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Abstract

More than 2,000 common bottlenose dolphins (Tursiops truncatus) inhabit the Barataria

Bay Estuarine System in Louisiana, USA, a highly productive estuary with variable salinity

driven by natural and man-made processes. It was unclear whether dolphins that are long-

term residents to specific areas within the basin move in response to fluctuations in salinity,

which at times can decline to 0 parts per thousand in portions of the basin. In June 2017, we

conducted health assessments and deployed satellite telemetry tags on dolphins in the

northern portions of the Barataria Bay Estuarine System Stock area (9 females; 4 males).

We analyzed their fine-scale movements relative to modeled salinity trends compared to

dolphins tagged near the barrier islands (higher salinity environments) from 2011 to 2017

(37 females; 21 males). Even though we observed different movement patterns among indi-

vidual dolphins, we found no evidence that tagged dolphins moved coincident with changes

in salinity. One tagged dolphin spent at least 35 consecutive days, and 75 days in total, in

salinity under 5 parts per thousand. Health assessments took place early in a seasonal

period of decreased salinity. Nonetheless, we found an increased prevalence of skin

lesions, as well as abnormalities in serum biochemical markers and urine:serum osmolality

ratios for dolphins sampled in lower salinity areas. This study provides essential information

on the likely behavioral responses of dolphins to changes in salinity (e.g., severe storms or

from the proposed Mid-Barataria Sediment Diversion project) and on physiological markers

to inform the timing and severity of impacts from low salinity exposure.

Introduction

The Barataria Basin—including Barataria Bay, Caminada Bay, and surrounding coastal marsh

habitat south of New Orleans, LA and west of the Mississippi River—is home to approximately
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2,000 common bottlenose dolphins (Tursiops truncatus) (Fig 1) [1,2]. The ecosystem in the

basin ranges from freshwater wetlands at the northern reaches to a marine system on the

south side of the barrier islands (e.g., Grand Isle and Grand Terre; the location of all places

named within the Barataria Basin are shown in Fig 1) that separate Barataria Bay from the

northern Gulf of Mexico (nGOMx), with the majority of the basin representing a gradient of

brackish waters subject to daily, seasonal, and/or yearly fluctuations in salinity [3,4].

Although the Barataria Basin Estuarine System (BBES) and the neighboring Terrebonne-

Timbalier Bay Estuarine System have been designated as estuaries of national significance, the

accumulated effects of levees and channels near the Mississippi River have driven significant

changes to the hydrology and habitat of this ecosystem. In combination with the effects of

increased development, climate change, tropical disturbances, and disasters (e.g., the Deepwa-
ter Horizon [DWH] oil spill), the quality and quantity of coastal habitat in the basin is rapidly

decreasing [5,6]. As part of a larger effort to combat coastal erosion across Louisiana, resource

managers have proposed to divert sediment from the Mississippi River into the Barataria

Basin via the Mid-Barataria Sediment Diversion project [7]. To divert the sediment, large vol-

umes of freshwater will be introduced into the Barataria Basin, which may affect estuarine spe-

cies that depend on aquatic habitats with particular ranges of salinity [4].

In the U.S., marine mammals are managed by individual stock, which is defined as a group

of marine mammals of the same species in a common spatial arrangement that interbreed

when mature (MMPA 16 U.S.C. 1361 et seq.). While many stocks of common bottlenose dol-

phins spend their entire lives in marine waters (typically >30 parts per thousand [ppt]), at

least some bottlenose dolphins can tolerate lower saline conditions. As an individual’s expo-

sure to low salinity conditions increases in duration and/or severity (closer to 0 ppt), the dol-

phin can be negatively affected by direct contact of the skin to low saline water, as well as

incidental ingestion of low saline water during foraging. Dermal exposure may lead to skin

lesions such as color changes and epidermal sloughing, erosions, and/or ulcerations, indicating

progressive stages of the skin’s inability to act as a barrier to external conditions [8–14]. In

addition, skin may become overgrown with external mats consisting of fungi, algae, and/or

bacteria that can penetrate the skin as the impacts of lower saline waters become more severe.

Once the skin is compromised, the individual may develop secondary infections and/or net

gain of low saline water into the body [13]. Similarly, gastrointestinal integrity may also be

compromised, depending on how much water an individual consumes [15], leading to intra-

cellular and extracellular absorption and potential for infections after incidental ingestion of

low saline water. Both of these exposure pathways may lead to systemic physiological changes

like osmotic imbalance, biochemical aberrations, cellular damage, and the potential for local-

ized/systemic secondary infections or septicemia. Exposure to waters<20 ppt for as little as

one day can result in mild serum electrolyte changes [16,17]. Visually observable skin lesions

may require exposures <10 ppt for days to weeks, and the lesions/physiological effects of low

salinity exposure can resolve if/when the individuals return to higher saline waters [17–21].

In some circumstances, osmotic imbalance, biochemical aberrations, cellular damage, and/

or secondary infection can deteriorate from mild to severe, resulting in potentially life-threat-

ening illnesses (e.g., hemolysis, anemia, septicemia/toxemia, and cerebral or pulmonary

edema). In 2019, a record-breaking year of precipitation in the watersheds draining to the

nGOMx led to large amounts of fresh water flowing into coastal waters, driving salinity levels

below 10 ppt for 15–20 weeks [22]. This resulted in a four-fold increase in stranded bottlenose

dolphins from Louisiana to the Florida Panhandle, with a high prevalence of freshwater-like

skin lesions, and led NOAA to declare an unusual mortality event (UME) [23]. Many of the

strandings were in eastern Louisiana, western Mississippi Sound, and adjacent bays/estuaries,

coinciding with increased runoff from the Mississippi River and associated spillway openings.
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In this area, stranded dolphins with freshwater-like lesions were found after 17 days with

nearby waters below 5 ppt, and the number of strandings peaked after 40 days with waters

below 5 ppt [23].

Like other bay, sound, and estuarine stocks of dolphins in the Southeastern U. S. [reviewed in

2], the BBES Stock shows high, year-round site fidelity to the estuarine waters within the basin,

with occasional movements<5 km from the barrier islands into adjacent coastal waters of the

nGOMx [24]. Only a few individual dolphins have been identified moving between the Barataria

Fig 1. Capture/Release locations for all dolphins with satellite-linked telemetry tags in the Barataria Basin, LA

from 2011 to 2017. (A) The June 2017 field effort was designed specifically to investigate dolphins near or north of

Bassa Bassa Bay (purple), while the other efforts typically focused on dolphins near the barrier islands, especially Grand

Isle (B). Map tiles used with permission from Stamen Design, under a CC BY license. Data by OpenStreetMap, under

ODbL.

https://doi.org/10.1371/journal.pone.0258031.g001
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Basin and the neighboring Terrebonne-Timbalier Bay Estuarine System [25]. During summer/

fall months from 2011 to 2014, individual BBES dolphins with telemetry tags typically ranged

(defined as the mean longest distance between locations across a home range) no more than 22

km for females and 27 km for males while the tags were operational (about four to five months)

[24]. This is consistent with extensive photographic-identification and telemetry research docu-

menting that bay, sound, and estuarine dolphins in the Southeastern U.S. typically stay in rela-

tively small usage areas [e.g., 24,26–33], often despite acute or chronic environmental stressors

such as low salinity [10,19,34], tropical disturbances [21,35], oil spills and other anthropogenic

contaminants [10,34,36–38], and harmful algal blooms [35,39–42]. Due to their high site fidelity,

BBES dolphins were exposed to DWH oil in their heavily contaminated habitat and subsequently

suffered numerous adverse health effects from oil toxicity (e.g., lung disease, impaired stress

response and adrenal dysfunction, immune dysfunction, and poor overall health prognoses), lead-

ing to drastic and prolonged elevated reproductive failure rates and mortality rates following the

oil spill [43–53]. NOAA declared a UME related to the effects of DWH oiling on cetaceans

throughout the nGOMx, including dolphins in the Barataria Basin [51,54].

Most of our understanding of the health and movements of the BBES Stock comes from

investigations into the effects of the DWH oil spill on BBES dolphins (where oiling was espe-

cially persistent and heavy), with most of the studies focused near the barrier islands, particu-

larly Grand Isle and Grand Terre [44,55,56]. For example, in an effort to extrapolate densities

of individuals into an estimate of abundance of BBES dolphins, Hornsby et al. [57] used telem-

etry data from 2011 to 2014 (first described by Wells et al. [24]) to define dolphin habitat area

in the basin based on a salinity model. Similarly, White et al. [58] use the same telemetry data-

set in preliminary comparisons of modeled salinity to dolphin locations. Both studies observed

that the tagged BBES dolphins spent little time in waters below 7.98 ppt; however, most of the

tagged dolphins in the dataset were captured in the southern half of the stock area (where

salinities are typically less affected by seasonal fluctuations, since they are closer to the open

waters of the nGOMx).

In 2017, we conducted catch-and-release health assessments in the Barataria Basin, with a

focus on dolphins found ranging in the northern half of the stock area, where salinities are

more influenced by temporal fluctuations of freshwater input. Satellite-telemetry tags were

attached to individuals so that we could compare their movement patterns to salinity trends as

modeled using the Delft3D Barataria Basin hydrodynamic model [58]. We conducted the

health assessments and simultaneously deployed tags during the transition period from the

lower salinity spring/summer rainfall runoff period to the higher salinity fall/winter period

(typically dominated by influx of waters from the nGOMx). This provided an opportunity to

investigate whether dolphins in the northern part of the BBES Stock area move in association

with changes in salinity, and with data from the health assessments, to determine if BBES dol-

phins that spent time in the lower salinity environments of the northern portion of the stock

area were more likely to exhibit skin lesions and/or clinicopathological indicators of low salin-

ity exposure.

Materials and methods

Dolphin catch-and-release efforts were conducted in August 2011, June 2013, June 2014, July

2016, June 2017, and September 2017. All field research with bottlenose dolphins was autho-

rized under NMFS’ Marine Mammal Health and Stranding Response MMPA/ESA Permit

#932-1905/MA-009526 and #18786–1. During each catch-and-release effort, the dolphins

included in this study were each 1) given a health assessment by veterinarians and 2) affixed

with satellite telemetry tags. Data from the 2011, 2013, and 2014 health assessments and
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satellite telemetry tags were described previously [24,44,48], and information about these dol-

phins is provided in S1 and S2 Tables. From September 11 to September 22, 2016 and on Sep-

tember 21, 2017, health assessment and tagging activities were focused on the waters near

Grand Isle and Grand Terre in the southern portion of the BBES Stock area (Fig 1) and used

protocols similar to the previous field efforts [59].

Dolphin catch-and-release in June 2017

From June 14 to June 23, 2017, our research team temporarily captured dolphins (one to two

individuals at a time) in the Barataria Basin with a focus on dolphins found in the northern

half of the BBES Stock area (including and north of Bassa Bassa Bay, or approximately 29.34˚

N), attached satellite-telemetry tags, and collected dolphin health data. We used previously

established protocols for the safe capture, handling, health assessment, tag attachment, and

release of dolphins, focusing on individuals over two years of age [24,44,48,59]. At each capture

location, we recorded geographic and environmental data, including the global positioning

system (GPS) coordinates and water depth via a vessel-based GPS unit, as well as water tem-

perature and salinity using a Yellow Springs Instruments (YSI) probe, for comparison with

modelled salinity estimates.

Satellite-telemetry tagging

The tagging equipment and methods we used are consistent with the review of satellite-teleme-

try tagging of small cetaceans in Balmer et al. [60] and the techniques described in Wells et al.

[24]. In 2016, we deployed 10 SPOT-299A tags from Wildlife Computers (Redmond, Wash-

ington, USA) with a projected battery life of 280 days at 250 transmissions per day. In 2017, we

deployed two types of tags: SPOT-299A and Sirtrack’s (Havelock North, New Zealand) K2F

172C KIWISAT 202B (location only), with a projected battery life of 168 days. Satellite-teleme-

try tagging of Barataria Bay dolphins between 2011 and 2014 is described by Wells et al. [24].

All tags were coated with Propspeed (Oceanmax, Ltd., Auckland, New Zealand), excluding the

saltwater switches, to reduce biofouling. The distance between the center of the attachment

point to the trailing edge of the dorsal fin was approximately 35 mm. We programmed each

tag to attempt signaling with the Argos satellite system during four, one-hour blocks per day

(08:00 to 11:59 Central Daylight Time) in order to maximize the number and quality of the

transmissions. Although on occasion we tagged two dolphins that were caught at the same

time, after assessing the telemetry data, it was clear that either 1) one of the tags did not trans-

mit enough times to be included in our data set or 2) that the individuals were likely only asso-

ciated for a brief time (due to the fission-fusion nature of bay, sound, and estuary dolphin

social structure) rather than mother-calf pairs or bonded adult male pairs [e.g., 61]. Thus, we

treated all of the tags as independent samples.

Health assessment

Comprehensive veterinary health assessments of each dolphin have been previously described

[44,48,59] and included a physical examination, morphometric data, skin and blubber biopsy,

urinalysis (when available), pulmonary and reproductive ultrasound examinations, and blood

sample collection for complete biochemistry, hematology, and osmolality analysis. The types

of samples/analyses for each individual dolphin varied depending on the sampling priority for

each field effort’s study design, timing constraints due to weather and/or sample processing

and shipping requirements, and how well the dolphin tolerated sampling procedures.

For each dolphin in June and September 2017, veterinarians conducted a skin assessment

using a standardized form to document the location and description of each lesion type
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(Supplemental Materials). Visual assessment of freshwater-like lesions was typically character-

ized by hypopigmented, circular and/or irregular, multifocal to coalescing lesions and may or

may not have had associated ulcerations and were consistent with freshwater lesions described

in other studies [13,14]. Two experienced researchers (LS and CS) reviewed photographs of

each dolphin to confirm the presence or absence of freshwater-like lesions.

To evaluate the hematology and serum chemistry data, we analyzed panels of related analytes

representing pathologic processes (e.g., inflammation) or organ systems (e.g., hepatobiliary) as

described previously [44]. We defined the low salinity exposure cohort as those dolphins with at

least two days of low salinity (<5 ppt) exposure in the week leading up to the health assessments,

based on the median modeled salinity of each individual’s potential ranging area (PRA, see

below) prior to their capture/release date, while the remaining dolphins were considered the ref-

erence group. We calculated prevalence of abnormal health panels and estimated 95% confidence

intervals (CIs) using the Agresti-Coull method. We estimated relative risk of an abnormality in

each health panel for the low salinity exposure cohort versus the reference cohort using the epi-
tools R package. We calculated and present p-values for relative risk (using the median-unbiased

method), but we did not compare to a threshold value for statistical significance. We instead pres-

ent 95% confidence intervals for the relative risk to represent uncertainty in the estimates.

