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ABSTRACT
El Gordo (ACT-CL J0102-4915) is an extremely massive galaxy cluster (M200 ≈ 3 × 1015 M�) at redshift z = 0.87 composed
of two subclusters with a mass ratio of 3.6 merging at speed Vinfall ≈ 2500 km s−1. Such a fast collision between individually
rare massive clusters is unexpected in Lambda cold dark matter (�CDM) cosmology at such high z. However, this is required
for non-cosmological hydrodynamical simulations of the merger to match its observed properties. Here, we determine the
probability of finding a similar object in a �CDM context using the Jubilee simulation box with a side length of 6 h−1 Gpc. We
search for galaxy cluster pairs that have turned around from the cosmic expansion with properties similar to El Gordo in terms
of total mass, mass ratio, redshift, and collision velocity relative to virial velocity. We fit the distribution of pair total mass quite
accurately, with the fits used in two methods to infer the probability of observing El Gordo in the surveyed region. The more
conservative (and detailed) method involves considering the expected distribution of pairwise mass and redshift for analogue
pairs with similar dimensionless parameters to El Gordo in the past light-cone of a z = 0 observer. Detecting one pair with its
mass and redshift rules out �CDM cosmology at 6.16σ . We also use the results of Kraljic and Sarkar to show that the Bullet
Cluster is in 2.78σ tension once the sky coverage of its discovery survey is accounted for. Using a χ2 approach, the combined
tension can be estimated as 6.43σ . Both collisions arise naturally in a Milgromian dynamics (MOND) cosmology with light
sterile neutrinos.

Key words: gravitation – methods: statistical – galaxies: clusters: individual: El Gordo – galaxies: clusters: individual: Bullet
Cluster – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

According to the hierarchical structure formation paradigm, smaller
structures formed first and then merged into larger structures,
eventually forming galaxy clusters (Davis et al. 1985). These are
the largest gravitationally bound structures in the Universe. The
efficiency and time-scale proposed for their formation vary de-
pending on the cosmological model adopted. The most generally
accepted model nowadays is Lambda cold dark matter (�CDM;
Ostriker & Steinhardt 1995). �CDM is built on the assumption of
a homogeneous and isotropically expanding Universe on very large
scales, with all its matter–energy content appearing at very early
times in a hot big bang. Two other elements had to be added in order to
explain certain astronomical phenomena: The unexpected faintness
of distant Type Ia supernovae at fixed redshift z suggested that the
Universe was undergoing an accelerated expansion, which implied
that Einstein’s field equations should have a non-zero cosmological
constant � (Riess et al. 1998); and the observed flat rotation curves of
galaxies (e.g. Babcock 1939; Rubin & Ford 1970; Rogstad & Shostak
1972; Bosma 1978) indicated that the Newtonian gravity of the
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baryons alone was not enough to hold them together, which led to the
postulation of undetected mass that would surround galaxies in the
form of a halo (Ostriker & Peebles 1973). Gravitational microlensing
results show that the Galactic halo cannot consist of compact objects
with planetary or stellar mass (e.g. Alcock et al. 2000; Tisserand et al.
2007), so it is instead thought to consist of non-baryonic particles
that do not exist in the well-tested standard model of particle physics.
Null detection of non-gravitational signals from the postulated CDM
particles places stringent constraints on their allowed properties (e.g.
Abazajian et al. 2020; Hoof, Geringer-Sameth & Trotta 2020). None
the less, �CDM has proven successful in explaining, e.g. the cosmic
microwave background (CMB; Planck Collaboration XXVII 2014).

However, its predicted efficiency for the formation of galaxy
clusters has been challenged by observations of several massive
galaxy clusters at high z (e.g. Mullis et al. 2005; Ebeling et al. 2007;
Lamer et al. 2008; Jee et al. 2009; Menanteau et al. 2010; Foley et al.
2011; Stanford et al. 2012; Stalder et al. 2013; Buddendiek et al. 2015;
Tozzi et al. 2015; Wang et al. 2016; Miller et al. 2018; Wen & Han
2018). The most massive cluster at z > 1 is SPT-CL J2106-5844, with
z = 1.132+0.002

−0.003 and mass M200 = (1.27 ± 0.21) × 1015 M� (Foley
et al. 2011). This was confirmed by the more recent study of
Kim et al. (2019), which gives a slightly lower mass estimate of
M200 = (1.04+0.33

−0.30) × 1015 M�. Their fig. 6 shows two weak lensing
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peaks, indicating that the system is likely a merger product. Further
studies are required to pin down the pre-merger configuration. The
Bullet Cluster (1E 0657-56) at redshift z = 0.296 and El Gordo (ACT-
CL J0102-4915) at z = 0.870 are the galaxy cluster encounters most
well known for having a very high relative velocity (Markevitch
et al. 2004) and for being the most massive distant galaxy cluster
(Menanteau et al. 2012), respectively. These observations suggest
that the formation of large structures took place earlier than expected
in �CDM.

On even larger scales of tens of Mpc, galaxy clusters are often
part of a supercluster. The existence of very massive superclusters
at high redshift also seems to pose problems for the �CDM model
(Cucciati et al. 2018; Hayashi et al. 2019). The former work identified
a 4.8 × 1015 M� supercluster at z = 2.45, which is consistent with
the predicted mass function at z = 1. Though a relevant simulation
snapshot was unavailable for a more meaningful comparison at z =
2.5, the rapidly rising number density of such massive superclusters
around the epoch z = 1 (fig. 2 of Lim & Lee 2014) suggests that
there would be significant tension with the observations of Cucciati
et al. (2018).

If structure formation is enhanced compared to �CDM expecta-
tions, then not only overdensities but also underdensities should be
more pronounced than expected. There is actually strong evidence
for a large local underdensity extending out to ≈300 Mpc (Keenan,
Barger & Cowie 2013). This is in 6.04σ tension with �CDM
expectations (section 2 of Haslbauer, Banik & Kroupa 2020). Those
authors showed that such a large and deep void would cause the local
expansion rate of the Universe to exceed the average by ≈11 per cent
(see their equation 5). This would nicely resolve the Hubble tension,
i.e. the difficulty in reconciling the observed CMB anisotropies
(Aiola et al. 2020; Planck Collaboration VI 2020) with multiple
independent determinations of the local expansion rate (Riess 2020,
and references therein).

The problem of early structure formation also extends down to
galaxy scales (e.g. Kang & Im 2015; Girelli, Bolzonella & Cimatti
2019; Forrest et al. 2020) and their central super massive black holes
(SMBHs). In this respect, the recent discovery of the luminous quasar
J1007+2115 at z = 7.515 is particularly noteworthy – it contains an
SMBH of mass (1.5 ± 0.2) × 109 M�. This discovery challenges
models of SMBH growth, since these would require a seed black
hole of ≥104 M� at z = 30 to explain the observations (Yang et al.
2020).

Many of the publications addressing this rapid structure formation
tension on the cluster scale focus on the Bullet Cluster (Tucker,
Tananbaum & Remillard 1995) as one of the main objects with
which to test the likelihood of finding such massive high-z clusters
in a �CDM context (Hayashi & White 2006; Angus & McGaugh
2008; Lee & Komatsu 2010; Thompson & Nagamine 2012; Katz
et al. 2013; Lage & Farrar 2014; Watson et al. 2014a; Kraljic &
Sarkar 2015). This is because the Bullet Cluster consists of two
colliding galaxy clusters with a collisional trajectory roughly normal
to the line of sight, making it easier to study the interaction. It
also has a high mass for a cluster at z = 0.296 – the main
cluster has M200 ≈ 1.9 × 1015 M�, while the subcluster mass is
M200 ≈ 2.6 × 1014 M� (Lage & Farrar 2014). Most importantly, its
shock and subcluster velocity were initially calculated to be v ≈
4500 km s−1 (Markevitch et al. 2004), making this cluster quite
problematic for �CDM (e.g. Thompson & Nagamine 2012). More
recent hydrodynamical simulations show that a lower infall velocity
of v ≈ 3000 km s−1 with an impact parameter of b = 0.256 Mpc is also
compatible with observations (Lage & Farrar 2014). This alleviated
the tension significantly, since the Bullet Cluster infall velocity is now

below its escape velocity (see their table 1). Nevertheless, according
to Kraljic & Sarkar (2015), this cluster is still considered a rare object
for a �CDM cosmology: Only 0.1 similar systems can be expected
within z < 0.3 if we require that the collision has already occurred,
as noticed by their referee. The Bullet Cluster was discovered in a
survey covering only 5.4 per cent of the whole sky, making it a 2.78σ

outlier for �CDM (Section 3.4). Finding yet more objects like this
could imply a problem for the model.

The second aforementioned cluster of interest, El Gordo, presents
significantly more striking features than the Bullet Cluster. El Gordo
was observed for the first time by Menanteau et al. (2010) in the Ata-
cama Cosmology Telescope’s 2010 survey of galaxy clusters, which
were selected via the Sunyaev–Zel’dovich (SZ) effect (Sunyaev &
Zeldovich 1970). El Gordo consists of two merging subclusters at z

= 0.87 with cores separated by a projected distance of ≈700 kpc (fig.
5 of Jee et al. 2014), a high infall velocity Vinf ≈ 2500 km s−1, and
a total mass M200 ≈ (2–3) × 1015 M�. These values are estimated
using both observations (Menanteau et al. 2012; Zitrin et al. 2013;
Jee et al. 2014) and idealized hydrodynamical simulations of the
interaction (Molnar & Broadhurst 2015; Zhang, Yu & Lu 2015). This
makes El Gordo the most massive galaxy cluster at z > 0.6. Due to
the highly energetic interaction of its two subclusters, it is also the
hottest, most X-ray luminous, and brightest SZ effect galaxy cluster
at this redshift (Menanteau et al. 2012). Its bright X-ray emission has
a single peak and a characteristic elongated shape with two faint tails
that extend beyond this peak. The X-ray emission can be detected
even in the outer regions of the merging cluster. Other distinctive
features of El Gordo are the large offsets between the X-ray and
SZ centroids and between the SZ centroid and the mass centre of
the main cluster. These offsets are expected features in high-velocity
merging galaxy clusters (Molnar, Hearn & Stadel 2012), supporting
the published high infall velocity estimates for El Gordo.

Even though the mass and redshift might appear as the most
obvious oddities of El Gordo, we show in Section 2.3.3 that its
infall velocity significantly exceeds the escape velocity according
to the Zhang et al. (2015) results. This is likely not the case in the
Bullet Cluster (table 1 of Lage & Farrar 2014). For two objects to be
infalling faster than their escape velocity, there must have been a third
object that pushed them towards each other – any peculiar velocities
at high z are rapidly redshifted away by Hubble drag. If finding
two objects this massive sufficiently close to each other is already
rare, finding three objects like this is extremely unlikely. Moreover,
the mass ratio between the two components of El Gordo is almost
certainly in the range 2–5 (Zhang et al. 2015), with their best guess
being 3.6 while other studies suggest ≈2 (Jee et al. 2014; Molnar &
Broadhurst 2015). This makes El Gordo a major merger. Such events
are expected to be much less common than minor mergers like the
Bullet Cluster, where the mass ratio is ≈7 (Lage & Farrar 2014).
To summarize, El Gordo is a much more exceptional object than the
Bullet Cluster in terms of the total mass, mass ratio, redshift, and
infall velocity.

Deeper surveys are needed to find higher redshift objects, which
usually requires a trade-off against the surveyed area. El Gordo was
found in a very small sky region of 455 deg2 (1.1 per cent of the
whole sky; Menanteau et al. 2010). However, the survey that obtained
the first constraints on El Gordo’s properties was slightly larger: It
covered 755 deg2 (1.8 per cent of the sky; Menanteau et al. 2012).
In our analysis, we adopt the latter value to be more conservative.

