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Abstract 18 

Wildlife tracking data allow monitoring of how organisms respond to spatio-temporal changes 19 

in resource availability. Remote sensing data can be used to quantify and qualify these 20 

variations to understand how movement is related to these changes. The use of remote sensing 21 

data with concurrent high levels of spatial and temporal detail may hold potential to improve 22 

our understanding of habitat selection. However, no current orbital sensor produces data with 23 

simultaneous high temporal and high spatial resolution, therefore alternative methods are 24 

required to generate remote sensing data that matches the high spatial-temporal resolution of 25 
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modern wildlife tracking data. We present an analytical framework, not yet used in  movement 26 

ecology, for data fusion of optical remote sensing data from multiple satellites and wildlife 27 

tracking data to study the impact of seasonal vegetation patterns on the movement of maned 28 

wolves (Chrysocyon brachyurus). We use multi-source data fusion to combine MODIS data 29 

with higher spatial resolution data (ASTER, Landsat 4-5-7-8, CBERS 2-2B) and create a 30 

synthetic NDVI product with a 15 m spatial detail and daily temporal resolution. We also use 31 

the higher spatial resolution data to create a multi-source NDVI product with same level of 32 

spatial detail but coarser temporal resolution and data from MODIS to create a single-source 33 

NDVI product with high temporal resolution but coarse spatial resolution. We combine the 34 

three different spatial-temporal resolution NDVI products with GPS tracking data of maned 35 

wolves to create step-selection functions (SSF), which are models used in ecology to investigate 36 

and predict habitat selection by animals. The SSF model based on multi-source NDVI had the 37 

best performance predicting the probability of use of visited locations given its NDVI value. 38 

The SSF based on the raw MODIS NDVI product, one which is commonly employed by 39 

ecologists, had the poorest performance for our study species. These findings indicate that, in 40 

contrast with current practice in movement ecology, a detailed spatial resolution of contextual 41 

environmental variable may be more important than a detailed temporal resolution, when 42 

investigating wildlife habitat selection regarding vegetation, although this result will be highly 43 

dependent on species. The choice of data set should therefore take into account not only the 44 

scale of movement but also the spatial and temporal scales at which dynamic environmental 45 

variables are changing. 46 

 47 

  48 
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1. Introduction 51 

Technological advances in GPS (Global Positioning Systems) have recently made it possible 52 

to collect movement data from animals at an unprecedented level of spatio-temporal detail 53 

(Demšar et al., 2015). At the same time, Earth observation data are increasing in availability 54 

and quality (e.g, at various spatio-temporal resolutions over the last four decades (Neumann et 55 

al., 2015)) and can be used to quantify and qualify the context associated with movement 56 

(Dodge et al., 2013). Movement data can be used to monitor changes in behaviour by organisms 57 

adapting to spatio-temporal variations in resource availability. Remote sensing data can be used 58 

to understand how movement is associated with these variations.  59 

In the last fifteen years many studies have demonstrated the potential of remotely sensed 60 

indicators for researching animal movement (Kerr and Ostrovsky, 2003; Turner et al., 2003; 61 

Pettorelli et al., 2011). Remotely sensed data has been used to understand zebra migration 62 

(Bartlam-Brooks et al., 2013), waterfowl movement (Henry, Ament and Cumming, 2015) and 63 

human movement context (Brum-Bastos, Long and Demšar, 2018). