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Editorial on the Research Topic

Cytomegalovirus Pathogenesis and Host Interactions

SCOPE OF THE RESEARCH TOPIC

Human cytomegalovirus (HCMV) is a very widespread and highly prevalent b-herpesvirus, which
sometimes causes mononucleosis following primary infection but is rarely associated with severe
disease in immunocompetent individuals (Boeckh and Geballe, 2011; Griffiths et al., 2015).
However, like all herpesviruses, HCMV establishes infections that last for the life of the host in
part by residing in a dormant state referred to as ‘latency’ (Sinclair and Poole, 2014; Dupont and
Reeves, 2016). Reactivation from latency or primary infection can cause debilitating damage in
unborn children or life-threatening disease in immunosuppressed patients including recipients of
solid organ or hematopoietic cell transplants (Collins-McMillen et al., 2018; Heald-Sargent et al.,
2020). Besides human cell culture systems of HCMV productive and latent infection (Peppenelli
et al., 2021; Poole et al., 2021), mice infected with murine cytomegalovirus (MCMV) have served as
invaluable models to understand host immune responses, viral immune evasion strategies and the
mechanisms of pathogenesis (Brizic et al., 2018; Reddehase and Lemmermann, 2018). HCMV
replicates productively in a wide variety of terminally differentiated cell types (‘lytic’ infection) while
targeting select undifferentiated cells, including myeloid progenitors and monocytes, for latent
infection (Sinclair and Poole, 2014; Goodrum, 2016). CMVs are highly sophisticated pathogens
encoding hundreds of proteins and non-coding RNAs that engage in a myriad of host interactions
(Stern-Ginossar et al., 2012; Weekes et al., 2014). The study of these interactions is constantly
revealing new and surprising insights into both the replication and persistence strategies of the virus
as well as the biology of the host cell and organism.

The recently published Research Topic ‘Cytomegalovirus Pathogenesis and Host Interactions’
combines 28 articles (8 Original Research Articles, 10 Brief Research Reports, 8 Reviews, 1 Mini
Review and this Editorial), involving 138 authors, 45 reviewers and 5 editors working in the field.
Below, we are providing an overview of the articles published in this Research Topic, dividing them
into the four sections ‘innate and adaptive immune control of CMV pathogenesis’ (11 articles), ‘host
interactions during CMV latency and reactivation’ (6 articles), ‘host interactions during productive
CMV infection’ (6 articles) and ‘targeting CMV pathogenesis by anti-viral therapy’ (4 articles).
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INNATE AND ADAPTIVE IMMUNE
CONTROL OF CMV PATHOGENESIS

The lifelong relationship with HCMV is based on our intrinsic,
innate and adaptive immune responses as well as manifold viral
countermeasures which collectively enable a dynamic balance
between host and pathogen that largely precludes disease without
eliminating the virus from our bodies (Berry et al., 2020; Schilling
et al., 2021). Major disease or even death caused by HCMV is
often linked to inflammation, including pro-inflammatory
cytokine production and is usually limited to situations where
the immune system is significantly suppressed or still immature
(Boeckh and Geballe, 2011; Griffiths et al., 2015).

Viral infections often induce autophagy, which has been
considered an intrinsic cellular defense mechanism, and
herpesviruses have developed strategies to evade and manipulate
this host response (Lussignol and Esclatine, 2017; Tognarelli et al.,
2021). López Giuliani et al. report that HCMV inhibits autophagy in
renal tubular epithelial cells and promotes cellular enlargement.
Their findings have potential implications for HCMV-related
kidney disease. As in other infectious pathogens, the innate
immune responses to CMV are thought to be triggered by
pathogen-associated molecular patterns that engage pattern
recognition receptors including Toll-like receptors (TLRs),
resulting in the release of anti-viral and pro-inflammatory
cytokines (West et al., 2012; Zheng et al., 2020). Frascaroli et al.
analyzed TLR genotypes and responses in immunocompetent
patients with primary symptomatic HCMV infection presenting
as mononucleosis. Although the study identified no difference in
TLR2, 3, 4, 7 and 9 single nucleotide polymorphisms between
symptomatic and asymptomatic individuals, TLR2 and TLR7/8
responses were altered in patients with CMV mononucleosis
compared to healthy control subjects. The former exhibited
higher levels of the pro-inflammatory cytokines interleukin 6 (IL-
6) and tumor necrosis factor alpha (TNF-a), but not interleukin 10
(IL-10). Interestingly, HCMV encodes its own homologs of cellular
IL-10, which is a largely anti-inflammatory and immunosuppressive
cytokine (Avdic et al., 2014; Poole and Sinclair, 2015). Poole et al.
review the expression, structure and function of the different viral
IL-10 isoforms identified to date as well as the effects HCMV
confers on the expression of cellular IL-10. Furthermore, Lau et al.
identified a novel viral suppressor of pro-inflammatory cytokine
production during HCMV infection. They demonstrate that the
HCMV long non-coding RNA1.2 antagonizes the expression and
release of IL-6 through a mechanism involving the tumor protein
p63-regulated gene 1-like protein (TPRG1L) and nuclear factor
kappa B (NFkB) but not TNF-a.

Mast cells are part of the innate immune system, acting as first-
line sentinels for environmental antigens, but also provide a link to
the adaptive immune system by secreting chemokines that recruit
CD8+ T-cells to sites of infection (Podlech et al., 2015; Dahlin et al.,
2021). Schmiedeke et al. reveal an unanticipated function of the viral
mitochondria-localized inhibitor of apoptosis (vMIA) m38.5,
encoded by MCMV, in inducing mast cell degranulation.

It has long been known that CD8+ T-cells play a critical role
in controlling CMV infection and disease (Klenerman and
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Oxenius, 2016; Jackson et al., 2019). CMV has evolved a
myriad of countermeasures to the CD8+ T-cell response
including major histocompatibility (MHC) class I antagonism
(Manandhar et al., 2019; Berry et al., 2020). Gabor et al.
demonstrate that downregulation of MHC class I molecules by
HCMV, although not always complete, occurs during all phases
of viral replication. Holtappels et al. present an impressive
example of lethal organ disease, due to insufficient antigen
presentation resulting from viral immune evasion, after
allogenic hematopoietic cell transplantation in MHC class I-
mismatched mice infected with MCMV. Along the same lines,
deletion of viral immune evasion genes enhanced antigen
presentation preventing lethal CMV disease in minor
histocompatibility antigen-mismatched hematopoietic cell
transplantation (Gezinir et al.). Conversely, Becker et al.
confirm that MCMV m04/gp34, originally thought to be an
immune evasion protein, is a positive regulator of MHC class I
presentation and protection by CD8+ T-cells, reminding us that
interactions of CMV with the immune system are rarely
unidirectional and sometimes counterintuitive. While the role
of HCMV-specific CD8+ T-cells has been extensively
investigated, the CD4+ T-cell response received less attention.
Lim et al. review the significant recent advances in our
understanding regarding the importance and contribution of
CD4+ T cells to anti-viral immunity and life-long carriage in
both healthy and immunocompromised individuals. The same
team also presents highly improved functional assays that
directly assess the cell-mediated immune responses to HCMV
in transplant recipients and healthy controls (Houldcroft et al.).
HOST INTERACTIONS DURING CMV
LATENCY AND REACTIVATION

Latency is defined as the maintenance of viral genomes in the
reversible absence of virus particle production. That said, how CMV
genomes are maintained during latency is unknown (Goodrum,
2016; Adamson and Nevels, 2020). Likewise, we are just beginning
to understand the viral and cellular mechanisms that determine the
establishment and maintenance of latent CMV infection (Poole and
Sinclair, 2020; Shnayder et al., 2020) as well as reactivation from
latency (Collins-McMillen et al., 2018; Heald-Sargent et al., 2020).