Despite its extreme nature, there are not so many works analysing
the chance of finding El Gordo in a �CDM universe. This is partly
because it was discovered quite recently, at least in comparison to the
Bullet Cluster. Due to its large mass, a very large simulation box is
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Figure 1. Diagram summarizing the two-step logic of this work: The baryon
acoustic oscillations in the CMB constrain the cosmological parameters in a
�CDM universe, fixing the abundance and evolution of its matter content.
This information is used in large N-body cosmological simulations that allow
us to estimate the distribution of structures at any epoch, in particular the
cluster pairwise mass function. If �CDM is correct, the distribution at z

= 1 contains a pair in a pre-merger configuration that, when advanced
with a hydrodynamical simulation, reproduces the detailed properties of
El Gordo. Such a detailed analysis is not possible without hydrodynamics,
while including it precludes the use of a very large simulation volume and the
associated statistical power. Previous studies like Zhang et al. (2015) obtained
a good fit to El Gordo using hydrodynamical simulations, but did not quantify
whether the required pre-merger configuration is plausible in the surveyed
region if the observed anisotropies in the CMB are evolved to z = 1 in a
�CDM context.

needed to study El Gordo in a statistically meaningful way. The few
attempts to do so (Menanteau et al. 2012; Katz et al. 2013; Jee et al.
2014; Sahlén, Zubeldı́a & Silk 2016) do not provide a very detailed
analysis. Except for Katz et al. (2013), these works consider El
Gordo to be a single massive object instead of two massive objects at
a very close distance infalling at high speed. The latter configuration
is significantly less likely for clusters that are individually rather
rare. Using the exclusion curve method of Mortonson, Hu & Huterer
(2011), Menanteau et al. (2012) and Jee et al. (2014) found that El
Gordo is a rare object but it is not in tension with �CDM. Jee et al.
(2014) also added that, since El Gordo is only marginally allowed in
�CDM, a more accurate measurement of its properties could give rise
to significant tension. Sahlén et al. (2016) estimated the likelihood
of finding an El Gordo analogue according to the cluster and void
mass functions predicted by �CDM. Using a Markov chain Monte
Carlo method, they also concluded that El Gordo is not in tension
with �CDM. Katz et al. (2013) commented on the low likelihood
of this object arising in a �CDM universe according to the mass–
redshift relation of Mortonson et al. (2011). Importantly, Katz et al.
(2013) mentioned that the probability is even lower if one takes into
account the high infall velocity of El Gordo, which can make it a
more serious problem for �CDM. Indeed, in their cubic simulation
box with sides of 1 h−1 co-moving Gpc (cGpc), they found no pairs
with the required mass, redshift, and collision velocity.

Finding analogues to massive objects like El Gordo in a cosmo-
logical simulation requires a very large box size to reliably estimate
the occurrence rate. This precludes the use of hydrodynamical
simulations. However, with only dark matter, it is not possible to
try and match, e.g. the observed X-ray morphology of El Gordo.
Instead, we rely on idealized hydrodynamical simulations to tell us
the pre-merger configuration. We then seek pairs in the cosmological
simulation with similar total mass, redshift, and collision velocity to
the El Gordo progenitors. These properties should be little affected
by small-scale baryonic processes, and so should be well reproduced
in a dark matter-only simulation.

In this paper, we conduct a rigorous analysis to find the probability
that a pair of progenitor galaxy clusters at z ≈ 1 could have given
rise to an object like El Gordo within the surveyed region if �CDM
is the correct cosmological model. The overall logic of the project is
summarized in Fig. 1. For the second step, we make use of the results

obtained by Zhang et al. (2015) in their hydrodynamical simulations
of El Gordo. The main purpose of our work is to check how often
the initial conditions of their plausible models arise in a very large
�CDM cosmological simulation with a side length of 6 h−1 cGpc
developed by the Juropa Hubble Volume Simulation Project (Watson
et al. 2013).1 We refer to this as the Jubilee simulation.

The structure of this paper is as follows: We begin by describ-
ing how we find analogues to El Gordo (Section 2). The pre-
merger configuration obtained from hydrodynamical simulations
(Section 2.1) is compared with the properties of galaxy cluster pairs
in the Jubilee simulation (Section 2.2) using appropriate selection
criteria (Section 2.3). We then describe our statistical analysis and its
results in Section 3. We perform the analysis in two different ways:
the power-law method (Section 3.2) and light-cone tomography
(Section 3.3). We combine our results with the Kraljic & Sarkar
(2015) analysis of the Bullet Cluster (Section 3.4). We then discuss
our results in Section 4, both in a standard context (Section 4.2) and
with a non-standard extended gravity law (Section 4.3). Finally, we
summarize our most relevant conclusions in Section 5.

2 FI N D I N G A NA L O G U E S TO E L G O R D O

2.1 Hydrodynamical simulations of the merger

Donnert (2014) conducted the first attempt to reproduce the main
characteristics of El Gordo with hydrodynamical simulations in a
�CDM cosmology. Their simulation used a Hernquist dark matter
density profile (Hernquist 1990), with the gas following the β-model
of Cavaliere & Fusco-Femiano (1978) with β = 2/3. They inferred
the following model parameters for the El Gordo cluster using the
Menanteau et al. (2012) observations: main cluster mass M200,1 =
1.9 × 1015 M�, secondary cluster mass M200,2 = 8.1 × 1014 M�,
main cluster radius R200, 1 = 2.55 Mpc, secondary cluster radius
R200, 2 = 1.925 Mpc, relative infall velocity Vinf = 2600 km s−1,
gas fraction fb(< r200) = 0.17 for both clusters, and a small impact
parameter of b = 20 kpc. Their model was implemented with the
magnetohydrodynamics-smoothed particle hydrodynamics (MHD-
SPH) code GADGET-3 (Springel 2005; Dolag & Stasyszyn 2009).
The model was able to reproduce the total X-ray luminosity, the core
distance of the clusters, and the observed offset between the X-ray
and SZ centroids. However, it was not able to properly reproduce
the X-ray morphology: Only one tail comes out of the peak emission
instead of the observed two. Donnert (2014) attributed this to the
lack of substructure in the simulation, and to the possibility that the
parent cluster of El Gordo was a highly disturbed system even before
it reached the observed configuration.

The hydrodynamical simulations of Molnar & Broadhurst (2015)
used a Navarro–Frenk–White (NFW; Navarro, Frenk & White 1997)
dark matter density profile and a truncated non-isothermal β-model
with β = 1 for the gas. They also constrained their model parameters
with the Menanteau et al. (2012) observations, but used slightly dif-
ferent values to Donnert (2014): M200,1 = 1.13 × 1015 M�, M200,2 =
1.02 × 1015 M�, R200, 1 = 2.304 Mpc, R200, 2 = 1.944 Mpc, Vinf =
2250 km s−1, fb(< r200) = 0.14 for both clusters, and b = 300 kpc.
They used the adaptive mesh refinement (AMR) code FLASH (Fryxell
et al. 2000). Their use of an AMR code instead of an SPH code (as
used in Donnert 2014) was motivated by the fact that an SPH code
is prone to suppress turbulent mixing of the gas, which can play
an important role in El Gordo (Bauer & Springel 2012). With this

1https://jubilee.ft.uam.es/
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model, Molnar & Broadhurst (2015) managed to reproduce its two-
tailed X-ray morphology, but they obtained a low X-ray luminosity
with respect to the observations. The projected distance between the
clusters and the offset between their SZ and X-ray centroids were
also larger than those observed.

The most recent simulation of El Gordo was conducted by Zhang
et al. (2015), who explored the parameter space in greater detail.
They chose the NFW profile for the dark matter and the Burkert
(1995) profile for the gas. Their simulations used both the SPH code
and an AMR code as each offers different advantages. In particular,
the GADGET-2 code (SPH based) was used to perform a large number
of merger simulations, exploiting the higher computational speed
and effective resolution of SPH codes. Once they identified which
simulations could be potential candidates to reproduce the El Gordo
merger, they used the FLASH code (AMR based) to resimulate
those mergers with a better handling of the shocks, eddies, and
fluid instabilities that arise in the merging process. They ran 123
simulations for different parameters to check which gave a better
fit to the El Gordo observations of Menanteau et al. (2012). Their
simulations can be divided into the following two classes of model:

(i) Model A: extremely energetic head-on collisions. This category
includes the Donnert (2014) and Molnar & Broadhurst (2015) simu-
lations. The parameters derived by Zhang et al. (2015) that best match
the observed features of El Gordo are: M200,1 = 1.3 × 1015 M�,
M200,2 = 6.5 × 1014 M�, R200, 1 = 1.66 Mpc, R200, 2 = 1.32 Mpc,
Vinf = 3000 km s−1, fb(< r200) = 0.1 for both clusters, and b =
300 kpc. This set of parameters – referred to as ‘fiducial model A’ by
the authors – can generate an X-ray surface brightness distribution
similar to the observations. It can also reproduce the observed mass
density distribution. However, the twin-tailed X-ray morphology is
smaller and more asymmetric than that observed, and only appears
when the clusters are at a projected distance of 600 kpc, smaller
than the weak lensing analysis of Jee et al. (2014) that shows the
cores are separated by ≈700 kpc. The offset between the SZ and
X-ray centroids is also smaller than that observed, while there is a
lack of extended X-ray emission in the outer region of the merger.
From this and the other Model A simulations of Zhang et al. (2015),
they reached the following conclusions: (a) Collisions with smaller
impact parameter are more violent; (b) having a smaller radius for
the secondary progenitor cluster may lead to an increase of the X-
ray emission in the cluster centre, but only one tail is formed; and
(c) having a more unequal mass ratio in this scenario would make
the collision less violent, preventing the destruction of the primary
cluster’s gas core and thus leading to the formation of two peaks in
the X-ray emission, contradicting observations. These conclusions
are in agreement with the results that Donnert (2014) and Molnar &
Broadhurst (2015) obtained from their simulations.

(ii) Model B: These simulations include off-centre collisions of
two massive clusters with b ≥ 500 kpc, making the collisions
less violent than case A mergers. The parameters that provide the
best fit for the observed characteristics of El Gordo are: M200,1 =
2.5 × 1015 M�, M200,2 = 0.7 × 1015 M�, R200, 1 = 2.06 Mpc, R200, 2

= 1.35 Mpc, Vinf = 2500 km s−1, gas fractions (fb1, fb2) = (0.05,
0.1) for the main and secondary clusters, respectively, and b =
800 kpc. This is referred to as ‘fiducial model B’. The simulation of a
merger with these parameters reproduces the temperature and X-ray
luminosity of El Gordo, as well as a two-tailed X-ray morphology
with a closer resemblance to observations than Model A. The
projected distance between the two clusters when this structure is
observed is 780 kpc, higher than that estimated observationally but
still closer to the observational value than the model A result. The

offset between the SZ and X-ray centroids is also slightly smaller
than that observed. An aspect of El Gordo that the model could not
reproduce is the X-ray emission in the outer region of the merging
cluster. In an attempt to correct for this, Zhang et al. (2015) changed
the gas fraction of the main and secondary clusters to 0.11 and
0.12, respectively, while leaving unchanged the other parameters of
fiducial model B. This ‘Extended Model B’ reproduces the X-ray
extension while also getting an offset between the SZ and X-ray
centroids closer to the observed offset. However, this changes the
distance between the cluster centres to 890 kpc, significantly larger
than that observed. After carrying out several Model B simulations,
the authors concluded that: (a) the relative velocity needed to
reproduce the two-tailed X-ray morphology is lower in Model B
(Vinf ≈ 1500–2500 km s−1 rather than ≈3000 km s−1); (b) to have
a single X-ray peak in a Model B scenario, the gas fraction of the
main cluster must be lower than that of the secondary, but if the gas
fraction of the secondary is too large, this would lead to the formation
of an unrealistic bright gas core in the centre; (c) mergers with a mass
ratio �2 or �5 lead to the formation of a more asymmetric X-ray
morphology; (d) a smaller core radius of the secondary cluster leads
to brighter X-ray emission in the core and a larger gradient in the
X-ray emission; and (e) a relatively large (≈ 2.5 × 1015 M�) main
cluster mass is needed to generate the total X-ray luminosity of El
Gordo, which is well constrained observationally.

Out of all these models, it is clear that the observed properties
of El Gordo are best reproduced in the Zhang et al. (2015) fiducial
Model B. The values chosen in this model reproduce El Gordo’s
characteristics fairly well, and are also in agreement with weak
lensing observations – the total mass M200,T = 3.2 × 1015 M� is very
consistent with the weak lensing analysis of Jee et al. (2014). The
mass ratio between the clusters is slightly higher (more unequal) in
fiducial Model B than that in the weak lensing observations, though
still within uncertainties. We expect that detailed modelling of the
collision provides a far better guide to the mass ratio. Therefore, our
main analysis uses the parameters of Model B in Zhang et al. (2015)
as our reference for the pre-merger configuration of El Gordo. It is
also their recommended model, as evidenced by them conducting
an Extended Model B to further optimize the fit to observations.2 In
Section 4.2, we discuss their Model A and rerun some of our analyses
for this case.

2.2 The Jubilee simulation

The Jubilee project consists mainly of two large N-body simulations:
Small Jubilee, a 3.072 h−1 cGpc cubic box with 30723 particles; and
Big Jubilee, a 6 h−1 cGpc cubic box with 60003 particles. Both use
the N-body code CUBEP3M (Harnois-Déraps et al. 2013) and were run
on the Juropa Supercomputer at the Jülich Supercomputer Centre.3

These simulations assume a �CDM cosmology with cosmological
parameters �m, 0 = 0.27, ��, 0 = 0.73, h = 0.7, σ 8 = 0.8, ns =
0.96, and �b, 0 = 0.044. The particle mass is 7.49 × 1010 h−1 M�
(section 2 of Watson et al. 2014b). The Jubilee project currently
only provides access to results of the Big Jubilee simulation, which
have been post-processed in different catalogues with the algorithms
known as Amiga Halo Finder (AHF), Friends of Friends (FoF), and
Spherical Overdensity (SO), with the latter still under construction

2Since our analysis considers only the total mass of each cluster, it is not
sensitive to their gas fractions. Thus, it is not relevant to discuss whether
Extended Model B would be preferred over the fiducial Model B.
3https://www.fz-juelich.de/portal/EN/Home/
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(for citations and comparisons between these algorithms, see Knebe
et al. 2011 and Watson et al. 2014a). For this project, we choose the
AHF catalogue since it provides a more detailed output with more
available parameters.

AHF is an AMR code that identifies and hierarchically classifies
structures inside a N-particle simulation box (Gill 2004; Knollmann
& Knebe 2009). Its volume is covered with a regular grid of user-
defined size. In each cell, the particle densities are calculated using
a triangular shaped cloud weighting scheme (Hockney & Eastwood
1988). If the particle density exceeds a given threshold, the cell will
be refined and covered by a finer grid with half the linear cell size.
This process is repeated until a grid is reached that needs no further
cell refinement. Following this procedure yields a grid hierarchy
starting from the finest grid to the coarsest in such a way that isolated
regions from the finer grids identified as possible haloes are linked to
their corresponding volumes in the coarser grid.4 From this, a tree of
nested grids is constructed. In case two patches that are isolated on
one level link into the same patch on the next coarser grid, the two
branches of the grid tree join. Once this is done for each nest of grids,
the grid forest is constructed and the classification of substructure
can be made – starting from the coarsest level downward to the finer
levels, once the finer level splits up into two or more isolated patches,
the patch containing the most particles is chosen as the main branch,
while the others are classified as substructures.

The main properties of each halo are its catalogue radius rJub and
catalogue mass MJub, with ‘Jub’ subscripts denoting values derived
from the Jubilee catalogue. This determines the average density
ρ (< rJub) within the radius rJub. We use this to obtain the overdensity

	Jub ≡ ρ (< rJub)

ρc
, where (1)

ρc ≡ 3H 2

8πG
(2)

is the critical density of the universe at the snapshot redshift, when
the Hubble constant is H. In the Jubilee catalogues, 	Jub = 178.
For a few cases, we checked that the values of 	Jub listed in the
catalogue correspond to our calculations using equation (1). In the
catalogue files, distances are in cMpc/h, masses in M�/h, and
peculiar velocities in km s−1, where h is the present Hubble constant
H0 in units of 100 km s−1 Mpc−1. We assume h = 0.7 throughout
this article for consistency with the Jubilee simulations. We convert
co-moving quantities to physical for our analysis, requiring us to
add the Hubble flow velocity to the peculiar velocities listed in the
catalogue.

The overdensity 	Jub used in the Jubilee catalogues is not the
standard value of 200. For comparison with constraints derived from
hydrodynamical simulations (Section 2.1), we convert the Jubilee
quantities using the procedure described below. We define the scaled
density within the radius rJub as ρ̃ ≡ 	Jub/200, where we use q̃

to denote q/q200 for any quantity q with value q200 when defined
within the radius r for which ρ (< r) = 200 ρc. We guess the scaled
catalogue mass m̃ and thereby determine

r̃ = 3

√
m̃

ρ̃
. (3)

To make further progress, we assume that the cluster follows the
NFW profile (Navarro et al. 1997) with concentration parameter c.5

4The volume covered by a fine grid is a subset of the volume covered by the
coarser grids.
5r200 ≡ crs, where rs is the radial scale of the profile.

We use equation (4) of Duffy et al. (2008) to get that

c = 6.71a0.44

(
M200

2 × 1012 h−1 M�

)−0.091

, (4)

where a ≡ 1/(1 + z) is the cosmic scale factor. For a NFW profile,
we must have that

m̃

[
ln (1 + c) − c

1 + c

]
= ln

(
1 + cr̃

) − cr̃

1 + cr̃
. (5)

To ensure that this equation is satisfied, we set the difference between
its left and right sides to 0 by varying our guess for m̃ using the
Newton–Raphson algorithm. In this way, we obtain m200 and r200 for
use in subsequent analyses. We call these quantities the virial mass
and radius, respectively.

2.3 Selection criteria

Our main goal is to find galaxy cluster pairs on an orbit similar to
that of the El Gordo progenitors, whose properties we obtain using
the hydrodynamical simulations discussed in Section 2.1. To avoid
contamination from galaxies, we restrict our sample to only those
haloes with M200 ≥ 3.5 × 1013 M�. This leaves us with 4129 462
haloes, which we assume are all in the galaxy cluster regime.

Comparing all of these haloes with each other would be extremely
computationally expensive. To improve the efficiency of our pair-
finding algorithm, we only consider the region within some distance
rmax of a halo with virial mass M, where

rmax = r0
3

√
M

M0
, (6)

with r0 = 40 Mpc and M0 = 1013 M�. We can estimate the orbital
period of any pair by applying Kepler’s laws. Since rmax ∝ M1/3, the
period is independent of M, allowing us to calculate it for a cluster
with mass M0. In this case, the minimum possible period P0 arises if
the total mass takes the highest possible value of 4.6 M0 (equation 9),
the apocentre is r0 , and the pericentre is 0, making the semimajor
axis r0/2. For this configuration,

P0 = 2π

√ ( r0
2

)3

4.6 GM0
= 1220 Gyr. (7)

Thus, it is clear that we do not miss any pairs that could have
turned around from their initial expansion and subsequently reached
pericentre within the lifetime of the Universe. None the less, our
restriction on the maximum separation of each pair greatly reduces
the computational cost of our algorithm as the simulation box size is(
6 h−1 cGpc

)3
.

For a pair to be analogous to El Gordo, it should also have
turned around from the cosmic expansion (Section 2.3.1), and
have an appropriate total mass and mass ratio (Section 2.3.2),
infall velocity (Section 2.3.3), redshift (Section 2.3.4), and impact
parameter (Section 2.3.5). We discuss these criteria next, but usually
omit the last condition to be conservative.

2.3.1 Requiring turnaround

Among the pairs with separation <rmax, we consider only those that
have turned around from the cosmic expansion to avoid, e.g. two
clusters separated by 30 Mpc with velocities close to the Hubble
flow. In other words, the pairwise relative separation r rel and relative
velocity vrel must satisfy

r rel · vrel < 0. (8)
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5254 E. Asencio, I. Banik and P. Kroupa

This restricts our sample to cluster pairs that may subsequently
undergo a close interaction reminiscent of El Gordo. Since most
of the time in an orbit is spent close to apocentre, we should easily be
able to find El Gordo analogues in this manner if they are common in
the Jubilee simulation. A very small number of analogues could be
missed because, e.g. at the time of the snapshot, an interacting pair is
caught shortly after pericentre. However, given the significant amount
of dynamical friction expected in an interaction like El Gordo, we
expect this to be a fairly short-lived phase compared to the pre-merger
phase. Even if a cluster pair is after pericentre at the snapshot time,
it could still satisfy equation (8) provided the pair has turned around
for a second time. This may be appropriate to the case of El Gordo
(Ng et al. 2015). Our analysis also misses El Gordo progenitors that
will turn around after the snapshot time. However, the time required
to turn around and reach pericentre means that we would need to
find such pairs at a much higher redshift than the z = 0.87 of El
Gordo. It would also be very difficult to know for sure whether a
pair will indeed turn around subsequent to the snapshot. In what
follows, we will assume that only a small fraction of possible El
Gordo progenitors are missed by imposing the turnaround condition.

2.3.2 Mass

The fact that El Gordo is an interaction between similar mass clusters
is expected to significantly lower the predicted number of analogous
pairs in the survey region. This is because minor mergers are much
more common than major mergers. According to Model B of Zhang
et al. (2015), the mass ratio of the El Gordo progenitors was 3.6.
Therefore, we require each galaxy cluster pair to satisfy

mmax

mmin
≤ 3.6, (9)

where mmin and mmax are the virial masses of the member with the
lower and higher mass, respectively.

The total mass M of El Gordo is one of the most important
parameters. Model B of Zhang et al. (2015) implies that M =
3.2 × 1015 M�, so we require

M̃ ≡ log10

(
mmin + mmax

M�

)
> M̃EG = 15.50. (10)

This condition leaves us with no analogous systems in the entire
Jubilee volume, so our statistical analysis (Section 3) is based on
how the number of analogues changes as the limit on M̃ is increased
from a much lower value. The results are extrapolated up to the El
Gordo value of 15.50, allowing us to obtain reliable statistics even
though 	1 analogous pair exists in the Jubilee volume. The accuracy
of this approach is discussed further in Section 4.1.

2.3.3 Infall velocity

To enable a comparison between galaxy cluster pairs caught at
different phases of their orbit in a Jubilee snapshot, we use energy
conservation under a point mass Newtonian potential to determine
the relative velocity v(2RT) when the clusters are separated by 2RT,
where RT is the sum of their virial radii. We then define a scaled
velocity ṽ to facilitate a fair comparison between cluster pairs with
a very different total mass.

ṽ ≡ v (2RT) ÷

vesc︷ ︸︸ ︷√
GM

RT
, (11)

where M is the sum of the cluster virial masses. The idea is to scale
the relative velocity to the escape velocity vesc. We set ṽ = 0 for a
pair with insufficient energy to reach a separation of 2RT. To match
the observed properties of El Gordo, we require that ṽ > ṽEG = 1.24
for our nominal Model B. If instead we use Model A, ṽEG becomes
1.77. Although a detailed analysis of the Bullet Cluster is beyond the
scope of this work, for comparison we use table 2 of Lage & Farrar
(2014) to estimate that its ṽBC is only 0.80.

2.3.4 Redshift

The observed merging configuration of El Gordo is viewed at z =
0.870. However, we expect our procedure to find possible progenitor
pairs before they interact. This is because:

(i) it is difficult for the position-based AHF (Knollmann & Knebe
2009) to distinguish closely interacting pairs, and

(ii) most of the time in an orbit is spent near apocentre.

Thus, we can only explain the observed configuration of El Gordo
if we find progenitors at a slightly higher redshift. For this, the
temporally closest snapshot available in the Jubilee simulation is at z

= 1. The time difference between z = 1 and 0.870 is 	t = 559 Myr.
To check if this time lag suits the aforementioned purpose, we

compare it with the pre-merger timeframes obtained with hydrody-
namical simulations of El Gordo. Zhang et al. (2015) estimate that
its observed state corresponds to 140 Myr after pericentre. The total
time lag should be much larger as clusters spend most of their time
going from apocentre to pericentre.

To get an idea of how long the clusters spend before pericentre, we
assume that they are in free fall at their escape velocity (ṽ = 1) and
that their initial separation r = RT, since it would be difficult for AHF

to distinguish clusters with overlapping virial volumes. Assuming
that the clusters are point masses of M200, the free-fall time tff is

tff = r3/2
√

2

3
√

GM200,T

= 748 Myr. (12)

Since ṽ is actually 1.24, a better estimate would be if we reduce tff

by this factor, yielding 603 Myr. Adding this to the post-pericentre
time lag of 140 Myr given in table 2 of Zhang et al. (2015), we obtain
a total time lag of 	t = 743 Myr. Thus, our estimate of 559 Myr is
conservative even if all our candidate pairs in the Jubilee simulation
have a separation of RT. However, the actual separations are typically
much larger (Fig. 2). This is partly because clusters spend relatively
little time near pericentre, but also due to the difficulties of AHF

in resolving clusters that are merging. Other halo finders such as
ROCKSTAR (Behroozi, Wechsler & Wu 2013) use velocity data to
alleviate this problem. This is not the case with AHF, so the pairs we
identify must be more widely separated. According to equation (12),
this implies a much longer 	t.

Other studies also obtain a significantly larger time lag than that
estimated above. Donnert (2014) used an initial time (t = 0) when
the cluster separation is slightly above the sum of their virial radii
(see their fig. 4). They found that the observed configuration of El
Gordo takes place at t = 1750 Myr, shortly after a first passage
through pericentre. Ng et al. (2015) propose two different scenarios
that could describe today’s observations of El Gordo: The clusters
could either be right after their first passage through pericentre (as
suggested by Donnert 2014), or they could be returning to pericentre
for a second encounter. The first case corresponds to a time since
pericentre of tout = 460 Myr, while the second scenario – favoured
in the author’s conclusions – corresponds to a time since pericentre

MNRAS 500, 5249–5267 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5249/5956544 by U
niversity of C

am
bridge user on 08 O

ctober 2021
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Figure 2. Histogram of the ratio d̃ between the separation of candidate El
Gordo analogue pairs and the sum of their virial radii. The pairs shown here are
identified at z = 1 and satisfy the turnaround, mass ratio, and ṽ conditions, but
have a smaller total mass than El Gordo (no pairs would be left otherwise).
Most pairs have d̃ > 4. There are almost no pairs with d̃ < 0.5, and only
314/15035 have d̃ < 1.

of tret = 910 Myr. This exceeds our estimated 	t even without any
time lag before pericentre.

Leaving a longer time lag between the Jubilee and observed
configurations would mean choosing a higher redshift for our
analysis. This lowers the chance of finding an El Gordo analogue
as the number of fast collisions of massive objects decreases with
increasing redshift. Therefore, we conservatively adopt z = 1 as the
redshift at which we search for El Gordo analogues. In reality, the
time lag could be significantly larger, so a higher z may be more
appropriate.

2.3.5 Impact parameter

To get a sufficiently strong interaction between the clusters, their
impact parameter should be rather small. To calculate this for cluster
pairs in the Jubilee simulation, we begin by using energy conservation
to estimate their relative velocity v∞ at large separation. For pairs
without sufficient energy to escape, we record b̃ = 0. Otherwise, we
calculate

b̃ ≡ |r rel × vrel|
v∞RT

. (13)

Model B of Zhang et al. (2015) implies that b̃EG = 3.42, which is
appropriate for an off-centre collision. We do not directly include
the requirement of a lower b̃ to be more conservative. This condition
should exclude only a small proportion of pairs (Section 3.2).

3 STATISTICAL ANALYSIS AND RESULTS

We fit the mass distribution of pairs analogous to El Gordo according
to some subset of the criteria discussed in Section 2.3. The fitting
procedure is described in Section 3.1. These fits are used in two
methods to quantify the likelihood of observing El Gordo within the
surveyed region: the power-law method (Section 3.2) and light-cone
tomography (Section 3.3). In both cases, the use of fitting functions is
necessary because the mass of El Gordo is larger than that of the most
massive pair to satisfy the other conditions. However, we will see
that it is only necessary to extrapolate M̃ by ≈0.6 dex. Section 3.4

Figure 3. The blue data points show the cumulative M̃ distribution for haloes
in the Jubilee simulation at z = 1 that have turned around from the cosmic
expansion and have a mass ratio ≤3.6 (Model B). The blue solid line is the
quadratic fit to this distribution. The red dashed line is the analogous fit when
we instead require a mass ratio ≤2 (Model A). For clarity, individual points
are not shown in this case. The crosses indicate the M̃ of each model.

discusses the implications of our results in combination with the
Bullet Cluster.

3.1 Fitting the mass function of El Gordo-like pairs

With the 499 285 pairs that pass the mass ratio and turnaround
conditions, we sort the pairs into ascending order of total mass as
quantified by M̃ (equation 10). This lets us obtain the cumulative
distribution of M̃ , i.e. the number of pairs N (≥ M̃) whose M̃ equals
or exceeds some value. We show this distribution in Fig. 3 for both
Model A and Model B parameters. There is a slight difference caused
by the smaller mass ratio in Model A, which in the previous step
reduces the number of candidates to 379 612. We adopt the Model B
values as nominal, but it is also helpful to consider Model A because
its lower mass for El Gordo is less problematic. We discuss Model
A in more detail in Section 4.2.

By fitting the mass distribution analytically, we can extrapolate the
number of pairs analogous to El Gordo that have M̃ > M̃EG, which
is the more problematic side for �CDM. Therefore, choosing the
correct fitting function for the mass distribution is critical to achieving
an accurate estimate of how unlikely the observation of El Gordo is in
a �CDM context. We initially choose a quadratic fit of log10 N (≥ M̃)
against M̃ since this seems better suited to the distribution. This
provides a very good fit (Fig. 3). To check if it can be improved with
a higher order fit, we compare the residuals to those of a cubic fit
(Fig. 4). It is clear that a cubic would overfit the distribution and
provide a poorer match to the Jubilee data at the critically important
high-mass end. Therefore, we use a quadratic fitting function in the
remainder of this article. The cumulative M̃ distribution of pairs that
pass the mass ratio, turnaround, and ṽ conditions is

log10 N
(
≥ M̃

)
= c0 + c1M̃ + c2M̃

2, (14)

with the fitting coefficients listed in Appendix A for the Jubilee
snapshots at z = 0, 0.509, and 1. We use these fits to quantify
the probability of finding analogues to the presumed El Gordo
progenitors at z = 1. This is done using two analysis techniques,
which we describe next.
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5256 E. Asencio, I. Banik and P. Kroupa

Figure 4. Residuals of the quadratic and cubic fits to the cumulative mass
distribution for turned around halo pairs in the Jubilee simulation at z = 1
whose mass ratio is ≤3.6.

3.2 Power-law method

Once we know the effective volume Veff of the survey that discovered
El Gordo, we can compare this to the Jubilee simulation volume
to determine the expected number of El Gordo analogues in the
survey volume. From this, we can quantify the P-value for a �CDM
cosmology of the fact that El Gordo was discovered with its observed
properties in the surveyed region. The basic principle is to find the
chance that this contains a cluster collision with equally or even more
extreme properties.

We extrapolate our fit to the cumulative pairwise mass distribution
to get the number of El Gordo analogues in the (6 h−1 cGpc)3

simulation volume at z = 1. By repeating this at z = 0.509, we
obtain the growth index

k ≡ 	 ln n

	 ln a
, (15)

where n is the number of El Gordo analogues in the simulation
volume, and the finite difference is taken between the Jubilee
snapshots at z = 1 and 0.509. We avoid using the z = 0 data because
structure formation is slowed down at low z by the effect of dark
energy, but its impact should not be too significant at z � 0.5. When
fitting the mass function using the widest available range (M̃ ≥ 14.0),
we obtain that k = 24.81 for the ṽ > 0 condition and k = 35.55 for
the more realistic ṽ > ṽEG condition.

We then use k to determine Veff. The main idea is that since k �
1, the effective survey depth is limited by the fact that analogues to
El Gordo rapidly become very rare with increasing z. To find the
number of El Gordo analogues at a < 0.5 along our past light-cone,
we should ideally integrate n over a ≤ 0.5 while accounting for the
variation of n with a. For k � 1, this is approximately equivalent
to neglecting the redshift dependence of n and only integrating out
to, e.g. a = 0.45. Since the co-moving number density of El Gordo
analogues increases with a as n

∝∼ ak with k given by equation (15),
the effective ‘depth’ of the survey is

	a ≈ a

k + 1
, (16)

where a = 0.5. In practice, this is not exactly correct since the co-
moving volume Vc per unit a along our past light-cone satisfies

dVc

da
= cAdc

2

aH
, (17)

Figure 5. The cumulative M̃ distribution with the conditions ṽ > 0 (orange),
ṽ > ṽEG (green), and ṽ > ṽEG plus b̃ < b̃EG (red). The blue vertical line
marks the El Gordo M̃ .

where A is the sky area of the survey in natural units (steradians),
H is the Hubble constant at epoch a, and dc is the co-moving radial
distance to an object at that epoch.

dc ≡
∫ t0

ti

c dt

a
. (18)

The integral must be taken up to the present time t0 from the time ti

corresponding to the epoch at which we wish to know dc. If this is the
epoch when a = 0.5, we have that H

∝∼ a−1.16 while dc
∝∼ a−1.50,

so dVc/da
∝∼ a−2.83. This means that the number of analogues per

unit a along the past light-cone is
∝∼ ak−2.83, so the effective survey

depth is

	a = a

k − 1.83
. (19)

Since we know the sky coverage of the survey, its effective co-moving
volume is then

Veff = Adc
2	dc, (20)

which gives Veff = 6.33 × 108 cMpc3 (4.17 × 108 cMpc3) when
we require ṽ > 0 (ṽ ≥ ṽEG). To get the co-moving volume in the
past light-cone between a and a − 	a, we need the difference in dc

between these epochs, which we call 	dc. We have simplified our
equations by exploiting the fact that the angular diameter distance is
dc/a.

The basic characteristics of El Gordo were constrained for the
first time in a survey with an area A = 755 deg2 (Menanteau et al.
2012). As discussed in Section 2.3, we also add several conditions
to obtain a cumulative mass distribution for El Gordo-like pairs. We
add these in stages to see how the number of analogues decreases as
each condition is imposed. The conditions are: ṽ > 0, ṽ ≥ ṽEG, and
ṽ ≥ ṽEG plus b̃ ≤ b̃EG. Our results are shown in Fig. 5.

Since we only consider clusters with m/M� ≥ 3.5 × 1013 ≈ 1013.5,
there are no pairs less massive than M̃ = 13.5 + log10 (2) = 13.80.
Edge effects are thus very significant at this mass. To avoid edge
effects at the low-mass end, from now on we only consider pairs with
M̃ > 13.5 + log10(4.6) = 14.16 unless explicitly stated otherwise,
allowing for the maximum allowed mass ratio of 3.6 (equation 9).
Ideally, we would impose a much higher floor and consider only
those cluster pairs with similar mass to El Gordo. However, such
objects are very rare, so fitting only the very high mass end can
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El Gordo – a massive blow to �CDM cosmology 5257

lead to an inaccurate estimation of n (see Fig. 5). This effect is
more pronounced when we add the ṽ ≥ ṽEG condition because in the
high mass bin most relevant to El Gordo, the number of pairs starts
decreasing very rapidly with ṽ once ṽ � 0.6 (Section 4.2). Therefore,
our main results rely on all pairs with M̃ > 14.16, maximizing the
amount of Jubilee data used. This means that our results rely on the
top 40–50 per cent of our pairwise mass distribution.

We use the survey volume V to find the expected number of
analogues NEG within it. Since NEG < 1, a situation ‘as bad as or
worse than’ reality for �CDM implies in this case that the survey
region contains ≥1 El Gordo-like system. In a �CDM context, the
probability of this occurring is given by standard Poisson statistics
(Watson et al. 2014a).

P = 1 − exp (−NEG) . (21)

Once we have the P-value, we can express it as an equivalent number
of standard deviations for a Gaussian distribution, which we call the
χ value. By definition, P and χ are related to each other by the
Gaussian distribution.

1 − 1√
2π

∫ χ

−χ

exp

(
−x2

2

)
dx ≡ P . (22)

In this contribution, we will usually convert a P-value into the
statistical significance χ by solving this equation using the Newton–
Raphson algorithm. The nominal χ values that we obtain from this
analysis are χ = 4.61 for the ṽ > 0 condition and χ = 6.69 for the
more realistic ṽ ≥ ṽEG condition. Since this already exceeds the 5σ

threshold, we do not show results for imposing both ṽ ≥ ṽEG and
b̃ ≤ b̃EG. To illustrate the effect of the b̃ condition, we show how the
z = 1 mass function changes if we additionally impose this condition
(Fig. 5). Requiring that b̃ < b̃EG only slightly reduces the number of
analogue pairs. There is a small effect in the low-middle mass range,
but not so much at the high-mass end. This is because orbits are
more radial at high mass as there is less likely to be a third massive
object that imposed a significant tidal torque. Because of this, adding
the b̃ condition makes the mass function flatter. Extrapolating this
to higher masses can lead to nonsensical results such as obtaining a
lower χ value after imposing the b̃ ≤ b̃EG condition. Thus, we do not
show χ values for the case of imposing both ṽ ≥ ṽEG and b̃ ≤ b̃EG,
except to note that the latter would not by itself make matters much
worse for �CDM because radial orbits are expected at the high mass
of El Gordo. We also do not consider results for the ṽ > 0 case
to be particularly useful because requiring ṽ > 0 is not sufficient
for finding analogues to a cluster merger that clearly requires a high
infall speed to reproduce the observed shock features (Section 2.3.3).
Similarly, imposing no condition on ṽ is not sufficient to match El
Gordo – this is only shown for illustrative purposes.

Our quadratic fits to the mass function may not be perfectly
accurate as there could be a weak cubic dependence. Since the mass
function declines rather steeply, our fits to it are dominated by pairs
near the low-mass end, causing the fits to prioritize very modest
improvements here over a better fit at the high-mass end critical
to our analysis. One way to check for the impact of any cubic or
higher order trend is to restrict the range of M̃ used in our fit. By
focusing on the high-mass region, it is possible to minimize such
systematic effects at the cost of higher random errors from Poisson
noise. Therefore, we try several different values for M̃min, the lowest
value of M̃ used in our quadratic fit. The idea is to check if our results
differ much when fitting the whole data set or fitting towards the high-
mass end. We have summarized the results of all these different tests
in Fig. 6, where we have expressed the number of analogues expected

Figure 6. The statistical significance χ (equation 22) of the observation
of an El Gordo-like object as defined in different ways, in terms of the
minimum mass beyond which we fit the cumulative M̃ distribution. Each
line corresponds to a different set of conditions, which in increasing order of
restrictiveness are: turnaround and mass ratio (blue dotted), ṽ > 0 (orange),
and ṽ > ṽEG (green). Error bars on the ṽ > 0 line show the effect of
varying the El Gordo mass by ±20 per cent, while those on the ṽ > ṽEG

line correspond to a ±10 per cent uncertainty on ṽEG. Along each line, each
successive data point is based on 10 per cent fewer pairs at z = 1 in terms of
the leftmost point; e.g. if this is based on 100 pairs, the second is based on
90 pairs and the third on 80 pairs, etc. The hollow circles indicate somewhat
questionable results – error bars could not be reliably calculated as there
were too few pairs. This is also the reason for missing upper error bars on
the line for ṽ > ṽEG. The cross-shaped symbols represent the results of our
light-cone tomography (Section 3.3), with the same relation between colour
and the imposed conditions.

to be found in the El Gordo survey volume in terms of the χ value.
This does not depend very much on M̃min.

3.3 Light-cone tomography

To check that the previous analysis provides an accurate estimate
of the probability that �CDM yields an El Gordo analogue in the
surveyed volume, we compare the results with a different type of
statistical analysis that we term light-cone tomography. The basic
idea is to consider the distribution of pairs with El Gordo-like
properties along our entire past light-cone, not just at a ≈ 0.5.
In particular, after requiring that pairs have similar dimensionless
parameters to El Gordo, we consider to what extent its main dimen-
sionful numbers (mass and redshift) are outliers to the distribution
expected in �CDM.

The procedure can be described as follows: We apply our usual
quadratic fit to the mass function (equation 14) in the Jubilee
snapshots at z = 0, 0.509, and 1. The fit coefficients for the ṽ > ṽEG

condition are shown in Appendix A. Since we have three snapshots,
we use a quadratic to fit the values for each coefficient against ln a,
allowing us to extrapolate the value of this coefficient to any other
a. In other words, c0 in equation (14) is now treated as a function
of a, with its value c0(a) found by a quadratic interpolation from
the three snapshots where we know c0. This tells us the co-moving
number density of El Gordo-like pairs as a function of both M̃ and
a. For each bin in a along our past light-cone, the co-moving volume
is given by integrating equation (20).

We use this information to obtain the number of pairs in the past
light-cone of a z = 0 observer that lie within any given range of
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Figure 7. The number of analogues to El Gordo according to the turnaround,
mass ratio, and ṽ ≥ ṽEG conditions per unit M̃ per unit a along our past
light-cone for the 755 deg2 sky area in which it was discovered. The black
contour lines show the 1σ , 3σ , and 5σ confidence regions, while the red
contour at 6.16σ goes through El Gordo (red cross, with error bar indicating
±20 per cent uncertainty on the mass). Of the NEG pairs outside this contour,
only 0.1 NEG pairs lie beyond the red dashed contour; i.e. most of the
probability of observing El Gordo comes from between the red contours.
The levels of all these contours are shown on the colour bar. The 5σ contour
is at M̃ = 15.293 when a = 0.5.

pair total mass and redshift. Using a 2D contour plot showing this
quantity as a function of (M̃, a), we get the contour level for El
Gordo. We then infer the expected number (NEG) of El Gordo-like
objects in our past light-cone with (M̃, a) outside this contour. This
lets us infer the corresponding P and χ values. Fig. 7 shows this
contour plot for the ṽ > ṽEG condition using a mass function fit with
M̃min = 14.16. The solid red line shows the critical contour through
El Gordo, beyond which we expect NEG = 7.51 × 10−10 pairs. For
ease of reference, we call this the NEG contour.

As El Gordo is clearly a significant outlier, most of these pairs
lie only a little outside the NEG contour. This can be seen with the
red dashed line, which shows the contour beyond which there are
0.1 NEG pairs. Thus, fully 90 per cent of NEG arises from the thin
strip between the red contours. Since the number density of pairs with
respect to (M̃, a) is the same along each contour, the total number
of pairs contributed by each a is roughly proportional to the gap
between the NEG and 0.1 NEG contours – the wider the gap, the more
important that a is. Thus, we can gain an idea of which cosmological
epochs are most relevant to the probability of observing El Gordo in
a �CDM universe. Fig. 7 shows that the gap between the 0.1 NEG

and NEG contours is widest for a � 0.5, which is also the range
covered by the Jubilee snapshots we analyse. Therefore, even if our
extrapolation to lower a is not perfectly accurate, this should not
significantly affect our results – the total probability receives little
contribution from a � 0.5.

Our light-cone tomography analysis indicates that when requiring
ṽ > ṽEG, the statistical significance χ = 6.16. This agrees fairly well
with our power-law analysis (Fig. 6). Importantly, both techniques
agree that the �CDM model is falsified at >6σ significance based
on El Gordo alone.

For our light-cone tomography, we consider cluster pairs all the
way up to a = 1 in order to be conservative. This is not very realistic as
there must have been some time lag between the observed state of El
Gordo and the pre-merger stage at which we seek to capture El Gordo

analogues in the Jubilee simulation. As explained in Section 2.3.4,
we estimate that this time lag is 559 Myr. Subtracting this from the
13.47 Gyr age of the universe in �CDM yields a = 0.96. In the
real world, any El Gordo-like pair at a > 0.96 would simply not
have enough time to evolve into the observed state. Thus, it may
be more reliable to restrict our light-cone tomography to a < 0.96.
This would slightly reduce NEG and increase the significance χ .
We found that χ rises by only ≈0.01, so the time lag effect is not
a major source of uncertainty at the present epoch. It may be more
significant at a ≈ 0.5, but we have already accounted for it by placing
El Gordo at z = 1 instead of the observed z = 0.87 (Section 2.3.4). As
discussed there, the time lag could be much longer than our assumed
560 Myr since most of the candidate pairs we identify have a rather
large separation, so they would need a significant amount of time to
reach pericentre (Fig. 2). Moreover, the time after pericentre could
by itself contribute 910 Myr if El Gordo is observed after second
turnaround, which better accounts for some observables (Ng et al.
2015).

3.4 Combined implications with the Bullet Cluster

The Bullet Cluster was discovered by Tucker et al. (1995) and is listed
in their table 1. In their section 3, they indicate that this and the other
clusters they discovered were identified by searching through 1435
fields of view of the Imaging Proportional Counter on the Einstein
X-ray observatory (Giacconi et al. 1979). According to table 1 of the
latter work, each field of view is a square with 1.25◦ sides. Thus,
the Bullet Cluster was discovered in only 5.4 per cent of the sky,
with the small sky coverage being due to poor spatial resolution
that meant much of the sky was obscured by emission from fore-
ground supernova remnants. Despite these difficulties, the extreme
properties of the Bullet Cluster were already apparent in Tucker et al.
(1998).

A detailed analysis of the Bullet Cluster is beyond the scope of
this contribution, but we utilize the result of Kraljic & Sarkar (2015)
that 0.1 pairs analogous to it should be observed out to its redshift
of z = 0.296. They implicitly assumed that observing a cluster pair
‘as bad as or worse than’ the Bullet involved a lower redshift, which
is possible for a nearby object since the co-moving volume per unit
a declines rapidly with a when a ≈ 1. We have made the opposite
assumption since El Gordo is at a much higher redshift, so it is clear
that the situation will be worsened for �CDM by going to higher z.
The situation may be different for the Bullet, so we assume that the
choice adopted by Kraljic & Sarkar (2015) is reasonable. However,
their result of 0.1 analogous pairs is only valid for a survey that
covers the full sky. This is apparent in their equation (4.5), which is
directly analogous to our equation (20) – but with 4π instead of the
sky area A. Accounting for the sky coverage of 5.4 per cent, we get
that the surveyed region is expected to have NBC = 5.4 × 10−3 pairs
analogous to the Bullet Cluster in a �CDM context. This makes the
Bullet Cluster a χBC = 2.78σ outlier.6

To approximately combine this with El Gordo, we add the squares
of the individual χ values.

χ2
tot = χ2

BC
+ χ2

EG
. (23)

6This result could differ somewhat if Kraljic & Sarkar (2015) had used the
dimensionless ṽ instead of the infall velocity, since cluster pairs of lower
mass (which are more common) can more easily match ṽ than the actual
infall velocity.
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Table 1. Results of the power-law (Section 3.2) and light-cone tomography (Section 3.3) analyses for different ṽ conditions. We
show the expected number of analogues N in the surveyed region as a P-value [P = 1 − exp (− N)] and the corresponding statistical
significance χ (equation 22). Results for El Gordo (the Bullet Cluster) have a subscript EG (BC). The row PEG + BC shows the effect
of combining our results with the Bullet Cluster, which is a χBC = 2.78σ outlier according to the results of Kraljic & Sarkar (2015)
when accounting for the sky footprint of the discovery survey (see the text). We also show the impact of scaling the number of El
Gordo and Bullet Cluster analogues by assuming that the surveys in which they were found covered the full sky (last row). This is
a conservative estimate of how our conclusions would be weakened if the entire sky contains no additional problematic objects for
�CDM.

ṽ > 0 ṽ > ṽEG

Power-law Light-cone Power-law Light-cone
tomography tomography

PEG 4.08 × 10−6 (4.61σ ) 1.12 × 10−4 (3.86σ ) 2.23 × 10−11 (6.69σ ) 7.51 × 10−10 (6.16σ )
PEG + BC 5.13 × 10−7 (5.02σ ) 1.20 × 10−5 (4.38σ ) 3.98 × 10−12 (6.94σ ) 1.24 × 10−10 (6.43σ )
PEG + BC (full sky) 6.09 × 10−5 (4.01σ ) 1.36 × 10−3 (3.20σ ) 5.04 × 10−10 (6.22σ ) 1.55 × 10−8 (5.66σ )

The probability of a higher χ2
tot is then found using the standard

formula for two degrees of freedom.

P = exp

(
−χ2

tot

2

)
. (24)

This can be converted into a statistical significance χ for a single
variable using our usual approach of applying equation (22).

Table 1 summarizes the main results of the power-law and light-
cone tomography analyses, both when considering El Gordo alone
and in combination with the Bullet Cluster. We see that the power-
law and light-cone tomography analyses give similar results. The
Bullet Cluster and El Gordo were discovered in a small fraction of
the entire sky. To be conservative, we can assume that no additional
cluster pairs are found in the rest of the sky that pose a problem to
�CDM. We illustrate what effect this could have by scaling up NBC

and NEG under the assumption that their discovery surveys covered
the whole sky. This reduces χBC and χEG , but we are still left with an
overall significance χ > 5. Therefore, the power-law and light-cone
tomography methods agree that the �CDM model must be rejected
at >5σ confidence even if no additional problematic objects exist in
the rest of the sky.

In reality, full sky surveys such as the Planck survey (Planck
Collaboration VIII 2011) have already found more clusters that could
further increase the tension. One example is PLCK G214.6+37.0,
a triple system of clusters at z ≈ 0.47 that appear to be at an early
stage of interaction. The total mass M200 ≈ 1.17 × 1015 M�, while
the mass ratio between its components is ≤1.4. Another example is
PLCK G287.0+32.9 at z = 0.39 (Planck Collaboration VI 2013), a
quadruple system of clusters with a total mass of M200 = 2.04+0.20

−0.21 ×
1015 M� in which the largest cluster (10× more massive than the
other components of the system) is undergoing a complex merger
with one or more of the other clusters (Bagchi et al. 2011; Finner
et al. 2017). We discussed a few other potentially problematic cases
in Section 1. It is therefore unrealistic to assume that there are no
other objects besides El Gordo and the Bullet Cluster that could
entail a problem for �CDM. Moreover, even this very conservative
assumption is insufficient to solve the tension (Table 1).

4 POSSIBLE EXPLANATIONS FOR EL GORDO

Table 1 shows that the results from our power-law and light-cone
tomography analyses are in agreement, with a difference in statistical
significance χ of ≈0.7 when requiring ṽ > 0 and ≈0.5 for ṽ > ṽEG.
Our most conservative estimate of the tension is χEG = 6.16 based
on light-cone tomography, so an uncertainty of 0.5 would not be

enough to reconcile �CDM with observations at 5σ confidence.7

Moreover, if χEG is combined with the 2.78σ tension caused by
the Bullet Cluster, the combined significance rises to 6.43σ . These
results account for the sky coverage of the respective surveys in
which the objects were discovered. If we adjust our analysis by
pretending that the surveyed area in each case was the whole sky, the
significance is still close to 6σ . Thus, future surveys will not be able
to alleviate the tension for �CDM even if they uncover no additional
problematic objects.

Even with the more relaxed condition (ṽ > 0) in which the high
infall velocity of El Gordo is not taken into account, we still get a
statistical significance close to 4σ , which makes the El Gordo mass
at z = 1 an extremely unlikely feature on its own. Isolated clusters
of this mass are not catastrophic for �CDM (e.g. fig. 17 of Jee et al.
2014). However, the paired nature of El Gordo substantially reduces
the odds of finding such a system in the surveyed region. This very
important effect was not considered in previous works that treated
El Gordo as one object when quantifying the tension with �CDM
(Menanteau et al. 2012; Jee et al. 2014; Sahlén et al. 2016). Of course,
these analyses could not consider the high required infall velocity.
Our analysis is the first to consider both the M̃ and ṽ of El Gordo in
a standard context.

Even if El Gordo is treated as one object, the statistical methods
used differ between studies. Unlike Jee et al. (2014), Buddendiek
et al. (2015) showed in their fig. 8 that even a single 2 × 1015 M�
cluster at a = 0.5 would be quite problematic for �CDM. This is
also evident in fig. 5 of Watson et al. (2014a). Regardless of the exact
frequency of such clusters at this redshift, a major merger of two such
clusters would be even less frequent, since this can only occur if two
individually rare objects formed close enough to turn around from
the cosmic expansion within a few Gyr. It is thus not very surprising
that the existence of El Gordo significantly challenges �CDM.

