuss how our results would be affected by a different
launch velocity (Section 3.3) and MOND formulation (Section 3.4).
In Section 3.5, we explain how an IPM would place constraints
on MOND that complement those obtained using more traditional
methods. Our conclusions are given in Section 4.

2 ME T H O D S A N D R E S U LTS

2.1 Order of magnitude estimates

Newtonian and Milgromian dynamics predict gravitational accel-
erations which differ by ≈a0 at the MOND radius. Given a typical
mission time-scale of ≈10 yr to reach this distance, we expect the
velocity of an IPM to differ by ≈4 cm s−1 between the different
gravity theories. Over 10 years, this translates into a position
difference of 12000 km. Consequently, MOND predicts an ≈0.1
s reduction in the two-way light travel time between the inner Solar
System and the spacecraft. If 10 per cent of its MOND-induced
position anomaly is orthogonal to the original launch direction due
to the non-radial gravity in MOND (Section 2.7), we expect an
angular deviation of ≈0.2 mas. In the rest of this section, we refine
these estimates using rigorous calculations of the Sun’s gravitational
field in MOND.

2.2 Governing equations

In this contribution, our MOND predictions are based on the
quasi-linear formulation of MOND (QUMOND; Milgrom 2010).
QUMOND yields rather similar results to the original aquadratic
Lagrangian version of MOND (AQUAL; Bekenstein & Milgrom
1984), as demonstrated numerically in Candlish (2016) and analyt-
ically in Banik & Zhao (2018a). QUMOND is much more computer-
friendly because it avoids a non-linear grid relaxation stage.

In QUMOND, the gravitational field g must be obtained from
the Newtonian gravitational field gN by solving the field equation

∇ · g = ∇ ·

⎡⎢⎢⎢⎣ν

y︷ ︸︸ ︷(
gN

a0

)
gN

⎤⎥⎥⎥⎦ , where (2)

ν (y) = 1

2
+

√
1

4
+ 1

y
. (3)

Here, we have used the simple interpolating function ν(y)
(Famaey & Binney 2005) for reasons explained in section 7.1 of
Banik & Zhao (2018d). This is numerically very similar to the
function used by Lelli et al. (2017) to fit 153 disc galaxy rotation
curves.

The Newtonian gravity is rather easily obtained for a point mass
(the Sun) embedded in a constant external field gext. At some
heliocentric position r ,

gN = − GM r

|r|3 + gN,ext . (4)

The external field entering this equation is the Newtonian-equivalent
quantity gN,ext , the Newtonian gravity exerted by the rest of our
Galaxy on the Solar System. As discussed in section 9.3.1 of
Banik & Zhao (2018d), the Sun’s location in the outskirts of the
Galactic disc means that it is quite accurate to use the spherically
symmetric relation between gN,ext and the actual external field gext.

gext = ν

(∣∣gN,ext

∣∣
a0

)
gN,ext . (5)

Kinematic observations of our Galaxy imply a particular value for
gext, which we get from the Local Standard of Rest parameters ob-
tained by McMillan (2017). We use this to get gN,ext by analytically
inverting equation (5).3

2.3 The MOND force field

After finding ∇ · g using equation (2), we use direct summation to
find g itself.

g (r) =
∫

∇ · g
(

r ′) (
r − r ′)

4π|r − r ′|3 d3r ′ . (6)

We apply an analytic correction for the finite extent of our grid,
which we set up using spherical polar co-ordinates to best exploit
the axisymmetric nature of the problem (section 2.1, Banik & Zhao
2018d).

In general, g is not directed towards the Sun, a fact which is easily
demonstrated analytically in both QUMOND and AQUAL (Banik &
Zhao 2018a). We use Fig. 1 to show the factor by which QUMOND
enhances the radial component of g at different positions. Due to
axisymmetry, we only need to show our results as a function of
the distance along and orthogonal to the external field direction.
These variables are our x and y co-ordinates, respectively, with the
Galactic Centre located towards positive x.

An important part of this contribution is the non-zero angle
between the gravitational field and the inwards radial direction
(Section 2.7). This angle is shown in Fig. 2 as a function of position,
using the same projection system as Fig. 1. A positive angle implies
a particle on a radial trajectory is deviated away from the direction
towards the Galactic Centre.