Mauch-Mücke et al. provide initial evidence for the idea that
HCMV episomes are tethered to mitotic host chromosomes in both
productively infected fibroblasts and myeloid cells supporting
latency. Their data also suggest that viral major immediate-early
(IE) proteins of the IE1 family contribute to HCMV episome
tethering. These findings are consistent with two other recent
reports implicating IE1 family proteins in viral genome
maintenance (Tarrant-Elorza et al., 2014; Lyon et al., 2020). A
role for IE1 in maintaining HCMV latency may come as a surprise,
since the major IE promoter-enhancer (MIEP) appears to be highly
repressed during latency in myeloid cells including monocytes
(Elder and Sinclair, 2019; Dooley and O’Connor, 2020). In fact,
the article by Min et al. recaps the evidence for the view that
differentiation of HCMV-infected monocytes is required for major
July 2021 | Volume 11 | Article 711551
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IE gene expression and viral reactivation. However, others have
proposed that establishment of latency in myeloid cells is preceded
by an initial burst of ‘lytic’ gene expression (O’Connor andMurphy,
2012; Forte et al., 2018). This latter view is shared by Forte et al., who
also review recent studies suggesting that the viral genome is more
actively expressed during latency than had been anticipated (Cheng
et al., 2017; Shnayder et al., 2018). This review further reminds us
that CMV latency and reactivation are intricately linked with the
host immune response. Collins-McMillen et al. review the
mechanisms by which recently identified alternative promoters
driving expression of IE1 and IE2 may allow the virus to repress
viral gene expression for latency while retaining the ability to
respond to cell type-specific host cues for reactivation (Arend
et al., 2016; Collins-McMillen et al., 2019). pUS28 is another viral
protein linked to the maintenance of HCMV latency (Krishna et al.,
2017; Krishna et al., 2019). Krishna et al. confirm the role of this
protein in viral latency by ruling out that inadvertent effects on the
adjacent genes US27 and US29 contribute to the phenotype of
US28-deficient viruses. pUS28 is a ‘Swiss army knife’ involved in
many processes including calcium regulation (Miller et al., 2012;
Krishna et al., 2018). Dunn and Munger review how manipulation
of the calcium and 5’-adenosine monophosphate-activated protein
kinase (AMPK) signaling network by several HCMV proteins
including pUS28 contributes to infection and pathogenesis.
HOST INTERACTIONS DURING
PRODUCTIVE CMV INFECTION

Reactivation from latency or primary infection is concomitant with
the CMV productive cycle that proceeds through successive IE,
early and late stages resulting in the production of infectious
progeny. In the pre-IE stage, proteins and RNAs packaged within
the virion tegument are delivered to the host cells to prime them for
productive infection (Kalejta, 2008; Penkert and Kalejta, 2011).

Kalejta and Albright review both established and emerging
functions of pp71 (pUL82), one of the most prominent tegument
proteins of HCMV, and their implications for pathogenesis and
vaccine development. A key function assigned to pp71 is activation
of the MIEP, which drives IE1 and IE2 expression (Torres and
Tang, 2014; Landolfo et al., 2016). Previous work has shown that the
essential 86-kDa IE2 protein of HCMV accelerates viral gene
transcription while maintaining the steady-state levels below a
cytotoxic threshold (Teng et al., 2012; Vardi et al., 2018).
Chaturvedi et al. report that this ‘accelerator’ circuit is shared
between IE2 and infected cell protein 4 (ICP4) of Herpes simplex
virus type 1, suggesting an evolutionary conserved strategy. Another
essential DNA binding regulator of viral gene expression is the
HCMV pUL34 protein (Rana and Biegalke, 2014; Slayton et al.,
2018), andMCMV encodes the homologous proteinM34. Eilbrecht
et al. demonstrate that M34 is expressed with early-late kinetics,
localizes to the host cell nucleus and promotes viral replication,
albeit in a non-essential way.

Besides focused analyses of individual viral gene products,
systems approaches are being increasingly deployed for a
broader view of how the hundreds of CMV proteins and non-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
coding RNAs interact with the host cell (Landais and Nelson,
2013; Poole and Sinclair, 2020). Lee and Grey review how high-
throughput screening approaches have evolved and resulted in a
new understanding of the virus-host interactions during
productive HCMV infection. These high-throughput
approaches include proteomics studies revealing degradation of
far more than a hundred host proteins shortly after infection
(Weekes et al., 2014; Nobre et al., 2019). For their contribution,
Lin et al. employed an inhibitor-based proteomics screen to find
that the predominant mechanism of host protein degradation by
HCMV is via the proteasome, although alternative degradation
pathways are also relevant. One of these degraded host proteins
appears to be the sterile alpha motif and histidine-aspartate
domain containing protein 1 (SAMHD1), which has been
recently identified as a restriction factor of both MCMV and
HCMV (Businger et al., 2019; Kim et al., 2019). The article by
Hyeon et al. confirms that SAMHD1 inhibits HCMV replication
and concludes that degradation of this host protein in the late
phase of infection requires Cullin-RING-E3 ligase complexes.
TARGETING CMV PATHOGENESIS BY
ANTI-VIRAL THERAPY

In the absence of an effective vaccine, the prevention or treatment of
HCMV disease largely relies on a few small molecule compounds
with anti-viral activity. However, current antivirals for HCMV come
with major downsides that include poor bioavailability, adverse side
effects and the emergence of resistant virus strains, calling for new
molecular targets and treatment strategies (Adamson and Nevels,
2020; Bogner et al., 2021).

Suárez et al. applied high-throughput sequencing coupled
with HCMV-adapted target enrichment to samples collected
from recipients of solid organ and hematopoietic cell
transplants undergoing anti-viral therapy. Six different
resistance mutations in the viral DNA polymerase (UL54) gene
were detected in six out of eleven patients in this study. These
results highlight the potential use of high-throughput sequencing
to monitor strain composition and resistance to antivirals.

A promising new area of translational research and drug
development is ‘epigenetic therapy’ (Nevels et al., 2011; Nehme
et al., 2019). Groves et al. review the anti-viral activity of small
molecule inhibitors targeting the bromodomains of bromo- and
extra-terminal domain (BET) proteins, which serve as ‘readers’
of acetylated histones. Bromodomain inhibitors show promise as
a novel class of therapeutics for disease linked to infection with
HCMV and other human herpesviruses. The identification and
characterization of new anti-viral drug candidates require
sensitive and reliable detection techniques of HCMV infection,
gene expression and spread. Rand et al. present a multi-reporter
HCMV, identified through iterative testing of minimally invasive
mutations, expressing three distinct fluorescent reporter genes
that permit the visualization of infected cells in the IE, early and
late phases of infection. They also validate their approach in
identifying anti-viral compounds and narrowing down their
mechanism of action in a single step.
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An alternative treatment approach for HCMV disease,
besides anti-viral drugs, is the adoptive transfer of CD8+ T-
cells (Mui et al., 2010; Garcia-Rios et al., 2021). Renzaho et al.
demonstrate that CD8+ T-cells not only prevent lethal MCMV
disease by limiting viral spread in vital organs, but also control
infection of stromal cells in the bone marrow. Thus, CD8+ T-cell
transfer allowed successful donor hematopoietic stem cell
engraftment, confirming cyto-immunotherapy as a viable
option to target CMV infection after hematopoietic stem
cell transplantation.
CONCLUDING REMARKS

This article collection reflects some of the astounding breadth,
current focus areas and future directions in HCMV and MCMV
research. We thank all the authors, reviewers and guest editors
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who contributed to this project, which, in part due to the ongoing
pandemic, took more than a year to complete. The Research
Topic has received 71,531 total views as of 1st July 2021, and we
hope that the included articles will receive much attention and
will inspire plenty of further CMV research.
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