Dolphin movements relative to modeled salinity

We compared dolphin telemetry data to modeled daily salinity fields across the BBES Stock

area. Salinity estimates were generated by the Delft3D-based hydrodynamic model as

described in White et al. [58]. In brief, the Delft3D model was calibrated and validated by

using a variety of field observations. Water level, velocity, salinity, and temperature were cali-

brated by comparing the model output with USGS, CRMS, and NOAA data. Historical simula-

tions were performed to estimate the salinity conditions of Barataria Basin from 2011 to 2017.

Field observations were used to impose the model boundary conditions (i.e., riverine dis-

charge, tides, etc.) and atmospheric forces for those specific years. The model uses a triangular

grid with 375 m resolution in the BBES Stock area (although a small portion of the stock area,

close to the Mississippi River, has a 125 m resolution). The model is a 2D-depth average and

therefore the salinity estimates are averaged over depth. Most of the basin is relatively shallow

(~2 m on average) [2], however deeper water can be found near passes between the barrier

islands and in dredged shipping channels.

We used publicly available packages for the statistical software R (version 4.0.0) [62] and

packages tidyverse, PropCIs, ggmap, sf, stars, raster, akima, and adehabitatHR to conduct our

GIS and statistical analyses. We interpolated the Delft3D output onto a grid with 375 m square

cells and removed pixels that consisted entirely of land (based on 2018 shoreline maps, as

described below). We used these daily rasters to 1) identify the salinity for each dolphin’s

telemetry location/timepoint, 2) calculate the daily median salinity across the Barataria Basin

(as defined above), and 3) calculate the daily median salinity in each dolphin’s PRA. When we

summarize these daily median salinity values across multiple individuals, we report the mean

of the daily median salinity values. Some of the telemetry locations (approximately 6.2%) and

portions of the PRAs were outside the modeled salinity dataset’s spatial extent or in locations

that the model considered land. These telemetry locations were removed from the salinity

analyses. To compare the Delft3D model salinity estimates with the field-collected salinity

measurements, we conducted a simple linear regression comparing the difference between the

model estimate and the field measurement versus the field measurement alone.

For the purposes of our analyses, we selected 5 ppt as the threshold for low salinity con-

ditions. However, other studies have shown that dolphins exposed to salinities higher than
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5 ppt suffered adverse health effects consistent with low salinity exposure [e.g., 16,17]. To

calculate the number of consecutive and cumulative days each dolphin spent under 5 ppt,

we generated daily mean salinity exposure levels (in ppt) for each individual based on their

telemetry locations. When an individual dolphin’s satellite-telemetry tag transmitted more

than once daily, we selected one random location from the highest quality locations (Argos

Quality 1, 2, and 3) in each six-hour window (see section below), then we averaged the pre-

dicted salinity values for those locations to get a single mean predicted salinity value for

each dolphin on each day. Because not every tag transmitted a high-quality location every

day, we allowed for gaps of no more than 48 hours (i.e., we assumed that dolphins trans-

mitting from low-salinity locations two times within 48 hours most likely did not move

into higher-salinity water between those two transmissions, but we allowed for the possi-

bility that a dolphin could have moved into higher-salinity water between two transmis-

sions that were more than 48 hours apart).

Estimating individual dolphin ranging areas

Kernel density estimates (KDEs) and percent volume contours (PVCs) can be used to answer a

variety of questions about how animals use space, including describing home ranges, foraging

areas, territory, habitat, etc. [63]. The parameters and techniques underpinning these calcula-

tions need to be chosen carefully depending on the study questions [reviewed in 64,65]. Gener-

ally, the methods are useful for comparing animals within a study, but should be used

cautiously to compare across studies. We were particularly interested in characterizing dolphin

movements in relation to changes in salinity within each dolphin’s range. Therefore, as dis-

cussed below, we selected parameters that likely overestimate the size of each dolphin’s 95%

PVC to avoid limiting the potential salinity range that each dolphin could access. By calculat-

ing larger PVCs, we allow for a wider range of salinities to test if/how an individual dolphin

might move to respond to fluctuations in salinity.

We select the term “potential ranging area” (PRA) to describe the waters that each dolphin

might move within (and the salinities in that area), based on their telemetry locations. PRA

sizes were calculated, using the adhabitatHR package in R [66], using the 95% PVC of fixed,

bivariate normal KDEs on a 200 x 200 pixel grid. We included telemetry data locations with

error<1,500 m (Argos Quality 1, 2, and 3). To avoid autocorrelation due to several locations

in one time/place (and because the interval between transmissions was not constant) [67], we

randomly selected from the highest quality locations in any given six-hour period (0:00–6:00,

6:00–12:00, 12:00–18:00, and 18:00–24:00 each day). Our final dataset consisted of 7,454 loca-

tions. Across our study time period, the median number of highest quality locations in each

transmission window was 1 location, with a maximum of 6 locations in one transmission win-

dow. Although we calculated 95% PVCs for any individual dolphin with�10 such locations,

we limited summary statistics (pooling the telemetry data across individuals) to only include

individuals with>50 such locations. The resulting dataset was not normally distributed, based

on a Shapiro-Wilk test, and so we report the median and the inter-quartile range (IQR) of dol-

phins grouped based on their transmitted locations. “Barrier island-associated dolphins” were

mostly restricted to the waters near the barrier islands, while “interior dolphins” transmitted

from locations north of the barrier islands (but may also have visited the barrier islands).

We use the ad hoc approach described in Kie et al. [68], where the bandwidth parameter is

iteratively reduced from the reference bandwidth (href) until one finds a minimum value for h
where the 95% PVC is a single, contiguous polygon (hah). We did not allow h to be greater

than href, thus some 95% PVCs were fragmented. The hah used for each individual is reported

in S2 Table. Although using 10–20 locations to calculate utilization domains may
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underestimate the PRA for these individuals, our choice to use the ad hoc approach in selecting

a bandwidth will partially offset this problem, and will allow us to generate reasonable esti-

mates of salinities in waters used by these dolphins (i.e., we do not necessarily need a perfect

estimate of a dolphin’s home range, but a reasonable representation of the salinities they were

exposed to). We are also only comparing salinities and locations for the time periods when the

tags were transmitting.

For the purposes of our study, we did not take physical barriers into account when perform-

ing the KDE and calculating the 95% PVC, as 1) the resolution of the salinity model (375 m)

reduces the complexity of the land:water interface, 2) the Delft3D model does not generate

salinity estimates at locations with land, and 3) potential dolphin movements in response to

daily salinity changes (the time resolution of the salinity model dataset was daily) would likely

not be hindered by islands within the basin. For example, over the course of 24 hours, a dol-

phin could circumnavigate Grand Isle—the largest island within the geographic extent of our

modeled salinity dataset [24,69]. However, to calculate the size of each PRA, we clipped the

95% PVCs for each individual to exclude land, based on a digitization of the 2018 Barataria

Basin coastline generated from a composite of the U.S. Geological Survey (USGS) National

Hydrographic Dataset, U.S. Fish and Wildlife Service, National Wetlands Inventory, USGS

Wetlands, and the National Landcover Dataset. For simplicity, we use unclipped versions of

each contour in the figures presented here. Base map tiles are by Stamen Design, with permis-

sion to publish under CC BY 4.0. Data from OpenStreetMap and OpenStreetMap Foundation,

which is made available under the Open Database License.

