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Abstract
This paper concerns the intermediate dimensions, a spectrum of dimensions that inter-
polate between the Hausdorff and box dimensions. Potential-theoretic methods are
used to produce dimension bounds for images of sets under Hölder maps and certain
stochastic processes. We apply this to compute the almost-sure value of the dimension
of Borel sets under index-α fractional Brownian motion in terms of dimension profiles
defined using capacities. As a corollary, this establishes continuity of the profiles for
Borel sets and allows us to obtain an explicit condition showing how the Hausdorff
dimension of a set may influence the typical box dimension of Hölder images such
as projections. The methods used propose a general strategy for related problems;
dimensional information about a set may be learned from analysing particular frac-
tional Brownian images of that set. To conclude, we obtain bounds on the Hausdorff
dimension of exceptional sets, with respect to intermediate dimensions, in the setting
of projections.

Keywords Intermediate dimensions · Box dimension · Hausdorff dimension ·
Fractional Brownian motion · Capacity · Exceptional directions
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1 Introduction

The growing literature on dimension spectra is beginning to provide a unifying frame-
work for the many notions of dimension that arise throughout the field of fractal
geometry. Suppose you are given two notions of dimension, dimX and dimY , with
dimX E ≤ dimY E for all E ∈ R

n . Dimension spectra aim to provide a contin-
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uum of dimensions, perhaps denoted dimθ and parametrised by θ ∈ [0, 1], such that
dim0 = dimX and dim1 = dimY . This is of interest for a number of reasons. For
example, dimX and dimY may behave differently for certain classes of sets, since
each may be sensitive to different geometric properties. Thus, it may be valuable to
understand for what θ this transition in behaviour occurs, potentially deepening our
understanding of dimX , dimY , and the family sets in question. Despite their extremely
recent introduction, they have already seen surprising applications, for example [1,
Corollary 6.4] and [8].

There are currently two main dimension spectra of interest. For E ⊂ R
n , recall

dimH E ≤ dimB E ≤ dimA E

where from left to right, these denote Hausdorff dimension, box dimension and
Assouad dimension. Fraser and Yu introduced the Assouad spectrum to form a partial
interpolation between the upper box dimension and the Assouad dimension, see [10].
The main focus of this paper will be the intermediate dimensions of Fraser et al. [6]
that interpolate between the popular Hausdorff and box dimensions. These will be
formally introduced in Sect. 2.

In developing this new theory, it is natural to re-examine classical theorems and
see how well they adapt to this more general setting. Work along these lines has
already begun, with [8–10] investigating the Assouad spectrum and Burrell et al. [1]
establishing a Marstrand-type projection theorem for the intermediate dimensions.
This paper generalises [1] beyond projections to general Hölder images and images of
sets under stochastic processes, such as index-α fractional Brownian motion. Recall
that a map f : E → R

m is α-Hölder on E ⊂ R
n if there exists c > 0 and 0 < α ≤ 1

such that

| f (x) − f (y)| ≤ c|x − y|α

for all x, y ∈ E . This scheme of work continues a tradition of Xiao [15,17], who
used dimension profiles almost immediately after their introduction in 1997 [7] to
consider the packing dimensions of sets under fractional Brownian motions. Unex-
pectedly, obtaining bounds on the dimension of fractional Brownian images allowed
us to quickly establish continuity of the profiles for arbitrary Borel sets. Moreover,
this led to an explicit condition showing how the Hausdorff dimension of a set may
influence the typical box dimension of Hölder images such as projections. Both of
these applications followed from a method which suggests a more general philos-
ophy; dimensional information in a general setting can be obtained by transporting
information back from a well-chosen fractional Brownian image.

Finally, we return to the setting of projections where our main results may be
applied to bound the Hausdorff dimension of the exceptional sets, see Theorem 3.9.
That is, the dimension of the family of sets whose projection has unusually small
dimension. There is a long history of interest in this topic, see [2,12,13]. Throughout,
we adopt a capacity theoretic approach to intermediate dimension profiles, as in [1],
while adapting this strategy to meld it with ideas from [4].
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2 Setting and Preliminaries

In this section, we will define the necessary tools and concepts used throughout. This
section is intentionally brief, and the interested reader is directed to [1] for amore elab-
orate discussion of the material and [3] for a gentle introduction to dimension theory.
We begin with the precise formulation of the intermediate dimensions. Throughout,
all sets are assumed to be non-empty, bounded and Borel.