Beyond this qualitative agreement with previous studies, we are
unable to compare our results with other similar works since they do
not conduct an analysis nearly as detailed as ours. However, we can
compare the results of our two statistical analyses among themselves.
Both give χ > 6, so we can be fairly confident in setting the lower
limit of the χ value to 6. Therefore, the expected number of analogues
to El Gordo in the surveyed region must be increased by >3 orders
of magnitude just to reach the plausibility threshold of χ = 5, which

7If we assign our calculated χ a Gaussian uncertainty of 0.5, then we can
suppose that we overestimate χ by 0.5y. The overall likelihood of any y is
then that of χ2

tot = y2 + (6.16 − 0.5y)2 for 2 degrees of freedom. We never
get χ2

tot < 30.4, but a 5σ event corresponds to χ2
tot = 28.7 (equation 24).
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would make the observation of El Gordo as probable as a fair coin
landing heads 21 times in a row.

The rather low P-values we obtain are almost certainly overesti-
mates for various reasons. As discussed in Section 2.3.4, many of
the Jubilee pairs we call ‘analogues’ are actually still rather widely
separated at z = 1, so they would not evolve into the observed
configuration by z = 0.87. Moreover, we have only searched for pairs
whose orbit is similar to that of the presumed El Gordo progenitors.
We have not allowed for the fact that only a small fraction of the
orbit is spent close to pericentre, but we must be observing El Gordo
at this phase. The P-values are also reduced by the requirement to
have a sufficiently small impact parameter, though this by itself is
not very problematic (Fig. 5).

4.1 Reliability of the Jubilee simulation

The length and mass scales relevant to El Gordo should be very
well resolved in the Jubilee simulation: The minimum resolved halo
mass is 1.49 × 1012 h−1 M� (20 particles; see section 2 of Watson
et al. 2014b), and the minimum spatial resolution is 0.5 h−1 cMpc
(mesh number of 12 0003 for a simulation box with a side length
of 6 h−1 cGpc; see table 1 of Watson et al. 2013). At z = 1, these
correspond to a virial mass and radius of M200 = 1.88 × 1012 M�
and r200 = 0.3 Mpc, respectively. Since we select only those haloes
that have M200 ≥ 3.5 × 1013 M�, we can be confident that the haloes
we use are all well resolved.

The 8.57 cGpc side length of the Jubilee simulation significantly
exceeds the co-moving Hubble radius c/(aH) = 5.04 cGpc at a =
0.5 (c is the speed of light in vacuum), so the simulation is about as
large as the entire observable Universe at that epoch. As a result, the
Jubilee simulation volume is ≈1380× larger than that of the El Gordo
discovery survey. Therefore, the severe tension between �CDM and
the existence of El Gordo is evident already in the disparity between
its mass and that of the most massive Jubilee pair with similar
dimensionless parameters (Fig. 5). Importantly for the accuracy
of our results, they are subject to only a very small amount of cosmic
variance due to the large simulation volume – if the root mean square
matter density fluctuation between spheres of radius 8 h−1 Mpc is σ 8

= 0.811 ± 0.006 today (Planck Collaboration VI 2020), then for the
Jubilee volume at z = 1, it should be only 5.4 × 10−4 as the density
fluctuations scale inversely with size (Harrison 1970; Zeldovich
1972) and grow

∝∼ a. Consequently, the density fluctuations on
a mass scale of 1015 M� are accurately handled by a numerical
simulation with a side length of just 0.1 h−1 cGpc (fig. 2 of Watson
et al. 2013).

Our own statistical analysis at z = 1 (from which we obtain our
nominal result for PEG) is based on fitting to 15 035 pairs that pass
the ṽ ≥ ṽEG condition and whose total mass M̃ ≥ 14.16 to ensure
only clusters are considered. The highest mass pair has M̃ = 14.91.
Due to the large number of objects, the Poisson noise should be
very small over the majority of this range, allowing for an accurate
analytic fit to the pairwise mass function. This is evident from the
fractional uncertainty in the number of pairs with M̃ ≥ 14.16: Our
estimate of N = 15 035 in the simulation volume has a fractional
Poisson uncertainty of only

Poisson noise = 1√
N

= 8.16 × 10−3. (25)

This explains the very good analytic fit in Fig. 5.
The uncertainty increases at higher mass – due to the extreme

rarity of objects like El Gordo in Jubilee, it is not possible to simply
count the number of analogue pairs with M̃ > M̃EG. Instead, we

must rely on an extrapolation of our quadratic mass function. Since
we identified low mass analogues to El Gordo with M̃ as high as
14.91, we only need to extrapolate the mass function by 0.6 dex,
less than the range of M̃ used to define the mass function. Thus, the
extrapolated number of analogues with M̃ > M̃EG should be quite
reliable. The uncertainties would be even lower when z = 0.509 and
0 due to an increasing number of haloes above a fixed mass (Fig. 7;
see also Appendix A).

The majority of the pairs we find are separated by much more
than the sum of their virial radii (Fig. 2). As a result, the halo finder
used (AHF) would only very rarely misclassify a pair as one object,
incorrectly removing it from the statistics. Different halo finders also
yield similar cluster mass functions (fig. 3 of Watson et al. 2014a).
Therefore, we can be confident that simulated galaxy cluster pairs
similar to the El Gordo progenitors are reliably identified by AHF.

For these reasons, we expect that the pairwise mass function of
the Jubilee simulation over the fitted range should be a very accurate
representation of �CDM. Indeed, Watson et al. (2014a) noted that the
Jubilee simulation has proven capable of reproducing the distribution
of massive individual clusters according to both observations and
theoretical predictions. It has also complied with most of the �CDM
predictions for the distribution of structures.

Currently, it would be hard to compare if other cosmological
simulations give a similar occurrence rate for extreme objects like El
Gordo, since cosmological simulations as large as Jubilee are not that
common. Nevertheless, there is no reason to believe that the Jubilee
simulation might not accurately represent �CDM since, up to now,
it has been shown to work correctly in accordance with the �CDM
cosmological model for which it was designed. Moreover, the use of
Poisson statistics is justified for rare objects like El Gordo (Watson
et al. 2014a).

4.2 A lower mass

Our adopted mass of 3.2 × 1015 M� exceeds the (2.16 ± 0.32) ×
1015 M� estimated in table 2 of Menanteau et al. (2012) by combining
various techniques. However, the large uncertainties given there
indicate that these earlier estimates are not very reliable. In addition,
the methods used to obtain the El Gordo mass did not account for
the fact that it is an interacting cluster. The X-ray temperature and
luminosity-based estimates of ≈2.6 × 1015 M� should have been
multiplied by a factor of 1.17 to account for this (section 4.1.3 of
Vikhlinin et al. 2009). In addition, the SZ signal mass estimate of
1.6+0.6

−0.4 × 1015 M� is biased low by ≈10–20 per cent in the case of
interacting clusters (fig. 7 of Krause et al. 2012), while the estimate
from the cluster’s velocity dispersion should have taken into account
that dynamical friction slows down a substructure before it can
suffer mass loss due to tidal stripping (Munari et al. 2013). In
fact, Menanteau et al. (2012) mention in their section 3.3 that due
to considering El Gordo a virialized cluster, their nominal value
for its mass is likely to be an underestimate. This is supported
by the fact that summing their dynamical masses for its two
subcomponents gives (2.8 ± 0.9) × 1015 M�, which is closer to the
Jee et al. (2014) weak lensing estimate. Clearly, reliable estimates
of the El Gordo mass require a hydrodynamical model designed to
reproduce the X-ray, weak lensing, and SZ maps in detail. This is
precisely what was done by Zhang et al. (2015), as discussed in their
section 2.2.

So far, we have focused on their fiducial Model B for reasons
discussed in Section 2.1. Fig. 3 shows that the lower mass Model A
may reduce the tension with �CDM. We therefore discuss whether
it provides a better explanation of the observations in a �CDM
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Figure 8. The ṽ distribution for different mass ranges (in units of 1015 M�:
1–3.6, 3.6–6.2, and >6.2). The ‘low’ and ‘middle’ mass ranges each have
396 350 pairs, while the ‘high’ mass range has only 1000 pairs. All curves
are normalized to a sum of 1. The vertical lines show the ṽ of each model.
Notice the narrowing of the ṽ distribution with pair total mass.

context. This entails considering the likelihood of the pre-merger
configuration and how well Model A reproduces the observed
morphology.

Although Model A requires a lower mass for El Gordo (M̃ =
15.29), the progenitors should have a more nearly equal mass ratio
(≤2 rather than ≤3.6) and be infalling on to each other ≈20 per cent
faster (table 2 of Zhang et al. 2015). Thus, Model A requires ṽ = 1.77
while model B manages with a lower ṽ = 1.24. To explore what effect
this could have, we use Fig. 8 to show the distribution of ṽ in three
different M̃ bins. It is clear that the higher ṽ will significantly reduce
the number of analogues if the Model A parameters are adopted. This
effect is especially pronounced at the high mass of El Gordo because
the ṽ distribution becomes narrower at high masses. The most likely
explanation is that such massive cluster pairs are probably quite
isolated – it would be very unlikely to find a third massive object in
the vicinity of the pair. Without the third object, it is very difficult
for the pair to have ṽ > 1 as this entails more kinetic energy than is
required to escape. This is why the observed combination of M̃ and
ṽ is so problematic for �CDM.

Model A thus achieves a different trade-off between how difficult
it is for �CDM to explain different aspects of the pre-merger
configuration. To better understand if it helps overall, we fit the
cumulative ṽ distribution log10 N

(≥ ṽ
)

using a cubic (Fig. 9). It is
evident that the higher ṽ reduces the number of ṽ analogues by ≈1
order of magnitude, as also noted in Table 2. This is less significant
than the ≈2 orders of magnitude increase expected from the use of a
lower mass (Fig. 3), suggesting that Model A is more likely from a
cosmological perspective.

However, the last column of Table 2 shows that it is still very
difficult to simultaneously explain the mass and collision velocity of
El Gordo, even with the Model A parameters. The very low number
of analogues listed there can be understood as follows: Of the 1.23
analogues in M̃ for Model A, we expect a fraction 0.753/1000 to pass
the ṽ > ṽEG condition, implying that 9.26 × 10−4 systems pass both
conditions if they are independent. However, the results in Fig. 8
show that the ṽ distribution gets narrower at high M̃ . We implicitly
account for this narrowing by only considering pairs with ṽ > ṽEG

before extrapolating in M̃ . Thus, we expect even fewer pairs with

Figure 9. The cumulative ṽ distribution for the 1000 most massive candidate
El Gordo analogues. The dotted red (solid blue) line shows a cubic fit for
Model A (B). For clarity, individual points are only shown for the more
realistic Model B (see the text). The crosses show ṽ for each model. Notice
that Model A is more of an outlier here, opposite to the situation in Fig. 3.

Table 2. The number of pairs with larger M̃ and/or ṽ than El Gordo in the

Jubilee simulation volume of
(
6 h−1 cGpc

)3
, which is much larger than the

surveyed region (Section 3.2). The properties of El Gordo are from Models A
and B in Zhang et al. (2015). Since the ṽ distribution narrows at high masses,
the results for ṽ are based on cubic fits to the cumulative ṽ distribution of the
1000 most massive pairs (Fig. 9). The last column corresponds to imposing
the ṽ condition before performing a quadratic extrapolation in M̃ . Since each
condition is individually rather problematic, requiring both simultaneously
leads to very few analogues (see the text).

Number of pairs with higher
M̃ ṽ Both

Model A 1.23 7.53 × 10−1 1.00 × 10−5

Model B 1.42 × 10−2 6.38 3.08 × 10−8

both a higher M̃ and a higher ṽ than El Gordo. This probably explains
why we get only 1.00 × 10−5 analogues instead of 9.26 × 10−4.

To quantify the overall effect of using Model A instead of Model
B, we repeat our light-cone tomography analysis for the Model A
parameters. This method suggests less tension with �CDM, so we
use it to be more conservative. We find that the P-value is 2.73 × 10−7,
representing 5.14σ tension. The 360× enhancement to the Model B
probability of 7.51 × 10−10 (Section 3.3) is very much in line with the
320× enhancement suggested by the last column of Table 2. When
combined with the Bullet Cluster observations using equation (23),
we get an overall tension of 5.50σ . Thus, it is clear that the more
likely pre-merger configuration in Model A is still inconsistent with
�CDM expectations.

So far, we have only discussed whether the Model A pre-merger
configuration is likely to arise in �CDM. For a holistic discussion
of whether Model A is a valid solution in this context, we also need
to consider whether it reproduces observations of El Gordo (second
step in Fig. 1). The fact that it does not do so nearly as well as
Model B explains why Zhang et al. (2015) adopted the latter as their
nominal model and optimized it further in Extended Model B. The
main problem with Model A is that it does not reproduce the twin-
tailed morphology of El Gordo, as can be seen in their fig. 6. This
is a very important feature of the real El Gordo (fig. 1 of Menanteau
et al. 2012). In addition, the implied mass of 1.95 × 1015 M� is in
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tension with the weak lensing mass of (3.13 ± 0.56) × 1015 M� (Jee
et al. 2014). This estimate is for a slightly different definition of the
mass: The radius used is such that the enclosed density is 200× the
average matter density rather than the critical density. However, the
Universe was matter dominated at z = 1, so the difference is small.
This is evident in fig. 14 of Jee et al. (2014), which shows that the
quoted uncertainty is significantly larger.