2.4 Trajectory integration

To avoid numerical uncertainties in the MOND gravity very close
to the Sun, we only consider that portion of the spacecraft trajectory
which has a downrange distance >2 kAU, corresponding to an
acceleration <12.3 a0 . Deviations from Newtonian gravity must be
rather small at higher accelerations in order to satisfy Solar System
constraints (Hees et al. 2016). Moreover, the time an IPM spends
within 2 kAU of the Sun constitutes only a small fraction of the
time required to reach rM = 7.03 kAU.

3For more complicated interpolating functions such as that used in Lelli
et al. (2017), analytic inversion is not possible. Equation (5) must then be
inverted using a numerical root-finding algorithm.
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2668 I. Banik and P. Kroupa

Figure 2. Similar to Fig. 1, but now showing the angle between the Sun’s
Milgromian gravity and the inwards radial direction. Positive angles imply
the spacecraft would deviate away from the direction towards the Galactic
Centre (positive x-axis).

At a speed of 0.01 c, a spacecraft is hardly affected by the
Sun’s gravitational field. Therefore, we assume the spacecraft
maintains a constant velocity vlaunch beyond 2 kAU but keep track
of the Milgromian gravitational acceleration gM (r) acting on the
spacecraft at heliocentric position r . As long as this has only a small
effect on the trajectory, our perturbative approximation remains
valid. This is the case here because the escape velocity of the Sun
is ≈3 × 10−6 c at a distance of 2 kAU.

2.5 Radial velocity

Once we have found gM (r), we subtract the Newtonian acceleration
gN (r) and integrate the difference in accelerations over time t,
which we measure from when the spacecraft first crosses 2 kAU
at some position r2 kAU . This lets us determine the Milgromian
perturbations to the position and velocity, which we denote as δr
and δv, respectively.

δv (t) =
∫ t

0

[
gM (r) − gN (r)

]
dt ′ , (7)

r (t) = r2 kAU + vlaunch t . (8)

The line of sight component of δv causes an anomalous shift in
the frequency of signals received from the spacecraft. Assuming its
trajectory is not much affected by gravity, we get that the radial
velocity vr differs from Newtonian expectations by

δvr = δv · v̂launch , (9)

where we use â to denote the unit vector parallel to a for any
vector a.

Fig. 3 shows our results for δvr. As expected, this is below 0, a
consequence of the stronger gravity in MOND. The precise value
is rather similar to our order of magnitude estimate in Section 2.1.

2.5.1 Gas drag

Assuming an interstellar medium density of ≈0.2 proton masses
per cm3 (Crawford 2011), the total amount of mass accreted by a
1 m2 object over 10 kAU is 5 × 10−7 kg. If the spacecraft has a mass
of 1 kg, the effect on its velocity would be 1.5 m s−1, more than
the expected effect of MOND (Fig. 3). However, gas drag would be
present at all distances, whereas the expected Milgromian δvr arises
mainly around rM and saturates once the spacecraft is well beyond
rM (Fig. 3). This is because there is a finite difference in the depth
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Figure 3. The difference between Newtonian and Milgromian predictions
for the heliocentric radial velocity of a 0.01 c interstellar precursor mission,
shown as a function of time after it crosses 2 kAU from the Sun and thus
enters the regime where MOND would have non-negligible effects. The
different curves correspond to different launch directions θ (equation 13).
We use solid lines only for θ < π

2 and use the same colour for θ as for π − θ .

of the Solar potential well between Newtonian and Milgromian
dynamics (Banik & Zhao 2018b).

Another distinction between gravity and gas drag is that the
latter is less significant at lower velocity, something that could
be exploited by launching multiple spacecraft at different velocities
towards a similar direction. Moreover, a particle detector on board
the spacecraft could be used to measure the accretion rate, aiding
studies of the interstellar medium. The detector would need to
withstand high impact velocities of ≈3000 km s−1.

2.6 Downrange distance

The change in velocity would build up over many years into a
potentially detectable position perturbation

δr (t) =
∫ t

0
δv

(
t ′) dt ′ . (10)

This could be measured by determining the downrange distance
r ≡ |r| of the spacecraft. Neglecting the second-order effect of
the angular deviation (Section 2.7) and assuming the spacecraft is
tracked from a location much closer to the Sun than r, we get that

δr = δr · v̂launch . (11)

This changes the two-way light travel time from the inner Solar
System by

δt2 way = 2 δr

c
. (12)

Fig. 4 shows that δt2 way depends very little on v̂launch and is ≈0.1
s after 20 years. Once the spacecraft is well beyond the MOND
radius, δt2 way grows approximately linearly with time because δvr

saturates (Fig. 3).

2.7 Sky position

Another MOND prediction is that the spacecraft trajectory would
deviate from its original direction v̂launch because gM (r) is not anti-
parallel to r (Fig. 2). This is due to the Sun’s Milgromian potential
varying with angle at fixed heliocentric distance. In the asymptotic
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Figure 4. Similar to Fig. 3, but now showing how much MOND would
reduce the two-way light travel time between the inner Solar System and
the spacecraft.
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Figure 5. Similar to Fig. 4, but now showing the MOND prediction for the
change in direction towards the spacecraft as a consequence of the Sun’s
gravity not being directly towards it (equation 13). The horizontal dashed
blue line shows the Newtonian prediction of zero, which also applies in
MOND for launch directions of θ = 0 and π .

regime where Solar gravity is much weaker than that from the rest
of the Galaxy, the Solar potential is deepest along the Galactic
Centre-anticentre line (Banik & Zhao 2018a).

Observations from the inner Solar System are not directly
sensitive to the velocity vector of such a distant spacecraft, but over
time this affects its position on the sky. Thus, we define its angular
deviation δθ as the angle between v̂launch and the instantaneous
direction r̂ towards the spacecraft as viewed from the Sun. Because
gM is axisymmetric with respect to the direction ĜC towards the
Galactic Centre, the angular deviation is entirely within the plane
containing ĜC and r̂ . If MOND increases the angle θ between
them, we take δθ to be positive.

δθ =

δr ·

⎡⎢⎢⎣
cos θ︷ ︸︸ ︷(

ĜC · v̂launch

)
v̂launch − ĜC

⎤⎥⎥⎦
r sin θ

. (13)

We use Fig. 5 to show our results for δθ as a function of time
for various launch directions. In terms of maximizing δθ , the best
choices are θ ≈ 30

◦
or 120

◦
. Each option can be implemented for

any azimuthal angle with respect to ĜC, allowing mission planners
to choose whichever is best in light of other considerations. For
example, the mission could be designed to have suitable reference
stars in the same field of view as the Sun (Section 3.2.1).

Some asymmetry is evident between θ and π − θ , highlighting
the need for careful numerical calculations. This asymmetry was a
key argument in Thomas et al. (2018). Once the external field from
the Galaxy dominates over Solar gravity, gM (r) becomes symmetric
with respect to θ → π − θ (Banik & Zhao 2018a, equation 36).
Theoretically, this transition occurs close to rM because the Galactic
gravity ≈ a0 . Our results indicate a rather gradual transition to
a symmetric gravitational field, something that is also evident in
Figs 1 and 2.

3 D ISCUSSION

3.1 Detectability of the Milgromian deviations

3.1.1 Radial velocity and downrange distance

The expected Milgromian boost to the Sun’s radial gravity would
reduce the downrange distance to an IPM by ≈15000 km 20 years
after launch (Fig. 4). Based on accurate tracking of the Cassini
orbiter around Saturn (Matson 1992), its position was known to an
accuracy of 32 m (Viswanathan et al. 2017). The interpretation of
light travel times from an IPM should be vastly simpler because
Cassini was affected by the gravity of Saturn and its many moons
in addition to the Solar gravity. Therefore, the expected MOND-
induced distance reduction should be readily detectable.