We compared the short-term, fine-scale PRAs to long-term photographic-identification

data collected during small-vessel surveys during 2010 to 2019 in the Barataria Basin. These

sighting histories included the date, time, and location of the observed dolphins, as well as an

identification of the individual, based on dorsal fin matching and/or freeze brands from health

assessments. A description and full list of these sightings is provided in the Supplemental

Materials. We compared these sightings (n = 1,262 for the 70 dolphins in our satellite-teleme-

try dataset) to the PRAs defined in our analyses of the 70 tagged dolphins (Supplemental

Materials).

Results

Field efforts and satellite-telemetry tagging

In June 2017, we carried out six days of catch-and-release activities in the Barataria Basin,

mostly north of Bassa Bassa Bay (approximately 29.34˚ N; Fig 1), including 13 dolphins (9

females and 4 males; S1 Table). We suspended operations for three days due to Tropical Storm

Cindy. Salinity at the capture locations ranged from 0.7 to 8.3 ppt for the five days prior to

Tropical Storm Cindy. Salinity was 6.2 and 10.2 ppt at the two capture locations on June 23,

the day after the storm. In July 2016 and September 2017, our research team assessed BBES

dolphins near Grand Isle. During 2016, we conducted seven days of catch-and-release activi-

ties (Fig 1), including tagging and assessing ten dolphins (8 females and 2 males). In September

2017, we assessed 22 dolphins (12 females, 10 males) over four days. We caught and released

two of these dolphins in northeast Caminada Bay and two dolphins just north of Grand Isle,

and fitted these four individuals (1 female, 3 males) with satellite-telemetry tags. Salinity at the

July 2016 capture locations ranged from 14.6–27.6 ppt; salinity at the September 2017 capture

locations ranged from 17.7–20.3 ppt (S1 Table). Across the three field efforts, dolphins ranged

from 185–274 cm in length, including all age classes except dependent calves.

Using only the location data included in our study (Argos Quality 1, 2, and 3), SPOT-299A

tags deployed in 2016 (n = 10) transmitted locations on average 85 times (range 16–167) over
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the course of 62 days (range 14–104). In 2017, SPOT-299A tags (n = 11) transmitted locations

on average 100 times (range 47–181) over 107 days (range 48–182), while KS202 tags (n = 6)

transmitted an average of 15 locations (range 3–24) over 65 days (range 12–132) (S1 Table).

While dolphins are found across the study area, the tagging from 2011–2016 and in Sep-

tember 2017 was focused mainly on dolphins near the barrier islands or in the western part of

the Barataria Basin. Only 6 out of 58 dolphins (10.3%) had telemetry locations with a mean lat-

itude near Bassa Bassa Bay or further north (29.34˚ N; S2 Table). In June 2017, 10 of the 12 dol-

phins (83.3%) had telemetry locations with a mean latitude north of Bassa Bassa Bay (S2

Table). Dolphins tagged in June 2017 were detected as far northwest as Little Lake and in the

northern wetlands around Wilkinson Bay and Bay Batiste. Most locations were near wetland

edge habitat, however some dolphins moved into the more open waters in the middle of Bara-

taria Bay proper (e.g., YK9 in Fig 2). Across the entire 2011 to 2017 group of tagged dolphins,

there was a very strong linear relationship between the latitude at a dolphin’s capture location

and the mean latitude of each respective dolphin’s transmitted locations (R2 = 0.76; F(1,68) =

217.3; p< 0.001).

Potential ranging areas (PRAs)

While our study questions did not specifically rely on the absolute size of each individual’s

PRA, it is informative to make some comparisons within our dataset. For dolphins with at

least 50 transmissions in our filtered dataset, there was not a strong linear relationship between

the tag lifetime and the PRA size (S1A Fig: R2 = 0.06; F(1,55) = 3.5; p = 0.068) and tag lifetimes

were similar between males and females (S1B Fig: Wilcoxon test p = 0.16; S3 Table). From

2011 to 2017, barrier-island associated dolphins (e.g., YX5 in Fig 2) typically remained close to

the islands with a median PRA of 58 km2 (inter-quartile range [IQR]: 46–78) for females

(n = 20) and 103 km2 (IQR: 68–115) for males (n = 9) (see S2 Table for the designation of each

individual’s location group). Female, interior dolphins with at least 50 transmissions (n = 15)

Fig 2. Examples of individual dolphins’ telemetry locations and potential ranging areas from the 2016 and 2017

field efforts. While some dolphins maintained relatively small potential ranging areas throughout the lifetime of their

tags (e.g., Y96, YA7, YN1, and YX5), other dolphins showed extended movements within the interior of the basin (e.g.,

YK9 and YR1). Yellow triangles denote tagging locations. Map tiles used with permission from Stamen Design, under

a CC BY license. Data by OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0258031.g002
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had a median PRA of 187 km2 (IQR: 148–217), while male, interior dolphins (n = 13) had a

median area of 175 km2 (137–258). Although dolphins that spent most of their time in the

interior were more likely to have larger PRAs (e.g., YR1 and YK9 in Fig 2; S2 Fig: Wilcoxon

test p< 0.001), some dolphins tagged in the interior of the basin (approximately the lowest

quartile; e.g., Y96) had smaller PRAs similar to the barrier island dolphins (e.g., YA7 and YN1

in Fig 2). For example, Y96 maintained a relatively small PRA (53 km2 based on 125 telemetry

locations over 126 days) near Wilkinson Bayou (Fig 2). Many of the dolphins tagged in the

interior of the basin either moved within or near the wetlands on the western side of the Bara-

taria Basin (similar to the West ranging pattern in Wells et al. [24]), but five dolphins (all

tagged in June 2017) generally stayed north of Bassa Bassa Bay and were more likely to move

along the northern boundary of Barataria Bay proper (e.g., YR1 and Y96 in Fig 2; see Supple-

mental Materials for maps of all individuals’ tagging location, telemetry locations, and PRA).

Our analysis of photographic-identification data found that of the tagged dolphins, 63 were

sighted in more than one year and six dolphins were sighted in all ten years (2020–2019); the

median number of years each dolphin was sighted was six (Supplemental Materials). Cumula-

tively, 1,174 (93.0%) of the sightings were within each dolphin’s respective PRA. For the sight-

ings outside of the respective PRAs, 78.4% (n = 69) were within 3 km of the respective PRA

boundary. Of the tagged dolphins with more than one year of sighting history, only two were

not seen within the PRA in multiple years: both of these dolphins (Y37 seen five times and

YN1 seen four times) were sighted in only two years, with only one sighting year outside the

PRA, and the sightings were each 0.9 km from the respective PRA boundary.

Dolphin locations and movements relative to salinity

Based on the Delft3D salinity estimates, June 2017 tagging and health assessment activities

were conducted during a period when the basin was about to reach its minimum median salin-

ity level for the year (6.3 ppt on June 21; S3 Fig). By the September 2017 field effort, the median

basin-wide salinity was 16.7 ppt (on September 21), and the maximum basin-wide median

salinity would reach 27.3 ppt on December 23. Other years from 2011 to 2016 generally follow

a similar trend, with a peak in salinity in December/January and a nadir in salinity in June/

July.