For E ⊂ R
n and 0 < θ ≤ 1, the lower intermediate dimension of E may be defined

as

dim θ E = inf
{
s ≥ 0 : for all ε > 0 and all r0 > 0, there exists

0 < r ≤ r0 and a cover {Ui } of E such that

r1/θ ≤ |Ui | ≤ r and
∑

|Ui |s ≤ ε
}

and the corresponding upper intermediate dimension by

dim θ E = inf
{
s ≥ 0 : for all ε > 0, there exists r0 > 0 such that

for all 0 < r ≤ r0, there is a cover {Ui } of E
such that r1/θ ≤ |Ui | ≤ r and

∑
|Ui |s ≤ ε

}
,

where |U | denotes the diameter of a set U ⊂ R
n . If θ = 0, then we recover the

Hausdorff dimension in both cases, since the covering sets may have arbitrarily small
diameter. Moreover, if θ = 1, then we recover the lower and upper box-counting
dimensions, respectively, since sets within admissible covers are forced to have equal
diameter. While the above makes the interpolation intuitive, for technical reasons it is
practical to use an equivalent formulation. First, for bounded and non-empty E ⊂ R

n ,
θ ∈ (0, 1] and s ∈ [0, n], define

Ssr ,θ (E) := inf
{∑

i

|Ui |s : {Ui }i is a cover ofE such that

r ≤ |Ui | ≤ r θ for all i
}
.

It is proven in [1, Section 2] that

dim θ E =
(
the unique s ∈ [0, n] such that lim inf

r→0

log Ssr ,θ (E)

− log r
= 0

)

and

dim θ E =
(
the unique s ∈ [0, n] such that lim sup

r→0

log Ssr ,θ (E)

− log r
= 0

)
.

The first step of a capacity theoretic approach is to define an appropriate kernel
for the setting. For each collection of parameters θ ∈ (0, 1], t > 0, 0 ≤ s ≤ t and
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0 < r < 1, define φ
s,t
r ,θ : Rn → R by

φ
s,t
r ,θ (x) =

⎧
⎪⎨

⎪⎩

1 0 ≤ |x | < r
( r

|x |
)s

r ≤ |x | < r θ

rθ(t−s)+s

|x |t r θ ≤ |x |
. (2.1)

In addition, for Lemma 3.2 and Theorem 3.3, we will require a set of modified kernels
φ̃s
r ,θ : Rm → R (m ∈ N) given by

φ̃s
r ,θ (x) =

⎧
⎪⎨

⎪⎩

1 |x | < r
( r

|x |
)s

r ≤ |x | ≤ r θ

0 r θ < |x |
, (2.2)

where 0 < r < 1, θ ∈ (0, 1] and 0 < s ≤ m. Using the first of these kernels, we
define the capacity of a compact set E ⊂ R

n to be

Cs,t
r ,θ (E) =

(
inf

μ∈M(E)

∫ ∫
φ
s,t
r ,θ (x − y) dμ(x)dμ(y)

)−1

,

where M(E) denotes the set of probability measures supported on E . For a set that
may be bounded, but not closed, the capacity is simply defined to be that of its closure.

A measure that obtains the infimum in the definition of capacity is known as an
equilibrium measure. The existence of such measures and the relationship between
the minimal energy and the corresponding potentials is standard in classical potential
theory. We state this in a convenient form; it is easily proved for continuous kernels,
see, for example [5, Lemma 2.1].

Lemma 2.1 Let E ⊂ R
n be compact, t > 0, 0 ≤ s ≤ t , θ ∈ (0, 1] and 0 < r < 1.

Then there exists an equilibrium measure μ ∈ M(E) such that

∫ ∫
φ
s,t
r ,θ (x − y)dμ(x)dμ(y) = 1

Cs,t
r ,θ (E)

=: β.

Moreover,

∫
φ
s,t
r ,θ (x − y)dμ(y) ≥ β

for all x ∈ E, with equality for μ-almost all x ∈ E.

In [1] a close relationship between the capacity of a set E and Ssr ,θ (E) is established,
see [1, Proposition 4.2]. This connection allowed intermediate dimension profiles to
be introduced, which in turn are central to a Marstrand-type projection theorem [1,
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Theorem 5.1]. For t > 0, we define the lower intermediate dimension profile of
E ⊂ R

n as

dimt
θ E =

(
the unique s ∈ [0, t] such that lim inf

r→0

logCs,t
r ,θ (E)

− log r
= s

)
(2.3)

and the upper intermediate dimension profile as

dim
t
θ E =

(
the unique s ∈ [0, t] such that lim sup

r→0

logCs,t
r ,θ (E)

− log r
= s

)
. (2.4)

In [1], only integer t ≤ n was required, as this corresponded to the topological dimen-
sion of the subspace being projected onto. However, as we shall see, it is necessary
and possible to consider dimension profiles for non-integer and arbitrarily large t in
the more general setting of Theorems 3.1, 3.3 and 3.4. In fact, to ensure that the above
profiles exist, we require the following lemma, which allows [1, Lemma 3.2] to be
easily extended for this greater range of t .

Lemma 2.2 For bounded E ⊂ R
n and all t > 0,

lim inf
r→0

logCt,t
r ,θ (E)

− log r
− t ≤ lim sup

r→0

logCt,t
r ,θ (E)

− log r
− t ≤ 0.