3.1.2 Sky position

An important aspect of this work is that in MOND, an IPM is
predicted to deviate from its original launch direction (Fig. 5). The
expected ≈0.1 mas signal corresponds to δθ = 5 × 10−10 rad.
This could be detected by noting the times at which a signal from
the spacecraft arrives at different receiving stations. For two stations
separated by some distance L, the difference in downrange distances
to the spacecraft is affected by ≈L δθ .4

By the time that IPMs are actually flown, it is quite conceivable
that a station on the Earth will be combined with one on the
Moon (Kurdubov et al. 2019). Given that its distance is known
to mm accuracy using lunar laser ranging (Battat et al. 2009), the
Moon could be a good location for a receiving station immune to
atmospheric effects. Because the Moon is L ≈ 4 × 108 m away,
the MOND-induced astrometric deviation would have an ≈20 cm
effect on the difference between the Earth—spacecraft and Moon—
spacecraft distances. This should be readily measurable. In fact, it
is even possible that different receiving stations on the Earth would
be sufficient.

Another possibility is to combine measurements taken at different
times, exploiting Earth’s motion around the Sun. This would require
precise knowledge of its orbit and rotation, at least on short time-
scales. For instance, Earth’s orbit moves it by the distance to the
Moon in just under 4 hours.

The downrange distance to an IPM can be known to within
20 cm only if this is much longer than the wavelength at which
the spacecraft transmits. A wavelength of 20 cm corresponds to
a frequency of 1.5 GHz, similar to the frequencies typically used

4The exact geometry introduces an additional factor of ≤1.
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2670 I. Banik and P. Kroupa

for communication with spacecraft. However, it is unlikely that
radio waves will be used for communication with an IPM due to
its much larger downrange distance. We consider it likely that a
visible or near-infrared laser-based system will be used instead,
as demonstrated recently by the Lunar Environment and Dust
Explorer mission (Boroson et al. 2014). In this case, the transmission
wavelength would be of the order of 1μm, much smaller than the
20 cm precision required to test MOND.

3.2 Additional experiments outside the Sun’s MOND bubble

So far, we have only considered information which can be
gained from tracking the spacecraft. Depending on technological
constraints, it is possible to envisage additional onboard experi-
ments. For instance, a Terrell interferometer (Penrose 1959; Terrell
1959) could be used to measure its acceleration more precisely
(Christian & Loeb 2017). Any non-gravitational forces acting on
the spacecraft could be measured by an accelerometer (Lenoir,
Christophe & Reynaud 2011), possibly avoiding the issues that
arose with the Pioneer anomaly (Turyshev et al. 2012). Gas drag
could be estimated using a detector, which would also give insights
into the interstellar medium.

3.2.1 Accurate astrometry of the Sun

The Milgromian angular deviation of the spacecraft trajectory
(Section 2.7) is comparable to the astrometric accuracy of the Gaia
mission (Gaia Collaboration 2018). Therefore, this deviation could
be measured by the spacecraft itself if it is capable of attaining Gaia-
like astrometry of the Sun. This may prove to be easier than ground-
based tracking of the spacecraft (Section 3.1.2), simply because its
signal will be so much fainter than the Sun. From the vantage point
of the spacecraft, the Sun will be in almost the same sky position
for many years. This would allow many different images of the Sun
to be combined, thereby yielding a rather precise estimate of its
sky position relative to background stars. To limit the amount of
data transferred to the Earth, much of the analysis could be done
onboard. For example, the spacecraft might only transmit data for
small regions centred on target stars, including the Sun. The launch
direction could even be chosen so as to have suitable reference stars
in the field of view.

Although a Gaia-like telescope onboard the spacecraft would
make it much heavier, the benefits to science could well be
worthwhile. In particular, the telescope could be used to obtain
accurate astrometry of other stars besides the Sun. Due to its
significant downrange distance, the positions of nearby stars would
be noticeably different than if viewed from the Earth. This could
allow for rather accurate distance measurements to stars in our
Galaxy and perhaps also for more distant objects (Jaffe et al. 1979;
Etchegaray 1987). Given the already impressive results obtained
by Gaia (Perryman et al. 2001) with a 2 AU baseline, the results
with a 10 kAU baseline could indeed be remarkably accurate once
relativistic aberration is properly accounted for. The spacecraft
velocity can be inferred from onboard astrometry, but it might also
be better to use arrival times of signals sent from the spacecraft
(Section 3.1.2) and perhaps also their frequency.