There was a range of ±8 ppt in the differences between the salinity measurements taken in

the field during the tagging and health assessment activities (data collected from 2013 to 2017)

compared to the Delft3D model estimates for the same dates and locations (S4 Fig). The

Delft3D model tended to underestimate salinities near the barrier islands (higher saline

waters) and overestimate salinities in the northern part of the study area (lower saline waters),

when compared to the salinity measurements taken during the field activities (β = -0.42; R2 =

0.63; F(1,68) = 117.4; p< 0.001) (S5 Fig). In the most northern catch-and-release locations

(dolphins Y96, YN9, YR1, and YR3), field-measured salinity was between 0.7 and 2.5 ppt, but

the Delft3D model estimated salinity between 4.3 and 4.7 for the same dates/locations. For cap-

tures in the highest salinity waters (dolphins Y71, YA7, YF1, and YJ1), field-measured salinity

ranged from 23.7 to 27.6 ppt, but the Delft3D model salinities for these dates/locations ranged

from 18.4 to 20.9 ppt.

Salinities at dolphin telemetry locations were estimated to be below 5 ppt only in the north-

ern part of the study area mostly between June and October in 2011, 2014, and in 2017 (Figs 3

and S6). Dolphins tagged in June 2017 were located in waters with salinity estimates averaging

7.7 ± 2.9 ppt (± standard deviation), while dolphins from other field efforts ranged from

15.3 ± 2.8 ppt to 23.9 ± 4.3 ppt (Table 1). Based on the estimated salinities at each telemetry

location, 15 dolphins experienced at least two days in waters less than 5 ppt (Table 2). Most of
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these dolphins were tagged in June 2017, but five dolphins tagged in 2011 and one dolphin in

2014 experienced at least 2 days under 5 ppt while their tags were transmitting.

In total, dolphins tagged in June 2017 spent 224 out of the 852 days (26%) when tags trans-

mitted locations in waters with<5 ppt salinity (Table 2). Two dolphins, Y96 and YR1, spent at

least half of the transmission days in waters<5 ppt. Y96 spent at least 72 days (of the 126 days

with transmissions) in waters under 5 ppt, including three stretches of consecutive days longer

than one week (at least 23, 35, then 8 consecutive days <5 ppt; Fig 4). Four other dolphins,

three from the June 2017 field effort and one from the 2011 field effort, were detected in waters

<5 ppt for at least five consecutive days.

The estimated salinities at dolphin telemetry locations were typically similar to the median

estimated salinity throughout their individual PRAs, and were equally likely to be above the

median or below the median throughout the duration of the tags regardless of where the

Fig 3. Estimated salinity at telemetry locations/timepoints from 2011–2017. We binned the Delft3D modeled

salinity for each telemetry transmission and plotted transmission locations for all individuals. Dolphins at locations

with model estimates with low salinities (e.g.,< 5 ppt [parts per thousand]) tend to be in the northern part of the basin

during the summer months. Map tiles used with permission from Stamen Design, under a CC BY license. Data by

OpenStreetMap, under ODbL.

https://doi.org/10.1371/journal.pone.0258031.g003

Table 1. Estimated mean salinity for dolphin telemetry locations by field effort. ppt = parts per thousand.

Field effort # of dolphins Mean salinity at telemetry locations (ppt) Standard deviation (ppt)

Aug 2011 25 17.7 3.4

Jun 2013 8 15.7 1.5

Jun 2014 11 15.3 2.8

Jul 2016 10 16 1.7

Jun 2017 12 7.7 2.9

Sep 2017 4 24.1 4.3

https://doi.org/10.1371/journal.pone.0258031.t001
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dolphin was captured within the basin (Figs 5 and S7). The difference between the telemetry

locations and the median PRA salinity was on average within ±2 ppt for each dolphin, but

occasionally dolphin locations were over ±10 ppt from their median PRA salinity. There was

little difference among dolphin locations or movements across months, years, or locations for

which we have telemetry data (S8 and S9 Figs): in all circumstances, there was no clear pattern

of dolphin movement with respect to nearby salinity gradients. Barrier-island-associated dol-

phins stayed near the barrier islands regardless of salinity fluctuations (although salinities

remained relatively high in those areas throughout the study period). Interior dolphins were

typically found in waters near the PRA median salinity despite having higher salinity waters

available to them, both within their PRA and in the broader BBES Stock area. For example,

interior-associated dolphins transmitted from locations that were, on average, 7.8 ppt lower

than the highest available salinity in each respective dolphin’s PRA (S10 Fig).

Low salinity exposure and potential health effects

In total, seven dolphins were categorized into the low salinity cohort (based on the median

salinity in their PRAs prior to their health assessment): six dolphins assessed in June 2017 and

one in 2011 (S4 Table). The other 63 dolphins served as a reference group for comparison.

All of the dolphins with freshwater-like lesions had telemetry locations with a mean latitude

near or north of Bassa Bassa Bay (S11 Fig). Freshwater-like skin lesions, specifically assessed

only in 2017, were 3.3 (CI: 0.95–11.66) times more prevalent in the low salinity group than in

the reference group (p = 0.054; Table 3). The small sample size for the exposure group (n = 6)

created uncertainty in the estimates, as reflected in the relatively wide range of the confidence

interval. The lesions ranged from mild, flat, circular areas of discoloration (S12A Fig) to more

severe, depressed lesions of varying color and size (S12B Fig), but all of the freshwater-like

lesions were multifocal to coalescing. The two dolphins in the reference group with freshwa-

ter-like skin lesions, YN7 and Y94 (S13 Fig), were also tagged and assessed in June 2017. YN7

Table 2. The number of cumulative and consecutive days under 5 ppt for each dolphin based on telemetry locations and modeled salinity estimates.

FB Field

effort

Sex Mean salinity at telemetry

locations (ppt)

Days below

5 ppt

Total days with

transmissions

% of transmission days

under 5 ppt

Maximum consecutive days

under 5 ppt

Y96 Jun 2017 M 6.9 72 126 57 35

YR1 Jun 2017 F 3.7 52 95 55 12

YK9 Jun 2017 F 6.2 40 108 37 6

Y94 Jun 2017 M 7.1 16 56 29 5

Y25 Aug 2011 F 11.7 13 160 8 5

Y98 Jun 2017 M 9.5 13 88 15 2

YN9 Jun 2017 F 5.5 13 129 10 3

Y14 Aug 2011 M 11.5 11 208 5 3

Y27 Aug 2011 F 11.9 10 218 5 3

Y37 Aug 2011 F 11.7 10 162 6 3

YN5 Jun 2017 F 9.5 9 111 8 3

YR5 Jun 2017 F 8.9 5 77 6 1

Y22 Aug 2011 M 14.9 4 180 2 3

Y97 Jun 2014 F 8.3 4 145 3 2

YR3 Jun 2017 F 2.9 4 62 6 1

To be considered consecutive, transmissions had to be within 48 hours—i.e., we assumed that dolphins that transmitted twice with 48 hours did not visit waters >5 ppt

during that 48 hour gap, but that transmissions more than 48 hours apart allowed for the dolphin to move into waters >5 ppt (parts per thousand).

https://doi.org/10.1371/journal.pone.0258031.t002
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had ten transmissions, with a potential ranging area of 33 km2. Y94 was mostly located near

Bassa Bassa Bay and the surrounding wetlands. Fifteen additional dolphins were given skin

evaluations (based on the data form in the Supplemental Materials) in September 2017 (but

were not tagged). All of these dolphins were capture/released near Grand Isle in high salinity

waters; none of these dolphins had freshwater-like lesions.