In particular, there exists a unique s ∈ [0, t] such that

lim inf
r→0

logCs,t
r ,θ (E)

− log r
= s

and unique s′ ∈ [0, t] such that

lim sup
r→0

logCs′,t
r ,θ (E)

− log r
= s′.

Proof It suffices to show that
Ct,t
r ,θ (E) ≤ cr−t (2.5)

for some fixed c > 0 depending only on E and t . For 0 < r < 1, let μ be the
equilibrium measure associated with φ

t,t
r ,θ . Since E is bounded, there exists a constant

B > 1 such that

|x − y| ≤ B

for all x, y ∈ E . Directly from the definition,

φ
t,t
r ,θ (x − y) =

{
1 0 ≤ |x − y| < r
( r

|x−y|
)t

r ≤ |x − y|
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≥ B−t r t .

for all x, y ∈ E . Hence,

∫ ∫
φ
t,t
r ,θ (x − y) dμ(x)dμ(y) ≥ B−t r t ,

from which (2.5) follows. The final part of the lemma may then be deduced since

lim inf
r→0

logC0,t
r ,θ (E)

− log r
− 0 ≥ 0,

and lim infr→0
logCs,t

r ,θ (E)

− log r − s is continuous and strictly monotonically decreasing in s
by a trivial extension to [1, Lemma 3.2]. We may similarly argue for the upper limits.

�	
To conclude this section, we briefly recall the definition of index-α fractional Brow-

nianmotion (0 < α < 1),whichwe denote Bα : Rn → R
m form, n ∈ N. In particular,

Bα = (Bα,1, . . . , Bα,m), where for each Bα,i : Rn → R:

(i) Bα,i (0) = 0;
(ii) Bα,i is continuous with probability 1;
(iii) the increments Bα,i (x) − Bα,i (y) are normally distributed with mean 0 and

variance |x − y|2α for all x, y ∈ R
n .

Moreover, Bα,i and Bα, j are independent for all i, j ∈ {1, . . . ,m}. It immediately
follows that for Borel A ⊂ R,

P(Bα,i (x) − Bα,i (y) ∈ A) = 1√
2π

1

|x − y|α
∫

t∈A

exp

( −t2

2|x − y|2α
)

dt .

The reader may enjoy the classical text of Kahane [11] for a more detailed account of
index-α fractional Brownian motion and related stochastic processes.

3 Statement and Discussion of Results

In this section, we collect and discuss the main results of the paper, the proofs of
which may be found in later sections. Our first result establishes an upper bound on
the intermediate dimensions of Hölder images using dimension profiles. Recalling
that them-intermediate dimension profiles intuitively tell us about the typical size of a
set from an m-dimensional viewpoint for m ∈ {1, . . . , n}, it is interesting to note how
the Hölder exponent dictates which profile appears in the bound. This is in contrast to
the setting of projections [1], where the profile appearing in the upper-bound is simply
the topological dimension of the codomain.
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Theorem 3.1 Let E ⊂ R
n be compact, θ ∈ (0, 1], m ∈ N and f : E → R

m. If there
exists c > 0 and 0 < α ≤ 1 such that

| f (x) − f (y)| ≤ c|x − y|α (3.1)

for all x, y ∈ E, then

dim θ f (E) ≤ 1

α
dimmα

θ E

and

dim θ f (E) ≤ 1

α
dim

mα

θ E .

For certain families of mappings, such as fractional Brownian motion, we are able
to obtain almost-sure lower bounds for the dimension of the images in terms of profiles
too. Let (�,F , P) denote a probability space with each ω ∈ � corresponding to a
σ({F × B : F ∈ F , B ∈ B})-measurable function fω : Rn → R

m , where B denotes
the Borel subsets of Rn . In order for this problem to be tractable, some condition
must be placed on the set of functions. Specifically, we need to assume a relationship
between

∫
1[0,r ](| fω(x) − fω(y)|)dP(ω) = P ({ω : | fω(x) − fω(y)| ≤ r}) (3.2)

and the kernels (2.1). This is analogous to Matilla’s result [14, Lemma 3.11], which
covers the special case where fω denote orthogonal projections and � = G(n,m),
the Grassmannian of m dimensional subspaces of Rn . However, such a result does
not hold in general and so must be included as a hypothesis. This allows us to prove
the following lemma that is a critical component of the following proofs. Essentially,
it says that the integral of the modified kernels (2.2) over the probability space is
bounded above by the kernels (2.1).

Lemma 3.2 Let E ⊂ R
n be compact, θ ∈ (0, 1], γ > 0, m ∈ N and 0 ≤ s < m.

If { fω : E → R
m, ω ∈ �} is a set of continuous σ({F × B : F ∈ F , B ∈ B})-

measurable functions such that there exists c > 0 satisfying

P ({ω : | fω(x) − fω(y)| ≤ r}) ≤ cφm/γ,m/γ
rγ ,θ (x − y) (3.3)

for all x, y ∈ E and r > 0, then there exists Cs,m > 0 such that

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω) ≤ Cs,mφ

s/γ,m/γ
rγ ,θ (x − y).