Returning to the Model B case, we need to consider whether a
lower mass version of Model B might plausibly agree with detailed
observations, even if a higher mass yields better agreement. Clearly,
if �CDM is correct, a compromise is needed between the likelihood
of the initial conditions of a hydrodynamical merger simulation and
the extent to which it matches observations in detail (Fig. 1). We
can address this by considering the variations tried by Zhang et al.
(2015), exploiting the fact that they ran 123 models. At the end of
their section 3.2, they discuss a modification with respect to fiducial
Model B involving a reduced main cluster mass of M̃1 = 15.20 and,
because of the smaller size of the system, a lower impact parameter of
b = 600 kpc. The mass ratio and infall velocity remain the same as in
fiducial Model B, so the total mass is M̃ = 15.31 and ṽ = 1.43. Since
this model has an X-ray luminosity significantly smaller than that of
fiducial Model B, we can consider M̃ = 15.31 a secure lower limit
without some other compensatory adjustment. Repeating our light-
cone tomography analysis for these ‘low-mass Model B’ parameters,
we obtain a 5.17σ tension (P = 2.35 × 10−7).

Zhang et al. (2015) concluded that Model B mergers require a
higher mass of M̃1 ≈ 15.40 in order to reproduce an X-ray luminosity
consistent with observations. The X-ray luminosity can also be
increased by considering a higher velocity (≈3500 km s−1), but this
would simply lead to a configuration very similar to Model A – which
as mentioned above also does not have plausible initial conditions,
and is problematic for other reasons. In any case, the higher resulting
ṽ would worsen the tension for �CDM. Furthermore, Model A and
low-mass Model B require a smaller impact parameter than fiducial
Model B. This is geometrically less likely and ought to reduce the
probability further by a factor of ≈(3/8)2 in the Model A case and
≈(6/8)2 in the low-mass Model B case. Therefore, a lower mass does
not alleviate the tension between �CDM and the observed properties
of El Gordo. While the pre-merger configuration becomes somewhat
more likely in terms of mass, several additional tensions emerge
when switching to either model.

Zhang et al. (2015) were already aware that the high mass and
collision velocity of their best-fitting model would be problematic
for �CDM (see their section 4). Given also their thorough exploration
of parameter space, we assume that further hydrodynamical �CDM
simulations with significantly different initial conditions would not
reproduce the observed properties of El Gordo. In particular, the
tension cannot be reduced below 5σ by lowering the El Gordo mass,
either by switching to Model A or while other parameters are fixed
to Model B values. This is because substantially different pre-merger
configurations fail to reproduce key aspects of the observations.

Recent surveys reveal an increasing number of high-z massive
objects that together could pose a problem for �CDM (e.g. Kang
& Im 2015) in addition to individual objects that by themselves are
already on the verge of falsifying it. Thus, several authors considered
the �CDM model to be the actual problem, and tried to explain the
presence of these objects using a different model: Angus & McGaugh
(2008) and Katz et al. (2013) in Milgromian dynamics (MOND;
Milgrom 1983), and Brownstein & Moffat (2007) in Modified
Gravity (MOG; Moffat 2006). MOG is a covariant scalar–tensor–
vector gravity theory that allows the gravitational constant G, a
vector field coupling ω, and the vector field mass μ to vary with

space and time. This model was recently ruled out at 5.49σ using the
velocity dispersion profile of the ultra-diffuse galaxy Dragonfly 44
(Haghi et al. 2019). While perhaps the basic ideas of MOG can still
be saved by applying some corrections or modifications, its current
formulation seems to be in conflict with observations. Therefore, we
do not investigate if MOG could work as a solution to the presence
of massive, high-z colliding clusters.

4.3 Milgromian dynamics (MOND)

The MOND model generalizes gravity at low accelerations in such
a way that, in its regime of action (g 	 a0), the gravitational field
strength g behaves as

g =
√

GMa0

r
(26)

at distance r from an isolated point mass M generating the
gravitational field. MOND adds a fundamental new acceleration
scale a0 below which the deviation from Newtonian dynamics
becomes significant. To match observed galaxy rotation curves, a0 ≈
1.2 × 10−10 m s−2 (Begeman, Broeils & Sanders 1991; Gentile,
Famaey & de Blok 2011). This generalization of gravity has a
direct implication on the measurement of masses both by dynamical
methods and by lensing, which works similarly to General Relativity
in that both have the same relation between the non-relativistic g
and light deflection (Milgrom 2013, and references therein). The
Newtonian dynamical mass MN is related to the MOND dynamical
mass MM by (Katz et al. 2013)

MM = MN
2 ×

(
a0r

2

G
+ MN

)−1

. (27)

This was derived by Angus & Diaferio (2011) based on the simple
interpolating function (Famaey & Binney 2005). This states that in
spherical symmetry, the true gravity g and the Newtonian gravity gN

are related by

g = νgN , where (28)

ν = 1

2
+

√
1

4
+ a0

gN

. (29)

In the quasi-linear formulation of MOND (Milgrom 2010), equa-
tion (28) is generalized to more complicated geometries by setting
∇ · g = ∇ · (νgN ). To recover the correct asymptotic limits, ν

should be 1 for gN � a0 and
√

a0/gN for gN 	 a0. The transition
between these limits is a free function in MOND. While several
interpolating functions have been developed for this purpose (Kent
1987; McGaugh, Lelli & Schombert 2016), the simple interpolating
function seems to work better with recent observations (Iocco, Pato
& Bertone 2015; Banik & Zhao 2018; Chae, Bernardi & Sheth 2018).
In particular, it provides a good fit to the relation between the radial
components of g and gN in rotating galaxies (McGaugh et al. 2016;
Lelli et al. 2017). For recent reviews of MOND, we refer the reader
to Famaey & McGaugh (2012) and Milgrom (2014).

Equation (27) shows that dynamical masses in MOND should be
lower than those inferred from Newtonian dynamics. The extent to
which this is true depends on what value we adopt for r. Since the
El Gordo clusters are caught close to pericentre, we take M to be
their combined mass and r to be the virial radius of the more massive
component. Thus, we use MN = 3.13 × 1015 M�(M̃N = 15.50) and r
= 1.65 Mpc, with the latter coming from table 2 of Jee et al. (2014).
Their fig. 10 shows that the mass is mostly concentrated within a
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projected radius of 1 Mpc, so 1.65 Mpc seems like a reasonable
choice for r where the assumption of spherical symmetry would
approximately hold. Much larger values would not be appropriate
as the observations do not go out that far. With these values, we
get that the weak lensing mass of El Gordo would become MM =
1.8 × 1015 M�(M̃M = 15.26) in MOND, about half the Newtonian
value.

MOND was originally developed to explain the flat rotation
curves of galaxies without resorting to the presence of dark matter
(Milgrom 1983). It also proved useful at explaining other phenomena
such as the satellite planes of the Milky Way and Andromeda
(Banik, O’Ryan & Zhao 2018; Bı́lek et al. 2018). However, MOND
has faced serious problems as a model that could single-handedly
explain all physical phenomena in the Universe. The most well-
known problem is that some undetected mass is needed to ex-
plain the velocity dispersions of galaxy clusters (Sanders 1999).
Although MOND greatly reduces the discrepancy between the
observed and dynamically inferred mass compared to the Newtonian
case (Ettori et al. 2019), a significant mismatch remains at small
radii. The different distributions of dynamical and baryonic mass
is most evident in the Bullet Cluster, where the weak lensing
and X-ray peaks are offset at high significance (Clowe et al.
2006). Therefore, the additional mass needed by MOND should be
collisionless.

It is important to realize that this extra mass is evident on a
much larger scale than individual galaxies, so the Bullet Cluster
does not require cold dark matter (Angus et al. 2007). In MOND,
it is of course not possible to add dark matter particles that would
significantly cluster on galaxy scales. Instead, some form of hot dark
matter (HDM) is required. Assuming that the missing mass is not
just baryons in some hard to detect form (Milgrom 2008),8 a popular
candidate is sterile neutrinos (Angus 2009) since these do not require
any significant modifications to the standard model of particle physics
(Merle 2017; Boyarsky et al. 2019). Neutrinos are also the only
known massive particles that are electrically neutral and long-lived.
In the MOND context, an undiscovered species of sterile neutrino
would be required with a mass of mνs = 11 eV/c2 because this is the
mass at which thermally produced sterile neutrinos have the same
average mass density as the dark matter in �CDM. Sterile neutrinos
with mνs > 10 eV/c2 have such a short free streaming length as
to be consistent with the Planck results (section 6.4.3 of Planck
Collaboration XIII 2016). 11 eV/c2 sterile neutrinos thus provide
a plausible explanation for the observed anisotropies in the CMB
(Angus 2009). This marriage of MOND + sterile neutrinos (which
we term νHDM; discussed further in section 3.1 of Haslbauer et al.
2020) can also explain the internal dynamics of 30 virialized galaxy
clusters, with the implied neutrino density marginally reaching the
Tremaine–Gunn limit (Tremaine & Gunn 1979) at the centre once
allowance is made for the brightest cluster galaxy (Angus, Famaey &
Diaferio 2010). An extra sterile neutrino could plausibly have evaded
direct detection with current technology, though there are some
hints for it in terrestrial experiments (e.g. MiniBooNE Collaboration
2018).

Structure formation in MOND is expected to be much more
efficient than in �CDM (Sanders 1998). In Angus & Diaferio
(2011) and Angus et al. (2013), the νHDM model was explored with
cosmological N-body simulations that assumed a standard expansion
history (Skordis et al. 2006) and applied MOND only to the density

8This would involve only a small fraction of the baryons expected from big
bang nucleosynthesis.

perturbations (Sanders 2001; Nusser 2002). The main conclusion of
Angus et al. (2013) was that massive galaxy clusters are overproduced
in νHDM. However, this can be attributed to several factors:

(i) The resolution of their
(
256 h−1 cMpc

)3
simulation was very

low, so it could barely account for the presence of smaller, less
massive structures. This makes it less likely to end up having small
structures in the simulation, and more likely to have a few very
massive objects.

(ii) A small box like the one they used cannot account for the
external field from distant background objects. The external field
effect is a physical consequence of the non-linear gravity law in
MOND (Milgrom 1986). It implies that the internal gravity of a
system is weakened by a constant gravitational field from the external
environment, even in the absence of tides. In this case, the presence of
large background accelerations would have made the gravitational
potential of the system more Newtonian, possibly suppressing the
overproduction of massive structures.

(iii) The mass function produced by the simulation was compared
to the cluster mass functions of Reiprich & Böhringer (2002) and
Rines, Diaferio & Natarajan (2008), which were developed for galaxy
clusters that mostly lie at z � 0.1. According to Keenan et al. (2013),
our Galaxy lies inside an ≈300 Mpc void with a density contrast of
≈−0.5. Galaxy clusters at low z would be inside this void (hereafter
the KBC void). Therefore, the z � 0.1 cluster mass function is very
likely not representative of the Universe as a whole. This is also
apparent in that El Gordo-like objects should be far more common
at z = 0 than at z = 1 regardless of the cosmological model. Thus,
it is surprising to not see similarly extreme objects at low z (except
perhaps the Bullet Cluster at z = 0.296). This is most likely due to
the KBC void out to z ≈ 0.15 (Keenan et al. 2013), which is also
apparent in X-ray surveys of galaxy clusters (Böhringer et al. 2015;
Böhringer, Chon & Collins 2020). We point out that the Angus &
Diaferio (2011) simulations already predicted the presence of large
voids with 250 h−1 Mpc diameter, but attributed this to a flaw in
their model. There is strong evidence that we are living inside such
a supervoid (i.e. the KBC void; see section 1 of Haslbauer et al.
2020, and references therein). By modelling its detailed dynamics in
the νHDM framework, they showed that it can explain the Hubble
tension and the curvature of the low-z distance–redshift relation,
which are otherwise difficult to understand in �CDM.

Katz et al. (2013) explored the νHDM model using N-body
simulations in a box whose linear dimensions were twice as large
as those of Angus et al. (2013). The conclusion of Katz et al.
(2013) was that both the velocities and masses of massive clusters
are larger at late times in MOND compared to �CDM. Clusters
become more massive at an earlier epoch in MOND, which would
help to explain the large number of massive high-z clusters that
have been found in the last few years (e.g. Foley et al. 2011). As
with the earlier νHDM simulations, Katz et al. (2013) also reported
an overabundance of high-mass clusters. However, they again used
the Reiprich & Böhringer (2002) observational data for comparison.
This catalogue reaches clusters up to z ≈ 0.3 but is mostly composed
of lower redshift clusters, whose abundance would be significantly
affected by the KBC void.