Dolphins in the low salinity exposure group were 3.86 (CI: 1.28–11.64) times more likely to

have hepatobiliary abnormalities than the reference group (p = 0.062; Table 3). The three dol-

phins in the low salinity exposure cohort all had elevated liver enzymes levels, while the seven

dolphins in the reference cohort had a mix of elevated or depressed liver enzyme levels (Sup-

plemental Materials). Although there were one or two dolphins (depending on the specific

panel) in the low salinity exposure group with abnormal levels of electrolytes/minerals, inflam-

mation, or iron, a similar low prevalence for each panel was seen in the reference group, and

low case numbers/sample size limited the statistical power to compare the groups. We did not

Fig 4. Predicted salinity exposures over time for dolphins in waters less than 5 parts per thousand (ppt) for at

least five consecutive days. We compared each dolphin’s salinity exposure (based on their telemetry locations; black

dots) to the median salinity within their potential ranging area (PRA) (blue line) and the median salinity across the

Barataria Basin study area (grey line). The range and trend of dolphins’ salinity exposures was typically more similar to

their potential ranging area than the overall median basin salinity, and several dolphins spent most of the time while

they were tagged in waters<5 ppt. Each dolphin in this subset spent one or more periods of at least five consecutive

days in waters<5 ppt (red bars).

https://doi.org/10.1371/journal.pone.0258031.g004

PLOS ONE Low salinity impacts on dolphins

PLOS ONE | https://doi.org/10.1371/journal.pone.0258031 September 30, 2021 13 / 25

https://doi.org/10.1371/journal.pone.0258031.g004
https://doi.org/10.1371/journal.pone.0258031


observe anemia, hypoglycemia, or renal abnormalities in any of the low salinity exposure

cohort.

We measured serum osmolality in June and September 2017, as well as plasma and urine

osmolality in a subset of BBES dolphins. Serum osmolality was similar in the reference

(mean = 345 mOsm kg-1; range 335–362 mOsm kg-1) and low salinity exposed groups (340

mOsm kg-1; range 330–358 mOsm kg-1). Plasma osmolality samples and analysis were only

available in September 2017. Mean (± standard deviation) plasma osmolality for September

was 344 ± 5 mOsm kg-1 (as compared to the mean serum osmolality of 349 ± 10 mOsm kg-1).

The median difference in plasma and serum osmolality for September samples was 3.5 mOsm

kg-1, and 75% of the differences were within ±4 mOsm kg-1, indicating that serum and plasma

values are generally comparable.

Veterinarians collected urine samples for osmolality from three dolphins in June, and one

dolphin in September 2017. YR3 and Y94 had very low values (597 and 662 mOsm kg-1,

Fig 5. Dolphin salinity exposures compared to their potential ranging area (PRA) median salinity. We compared

each dolphin’s salinity exposure (based on their telemetry locations) to the median salinity within their PRA. For

example, on August 27, 2017, YK9 transmitted her location at the red triangle (A), which the Delft3D model predicted

to be 3.2 parts per thousand (ppt). The median salinity within YK9’s potential ranging area that day (yellow contour)

was predicted to be 10.6 ppt (black line). Thus, based on the modeled salinity, YK9 was in waters 7.4 ppt lower than the

median salinity in her PRA. Across the duration of their tags, dolphins were typically in salinities within ± 2 ppt of

their PRA median salinity, and were equally likely to be above or below the median salinity regardless of whether they

were caught in the northern or southern parts of the stock area (B). Boxplots for all individuals from 2011 to 2017 are

in the Supplemental Materials. Grey pixels within the PRA (A) represent land.

https://doi.org/10.1371/journal.pone.0258031.g005
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respectively) compared to a previously reported bottlenose dolphin urine osmolality value of

1,815 mOsm kg-1 [70]. We sampled YK9 in the central portion of the bay (northwest of Bassa

Bassa, salinity = 5.2 ppt); YK9’s urine osmolality was 1,201 mOsm kg-1. In contrast, Y72, sam-

pled in September near Grand Isle (salinity = 19.3 ppt), measured 1,857 mOsm kg-1 in its

urine. Neither YK9 nor Y72 had evidence of freshwater-like skin lesions. Urine to serum

osmolality ratios were 1.7, 1.9, 3.5, and 5.3 for YR3, Y94, YK9, and Y72, respectively.

Discussion

Potential ranging areas (PRAs)

Ranging patterns of dolphins in 2016 and 2017 were similar to the trends reported by Wells

et al. [24]. All tagged dolphins stayed within the basin or within a few kilometers of the barrier

islands, and throughout the basin, there were individual dolphins that maintained relatively

small PRAs. Males tended to range farther than females near the barrier islands (although

male and female interior dolphins had similar PRAs), and dolphins in the interior of the bay

tended to range farther than island-associated dolphins. The barrier islands represent areas of

especially high productivity, likely driven by the interface between the open ocean and the

estuarine ecosystems, and Barataria dolphins congregate at high densities near the islands and

the passes between them [1].

However, by targeting dolphins in the northern part of the study area, we also revealed pat-

terns of movements with extended ranging along an east-west axis (e.g., YK9) and dolphins

with high site-fidelity to wetlands in the northern extent of the BBES Stock area (e.g., Y96).

These individuals’ PRAs and estimated salinity exposures reveal that earlier attempts to estab-

lish population-level habitat ranges (and sometimes interpreted as “salinity preferences” in the

literature) using only dolphins caught south of Bassa Bassa Bay [57] or to correlate dolphin

movements with modeled salinity estimates [58] should be re-evaluated using telemetry data

and photo-identification/small vessel-based survey data from dolphins across the entire BBES

Stock area. Across all catch-and-release field efforts, we found that the latitude at which a dol-

phin was captured correlated well with the mean latitude of their telemetry locations, empha-

sizing the importance of study designs that target dolphins throughout the basin for a holistic

understanding of all BBES dolphins.

Although the telemetry data presented here provide additional insight into the movements

of dolphins in a wider area over a few months, it is still not representative of the BBES Stock

Table 3. The number of cases and prevalences of adverse health indicators in reference vs low salinity exposure cohorts.