This allows us to obtain the desired almost-sure lower bound.
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Theorem 3.3 Let E ⊂ R
n be compact, θ ∈ (0, 1], γ ≥ 1 and m ∈ N. If { fω : E →

R
m, ω ∈ �} is a set of continuous σ({F × B : F ∈ F , B ∈ B})-measurable functions

such that there exists c > 0 satisfying

P({ω : | fω(x) − fω(y)| ≤ r}) ≤ cφm/γ,m/γ
rγ ,θ (x − y) (3.4)

for all x, y ∈ E and r > 0, then

dim θ fω(E) ≥ γ dimm/γ
θ E

and

dim θ fω(E) ≥ γ dim
m/γ

θ E

for P-almost all ω ∈ �.

Fractional Brownian motion is known to be (α − ε)-Hölder and is shown to satisfy
condition (3.4) in Sect. 6. Thus, a combination of Theorems 3.1 and 3.3 yields our
main result.

Theorem 3.4 Let θ ∈ (0, 1], m, n ∈ N, Bα : Rn → R
m be index-α fractional Brown-

ian motion (0 < α < 1) and E ⊂ R
n be compact. Then

dim θ Bα(E) = 1

α
dimmα

θ E

and

dim θ Bα(E) = 1

α
dim

mα

θ E

almost surely.

Future work may take inspiration from [16] and pursue uniform dimension results
in this context for the intermediate dimensions. This could take the form of proving
covering lemmas analogous to [16, Lemmas 3.2 and 3.3].

3.1 Observations and Applications

Here we present a few applications of Theorems 3.1, 3.3 and 3.4, the proofs of which
may be found in Sect. 7.

Recent literature has sought to identify situations in which the intermediate dimen-
sions are continuous at θ = 0, for example, see [1,6]. Theorem 3.1 implies that this
continuity is preserved under index-α fractional Brownian motion.

Corollary 3.5 Let E ⊂ R
n be bounded and Bα : Rn → R

m denote index-α fractional
Brownian motion with mα ≤ n. If dim θ E is continuous at θ = 0, then dim θ Bα(E) is
almost surely continuous at θ = 0. The analogous result holds for upper dimensions.
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Furthermore, Theorem 3.1 together with Corollary 3.5 have a surprising application
to the box and Hausdorff dimensions of sets with continuity at θ = 0. In the following,
we use the notation

dimnα
B E = dimnα

1 E,

since our profiles extend the box dimension profiles dimm
B of Falconer [5] to non-

integer values of m when θ = 1 (and similarly for the upper dimensions).

Corollary 3.6 Let E ⊂ R
n be a bounded set such that dim θ E is continuous at θ = 0.

If α > 1
n dimH E, then

1

α
dimnα

B E < n.

On the other hand, if α ≤ 1
n dimH E, then

1

α
dimnα

B E = n.

The analogous result holds for upper dimensions.

In particular, since dimH E ≤ dimBE , the first part of Corollary 3.6 shows us that
dimnα

B E is strictly less than the trivial upper bound of nα implied by Lemma 2.2 for

α ∈
(
dimH E

n
,
dimBE

n

)
,

and similarly for dimBE . Furthermore, Corollary 3.6 may immediately be translated
into the context of fractional Brownian motion by Theorem 3.4.

Corollary 3.7 Let E ⊂ R
n be a bounded set such that dim θ E is continuous at θ = 0

and Bα : Rn → R
n denote index-α Brownian motion. If α > 1

n dimH E, then

dimBBα(E) < n.

almost surely. On the other hand, if α ≤ 1
n dimH E, then

dimBBα(E) = n.

almost surely. The analogous result holds for upper dimensions.

It may be of interest to see how Corollary 3.7, which deals with box dimension, differs
from the related classical result of Kahane on the Hausdorff dimensions of Brownian
images [11, Corollary, pp. 267].

A further implication of Theorem 3.4 is that an inequality derived from a slight
modification of the proof allows us to show in Sect. 7.3 that the dimension profiles are
continuous for any Borel set E ⊆ R

n .
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Corollary 3.8 Let E ⊆ R
n be bounded and θ ∈ (0, 1]. The functions f , g : (0, n) →

[0, n] defined by

f (t) = dimt
θ E

and

g(t) → dim
t
θ E

are continuous in t .

Onefinal application concerns theHausdorff dimension of the set of exceptional sets
in the projection setting. The proof is based on an application of Theorem 3.3, which
allows the proof of [5, Theorem 1.2 (ii), (iii)] to be generalised from box dimension
(the case where θ = 1) to all intermediate dimensions.

