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Abstract

Understanding and predicting the response of marine communities to climate change at

large spatial scales, and distilling this information for policymakers, are prerequisites for eco-

system-based management. Changes in thermal habitat suitability across species’ distribu-

tions are especially concerning because of their implications for abundance, affecting

species’ conservation, trophic interactions and fisheries. However, most predictive studies

of the effects of climate change have tended to be sub-global in scale and focused on shifts

in species’ range edges or commercially exploited species. Here, we develop a widely appli-

cable methodology based on climate response curves to predict global-scale changes in

thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-

water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050–

2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics

versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western

Africa emerge as the areas of most concern, where high species richness and the strongest

declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow

thermal ranges, with most species in these regions already exposed to temperatures above

inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where

most species live below thermal optima and thermal ranges are wider, positive changes in

thermal habitat suitability suggest that these areas are likely to emerge as the greatest ben-

eficiaries of climate change, despite strong predicted temperature increases.

Introduction

Climate change is increasingly impacting marine ecosystems [1]. The main physical impacts

are temperature change, oxygen depletion and ocean acidification—the so-called ‘deadly trio’

[2]. These changes affect the physiology and performance of marine organisms [3]. For exam-

ple, rising temperatures increase oxygen demand while reducing oxygen supply, constraining

aerobic performance [4]. These physiological impacts can have major consequences for popu-

lation abundance, community diversity and ecosystem structure and function [5].
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From a conservation perspective, changes in abundance are particularly concerning. Sub-

stantial reductions in abundance increase population vulnerability to intrinsic and extrinsic

stressors, including anthropogenic pressures, such as fishing, alongside demographic and envi-

ronmental stochasticity [6–9]. Thus, reduced abundance is linked to increased risks of stock

collapse and reduced recovery potential [6–9]. At the same time, abundance changes may

affect trophic interactions, ecosystem functioning and the delivery of ecosystem services, such

as fisheries yields [6, 10, 11].

Some communities are especially vulnerable to these changes as a result of their exposure,

sensitivity and limited adaptive capacity [12]. Many tropical communities stand out as areas of

concern, with diverse marine communities that are already under pressure [13–16]. With cli-

mate change, these pressures may continue to worsen, particularly in shallow, inshore areas in

which temperature changes are likely to be realised most quickly [17]. At the same time, many

tropical communities are dependent on healthy fish populations as sources of protein, nutri-

ents and income, with limited adaptive capacity [12, 18–20].

If ecosystems are to be exploited and managed sustainably, we need to understand the

developing threats and drivers of change in marine communities, and which areas are likely to

be most strongly affected [21–23]. Large-scale predictions of the impacts of climate change

underpin regional food security, socioeconomic and vulnerability assessments [12, 24, 25].

Collectively, these assessments form the basis for addressing conservation and food security

targets and highlighting areas in which adaptive capacity needs to be strengthened [26–28].

At large spatial scales, temperature appears to be one of the most important drivers of abun-

dance change in marine communities through its influence on thermal habitat suitability [29].

In the North Sea, scientific trawl data suggest that species with southerly biogeographic affini-

ties, such red mullet (Mullus barbatus), anchovy (Engraulis encrasicolus) and pilchard (Sardina
pilchardus), are increasing in abundance, whilst boreal species are declining [30]. Across the

European continental shelf, 72% of the 50 most abundant demersal fish species show signifi-

cant relationships between abundance and temperature [31]. Likewise, on the North East

United States continental shelf, shifts in the centre of biomass of many fish stocks are associ-

ated with large-scale temperature increases and changes in circulation [32]. At a global scale,

increasing tropicalisation of commercial catches has been documented as the proportion of

warm-water species in catches has increased [33].

Yet while evidence for temperature-driven change in marine communities is accumulating

across the globe, predictive studies of future changes have tended to be sub-global in scale [30,

34, 35] or predominantly focussed on shifts in species’ ranges [36–38] or commercially

exploited species [39, 40]. Fewer studies have considered the consequences of temperature

change across species’ distributions at a global scale, and these have also tended to focus on

commercial species [23, 28, 29, 39–43]. Consequently, there is a need to continue to develop

global-scale modelling approaches, particularly those that can be applied to non-commercial

species in the tropics [12, 29].

One possible approach is based on species’ thermal affinities. These can be inferred from

the quantiles of observed variation in temperature across species’ distributions [44]. Thermal

affinities can be used to parameterise climate response curves, which relate temperature to an

index of thermal habitat suitability, here termed the climate response curve suitability (CRCS)

[45, 46]. Under a Gaussian climate response curve, a species is assumed have an optimum tem-

perature, which can be estimated as the median temperature across the species’ distribution

and termed the species’ thermal index (STI), with the CRCS declining symmetrically with

deviations above or below this optimum [47–49] (Fig 1). Under this model, future temperature

increases are assumed to lead to an increase in the CRCS for populations below the STI and a

decline in the CRCS for populations above the STI (Fig 1).

PLOS ONE Impacts of climate change on thermal habitat suitability for shallow-water marine fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0258184 October 4, 2021 2 / 25

available on GitHub (https://github.com/

edwardlavender/temp_abund_proj).

Funding: EL received no specific funding for this

work. C.J.F. received no specific funding for this

work. M.T.B was supported by Natural

Environment Research Council grant NE/J024082/

1 (https://nerc.ukri.org). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0258184
https://github.com/edwardlavender/temp_abund_proj
https://github.com/edwardlavender/temp_abund_proj
https://nerc.ukri.org


The central assumption of the Gaussian climate response curve is that the relationship

between temperature and the CRCS follows a Gaussian distribution, with the CRCS maxi-

mised at the STI [47, 52]. This relationship is reflected in the Abundance-Centre Hypothesis

[3, 53]. In the context of climate change predictions, this hypothesis is akin to a space-for-time

substitution in which the drivers of species’ distributions are assumed to drive temporal

change too [54, 55]. This hypothesis has been controversial, but recent work is generally sup-

portive [49, 55–58].