# of cases Prevalence (95% CI) p-value

Health Outcome Reference Low salinity Reference Low salinity Relative Risk

(95% CI)

Freshwater-like skin lesions 2/8 5/6 0.25 (0.06–0.6) 0.71 (0.42–0.99) 0.054 3.33 (0.95–11.66)

Hepatobiliary panel 7/62 3/7 0.11 (0.05–0.22) 0.43 (0.16–0.75) 0.062 3.86 (1.28–11.64)

Electrolytes/minerals panel 1/62 1/7 0.02 (0–0.09) 0.14 (0.01–0.53) 0.200 9.00 (0.63–128.61)

Inflammation panel 12/ 62 2/7 0.19 (0.11–0.31) 0.29 (0.08–0.65) 0.631 1.38 (0.39–4.92)

Iron panel 10/62 1/7 0.16 (0.09–0.27) 0.14 (0.01–0.53) 0.983 0.90 (0.13–6.03)

Anemia panel 6/62 0/7 0.10 (0.04–0.2) 0.00 (0–0.4) NA NA

Hypoglycemia panel 4/62 0/7 0.06 (0.02–0.16) 0.00 (0–0.4) NA NA

Renal panel 0/62 0/7 0.00 (0–0.07) 0.00 (0–0.4) NA NA

To be considered consecutive, transmissions had to be within 48 hours—i.e., we assumed that dolphins that transmitted twice with 48 hours did not visit waters >5 ppt

during that 48 hour gap, but that transmissions more than 48 hours apart allowed for the dolphin to move into waters >5 ppt (parts per thousand).

https://doi.org/10.1371/journal.pone.0258031.t003
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across all seasons, years, and geographic areas. It would also be informative to have additional

movement and salinity data during the period from January to June, when salinities are

decreasing in the basin. However, the PRAs defined by the telemetry data overlapped with

more than 93% of the small vessel survey sightings for the dolphins in this dataset, with the

majority of the tagged dolphins (63 out of 70) seen within their PRAs over multiple years from

2010 through 2019. Six of the dolphins (including four island-associated and two interior dol-

phins) were observed within their respective PRAs in all ten years of surveys. The similarity

between the PRAs and the decade-long sighting histories supports the previous observations

that bay, sound, and estuary dolphins in the nGOMx have high site-fidelity to particular areas

within their stock areas across seasons and years.

Dolphin movements relative to salinity gradients

Despite the heterogeneity of movement patterns exhibited by individual dolphins, we did not

see any evidence that any of the dolphins moved in association with salinity changes. Based on

the low salinity estimates of dolphins’ locations in the northern part of the study area in June/

July 2017, it is clear that these dolphins did not avoid low salinity waters even though they the-

oretically could have moved into higher salinity waters closer to the barrier islands (Figs 2 and

3; S6 and S7 Figs). Rather, throughout the tagging period—a period of time with low salinity

from the spring runoff and then increasing salinities over the late summer/fall months—there

was no clear pattern of dolphin movement with respect to salinity gradients within their PRAs

(Fig 4). Throughout the 2011–2017 dataset, few dolphins moved across the entire north-to-

south extent of the BBES Stock area, and when they did, there was no obvious consistent trend

up or down salinity gradients in geographic space or time. There was no temporal trend to

individual dolphin locations with estimated salinities above and below the median salinity

within their PRAs (S8 and S9 Figs); in total, the range and the average of estimated salinities at

each individual dolphin’s telemetry locations were very similar to the respective median salin-

ity ranges/averages for individual dolphins’ PRAs (Figs 5 and S7). In other words, dolphins

were equally likely to be found in above-average salinity and below-average salinity within

their PRAs, regardless of the overall seasonal, basin-wide salinity trends. Even island-associ-

ated dolphins tagged in 2013 remained near the eastern barrier islands in salinities <10 ppt

rather than range into the open waters of the nGOMx to higher salinity waters (Fig 3), demon-

strating high site fidelity irrespective of salinity.

As with any model, the Delft3D salinity estimates have unavoidable uncertainty and

bias. Thus, absolute values of the predictions must be interpreted with appropriate caution.

Ideally, this study would be repeated using satellite-telemetry tags with integrated salinity/

conductivity sensors, so that every telemetry location is paired with a real-time salinity

measurement. While conductivity-temperature-depth satellite-telemetry tags have been

developed and successfully tested on large cetaceans in northern latitudes [71], such tech-

nology has not been integrated into the single-pin dorsal fin tags used for bottlenose dol-

phins. More importantly, the technology has not been successfully tested in warmer

regions, where biofouling is a significant issue for the conductivity sensors. Therefore, such

tags were not an option at the time of our study.

When comparing the field-based salinity measurements at the capture locations to the

Delft3D estimates for those same dates/locations, the model underestimates higher salinities

near the barrier islands and overestimates lower salinities in the northern part of the study

area (S5 Fig). If the trend holds true across the larger model dataset (our findings are consistent

with other assessments of the Delft3D model [72,73]), actual salinities in the northern portion

of the study area are likely lower than the model predictions, and therefore our results
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represent conservative estimates of low salinity exposure to Barataria dolphins. However, a sig-

nificant strength of analyzing the Delft3D daily salinity fields is the ability to assess relation-

ships over geographic space and time and make relative comparisons among individuals.

Corrections for bias over space are unlikely to change our observations that dolphins were

equally likely to move to areas above or below the median salinity of their PRA.

Low salinity exposures and health outcomes

In our analyses of the modeled salinity data and the telemetry data, we observed that most of

the dolphins in June 2017 experienced at least two days in waters less than 5 ppt, with Y96

transmitting from locations under 5 ppt on 72 days. At least five dolphins (four in 2017 and

one in 2011) spent at least five consecutive days under 5 ppt. Although little information is

available about the relationship among durations of low salinity exposure, specific thresholds

for low salinity exposure, and health outcomes for bottlenose dolphins and other marine mam-

mals, many studies have associated prolonged exposures of cetaceans to waters at

least< 20 ppt with skin lesions [8–12], abnormal blood chemistry indicators [16,18], and over-

all poor health/increased mortality [16,17,19–21,74]. Consistent with these studies, we docu-

mented freshwater-like skin lesions, hepatobiliary abnormalities, and reduced osmolality

measurements in dolphins likely exposed to at least two days of low salinity (<5 ppt).

Compared to previously reported skin lesions for bottlenose dolphins after rapid declines

in salinity to near-freshwater [21] or prolonged exposure in freshwater environments [19], our

veterinary team considered the observed freshwater-like lesions to be mild. This could be

related to the duration of exposure, the severity of hyposalinity exposure, the stage of the skin

disease, or other factors we did not measure. The freshwater-like lesions were limited to dol-

phins in the northern part of the study area; none of the island-associated dolphins had fresh-

water-like lesions. Although the small sample size of northern dolphins limited our analyses,

the low salinity exposure group had an increased risk for freshwater-like skin lesions and hepa-

tobiliary abnormalities.

The three abnormal hepatobiliary cases were all characterized by elevated aspartate trans-

aminase (AST) along with at least one other elevated liver enzyme. Our observations of ele-

vated hepatobiliary enzymes are consistent with recent findings from Ewing et al. [16], who

reported elevated AST and alanine transaminase (ALT) in dolphins exposed to salinity of less

than 10 ppt for more than 5 days. All three of the hepatobiliary cases in the low salinity expo-

sure cohort also had freshwater-like skin lesions. While the mild skin lesions and elevated

hepatobiliary enzymes are consistent with early stages of disease, we cannot determine how

the skin lesions and blood work abnormalities changed over the following months as the low-

salinity exposure continued.