Theorem 3.9 Let E ⊂ R
n be compact, m ∈ {1, . . . , n} and 0 ≤ λ ≤ m, then

dimH{V ∈ G(n,m) : dim θπV E < dim
λ

θ E} ≤ m(n − m) − (m − λ) (3.5)

and

dimH{V ∈ G(n,m) : dim θπV E < dimλ
θ E} ≤ m(n − m) − (m − λ) (3.6)

Recall that dim
λ

θ E and dimλ
θ E decrease as λ decreases. Thus, Theorem 3.9 tells

us that the there is a stricter upper bound on the dimension of the exceptional set
the larger the drop in dimension from the expected value. We conclude by posing a
slightly different question which is a slight strengthening of Theorem 3.9, an analogy
of which was considered in [5, Theorem 1.3 (ii), (iii)].

Question 3.10 Let 0 ≤ γ ≤ n − m. What are the optimum upper bounds for

dimH{V ∈ G(n,m) : dim θπV E < dim
m+γ

θ E − γ }

and

dimH{V ∈ G(n,m) : dim θπV E < dimm+γ
θ E − γ }?

The method in [4] for box dimensions relied on Fourier transforms and approximating
the potential kernels by a Gaussian with a strictly positive Fourier transform. However,
the natural family of kernels appropriate for working with intermediate dimension
have a more complex shape, which complicates matters. A significantly different, but
perhaps interesting, approach may be required.

123



Journal of Theoretical Probability

4 Proof of Theorem 3.1

To prove Theorem 3.1 we use the following result [1, Lemma 4.4], which is stated
here for convenience.

Lemma 4.1 Let E ⊂ R
m be compact, 0 ≤ s ≤ m and θ ∈ (0, 1]. If there exists a

measure μ ∈ M(E) and β > 0 such that

∫
φ
s,m
r ,θ (x − y)dμ(y) ≥ β (4.1)

for all x ∈ E, then there is a number r0 > 0 such that for all 0 < r ≤ r0,

Ssr ,θ (E) ≤ am�log2(|E |/r) + 1
r
s

β

where the constant am depends only on m. In particular,

Ssr ,θ (E) ≤ am�log2(|E |/r) + 1
Cs,m
r ,θ (E)rs .

Intermediate dimension is invariant under scaling and thus we may assume the
Hölder constant c in (3.1) equals one. First, note

rs

|x − y|αs ≤ r θ(m−s)+s

|x − y|αm

for |x − y| ≤ r θ/α and 0 ≤ s ≤ m. It then follows from the definition of φ
s,m
r ,θ that

φ
s,m
r ,θ ( f (x) − f (y)) = min

{

1,
rs

| f (x) − f (y)|s ,
r θ(m−s)+s

| f (x) − f (y)|m
}

≥ min

{

1,
rs

|x − y|αs ,
r θ(m−s)+s

|x − y|αm
}

=

⎧
⎪⎨

⎪⎩

1 |x − y| < r1/α
(
r1/α/|x − y|)sα r1/α ≤ |x − y| ≤ r θ/α

(r1/α)θ(mα−sα)+sα/ (|x − y|)mα |x − y| > r θ/α

= φ
sα,mα

r1/α,θ
(x − y).

By Lemma 2.1, for each 0 ≤ s ≤ m there exists a measure μ ∈ M(E) such that for
all x ∈ E

1

Csα,mα

r1/α,θ
(E)

≤
∫

φ
sα,mα

r1/α,θ
(x − y)dμ(y)

≤
∫

φ
s,m
r ,θ ( f (x) − f (y))dμ(y)
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≤
∫

φ
s,m
r ,θ ( f (x) − w)d( f μ)(w)

where f μ ∈ M(E) is defined by
∫
g(w)d( f μ)(w) = ∫

g( f (x))dμ(x) for all con-
tinuous functions g and by extension. This verifies that f (E) supports a measure
satisfying the condition of Lemma 4.1. Hence, for sufficiently small r > 0,

Ssr ,θ ( f (E)) ≤ am�log2(|E |/r) + 1
rsCsα,mα

r1/α,θ
(E)

for all 0 ≤ s ≤ m. This implies

lim inf
r→0

Ssr ,θ ( f (E))

− log r
≤ −s + lim inf

r→0

Csα,mα

r1/α,θ
(E)

−α log r1/α
,

and so

α lim inf
r→0

Ssr ,θ ( f (E))

− log r
≤ −sα + lim inf

r→0

Csα,mα

r1/α,θ
(E)

− log r1/α
.

Recall,

1

α
dimmα

θ E ≤ 1

α
mα = m.

and thus we may set sα = dimmα
θ E . It follows

lim inf
r→0

S
1
α
dimmα

θ E
r ,θ ( f (E))

− log r
≤ 0,

implying

dim θ f (E) ≤ 1

α
dimmα

θ E .