Building on this assumption, Gaussian climate response curves offer a means to generate

predictions about broad-scale changes in the CRCS of a large number of species, including

poorly studied, non-commercial species, under future temperature change. A particular

strength of the approach is that the relative importance of different drivers of change is tracta-

ble. Specifically, spatial variation in species’ sensitivity to temperature change depends on spa-

tial variation in three variables: (1) the magnitude of temperature change; (2) species’ thermal

ranges (STRs); and (3) the disparity between optimal and current temperatures (species’ ther-

mal biases, STBs [56]). Increased temperatures are expected to lead to greater changes in the

Fig 1. A Gaussian climate response curve. This curve is based on the 10th, 50th and 90th quantiles in the baseline sea surface temperatures (SSTs) [50]

occupied by Atlantic sturgeon (Acipenser oxyrinchus) [51]. The estimated 50th quantile (the species’ thermal index, STI) is shown by the vertical dashed

line and labelled. Below the STI, the ‘cold’ half of the distribution is shown in blue; an increase in temperature for populations occupying these

temperatures (for example, from 10 to 12˚C, shown) is assumed to lead to an increase in the CRCS. In contrast, above the STI, the ‘warm’ half of the

distribution is shown in red; an increase in temperature for populations occupying these temperatures (for example, from 20 to 22˚C, shown) is

assumed to lead to a decline in the CRCS. The diamond-shaped points mark the predicted CRCS for two hypothetical populations, each occupying an

example starting temperature T0; the circular points mark the CRCS of those populations after an assumed 2˚C rise in temperature (ΔT) following

climate change, at temperature T0 + ΔT. Arrows show the assumed direction of change in the CRCS for these two hypothetical populations in the cold

and warm halves of the distribution.

https://doi.org/10.1371/journal.pone.0258184.g001
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CRCS, but these depend on STRs and the direction and magnitude of STBs. For example, for

the same magnitude of temperature change and STRs, species living below their optimum tem-

perature are less likely to experience declines in CRCS under warming than species living

above their optimum temperature [56]. The relative contribution of these drivers of species’

sensitivity to climate change across space is an ongoing area of research to which this approach

can contribute [56].

The wider utility of this approach depends on the hypothesis that changes in tempera-

ture, through their influence on thermal habitat suitability, broadly correspond with

changes in important biogeographic patterns, especially abundance, at large spatial scales.

There are many other direct and indirect consequences of climate change that can affect

abundance, including altered weather patterns, ocean acidification, hypoxia and modified

species interactions, such as competition and prey availability [59–63]. For example, inter-

annual monsoon wind variability is a key driver of small pelagic fisheries yields in East

Africa through changes in stratification and primary production [64]. Likewise, within

inshore environments, increases in precipitation intensity may increase terrestrial run-off,

nutrient input and turbidity, affecting fish populations [65]. Yet while other climatic drivers

of change are important, these often covary with temperature [4]. Furthermore, while the

effects of climate change may be modulated by species interactions, their effects tend to be

localised [59–61]. There is compelling evidence that temperature and thermal habitat suit-

ability are dominant drivers of species’ distributions and relative abundance over broad spa-

tiotemporal scales [29, 31, 33, 58]. For example, an analysis of 1,790 marine species’

distributions suggested temperature is the limiting factor constraining species’ ranges [66].

Accordingly, climate velocities can predict the direction and rate of range shifts for many

marine species [67, 68]. Likewise, temperature change and thermal affinities successfully

predict observed trends in relative abundance and community turnover from regional to

ocean scales, notwithstanding other drivers of change [58, 69, 70]. Taken together, these

studies suggest that, on average, across many species, the influence of temperature on ther-

mal habitat suitability is likely to drive corresponding changes in relative abundance,

although other influences may mask this effect at the level of individual species or local spa-

tial scales [55]. This strongly supports the utility of the climate response curves for model-

ling the impacts of climate change in marine ecosystems.

Here, we develop the Gaussian climate response curve approach to provide predictions for

change in the CRCS of shallow-water marine fish species under two climate experiments over

a spatiotemporal scale relevant to policymakers. The objectives are as follows:

(1) Predict the change in the CRCS under mid-century and late-century timescales for Repre-

sentative Concentration Pathways (RCPs) 4.5 and 8.5 [65] for coastal, shallow-water

marine fish at a global scale.

(2) Synthesise these predictions across the coastal areas of Exclusive Economic Zones (EEZs)

to identify those regions most at risk and those which may benefit from climate change.

(3) Compare the relative importance of temperature change, STRs and STBs as drivers of

these patterns.

Materials and methods

Study species

We restricted our study to coastal, shallow-water fish species. These species are particularly

exposed to anthropogenic impacts [15] and represent one of the most accessible exploited
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resources and an important source of income in many of the regions that are most vulnerable

to climate change [12, 20]. Additionally, the ambient thermal experience of shallow-water fish

is likely to reflect closely sea surface temperatures (SSTs), while that of vertically mobile species

that move between depth layers may be affected more strongly by temperature gradients

throughout the water column (e.g., [71, 72]).

To define a set of species to model, we examined depth preferences and species’ distribu-

tions for an initial list of 17,343 marine species. Species’ depth limits were queried from Fish-

Base, using the rfishbase package in R, version 4.0.2 [73, 74]. We defined shallow-water species

conservatively as those for which the deepest reported depth was less than 50 m. While thermal

stratification can occur in water shallower than 50 m, the median depth for the vast majority

of these species was considerably shallower than this. In addition, alongside SST, we evaluated

the utility of sea bottom temperatures (SBTs) for the characterisation of species’ thermal affini-

ties (see below).

Aquamaps species’ distributions were used to describe the distribution of each species [44,

51]. This is a widely used, global-scale species’ distribution modelling (SDM) framework. The

approach predicts the relative probability of species’ occurrences across a 0.5 x 0.5˚ global grid,

based on habitat suitability envelopes and, for some well-studied species, expert knowledge.

We obtained Aquamaps SDM predictions for modelled species using the aquamapsdata R

package [51]. We only considered species for which SDMs were based on occurrence observa-

tions in more than 10 unique cells, thus excluding species with highly uncertain SDMs [51].

SDM predictions were masked by the world coastline, using public domain data from Natural

Earth, and inspected in relation to occurrence data obtained from the Ocean Biodiversity

Information System and the Global Biodiversity Information Facility via the robis and rgbif

packages [75–77]. Species with obvious discontinuities along their range edges, which result in

some circumstances from the way distributions are constrained to Major Fishing Areas by

Aquamaps, were excluded. For the final list of species, we obtained data from Fishbase via

rfishbase to examine their importance to people.

Temperature projections

Baseline and future temperature projections were obtained from the National Oceanographic

and Atmospheric Administration (NOAA) Climate Change Web Portal for Coupled Model

Intercomparison Project Phase 5 (CMIP5) models [50]. This service provides ensemble-aver-

age projections from CMIP5 models, re-scaled to one-degree resolution, for a baseline period

(1956–2005), a mid-century period (2006–2055) and a late-century period (2050–2099).

Ensemble projections were used for both baseline and future temperatures to ensure that tem-

peratures for all time windows were subject to the same biases and to minimise the sensitivity

of our predictions to inter-model and temporal variability [78]. There are other temperature

metrics, such as seasonal temperatures or thermal extremes, that may be better specific predic-

tors of thermal habitat suitability, but these metrics tend to covary with the average tempera-

ture and the latter is more widely applicable [79–81].