Katz et al. (2013) found that among their simulated cluster pairs
with a similar redshift, mass, and mass ratio to the Bullet Cluster,
13 per cent reach its 3000 km s−1 infall velocity in MOND, but only
2 per cent do so in their larger �CDM simulation volume (see their
fig. 8). Remarkably, they managed to identify a few pairs in their
MOND simulation that match the redshift, collision velocity, and
main cluster mass of El Gordo (see their section 5.1). Their adopted
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pre-merger configuration had an infall velocity of 2300 km s−1 and
a main cluster mass of 2 × 1015 M�, which as discussed above are
reasonable in a MOND context. Pairs like El Gordo are quite rare
at its high redshift in νHDM – but they do occur. No such pairs
were found in their �CDM simulation. Therefore, the presence of El
Gordo-like objects is not as unusual in the νHDM model compared
to �CDM.

To quantify whether the occurrence rate of El Gordo analogues in
νHDM is similar to observations, we perform a simple calculation
of how many El Gordo-like objects are expected in the surveyed
region. For this, we assume that one pair analogous to El Gordo
was discovered by Katz et al. (2013) in their

(
512 h−1 cMpc

)3

simulation volume. Given the effective survey volume calculated
with equations (19) and (20), we obtain that NEG = 1.16. This
assumes that the growth parameter k in equation (15) (k = 32.75
for a fit with M̃min = 14.16 after requiring ṽ > ṽEG) is the same in
MOND as in �CDM, which is not necessarily true. While a more
accurate calculation goes beyond the scope of this contribution, we
can assume that k should not change by more than order unity (i.e.
by �1 dex) regardless of whether we are using MOND or �CDM.
Since NEG

∝∼ 1/k for k � 1 (equation 19), order unity changes to
k should not significantly affect NEG. It would also not make much
difference if instead of one pair analogous to El Gordo, Katz et al.
(2013) had found, e.g. three pairs – they certainly did not find very
many, but they did find ≥1 (see their section 5.1). Thus, the νHDM
framework yields the correct order of magnitude for the number of
El Gordo analogues in the surveyed region.

Part of the reason for this is that the MOND dynamical mass is
about half the Newtonian value. As discussed in Section 4.2, a lower
mass helps to alleviate the tension with the simulated cluster mass
function. If we repeat the redshift tomography analysis using instead
MM while still keeping the infall velocity and impact parameter of
fiducial Model B, we obtain that the expected number of analogues
rises from NEG = 7.51 × 10−10 to 3.78 × 10−6, reducing the tension
from 6.16σ to 4.62σ . While this manages to get the tension below
5σ , it rises back to 5.04σ when combined with the Bullet Cluster.
Since we mentioned above that NEG ≈ 1 in MOND, the lower mass is
not the main reason why it could explain the existence of El Gordo.
Rather, the MOND model manages to raise the number of El Gordo
analogues mainly by enhancing structure growth.

The extent to which this occurs depends on how gravitational fields
from inhomogeneities couple to gHubble , the acceleration required to
maintain the time-dependent Hubble flow. We discuss this theoretical
uncertainty below, and refer the reader to section 5.2.3 of Haslbauer
et al. (2020) for a more detailed discussion. The νHDM simulations
of Katz et al. (2013) applied MOND only to the gravity sourced by
inhomogeneities, thus assuming no coupling to gHubble . The possibility
of a non-trivial coupling was discussed in Sanders (2001), but has
rarely been considered since. If there is such a coupling, the resulting
Hubble field effect (HFE) could raise the appropriate value for the
gravity in equation (28), thereby suppressing the MOND boost to
gravity. In other words, a large background acceleration could make
the gravitational potential of the system more Newtonian, which can
dampen the production of massive structures. Therefore, the Katz
et al. (2013) simulation might have overestimated the number of
very massive objects that we should find in a νHDM universe. The
assumption of no HFE may have affected the Katz et al. (2013)
results only if:

(i) the gravitational field g of structures that were already included
in the simulation is smaller than a0 , and

(ii) gHubble dominates over g.

The first condition is required so there is a MOND enhancement
to gravity at all – if not, then the HFE cannot further suppress the
already non-existent MOND boost to gravity. The second condition
is required for the HFE to be significant. To make further progress,
we note that the gHubble term for a system with size r is defined as

gHubble ≡ ä

a
r = −4πG

3
(ρm − 2ρ�) r (30)

= H0
2

(
−1

2
a−3�m,0 + ��,0

)
rca, (31)

where we use the canonical a0 = 1.2 × 10−10 m s−2 (Begeman
et al. 1991; Gentile et al. 2011) and the same values as the Jubilee
simulation for the present cosmological parameters H0, �m, 0, and
��, 0. The co-moving radius rc = 22.70 cMpc is the radius of a sphere
enclosing the mass of El Gordo at the cosmic mean density. This is
redshift independent due to mass conservation. rc is thus a typical
co-moving length-scale for the problem, while r is the corresponding
physical scale.

To estimate g sourced by inhomogeneities, we need to make a
few assumptions. We take that perturbations grow ∝a, as occurs in
�CDM during the matter-dominated era. This is conservative as it
raises the relative importance of the HFE by suppressing g. With
this assumption, the Newtonian gravity of the inhomogeneities is
gN ∝ a−1. In order to obtain the actual value of gN , we need to know
gN at some epoch, which we take to be the epoch of recombination
(aCMB ≈ 1/1100 = 9.1 × 10−4). We define that gN = gCMB at that
epoch, so in general,

gN = gCMB × aCMB

a
. (32)

Following section 3.1.3 of Haslbauer et al. (2020), we estimate the
density fluctuations at recombination to be δCMB ≈ 10−4, implying
that the typical gravitational field is

gCMB ≈ cδCMB

tCMB

≈ 21 a0, (33)

where tCMB = 380 kyr is the time of recombination. We then assume
that since El Gordo is a rare object even in the MOND context, it
corresponds to at least a 2σ density fluctuation. The gravitational field
at recombination would thus be gCMB ≈ 42 a0. The MOND boost to
this is negligible, but at later times the enhancement to gN needs to
be calculated using equation (28).

In the matter-dominated era, gHubble ∝ a−2 (equation 31) while
gN ∝ a−1. As a result, gHubble becomes sub-dominant to g after some
epoch a = aHFE . Meanwhile, the HFE plays no role if g � a0 because
the behaviour is Newtonian regardless of the HFE. Thus, the HFE
can also be neglected prior to the epoch when g = a0, which we
define as occurring when a = aMOND . Therefore, the Katz et al. (2013)
simulation might overestimate the MOND enhancement to gravity
only in the period when aMOND � a � aHFE . Using equations (31)
and (32) with the interpolating function in equation (29), we obtain
that aHFE = 0.06 while aMOND = 0.08. Hence, there is never any
era during which there is a significant enhancement to Newtonian
gravity that might be overestimated by not considering a possible
HFE – either the HFE would be a sub-dominant correction or the
behaviour is Newtonian in any case, so the HFE could not make the
growth of structure even more Newtonian. This means that theoretical
uncertainties regarding the HFE are very small at the 22.7 cMpc
scale relevant to the formation of El Gordo analogues in the νHDM
framework. As a result, their estimated frequency in the Katz et al.
(2013) simulation should be a good representation of their frequency
in this framework.
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From the Katz et al. (2013) results, it appears that the νHDM
model, while still in need of improvement, could serve as a possible
explanation for massive high-velocity galaxy cluster collisions at
high redshift. In particular, we see that Angus et al. (2013) were
not justified in their criticism that MOND does not get the correct
cluster mass function at the high-mass end. Leaving aside other issues
like resolution, if massive clusters were overproduced, then massive
cluster pairs would certainly be overproduced. However, our calcula-
tions show that Katz et al. (2013) obtained approximately the correct
number of El Gordo analogues in their simulation volume. This
conclusion should remain valid despite uncertainty in how the Hubble
acceleration couples to that sourced by inhomogeneities in a MOND
universe. Therefore, it is important to revisit the νHDM model.

5 C O N C L U S I O N S

We studied the probability of observing an El Gordo-like collision
between two massive high-z galaxy clusters by searching for pro-
genitor galaxy cluster pairs that have turned around from the cosmic
expansion in the

(
6 h−1 cGpc

)3
Jubilee simulation box at z = 1.

We used two different statistical analyses based on the number of
analogue pairs to the El Gordo progenitor clusters with appropriate
total mass, mass ratio, and pre-merger infall velocity. The initial
conditions were obtained from the hydrodynamical simulations of
Zhang et al. (2015), from which we adopt their nominal Model B.
Our main result is that the discovery of an El Gordo-like collision
within the surveyed region excludes the �CDM model at 6.16σ

using the method that gives less tension (light-cone tomography).
We also used the analysis of Kraljic & Sarkar (2015) to show that the
Bullet Cluster is in 2.78σ tension with �CDM. In this framework,
the combination of these observations is a highly unlikely 6.43σ

event.
We considered whether El Gordo could have a lower mass

(Section 4.2). However, this only reduces the tension to 5.14σ (5.50σ

when combined with the Bullet Cluster). In reality, the tension should
be even higher as it does not account for the following:

(i) the poor fit to the observed twin-tailed morphology of El Gordo,
(ii) the discrepancy between the assumed mass and the weak

lensing observations (Jee et al. 2014), and
(iii) the small impact parameter required in this scenario, which

may be unlikely on geometrical grounds.

We also consider the possibility that El Gordo and the Bullet Cluster
are extremely unique objects such that no other problematic objects
like these will be found in the remaining observable sky. Increasing
the surveyed area to the full sky reduces the combined tension of El
Gordo and the Bullet Cluster to 5.66σ , which does not contribute
that much to solve the problem. Besides, the assumption is not very
realistic – full sky surveys like Planck have already found interacting
clusters whose properties are unlikely to arise in a �CDM context
(Section 3.4). Further work is required to quantify the extent to
which the cases discussed there and in Section 1 are problematic for
�CDM.

Explaining the Bullet Cluster, El Gordo, and a growing number
of fast, massive, high-redshift galaxy clusters can be very difficult
within the �CDM cosmology. An alternative model uses MOND
gravity supplemented by 11 eV/c2 sterile neutrinos to explain various
phenomena including the CMB anisotropies, cluster-scale problems
for purely baryonic MOND, and the baryon-weak lensing offset in
the Bullet Cluster (Section 4.3; see also section 3.1 of Haslbauer
et al. 2020). This νHDM model was previously explored in Katz
et al. (2013), where a handful of objects analogous to El Gordo

were found in their simulation volume of
(
512 h−1 cMpc

)3
(see their

section 5.1). This is very similar to the effective volume of the survey
that discovered El Gordo. We estimate that the Katz et al. (2013)
simulation implies 1.16 El Gordo analogues in the surveyed volume,
implying good agreement with observations. Although this result
could be off by a factor of a few, it is clear that the νHDM model
produces approximately the correct abundance of massive cluster
pairs similar to the El Gordo progenitors. Thus, we argue against
the conclusion of Angus et al. (2013) that MOND overproduces
massive galaxy clusters. Section 4.3 discusses possible reasons for
their erroneous conclusion.

We conclude that the El Gordo galaxy cluster collision rules out the
�CDM cosmology at high significance, but can likely be explained
in a MOND cosmology supplemented by 11 eV/c2 sterile neutrinos.
While it is difficult to dispute the evidence for dark matter in galaxy
clusters like the Bullet, it is also difficult to explain its properties
and those of El Gordo without modifying gravity on large scales –
or at low accelerations. Given also the galaxy-scale challenges for
�CDM (e.g. Kroupa 2012, 2015) and the many successes of MOND
on this scale (e.g. Famaey & McGaugh 2012; Li et al. 2018), the
most likely scenario is that at present we have understood neither the
full matter–energy content of the Universe nor the law of gravity that
governs it.
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APPENDIX A : MASS FUNCTIONS FOR EL
G O R D O - L I K E C L U S T E R PA I R S

The coefficients of our quadratic fit to the cumulative mass function
(equation 14) are given in Table A1 based on the El Gordo parameters
in Model B of Zhang et al. (2015). The corresponding results for their

Table A1. Coefficients of our quadratic fit to the cumulative mass distribution
(equation 14) for pairs that satisfy the turnaround, mass ratio, and ṽ conditions
appropriate to Model B of Zhang et al. (2015). This is the nominal case
considered in our work.

Mass Redshift
function 0 0.509 1

c0 − 369.69 − 544.03 − 786.14
c1 55.06 80.05 114.75
c2 − 2.02 − 2.92 − 4.16

Table A2. Similar to Table A1, but for Model A of Zhang et al. (2015).

Mass Redshift
function 0 0.509 1

c0 − 160.13 − 203.90 − 347.02
c1 26.45 33.46 54.41
c2 − 1.05 − 1.33 − 2.10

Model A are given in Table A2. As described in the text, both fits
are done only for pairs with M̃ > 14.16 to avoid edge effects at low
masses. Since the Jubilee simulation lacks pairs as massive as El
Gordo, our statistical analysis is based on extrapolating these fits to
the El Gordo mass.
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