3.2.2 Onboard gravitational experiments

If a slightly heavier spacecraft can be launched, it might be possible
to perform Cavendish-style gravitational experiments beyond the

Sun’s MOND radius. As discussed in Banik & Zhao (2018d, fig. 1),
the force between two point masses would exceed the Newtonian
expectation by ≈30–60 per cent depending on their heliocentric
distance, orientation with respect to the Galactic external field and,
to a smaller extent, their mass ratio (see their fig. 8). In general, the
force would not be parallel to the separation between the masses,
causing the system as a whole to spontaneously undergo torsional
oscillations. These unusual effects should be easily discernible
given that laboratory experiments routinely obtain acceleration
measurements precise to �a0 . For instance, the detection of 35
Hertz gravitational waves with a strain amplitude of 10−21 using
4 km long arms (LIGO Collaboration 2016) implies an acceleration
measurement accurate to �10−14 m s−2. This is much smaller
than the ≈0.6 a0 gravitational acceleration on a test mass due
to a 1 kg object 1 m away. At present, such experiments do
not place meaningful constraints on MOND due to the external
gravitational field of the Earth. However, an active gravitational
experiment beyond the Sun’s MOND bubble could decisively test if
the anomalous rotation curves of galaxies arise from the behaviour
of gravity at low accelerations.

3.3 Effect of a different launch velocity

In the perturbative approximation used here, we can easily scale
our results to different vlaunch ≡ ∣∣vlaunch

∣∣ as long as gravity has only a
small effect on the trajectory. If vlaunch is scaled by some factor α from
our nominal assumption of 0.01 c, the Milgromian perturbations to
the trajectory at time t

′
are related to those of the original trajectory

at time t according to

δv′ (t ′) = δv (αt)

α
, (14)

δr ′ (t ′) = δr (αt)

α2
, (15)

δθ ′ (t ′) = δθ (αt)

α
. (16)

Primed quantities indicate results for the trajectory with a velocity
of α vlaunch at a heliocentric distance of r = 2 kAU.

While the spacecraft is within rM , our results show that vlaunch does
not much affect δvr at fixed t (Fig. 3). As the mission progresses
to larger radii, δvr eventually reaches a fixed value. In this regime,
δvr ∝ 1/vlaunch , causing δr to eventually be much smaller at higher
launch velocities. This underlines how the slower speeds of IPMs
actually benefit the test of gravity proposed here. In particular,
reducing vlaunch minimizes gas drag while giving gravity more time
to act on the spacecraft.

A unique aspect of MOND is that it predicts a change in the
sky position of the spacecraft (Section 2.7). Early in a mission, the
Milgromian δθ grows roughly linearly with time. Thus, the launch
velocity has little effect on δθ at fixed t (equation 16). However, δθ

eventually grows sub-linearly with time such that it is larger at fixed
t for a slower launch.

In all cases, there are at most modest benefits to a faster launch
during the early phases of the mission. But at later stages, this
actually makes the signal smaller. Thus, a launch velocity slightly
below 0.01 c may be best for the purpose of testing MOND. Given
that such a mission could get overtaken by a successor before it
reaches rM , it is probably best to launch once it becomes possible to
reach this goal in ≈20 yr (Heller 2017). This corresponds to a speed
of ≈0.006 c = 1800 km s−1. Although this is not currently feasible,
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it is nonetheless interesting to consider the science that might be
enabled by such a mission.

3.4 Different MOND formulations

Our results are based on QUMOND, a computer-friendly version
of MOND which gives rather similar results to the more traditional
aquadratic Lagrangian formulation (AQUAL, Bekenstein & Mil-
grom 1984). AQUAL is less computer-friendly, so it is beyond the
scope of this work to consider AQUAL in detail. However, some
insights can be gained from previous analytic calculations in the
external field-dominated regime, roughly corresponding to r � rM

for any point-like object in the Solar neighbourhood (Banik &
Zhao 2018a, fig. 1). Their results suggest that both formulations
yield rather similar perturbations to the light travel time and radial
velocity, but the angular deviation would be ≈20 per cent larger
and peak for slightly higher |cos θ | in the AQUAL formulation. The
basic result is rather similar in both versions of MOND, which after
all give the same forces in spherical symmetry.