We obtained baseline SSTs from this service alongside mid- and late-century projections

for two climate experiments: RCP 4.5 (an intermediate greenhouse gas concentration scenario

in which emissions continue to rise until approximately 2040 before declining) and 8.5 (a

‘business-as-usual’ greenhouse gas concentration scenario in which emissions continue to rise

throughout this century). We also obtained baseline and future SBT projections to evaluate

their utility for characterising thermal affinities and prediction. For consistency with SDMs,

projections were re-sampled to 0.5˚ resolution using bilinear interpolation and masked by the

world coastline.
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Species’ thermal affinities

Weighted and unweighted thermal affinities were estimated across each species’ distribution

using (a) SST and (b) SBT baseline temperatures. Weighted thermal affinities were estimated

as the 10th, 50th and 90th quantiles in baseline temperatures (denoted T10, STI and T90) across

each species’ distribution, using predicted occupancy probabilities as weights. As in other stud-

ies [58], we used these quantiles because they are less sensitive to the edges of species’ distribu-

tions, which tend to be more uncertain. Unweighted thermal affinities were estimated by

discretising probabilistic species’ distributions into areas of ‘presence’, where the relative prob-

ability of occupancy was at least 0.5, and areas of ‘absence’, and then estimating the quantiles

of temperature variation across areas of ‘presence’.

In subsequent analysis, as in other studies [82, 83], we used unweighted thermal affinities

and predicted changes across discretised distributions based on the 50% probability threshold.

Binary range maps can correspond more closely with areas of known occurrence [84] and

were computationally tractable, whereas predicting changes across all areas with a non-zero

probability of species occupancy and weighting predictions by the probability of occupancy

was computationally infeasible.

Species’ sensitivity

We evaluated spatial patterns in species’ sensitivity to projected temperature changes by map-

ping spatial variation in projected temperature changes, STRs and STBs across a global grid.

STRs were defined as the difference between the upper and lower thermal affinities (T90 –T10)

[58]. STBs were defined as the difference between baseline temperatures and STIs [56].

Model predictions

For each species, unweighted thermal affinities were used to parameterise a Gaussian climate

response curve relating the CRCS to SST or SBT, with the mean equal to the STI and the stan-

dard deviation defined as:

s ¼
T90 � T10

2:563
ð1Þ

where T90 and T10 are the 90th and 10th quantiles of variation in baseline temperatures across

the discretised species’ distribution. For both SST and SBT, for both baseline temperatures and

the two RCP experiments, we used these values to predict the CRCS (scaled between 0 and 1)

of each species (s) in each grid cell (i, j) based on the temperature (T) in that cell, according to

the equation:

CRCSi;j;s ¼ e
�

Ti;j � STIsð Þ
2

2s2
s

� �

ð2Þ

where σs is the standard deviation for a given species [Eq (1)]; and STIs is the Species’ Thermal

Index for species s.
We synthesised predicted changes in the CRCS between baseline and projected tempera-

tures across species in each grid cell using two metrics: (1) the mean change in the CRCS

across all species (denoted E(ΔCRCSi,j)) and (2) the proportion of species predicted to experi-

ence declines in the CRCS (denoted Pr(ΔCRCSi,j< 0)). We also synthesised overall trends

across the coastal areas of all EEZs that contained more than five modelled species by (1) aver-

aging the mean change in the CRCS in each grid cell across all grid cells containing modelled

species in each EEZ (denoted E(ΔCRCSEEZ)) and (2) calculating the total proportion of species
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predicted to experience declines in each EEZ (denoted Pr(ΔCRCSEEZ< 0)), using EEZ bound-

ary data from the Maritime Boundaries Geodatabase [85]. In both analyses, predictions were

driven by modelled shallow-water species and reflect changes in coastal areas.

Comparison of climate experiments

Predicted changes in the CRCS for modelled species were examined visually across the globe

and across EEZs to identify differences between the climate experiments and mid- and late-

century timescales. For EEZs with more than modelled five species, we quantified the extent to

which predicted changes in the CRCS under RCP 8.5 were greater than under RCP 4.5 for the

late-century time window by modelling the mean change in the CRCS in each EEZ coastal

zone (E(ΔCRCSEEZ)) under RCP 8.5 as a function of the change under RCP 4.5 in a robust lin-

ear regression framework, as implemented by the MASS package [86], with the number of spe-

cies modelled in each EEZ used as weights. We also compared how the proportion of species

projected to experience declines in each EEZ differed between experiments using density

distributions.

Results

Study species

2,293 species passed data processing filters, including 2,271 actinopterygians and 22 elasmo-

branchs (S1 Table). Among modelled species, the average median depth (calculated from spe-

cies’ shallow and deep limits) is 13.01 m and the 95th quantile in species’ shallow and deep

depth limits is 12 and 44 m respectively (S1 Fig). Selected species are restricted to inshore

regions along coastlines and islands, with species richness concentrated in the Indo-Pacific (S2

Fig). Reef-associated species (n = 1,165) predominate, but species with other lifestyles, includ-

ing demersal and pelagic species, are included. Among the 36.50% of species for which infor-

mation on their importance to people is available on FishBase, the ‘highly commercial’

(1.19%), ‘commercial’ (23.54%) and ‘minor commercial’ (39.18%) categories account for

approximately two thirds, with a further 6.18% of species flagged as ‘subsistence’. The absence

of data on the importance to people of the remaining 63.50% of modelled species suggests that

most are probably not commercially targeted, but their importance in other settings remains

uncertain.

Temperature projections

Baseline SSTs in coastal regions range from -1.96˚C at the poles to 29.80˚C in the tropics (S3A

Fig). Similarly, SBTs vary between -1.88–30.40˚C, but are less strongly structured by latitude

(S3B Fig). In particular, while SBTs are highest in shallow parts of the Indo-Pacific, especially

in Australasia and Sundaland, in deeper equatorial areas, including around Wallacea and East

Melanesia, SBTs are considerably cooler. Warmer SBTs are more commonly found along the

Tropics of Cancer and Capricorn, particularly in the Caribbean, East Asia and eastern

Australia.

SST and SBT within EEZs are projected to warm by up to 5.05˚C over the 21st century (S4

and S5 Figs). Under RCP 4.5, SST is projected to warm by an average 0.69–1.26˚C over mid-

to late-century timescales respectively (S4 Fig). Under RCP 8.5, projected changes are more

extreme, with mean warming of 0.79–2.08˚C. In both climate experiments, mid-century

warming is strongest in northern temperate and polar regions. Late-century warming is much

more widespread, especially under RCP 8.5, with substantial warming across much of the

world’s EEZs.
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Projected warming in SBT is lower, with mean warming under RCP 4.5 and 8.5 of 0.43–0.89

and 0.45–1.29˚C, respectively, over mid- and late-century timescales (S5 Fig). The spatial imprint

of predicted warming is similar to that for SST, though less strongly structured by latitude. Local-

ised cooling is predicted in some areas, especially in the North Atlantic and the Arabian Gulf. As

for SST, these patterns broadly intensify in the late century, especially under RCP 8.5.