Healthy dolphins typically respond to ingestion of hypo- or hyper-saline fluid by altering

solute clearance and urine osmolality [75]. We were only able to collect and analyze plasma

osmolality samples from dolphins in September 2017, which likely had high salinity exposure

prior to the health assessments. Their plasma osmolality is consistent with the ranges seen in

healthy dolphins [76,77] and dolphins in an experimental study that fed dolphins freshwater

or seawater [78]. While we were only able to collect urine samples from three dolphins in June,

we found that interior dolphins (YR3 and Y94) sampled during this low-salinity period (1.8

and 2.3 ppt at their capture site, respectively) had urine osmolality values and ratio of serum:

urine osmolality values that were lower than any previously reported for bottlenose dolphins,

including dolphins fed deionized water in an experimental study [78]. Both YR3 and Y94 were

sampled north of Bassa Bassa Bay, and both exhibited freshwater-like skin lesions. Interest-

ingly, serum osmolality values for these two dolphins were non-remarkable, suggesting that

PLOS ONE Low salinity impacts on dolphins

PLOS ONE | https://doi.org/10.1371/journal.pone.0258031 September 30, 2021 17 / 25

https://doi.org/10.1371/journal.pone.0258031


they were osmoregulating/compensating following the freshwater exposure either by altering

urine osmolality (which were low) or clearance (which was not measured). Further studies,

ideally collecting samples after a prolonged exposure to low salinity, would help to better

understand how long such compensation could continue before overwhelming the dolphin’s

homeostatic mechanisms. These findings support the hypothesis that duration of exposure to

a low salinity environment is an important consideration in addition to the degree of low

salinity.

While our telemetry results demonstrate that at least one dolphin, Y96, was able to survive

multiple months in salinities less than 5 ppt (Fig 4), it does not indicate that they will maintain

good health or that their probability of survival was not decreased. At the time of tagging, the

median salinity in Y96’s PRA was less than 5 ppt for at least two of the previous seven days,

and Y96 exhibited freshwater-like skin lesions, low body weight, and abnormal electrolyte/

mineral and hepatobiliary health panel results. Following the June 2017 field effort, the Bara-

taria Basin underwent a period of prolonged low salinity conditions; however, we have no

information about the health status of dolphins during/after this time. Therefore, we are

unable to determine if the dolphins’ health was stable or declining during the period over

which we received data from satellite-telemetry tags. We simply know that the dolphins were

still alive, based on the tracking data. Four of the seven dolphins in the low salinity cohort

were seen in 2019 small vessel surveys within Barataria Bay, but Y96 was not one of them.

Future studies could attempt to evaluate skin condition and/or health of the tagged dolphins

near the end of estimated tag durations.

If, as our results suggest, dolphins’ high site-fidelity to local areas within the Barataria Basin

puts them at risk of prolonged seasonal exposures to low salinity, then it is likely that the longer

durations, more sudden changes, and even lower salinities expected as a result of the proposed

Mid-Barataria Sediment Diversion will increase the likelihood of low salinity-related adverse

health effects, which may lead to an increased number of dolphin mortalities. In addition to

the potential diversion, dolphins living in bays, sounds, and estuaries along the Gulf coast are

increasingly threatened by freshwater-related effects from climate change, including severe

storms, coastal erosion, increased rainfall, and flooding. Given the two recent UMEs affecting

dolphins in the nGOMx [23,54], monitoring and assessing how changes in salinity impact dol-

phin behavior and health is important to inform long-term restoration efforts for dolphin pop-

ulations and their habitat.

A recent study of dolphins in Pensacola Bay, Florida demonstrated that the distribution of

dolphin groups did not substantially change in response to salinity fluctuations caused by a

record-breaking freshwater flood event in 2014 [79]. However, the Pensacola Bay area is a

smaller estuary/bay system (~462 km2) that is characterized by deeper mid-system waters and

water column stratification even in shallow waters, and where there’s evidence that individual

dolphins tend to range throughout the system. Dolphins had access to stratified areas with

higher bottom salinities that persisted throughout the flood event. Other than near the passes

between the barrier islands, BBES dolphins have very little access to waters deeper than 2–3 m,

likely limiting the potential for similar high salinity refuges via stratification.

By studying top-level predators in habitats that are rapidly changing, we can better under-

stand the broad-scale impacts of cumulative stressors on the overarching ecosystem. Cetaceans

with high site-fidelity (such as BBES dolphins) tend to be the least resilient to changes in habi-

tat conditions and are more likely to be listed as threatened/endangered [80]. Our results have

applicability to Southeastern U.S. bottlenose dolphin stocks, as well as marine mammal popu-

lations/species worldwide that have long-term site fidelity and limited ranging patterns to a

given habitat. For example, dolphins in Australia (Tursiops aduncus and Tursiops australis)
exhibited similar skin lesions after sudden and weeks/months-long exposure to hypo-saline
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conditions due to intense rainfall [13]. Indo-Pacific humpback dolphins (Sousa chinensis) in

China and Taiwan [81–83] and the Chilean and Guinean dolphins (Cephalorhynchus eutropia
and Sotalia guianensis, respectively) in South America [84,85] are also species/populations that

are impacted by many of the same environmental stressors as Barataria dolphins. In addition,

by monitoring salinity conditions in coastal and estuarine small cetacean habitats, it may be

possible to predict where and when increased numbers of strandings will occur, allowing wild-

life managers to improve interventions, responses, and preparations for rehabilitation [86]. As

humans continue to re-engineer the hydrological networks through “water transfer mega proj-

ects”, such as the proposed Mid-Barataria Sediment Diversion, studies that integrate various

parameters (e.g., animal movement, animal health, and environmental data) will be essential

to evaluate the associated impacts [87]. A better understanding of how environmental, anthro-

pogenic, and climatic changes combine to affect marine mammal mortality will be paramount

for conservation and management efforts in the future.

Conclusions

Across our analyses, we found no evidence that satellite-telemetry tagged dolphins moved in

association with changes in salinity. Individual tagged dolphins showed a variety of movement

patterns during the transmission window of the tags, but none were associated with trends in

salinity over time or geographic space. We also saw that dolphins that are predicted to have

been exposed to low salinity (<5 ppt) for at least two days in the week prior to the health

assessments were more likely to have freshwater-like skin lesions and hepatobiliary abnormali-

ties. Our results show that dolphins in the northern parts of the BBES Stock area did not move

to avoid low salinity conditions for the duration of the satellite-telemetry- tags, despite

experiencing adverse health effects secondary to low salinity, consistent with the concept of

“ecological cul-de-sacs” [88]. Thus, it is likely that other factors drive Barataria dolphin move-

ments, including prey availability, occurrence of predators, mating opportunities, calving

events, age, sex, and/or social organization.

Although our comparisons between the seasonal telemetry data and the decade-long sight-

ing history suggests that the PRAs represent dolphin activity centers across years, we cannot

necessarily assume that these patterns would hold if sampling were conducted outside the con-

ditions present when we conducted our fieldwork. For example, it is unknown whether this

pattern continues into the eastern part of the basin. It would also be preferable to conduct sim-

ilar analyses using measured salinity values at each dolphin location instead of the model simu-

lations. This could be accomplished using satellite-telemetry tags with conductivity sensors.

Conducting paired health assessments at the beginning and end of the satellite-telemetry tag

lifetimes, after prolonged exposure to low salinity, would be the most robust (but also logisti-

cally challenging) means of identifying dose-time-response relationships between defined

magnitudes/durations of low-salinity exposures and related adverse health effects. However,

our analyses do provide some insight into potential biomarkers to monitor (e.g., hepatobiliary

enzymes, urine osmolality, and urine:serum osmolality ratio) before, during, and after diver-

sion operations. Our results can also provide reference data for interannual comparisons for

future studies.
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data for each live wild dolphin sampled include sampling date, sex, morphometrics, and diag-
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