The inequality for dim θ f (E) follows by using a similar argument and taking upper
limits. �	

5 Proof of Lemma 3.2 and Theorem 3.3

5.1 Proof of Lemma 3.2

Let θ ∈ (0, 1]. To ease notation, define

φ
m/γ
rγ (x − y) := φ

m/γ,m/γ
rγ ,θ (x − y) =

⎧
⎨

⎩

1 |x − y| < rγ

(
rγ

|x−y|
)m/γ |x − y| ≥ rγ

,
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since the kernels φ
s,t
r ,θ lose dependence on θ and take the same form on [r , r θ ] and

(r θ ,∞) when s = t .
Recall, from [1, Lemma 5.3], that

φ̃s
r ,θ (x) = srs

rθ∫

u=r

1[0,u](|x |)u−(s+1)du + rs(1−θ)1[0,rθ ](|x |),

and so by Fubini’s theorem

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)

= srs
rθ∫

u=r

u−(s+1)
[∫

1[0,u](| fω(x) − fω(y)|)dP(ω)

]
du

+ rs(1−θ)

∫
1[0,rθ ](| fω(x) − fω(y)|)dP(ω).

From (3.3), ∫
1[0,u](| fω(x) − fω(y)|)dP(ω) ≤ cφm/γ

uγ (x − y) (5.1)

and ∫
1[0,rθ ](| fω(x) − fω(y)|)dP(ω) ≤ cφm/γ

rθγ (x − y). (5.2)

Hence

1

c

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)

≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x − y) du + rs(1−θ)φ

m/γ

rθγ (x − y),

which must be evaluated in three cases.
Case 1: Suppose |x − y| ≤ rγ , then

φ
m/γ
uγ (x − y) = 1

for all r ≤ u ≤ r θ , and

φ
m/γ

rθγ (x − y) = 1.

Hence

1

c

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)
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≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x − y) du + rs(1−θ)φ

m/γ

rθγ (x − y)

= srs
rθ∫

u=r

u−(s+1) du + rs(1−θ)

= 1.

Case 2: Suppose rγ ≤ |x − y| ≤ r θγ , then

φ
m/γ

rθγ (x − y) = 1.

Moreover, for r ≤ u ≤ |x − y|1/γ we have

φ
m/γ
uγ (x − y) = um

|x − y|m/γ

and

φ
m/γ
uγ (x − y) = 1

for |x − y|1/γ ≤ u ≤ r θ . Hence

1

c

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)

≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x − y) du + rs(1−θ)φ

m/γ

rθγ (x − y)

= srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x − y) du + rs(1−θ)

= srs
|x−y|1/γ∫

u=r

u−(s+1) um

|x − y|m/γ
du + srs

rθ∫

u=|x−y|1/γ
u−(s+1) du + rs(1−θ)

≤
(

s

m − s
+ 1

)(
rγ

|x − y|
)s/γ

.

Case 3: Suppose |x − y| ≥ r θγ , then

φ
m/γ

rθγ (x − y) = r θm

|x − y|m/γ
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and

φ
m/γ
uγ (x − y) = um

|x − y|m/γ

for r ≤ u ≤ r θ .
Hence

1

c

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)

≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x − y) du + rs(1−θ)φ

m/γ

rθγ (x − y)

= srs
rθ∫

u=r

u−(s+1) um

|x − y|m/γ
du + rs(1−θ) r θm

|x − y|m/γ

=
(

s

m − s
+ 1

)
(rγ )θ(m/γ−s/γ )+s/γ

|x − y|m/γ
.

To conclude, we deduce from Case 1, Case 2 and Case 3 that

1

c

∫
φ̃s
r ,θ ( fω(x) − fω(y))dP(ω)

≤

⎧
⎪⎪⎨

⎪⎪⎩

1 |x − y| < rγ

(
s

m−s + 1
) (

rγ

|x−y|
)s/γ

rγ ≤ |x − y| ≤ rγ θ

(
s

m−s + 1
)

(rγ )θ(m/γ−s/γ )+s/γ

|x−y|m/γ rγ θ < |x − y|

≤
(

s

m − s
+ 1

)
φ
s/γ,m/γ
rγ ,θ (x − y),

as required. �	

5.2 Proof of Theorem 3.3

Let E ⊂ R
n be compact, θ ∈ (0, 1], γ ≥ 1, m ∈ N and 0 ≤ s < m. Choose a

sequence (rk)k∈N such that 0 < rk < 2−k and

lim sup
k→∞

Cs,m
rγ
k ,θ

(E)

− log rγ

k

= lim sup
r→0

Cs,m
r ,θ (E)

− log r
. (5.3)
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Moreover, define a sequence of constants βk by

βk := 1

Cs/γ,m/γ

rγ
k ,θ

(E)
=
∫ ∫

φ
s/γ,m/γ

rγ
k ,θ

(x − y)dμk(x)μk(y),

whereμk is the equilibriummeasure from Lemma 2.1 on E associated with the kernel
φ
s/γ,m/γ

rγ
k ,θ

.