3.5 Complementary constraints on MOND

Because the Galactic orbital acceleration of the Sun is close to a0 ,
our results are sensitive to the MOND interpolating function. Fortu-
nately, this is rather well constrained empirically (Lelli et al. 2017).
The ‘simple’ form used here fits their observations rather well and
is preferred over other forms by a variety of observations (Banik &
Zhao 2018d, section 7.1). In future, extragalactic constraints on
MOND should tighten further, leaving little room to change its
interpolating function to fit tracking data from an IPM.

It is worth noting that the MOND-induced reduction in an IPM’s
radial velocity is mostly sensitive to the interpolating function
itself. Thus, the perturbations to the radial velocity and downrange
distance are almost directly related to extragalactic constraints. The
angular deviation of the trajectory depends on the derivative of the
interpolating function, which governs how much the Solar grav-
itational potential varies with angle at fixed heliocentric distance
(equations 20 and 39 in Banik & Zhao 2018a). Consequently, this is
less uniquely determined from the basic tenets of MOND combined
with rotation curve data. This is why the astrometric deviation
is expected to differ somewhat between AQUAL and QUMOND,
even when the same interpolating function is used.5 An IPM thus
has the potential to distinguish between QUMOND and AQUAL,
even though they yield rather similar results in most circumstances
(Candlish 2016; Banik & Zhao 2018a).

4 C O N C L U S I O N S

An IPM travelling at 0.01 c would reach the MOND radius of the
Sun in 11.1 years, after which time the spacecraft would experience
a Solar gravitational field weaker than the a0 threshold of MOND.
Consequently, the MOND trajectory of such a spacecraft would
deviate from Newtonian expectations. After 20 years, its radial
velocity would be ≈3 cm s−1 lower than expected in Newtonian
mechanics (Fig. 3). Due to the long time-span involved, the two-way
light travel time would then be ≈0.1 s less than expected (Fig. 4).

5For a definition of what it means to use the ‘same’ interpolating function
in AQUAL and QUMOND, we refer the reader to section 7.2 of Banik &
Zhao (2018d).

These values would depend on mission elapsed time in a character-
istic way, potentially allowing a distinction between gravitational
and non-gravitational forces like gas drag (Section 2.5.1).

Another novel MOND prediction is that the Solar gravity on the
spacecraft would not be directly towards the Sun. As a result, its
sky position would appear to deviate by ≈0.3 mas during the first
20 years of the mission (Fig. 5). If the spacecraft is spin-stabilized
with axis pointing towards the Sun, then gas drag would be unlikely
to produce such an effect. Moreover, the deviation would depend on
the precise direction in which the spacecraft is launched, potentially
allowing for the detection of a highly distinctive MOND signature
if multiple spacecrafts were launched in different directions.

Because 0.01 c is much larger than the escape velocity from
the Solar System, gravity has very little effect on a spacecraft
travelling at such a high speed. Consequently, the test of gravity
proposed here actually becomes more difficult with a higher launch
velocity (Section 3.3). An exception arises if the spacecraft carries
an onboard Cavendish-style experiment to directly test gravity at
low accelerations (Section 3.2). Such an experiment is predicted to
yield rather unusual results in a MOND context, with significant
deviations expected from Newtonian dynamics. The results could
be obtained earlier if the launch velocity is larger. Given past rates of
technological progress, it is probably best to launch such a mission
once it becomes possible to attain a velocity of ≈0.006 c (Heller
2017).

Before humanity can reach other stars, it is necessary to fly
IPMs travelling at only a few per cent of light speed. These
missions are directly sensitive to the behaviour of gravity in the
low acceleration regime typical of galactic outskirts, where large
dynamical discrepancies have puzzled astronomers for nearly a
century. Directly probing these regimes could provide a short-term
incentive to launch such missions, in addition to the longer-term
goal of reaching other stars. While this age-old dream is perhaps
closer to reality than ever before, travelling even a few per cent of
the required distance would be sufficient to answer fundamental
questions about how our Universe works.
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