Species’ thermal affinities

Weighted and unweighted thermal affinities are similar across modelled species. For SST-

derived thermal affinities, the mean and interquartile range of the differences between these

two estimates for the three thermal affinity parameters (T10, STI and T90) ranges between

-0.06–0.06 and 0.02–0.10˚C respectively. The distribution of differences for SBT-derived ther-

mal affinities is similar.

However, thermal affinities derived from SSTs are consistently warmer than those derived

from SBTs, particularly for the lower thermal affinity (T10) and the STI (S6A and S6B Fig). For

example, STIs derived from SSTs versus SBTs range between 3.19–28.36 (mean = 23.82) versus

1.45–20.09 (mean = 11.15)˚C respectively. This difference is principally driven by species

inhabiting areas in which SBTs are warmer than ~8˚C, which cover an area over which SSTs

are much more variable, ranging up to 30˚C. For the upper thermal affinity (T90), the differ-

ence between SST- and SBT-derived thermal affinities is smaller, with SST-derived estimates

4.88˚C higher on average compared to their SBT counterparts (S6C Fig). The net result is that

STR estimates derived from SSTs are 7.79˚C narrower on average than those derived from

SBTs (S6D Fig).

Species’ sensitivity

STRs track the spatial distribution of temperature gradients. SST-derived STRs are principally

narrow in the tropics, particularly across the Indo-Pacific where the mean difference between

the lower and upper thermal affinities is typically� 5˚C (Fig 2A). Wider STRs tend to be

found in temperate regions, such as northern Europe and north-eastern Asia, southern South

America and southern Oceania. Further north and south, STRs for modelled species narrow in

association with more homogeneous temperature gradients in the polar regions. In contrast,

SBT-derived STRs are widest in the Indo-Pacific (Fig 2B). In this region, the latitudinal turn-

over in SBT associated with transitions between shallow and deep water far exceeds that for

SST. Consequently, species’ distributions in this region cover an area that is more variable in

terms of SBT than SST, which increases the disparity between lower and upper thermal affini-

ties. Thus, for shallow-water Indo-Pacific species, SBT appears less suitable for the estimation

of thermal affinities than SST. Elsewhere, the distribution of SBT-derived STRs more closely

resembles that for SST: in tropical and sub-tropical areas with more homogeneous tempera-

ture gradients, such as the Caribbean, STRs are relatively narrow, while in temperate regions,

such as off Newfoundland, STRs are wider.

For SST-derived thermal affinities, the spatial organisation of species’ distributions and

SSTs drives a strong latitudinal pattern in STBs (Fig 2C). In many tropical areas, especially in

the Indo-Pacific, baseline temperatures are greater than inferred thermal optima on average

(negative thermal bias). In Sundaland and Australasia, SBT-derived STBs are also most nega-

tive. However, in other equatorial regions, SBT-derived biases are less negative or even posi-

tive. Instead, SBT-derived biases are more negative along the tropics of Capricorn and Cancer,

where SBTs are warmer. In temperate regions, both SST- and SBT-derived biases tend to be

positive. These patterns are consistent across species, with the variability in STBs smallest in

tropical regions and largest in temperate and polar regions (S7 Fig).
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Model predictions across a global grid

Predicted changes in the CRCS for modelled species under future SST experiments are

strongly structured by latitude (Fig 3). In the tropics, predicted declines are most pronounced.

The Indo-Pacific and the Caribbean stand out as the regions in which both species richness

and the magnitude of predicted declines are highest. Even under RCP 4.5, in many tropical

areas most modelled species are predicted to experience declines in CRCS by 2050 (S8 Fig).

However, the magnitude of declines is predicted to intensify in the late century, especially

under RCP 8.5.

In contrast, increases in CRCS are generally predicted with increasing latitude. In particu-

lar, high mean increases in CRCS are predicted in patches off North and South America and

East Asia, despite more substantial temperature increases in these regions than in the tropics

(Figs 3 and S4). However, fewer species in these regions were modelled relative to other

regions (S2 Fig).

Under future SBT change, predicted declines in CRCS are also predicted in many tropical

areas, though more spatially concentrated and typically weaker than for SST (S9 Fig). The

most notable declines are predicted in Sundaland and Australasia, where STBs are negative.

Declines are also predicted along the coastline of southern Asia, in the Caribbean, the Mediter-

ranean and, to a lesser extent, in some inshore areas in the North Atlantic. However, else-

where, small increases in CRCS are generally predicted.

Model predictions across EEZs

For SST-based predictions, there are clear distinctions between EEZs that are expected to be

‘winners’ (where predicted changes in CRCS are largely positive) versus ‘losers’ (where pre-

dicted changes are largely negative; Figs 4 and 5). There is a clear dichotomy between low and

Fig 2. Spatial variation in species’ sensitivity to temperature change within Exclusive Economic Zones. A, B, The mean species’ thermal range (STR) across all

species in each cell derived from (A) sea surface temperature (SST) and (B) sea bottom temperature (SBT). C, D, The mean species’ thermal bias (STB) derived

from (C) SST and (D) SBT. Adjacent to each map, the coloured line shows the mean STR or STB across all cells in each latitudinal band, following same colour

scheme as for the map. Background coastline data are from Natural Earth (public domain).

https://doi.org/10.1371/journal.pone.0258184.g002
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high latitude EEZs. Most South East Asian EEZs represented by modelled species are predicted

to be losers, including Malaysia, Thailand, Indonesia, the Philippines, India, Myanmar and

Vietnam (Fig 4). For all of these EEZs, even under the mid-century RCP 4.5 experiment, most

modelled species are predicted to experience declines in CRCS (Fig 5). However, the magni-

tude of predicted declines is more extreme in the late century, especially under RCP 8.5. In

contrast, other Asian EEZs at higher latitudes, such as China, Taiwan, South Korea and Japan,

are predicted to be winners, with most species predicted to increase in the CRCS.

Like South East Asia, almost all African EEZs are predicted to experience declines in the

CRCS of modelled species on average (Figs 4 and 5). Predicted declines are especially severe in

low latitude EEZs, such as Nigeria. In some higher latitude EEZs, predicted changes are smaller.

For example, Morocco emerges as a marginal loser in terms of modelled species. Positive trends

are only apparent in a handful of African EEZs, such as Madagascar and The Gambia.