Hence, by (3.4) and Lemma 3.2 we have

∫ ∫ ∫
φ̃s
rk ,θ ( fω(x) − fω(y))dP(ω)dμk(x)dμk(y)

≤ Cs,m

∫ ∫
φ
s/γ,m/γ

rγ
k ,θ

(x − y)dμk(x)dμk(y)

≤ Cs,mβk .

Then, for each ε > 0,

∫ ∫ ∫
β−1
k rε

k φ̃
s
rk ,θ ( fω(x) − fω(y))dP(ω)dμk(x)dμk(y) ≤ Cs,mr

ε
k

from which Fubini’s theorem implies

∫ ∞∑

k=1

(∫ ∫
β−1
k rε

k φ̃
s
rk ,θ ( fω(x) − fω(y))dμk(x)dμk(y)

)
dP(ω) ≤ Cs,m

∞∑

k=1

rε
k < ∞

since |rε
k | ≤ 2−kε. Hence, for P-almost all ω ∈ �, there exists Mω > 0 such that

∫ ∫
β−1
k rε

k φ̃
s
rk ,θ (t − u)dμk

ω(t)dμk
ω(u) ≤ Mω < ∞

for all k, where μk
ω is the image of μk under fω. Thus,

∫ ∫
φ̃s
rk ,θ (t − u)dμk

ω(t)dμk
ω(u) ≤ Mωβkr

−ε
k

for all k. Hence, for each k there exists a set Fk ⊂ fω(E) with μk
ω(Fk) ≥ 1/2 and

∫
φ̃s
rk ,θ (t − u)dμk

ω(t) ≤ 2Mωβkr
−ε
k
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for all u ∈ Fk . Hence, by Burrell et al. [1, Lemma 5.4]

Ssrk ,θ ( fω(E)) ≥ 1

2
(2Mωβk)

−1rs+ε
k = (4Mωβk)

−1rs+ε
k ,

and so

lim sup
k→∞

log Ssrk ,θ ( fω(E))

− log rk
≥ lim sup

k→∞
log rs+ε

k (4Mωβk)
−1

− log rk

= lim sup
k→∞

log rs+ε
k Cs/γ,m/γ

rγ
k ,θ

(E)

− log rk

= −(s + ε) + lim sup
k→∞

logCs/γ,m/γ

rγ
k ,θ

(E)

− log rk
.

Hence

1

γ
lim sup
k→∞

log Ssrk ,θ ( fω(E))

− log rk
≥ − s + ε

γ
+ lim sup

k→∞

logCs/γ,m/γ

rγ
k ,θ

(E)

− log rγ

k

.

This is true for all ε > 0, so using (5.3),

1

γ
lim sup
r→0

log Ssr ,θ ( fω(E))

− log r
≥ − s

γ
+ lim sup

r→0

logCs/γ,m/γ
r ,θ (E)

− log r

for all s ∈ [0,m). Since the expressions on both sides of this inequality are continuous
for s ∈ [0,m] by Burrell et al. [1, Lemmas 2.1 and 3.2] , the inequality is valid for

s ∈ [0,m] and consequently s/γ ∈ [0,m/γ ]. Hence, for s/γ = dim
m/γ

θ E

lim sup
r→0

log Ssr ,θ ( fω(E))

− log r
≥ 0,

implying dim θ fω(E) ≥ s = γ dim
m/γ

θ E . The argument for dim θ fωE is similar,
although it suffices to set rk = 2−k . �	

6 Proof of Theorem 3.4

Let θ ∈ (0, 1] and 0 < ε < α < 1. By Falconer [4, Corollary 2.11] there exists,
almost surely, M > 0 such that

|Bα(x) − Bα(y)| ≤ M |x − y|α−ε (6.1)
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for all x, y ∈ E . In addition,

P(|Bα(x) − Bα(y)| ≤ r) ≤ P(|Bα,i (x) − Bα,i (y)| ≤ r for all 1 ≤ i ≤ m)

≤
⎛

⎜
⎝

1√
2π

1

|x − y|α
∫

|t |≤r

exp

( −t2

2|x − y|2α
)

dt

⎞

⎟
⎠

m

≤
⎛

⎜
⎝

1

|x − y|α
∫

|t |≤r

1 dt

⎞

⎟
⎠

m

= 2m
(

r1/α

|x − y|
)mα

≤ 2(max(n,m))φ
m/γ,m/γ
rγ ,θ (x − y) (6.2)

for all x, y ∈ E and r > 0, where γ = 1/α.
By applying Theorems 3.3 and 3.1,

1

α
dimmα

θ E ≤ dim θ Bα(E) ≤ 1

α − ε
dimm(α−ε)

θ E ≤ 1

α − ε
dimmα

θ E

and

1

α
dim

mα

θ E ≤ dim θ Bα(E) ≤ 1

α − ε
dim

m(α−ε)