Likewise, in most EEZs in North and South America represented by modelled species

declines in CRCS are predicted (Figs 4 and 5). Declines in CRCS are especially pronounced in

small nation states in the Caribbean. However, in other nations, such as the United States, pre-

dictions for modelled species are more variable. This pattern is repeated in Oceania, where

predictions for small tropical and subtropical Pacific Island Countries, such as Samoa and the

Marshall Islands, are consistently negative, while those for larger states, such as Australia and

New Zealand, are more variable (Figs 4 and 5).

Predicted changes in the CRCS vary among European EEZs (Figs 4 and 5). In general,

among these EEZs, predictions for the most southerly nations, such as Spain and Greece, are

the most negative (Fig 4) and widespread across modelled species (Fig 5). In more northerly

nations, such as France and the United Kingdom, weaker declines are predicted, but in most

cases the proportion of modelled species predicted to experience declines in CRCS is still

Fig 3. The mean predicted change in the index of thermal habitat suitability, E(ΔCRCSi,j), under future sea surface temperature (SST) change for two

climate experiments (RCP 4.5 and 8.5) over mid-century (M) and late-century (L) timescales. In each 0.5˚ grid cell, the mean predicted change in the CRCS,

calculated over all species whose predicted distributions overlap with that cell, is shown. Predictions are only shown within Exclusive Economic Zones. Adjacent to

each map, the coloured line shows the mean E(ΔCRCSi,j) across all cells in each latitudinal band, following same colour scheme as for the map, with lower values

(in red) to the left and higher values (in green) to the right. Background coastline data are from Natural Earth (public domain).

https://doi.org/10.1371/journal.pone.0258184.g003
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relatively high. There are only a few nations, such as Norway and Iceland, for which predic-

tions are consistently positive. However, in these EEZs, predictions are driven by fewer shal-

low-water species.

Comparison of climate experiments

Predicted changes in the CRCS of modelled species are broadly similar for the two experi-

ments. For the mid-century time window, predicted declines are marginally greater under

RCP 8.5 compared to RCP 4.5, particularly in the tropics, but the average difference in E

(ΔCRCSi,j) for modelled species is only 0.03. Predicted declines are more widespread in the

late century, especially for RCP 8.5, with an average difference in E(ΔCRCSi,j) between experi-

ments for this time window of 0.17. Across EEZs, the estimate for the difference in E

(ΔCRCSEEZ) under RCP 8.5 relative to RCP 4.5 is marginally negative (0.011 ± 0.009 standard

error [s.e.]; t = 11.68) and the gradient is slightly greater than one (1.170 ± 0.024 s.e.; degrees of

Fig 4. The mean predicted change in the index of thermal habitat suitability (CRCS) under future sea surface temperature change, synthesised across the coastal

areas of all Exclusive Economic Zones (EEZs) containing more than five modelled species, in (A) Asia, (B) Africa, (C) the Americas, (D) Oceania and (E) Europe.

For each EEZ, four bars are shown, denoting the average change in CRCS across all grid cells in that EEZ (E(ΔCRCSEEZ)), calculated from the mean predicted

changes in each grid cell (E(ΔCRCSi,j)), under mid-century RCP 4.5 (bottom bar, lightest hatching) and RCP 8.5 (second bar) and late-century RCP 4.5 (third bar)

and RCP 8.5 (top bar, densest hatching) experiments. For each EEZ, the colour of the top bar (the late-century RCP 8.5 experiment) indicates the EEZ’s (absolute)

mid-point latitudinal location, which may be influenced by overseas territories. Error bars mark the interquartile range. Numbers in brackets after each EEZ indicate

the number of modelled species.

https://doi.org/10.1371/journal.pone.0258184.g004
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freedom [df] = 131; Fig 6A). Thus, EEZs with declines, on average, in CRCS under RCP 4.5 are

expected to experience greater declines under RCP 8.5, but this effect is small.

The density distribution of the proportion of species predicted to experience declines in

CRCS across EEZs by the late century is bimodal in shape for both experiments (Fig 6B).

There are relatively few EEZs where the proportion of species predicted to experience declines

is low. Under RCP 4.5, only one quarter of EEZs (n = 34/133), are predicted to experience

declines across less than 20% of species and in half of the EEZs represented (n = 69/133),

declines across more than 80% of species are predicted.

Discussion

Our results suggest that climate change is likely to have widespread impacts on thermal hab-

itat suitability for shallow-water marine fish over the 21st century. For modelled species,

sensitivity to projected changes in SST peaks in the tropics where STRs are narrowest and

STBs are consistently negative. For the index of thermal habitat suitability (CRCS), this

Fig 5. The proportion of species predicted to experience declines in the index of thermal habitat suitability (CRCS) under future sea surface temperature change in

the coastal areas of all Exclusive Economic Zones (EEZs) containing more than five modelled species, in (A) Asia, (B) Africa, (C) the Americas, (D) Oceania and (E)

Europe. For each EEZ, four bars are shown, denoting the proportion of species predicted to experience declines in CRCS in the EEZ (Pr(ΔCRCSEEZ < 0)), under

mid-century RCP 4.5 (bottom bar, lightest hatching) and RCP 8.5 (second bar) and late-century RCP 4.5 (third bar) and RCP 8.5 (top bar, densest hatching)

experiments. For each EEZ, the colour of the top bar (the late-century RCP 8.5 experiment) indicates the EEZ’s (absolute) mid-point latitudinal location, which may

be influenced by overseas territories. Error bars mark the interquartile range. Numbers in brackets after each EEZ indicate the number of modelled species.

https://doi.org/10.1371/journal.pone.0258184.g005
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translates into a clear pattern, with widespread declines in CRCS predicted across inshore

tropical areas and contrasting increases at higher latitudes. This pattern is broadly reflected

in the EEZs that are predicted to be winners and losers and is likely to drive large-scale

changes in the relative abundance of shallow-water fish, in-line with the predictions of pre-

vious global-scale modelling studies that have focused on other marine assemblages [28,

39–43]. Many of the same patterns emerge from predictions based on SBT, though this

appears to be less suitable for characterising shallow-water thermal affinities, despite the

fact that some modelled species may experience temperatures that differ from SST. Taken

together, these results add to the evidence that future temperature change is likely to have

major impacts in coastal marine ecosystems, including for many species that are not com-

merically targeted. Alongside the pursuit of large-scale reductions in greenhouse gas emis-

sions, this highlights the urgent need to strengthen ecosystem-based management and

adaptive capacity in coastal communities, particularly those in the tropics that are most vul-

nerable to climate change [12, 20].

Spatial patterns in the distribution of species’ thermal affinities underlie species’ sensitivities

to future temperature change. As in other studies [56, 66, 87, 88], in the tropics we find that

STRs estimated from the quantiles of variation in SST across species’ distributions tend to be

narrower and negative STBs predominate, which may make species vulnerable to relatively

small temperature increases. In contrast, in temperate regions, STRs tend to be wider, which

means that assemblage-wide declines in thermal habitat suitability with temperature change

are less likely [58]. Furthermore, large, positive STBs at higher latitudes make many of these

species resilient to even relatively large temperature increases.

Fig 6. A comparison of predicted changes in the index of thermal habitat suitability (CRCS) between late-century climate experiments across Exclusive

Economic Zones (EEZs). A, The mean predicted change in CRCS (E(ΔCRCSEEZ)) under RCP 8.5 as a function of the mean predicted change under RCP 4.5.

B, Density distributions of the proportion of species predicted to experience declines in CRCS across EEZs (Pr(ΔCRCSEEZ < 0)). In A, each point represents

an EEZ; point size is proportional to the number of modelled species. The diagonal dashed line represents the line y = x. The solid black line surrounded by the

grey confidence envelope marks the robust regression line ± 95% confidence intervals. The vertical and horizontal dotted lines mark a mean predicted change

in CRCS of 0 under RCP 4.5 and 8.5 respectively. For EEZs below the line y = x, the predicted change in CRCS under RCP 8.5 is more negative than under

RCP 4.5. For EEZs above the line, the predicted change in CRCS under RCP 8.5 is more positive. In B, the light and dark grey lines represent RCP 4.5 and 8.5

respectively. The upper and lower rugs mark the proportion of species predicted to experience declines in each EEZ under RCP 4.5 and 8.5 respectively. In

both panels, EEZs are coloured according to their (absolute) mid-point latitudinal location.

https://doi.org/10.1371/journal.pone.0258184.g006
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In line with species’ sensitivities, we identify a strong latitudinal pattern in predicted

changes in the CRCS of modelled species with future changes in SST. Widespread declines are

predicted across most shallow-water tropical marine fish species that we modelled, while

increases in the CRCS are predicted for temperate species. These predictions emerge despite a

disparity in the magnitude of projected SST changes between low- and high-latitude regions,

highlighting the importance of species’ thermal affinities in modulating the effects of future

temperature change. Changes in the CRCS for modelled species across coastal areas are

broadly reflected in the EEZs predicted to be winners and losers. Across the board, low-lati-

tude nations in the Indo-Pacific, the Caribbean and across much of Africa emerge as areas of

concern, where predictions are consistently negative for modelled species. Even under the

‘intermediate’ climate experiment, in many of these locations nearly all modelled species are

predicted to decline in their CRCS before 2050, though the magnitude of predicted declines is

greater over longer timescales, especially under the ‘business-as-usual’ climate experiment. In

contrast, predictions for many higher latitude nations are more variable, with some nations,

such as Norway, emerging as possible beneficiaries of future temperature change, at least in

terms of shallow-water fish assemblages. For some nations, there is a disparity between the

predictions for the regions in which they are situated and the coastal areas under their jurisdic-

tion. For example, the high proportion of species predicted to experience declines in CRCS in

the United Kingdom compared to other nations at a similar latitude is driven by the relatively

high number of British Overseas Territories, many of which lie in the tropics.

Four main sources of uncertainty caveat our predictions. The first source of uncertainty

comes from the use of Aquamaps SDMs to describe species’ distributions and estimate thermal

affinities. The advantage of this choice is that Aquamaps SDMs are based on a standardised

methodology that has been widely applied to marine species, including many relatively data-

poor tropical and subtropical species [44, 51]. However, Aquamaps SDMs are uncertain and

predictive accuracy varies [44, 51, 83]. In a validation study based on 12 species, Aquamaps

SDMs only correlated significantly with independent survey data in 30–50% of cases, though

they compared favourably with alternative approaches [44]. A key parameter is the number of

unique grid cells that contain valid occurrences (i.e. occurrence observations within a species’

known natural range) [44, 51, 83]. This parameter is important as a measure of the number of

observations used for model fitting. A comparison of Aquamaps SDMs and range maps from

the International Union for Conservation of Nature (IUCN) demonstrated reasonable agree-

ment between the two approaches, particularly for well-studied species with a median of 41

unique cells with valid occurrences [83]. The worst agreement occurred for species with a

median of 10 unique cells with valid occurrences. For this reason, in our analysis, we only con-

sidered species with more than 10 unique cells with valid occurrences and the majority of mod-

elled species (n = 1,434, 62.54%) had more than 41 unique cells with valid occurrences.

Nevertheless, even for more data-rich species, Aquamaps SDMs are uncertain, especially along

range edges where the influence of Major Fishing Area boundaries to constrain species’ ranges

can induce discontinuities [83]. The discretisation of SDMs into binary presence/absence maps

introduces an additional source of uncertainty that can affect range boundaries [83]. For indi-

vidual SDMs, these uncertainties are particularly important. For this reason, we used the 10th,

50th and 90th quantiles in temperature as estimates of species’ thermal affinities: these statistics

are relatively robust to uncertainty in SDMs, as shown by the comparison of unweighted and

weighted thermal affinities. Beyond individual SDMs, for global-scale studies the overall pat-

terns that emerge from overlaying SDMs for many species are likely to be much more robust to

uncertainties in the edges of species’ distributions [89, 90]. However, uncertainty in SDMs is a

common caveat for global-scale modelling studies and continued efforts to support data collec-

tion and develop ensemble modelling frameworks will support future research in this area.
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The second source of uncertainty lies in nature of species’ thermal affinity estimates, which

depend on the assumption that the ambient thermal experience of modelled species is effec-

tively described by (a) the selected temperature variable and (b) spatiotemporal scale over

which estimates are derived. To support the first assumption (a), we focused on shallow-water

species because their ambient thermal environment is likely to be well-described by SSTs, for

which projections are widely available and applicable. The restriction of ‘shallow-water’ species

to those that exclusively inhabit water above 50 m reflects the compromise between ensuring

that species’ thermal affinities are reasonably accurate whilst retaining a sufficient number of

species to model change at a global scale. While shallow-water species may experience temper-

atures that differ from SSTs, particularly in areas with shallow-water thermoclines [91], the

average depth of modelled species suggests that this choice was broadly appropriate. For future

research, a question remains regarding how to estimate the thermal affinities of species that

experience a range of temperatures throughout the water column. However, for shallow-water

species we find SBT to be less appropriate for the characterisation of thermal affinities. Unlike

SST, available one-degree SBT projections are strongly associated with bathymetry, which

drives sharp differences between shallow and deep areas that do not reflect the depths inhab-

ited by modelled species. In places such as the Indo-Pacific, this gives rises overly wide STRs

and switches in STBs, resulting in contrasting predictions between nearby shallow and deep

areas. Nevertheless, elsewhere, it is notable that, in many areas, spatial gradients in SST and

SBT—and the resultant pattern of predictions for CRCS—are similar, though predicted

changes based on SBT are smaller.