θ E ≤ 1

α − ε
dim

mα

θ E

almost surely, with the last inequality in each case holding since the profiles are
monotonically increasing. Letting ε → 0, the result follows. �	

7 Proof of Corollaries 3.5, 3.6 and 3.8

7.1 Proof of Corollary 3.5

From [11, Corollary, pp. 267],

dimH Bα(E) = 1

α
dimH E

almost surely, and so

dimH E ≤ αdim θ Bα(E) ≤ α
1

α
dimmα

θ E ≤ dimn
θ E = dim θ E

by monotonicity of the profiles. Hence, as θ → 0, continuity of dim θ Bα(E) at θ = 0
is established, since dim θ E → dimH E by definition. The proof for upper dimensions
is similar. �	
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7.2 Proof of Corollary 3.6

Let E ⊂ R
n be such that dim θ E is continuous at θ = 0, and let Bα : Rn → R

n

denote index-α fractional Brownian motion where

α >
dimH E

n
.

Hence, by Kahane [11, Corollary, pp. 267],

dimH Bα(E) = 1

α
dimH E < n (7.1)

almost surely.Then, in order to reach a contradiction, let us suppose that dimnα
B E = nα.

This implies dimBBα(E) = n almost surely by Theorem 3.4. Then, by Burrell et al.
[1, Corollary 6.3],

dim θ Bα(E) = n

almost surely for all θ ∈ (0, 1]. By Corollary 3.5, dim θ Bα(E) is continuous at θ = 0
which implies dimH Bα(E) = n, a contradiction to (7.1). The case for α ≤ 1

n dimH E
follows easily from [11, Corollary, pp. 267] and Theorem 3.4. �	

7.3 Proof of Corollary 3.8

Let 0 < s < n and θ ∈ (0, 1]. Fix α > 0 such that nα = s. Since E is bounded, there
exists B > 1 such that

|x − y| < B

for all x, y ∈ E . Let ε > 0 be such that n(α + ε)/(1 − ε) < n, and choose Cε ≥
Bε(1+α)/(1−ε). Observe

Cε ≥ |x − y|ε(1+α)/(1−ε)

= |x − y|(α+ε)/(1−ε)

|x − y|α (7.2)

for all x, y ∈ E . Then, consider Bα : Rn → R
n . By (6.2) and (7.2),

P(|Bα(x) − Bα(y)| ≤ r) ≤ 2n min

{

1,

(
r1/α

|x − y|
)nα

}

≤ 2nCn
ε min

⎧
⎨

⎩
1,

(
r (1−ε)/(α+ε)

|x − y|

)n α+ε
1−ε

⎫
⎬

⎭

= 2nCn
ε φ

n/γ,n/γ
rγ ,θ (x − y)
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for all x, y ∈ E and r > 0, where γ = (1 − ε)/(α + ε). Hence, from Theorems 3.1
and 3.3, we have

1 − ε

α + ε
dimn(α+ε)/(1−ε)

θ E ≤ dim θ Bα(E) ≤ 1

α − ε
dimn(α−ε)

θ E

almost surely. The profiles are monotonically increasing, and so

1 − ε

α + ε
dims

θ E ≤ 1 − ε

α + ε
dimn(α+ε)/(1−ε)

θ E ≤ 1

α
dims

θ E ≤ 1

α − ε
dimn(α−ε)

θ E

≤ 1

α − ε
dims

θ E

almost surely, since

n(α + ε)

1 − ε
> s > n(α − ε).

This holds for arbitrary sequences of sufficiently small positive ε tending to zero and
so establishes continuity from above and below. The proof for dim

s
θ is similar. �	

8 Proof of Theorem 3.9

First, define

A = {V ∈ G(n,m) : dim θπV E < dim
λ

θ E}

and suppose, with the aim of deriving a contradiction, that

dimH A > m(n − m) − (m − λ).

By Frostman’s lemma, there exists a measure μ supported on a compact set B ⊆ A
and c > 0 such that

μ(BG(V , r)) ≤ crm(n−m)−(m−λ)

for all V ∈ G(n,m) and r > 0, where BG is a ball defined via the natural metric of
dimension m(n − m) on G(n,m). Hence, using [18, Inequality (5.12)] yields

μ({V ∈ G(n,m) : |πV x − πV y| < r}) ≤
(

r

|x − y|
)m(n−m)−(m−λ)−m(n−m−1)

=
(

r

|x − y|
)λ

≤ φ
λ,λ
r ,θ (x − y).
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Thus, the condition of Theorem 3.3 is satisfied with � = G(n,m), P = μ and
γ = m/λ. Hence

dim θπV E ≥ dim
λ

θ E (8.1)

for μ almost-all V ∈ G(n,m). Since μ is supported on A, this is a contradiction,
as it implies the existence of V ∈ A satisfying (8.1). The proof for dim θ follows
similarly. �	
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