For both SST and SBT, a related issue (b) that is relevant to most global-scale modelling

studies is the potential mismatch between the temperatures that individuals experience and

the long-term average temperatures used to derive thermal affinities and make predictions.

While there are multiple temperature metrics that can affect fish in marine environments [92]

and thermal affinities estimated across species’ distributions may mask spatial variability

resulting from local adaptation [93], there is robust evidence that thermal habitat suitability is

associated with long-term temperature variation across broad spatiotemporal scales [29, 31,

33, 58]. For some species, local thermal affinities may be better specific predictors of climatic

impacts, but in the absence of information on population structure, distribution-wide esti-

mates are reasonable approximations which should effectively capture the extent to which spe-

cies are more or less sensitive to temperature change on average [36, 70]. Likewise, other

temperature metrics may be better specific predictors of climatic impacts, but these are likely

to correlate with the average temperature, which is most widely applicable. For example, a

principle driver of marine heatwaves is long-term climate change [94, 95] and thermal affini-

ties derived from long-term average annual SSTs can successfully predict the response of com-

munities to these, at least in some circumstances [49, 96]. Species’ responses to extreme

conditions may be larger than those expected from decadal warming [81], and warrant further

research, but take place against the backdrop of longer-term changes.

The third source of uncertainty stems from the use of species’ climate response curves to

represent thermal habitat suitability. In support of this concept, both theory and empirical evi-

dence demonstrate the critical influence of temperature on the physiology of marine organ-

isms, with temperatures away from thermal optimal leading to a decline in aerobic

performance [4]. Recent empirical evidence suggests that this relationship can be parame-

terised from realised species’ distributions [49, 56, 97]. A global-scale analysis of rocky and

coral reef species supported the hypothesis that the STI represents the temperature of maxi-

mum thermal habitat suitability, revealing a reasonable correspondence between the STI and

the temperature of maximum local abundance [56]. Similarly, in a study which compared the

ability of the STI, body size and range size to explain species-level responses to extreme
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temperature variation on coral reefs in Australia, the STI emerged as the strongest predictor of

species-level responses in presence/absence and abundance [49]. Beyond the STI, warming

temperatures are widely associated with declines in thermal habitat suitability (apparent from

declines in abundance) at warm range edges and increases in thermal habitat suitability

(apparent from increases in abundance) at cool range edges [34, 67, 68]. Collectively, these

studies provide compelling support for the utility of climate response curves.

A key assumption in our approach is the use of a Gaussian function to represent climate

response curves. An advantage of this choice is that few data are needed to parameterise a

Gaussian function, making the approach applicable across a wide range of species. In line with

this assumption, evidence from eight important commercial species in Europe showed that the

distribution of abundance with respect to temperature is at least triangular in shape [98]. Fur-

thermore, Gaussian climate response curves were a reasonable model for many of the reef

fishes evaluated by Waldock et al. [57] and for the fish and plankton species modelled by Bur-

rows et al. [58], emerging as the most applicable model on average across many species. How-

ever, climate response curves can take other shapes [38, 46, 55, 57]. Bonachela et al. [46]

examine the importance of species-specific skewness. Empirical evidence suggests that skew-

ness increases towards the poles and tropics, with some temperate species exhibiting cold-

skewed distributions and tropical species exhibiting warm-skewed distributions [57]. For

modelling the impacts of climate change, warm skew among tropical species is of most con-

cern because it implies that even small temperature increases could lead to drastic declines in

thermal habitat suitability. However, the extent to which warm skew reflects the use of SDMs

to infer thermal affinities (which constrains temperate and tropical species’ thermal affinities

to the minimum and maximum baseline temperatures respectively) or physiological tolerances

remains uncertain. Recent work indicates that species richness has declined around the equa-

tor in line with temperature increases [99]. While this fits with the direction of future changes

in thermal habitat suitability around the equator that we predict using Gaussian climate

response curves, the magnitude of those changes may be more or less severe depending on the

extent to which species can tolerate temperatures beyond the current global maximum tem-

peratures. This is an important knowledge gap for future research.

The fourth source of uncertainty lies in the extent to which populations will respond to

changes in thermal habitat suitability. We focused our analysis on changes within the current

range limits of modelled species. Beyond these limits, analyses of climate velocities suggest that

range shifts are generally relatively small in comparison to the size of EEZs [67, 100]. Neverthe-

less, for some species, the redistribution of individuals beyond current range limits may partly

counteract unfavourable changes within existing ranges. Our application also assumed that

thermal affinities are temporally stationary. Available evidence suggests that the pace of cur-

rent temperature change is substantially greater than the pace of adaptive evolution [1], indi-

cating that this assumption is likely to be well met for many species over the next few decades.

However, over longer timescales, in situ adaptation may help to mitigate some of the impacts

of temperature change.

Despite these uncertainties, the broad-scale patterns that we predict for changes in the ther-

mal habitat suitability of shallow-water fish based on climate response curves are clear. Fur-

thermore, the links between thermal habitat suitability and abundance imply that predicted

changes in thermal habitat suitability are likely to correspond in broad terms with changes in

abundance, with declining thermal habitat suitability associated with declines in abundance

and increases in thermal habitat suitability associated with increases in abundance [29, 31].

These expectations are consistent with other global-scale modelling studies [28, 39–43]. For

example, in line with our predictions, a dynamic climate envelope modelling approach, in

which the effects of climate change are primarily realised through temperature-driven shifts in
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species’ ranges, predicts declines in catch potential of up to 40% in the tropics and increases of

30–70% at high latitudes [40]. Dynamic, size-based food web models, in which the effects of

climate change are realised through temperature effects on feeding and intrinsic mortality

rates in size-structured communities, and ensemble global ecosystem model approaches, also

predict similar patterns at large spatial scales [28, 41, 43]. We view our approach as a comple-

ment to these models—a tool to predict large-scale patterns in the direction of change in the

CRCS across poorly known species. These predictions are likely to correlate with the direction

of change in abundance, but absolute change in abundances are likely to be dependent on

many localised factors, such as density dependence, not captured by our model [101].

The convergence of modelling approaches on large-scale patterns has important implica-

tions for understanding climate vulnerability, mitigation and adaptation. Healthy fish popula-

tions structure ecosystems, supporting ecosystem functioning and the delivery of ecosystem

services, such as fisheries [6, 10, 11]. The correspondence between predictions for tropical

areas is especially concerning given their diversity, the strong reliance of many tropical com-

munities on subsistence inshore fisheries, existing patterns of overexploitation and limited

adaptive capacity [12, 20]. While the absence of data on the importance of most of our mod-

elled species to humans suggests that they are not commerically targeted, in many tropical and

subtropical areas, the use of fine-mesh nets and destructive fishing techniques is associated

with the exploitation of a large number of species that go unrecorded in official fisheries statis-

tics [102–104]. In the Solomon Islands (Human Development index: 0.569), subsistence fisher-

ies far surpass commercial fisheries in importance, with catches of 15,000 metric tonnes (mt)

versus 3,250 mt per year respectively [105]. Healthy fish populations also support alternative

sources of income, such as marine ecotourism [106, 107]. Yet many coastal fish populations

are already under pressure, and worsening conditions may further reduce compliance with

regulations and promote the use of increasingly destructive fishing techniques in a downwards

spiral [108]. The strong declines in thermal habitat suitability that we predict for tropical

inshore areas under future temperature change add to this concerning picture. In this context,

the need to discriminate between declines due to overexploitation and those due to climate

change, and to improve inshore fish stock assessments and regulation, is paramount for suc-

cessful ecosystem-based management [109].

There is increasing evidence that strong fisheries management and marine reserves can

rebuild stocks and offset some of the negative impacts of climate change [23, 110]. For exam-

ple, improving catch selectivity and reducing fishing pressure can benefit both targeted and

non-targeted species [111]. Larger populations in less disturbed areas may be more resilient to

climate change and can help to sustain local fisheries [112, 113]. At the same time, marine

reserves that effectively protect coastal ecosystems can offer additional benefits, such as flood

mitigation, which can help communities adapt to changing conditions [114]. However, for

many tropical and sub-tropical jurisdictions, the development and implementation of strong

fisheries advice and enforcement in the context of weak financial and governance institutions

remains a continuing challenge [20]. Moreover, ultimately, local and regional ecosystem-based

management approaches must be accompanied by global emissions reductions to address the

climate emergency and mitigate its impacts on coastal communities [110].

Supporting information

S1 Fig. Quantiles of observed variation in the shallow and deep depth range limits of mod-

elled species. Shallow depth quantiles represent 2,150 species with data and deep depth quan-

tiles represent all 2,293 species.

(TIF)
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S2 Fig. The spatial distribution of modelled species across a global grid at 0.5˚ resolution.

Cells shown in white represent no data. Background coastline data are from Natural Earth

(public domain).

(TIF)

S3 Fig. The spatial distribution of baseline (1956–2005) temperatures within Exclusive Eco-

nomic Zones at 0.5˚ resolution for (A) sea surface temperature (SST) and (B) sea bottom tem-

perature (SBT). Background coastline data are from Natural Earth (public domain).

(TIF)

S4 Fig. Future sea surface temperature (SST) projections within Exclusive Economic Zones

at 0.5˚ resolution. Each plot shows the projected change in temperature, relative to the base-

line, under a specific climate experiment (RCP 4.5 or RCP 8.5) over mid-century (M) or late-

century (L) timescales. Positive numbers indicate warming. Background coastline data are

from Natural Earth (public domain).

(TIF)

S5 Fig. Future sea bottom temperature (SBT) projections within Exclusive Economic

Zones at 0.5˚ resolution. Each plot shows the projected change in temperature, relative to the

baseline, under a specific climate experiment (RCP 4.5 or RCP 8.5) over mid-century (M) or

late-century (L) timescales. Negative numbers indicate cooling (shown in blue) and positive

numbers indicate warming (shown in orange/red). Background coastline data are from Natu-

ral Earth (public domain).

(TIF)

S6 Fig. Correlations between thermal affinities derived from baseline sea surface tempera-

ture (SST) and sea bottom temperature (SBT) projections. A, the lower thermal affinity

(T10); B, the species’ thermal index (STI); C, the upper thermal affinity (T90); and D, the spe-

cies’ thermal range (STR). In each plot, each point represents a modelled species. The line

y = x is shown to aid interpretation.

(TIF)

S7 Fig. Spatial patterns in the variability of species’ thermal biases (STBs) within Exclusive

Economic Zones at 0.5˚ resolution, derived from baseline (A) sea surface temperature (SST)

and (B) sea bottom temperature (SBT) projections. In each grid cell, the interquartile range

(IRQ) in thermal bias, calculated over all species whose predicted distributions overlap with

that cell, is shown. Adjacent to each map, the coloured line shows the mean IQR across all cells

in each latitudinal band, following same colour scheme as for the map. Background coastline

data are from Natural Earth (public domain).

(TIF)

S8 Fig. The proportion of species predicted to experience declines in the index of thermal

habitat suitability, Pr(ΔCRCSi,j < 0), under future sea surface temperature (SST) change

for two climate experiments (RCP 4.5 and 8.5) over mid-century (M) and late-century (L)

timescales. In each 0.5˚ grid cell, the proportion of species predicted to experience decline in

the CRCS, out of the total number of species whose predicted distributions overlap with that

cell, is shown. Predictions are only shown within Exclusive Economic Zones. Adjacent to each

map, the coloured line shows the mean Pr(ΔCRCSi,j < 0) across all cells in each latitudinal

band, following same colour scheme as for the map, with lower proportions (in green) to the

left and higher proportions (in red) to the right. Background coastline data are from Natural

Earth (public domain).

(TIF)
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S9 Fig. The mean predicted change in the index of thermal habitat suitability, E(ΔCRCSi,j),

under future sea bottom temperature (SBT) change for two climate experiments (RCP 4.5

and 8.5) over mid-century (M) and late-century (L) timescales. In each 0.5˚ grid cell, the

mean predicted change in the CRCS, calculated across all species whose predicted distribu-

tions overlap with that cell, is shown. Predictions are only shown within Exclusive Economic

Zones. Adjacent to each map, the coloured line shows the mean E(ΔCRCSi,j) across all cells in

each latitudinal band, following same colour scheme as for the map, with lower values (in red)

to the left and higher values (in green) to the right. Background coastline data are from Natural

Earth (public domain).

(TIF)

S1 Table. A list of modelled species. Taxa are ordered by alphabetically by order, class,

family and genus. For each species, the number of unique 0.5˚ cells with occurrence observa-

tions used by Aquamaps to generate the species’ distribution is shown. Cell occurrence counts

vary between 10–1015 (median = 58, mean = 96, standard deviation = 103) cells. The 10th, 50th

and 90th quantiles in baseline sea surface temperature across species’ distributions (rounded to

two decimal places) are also provided.

(TXT)
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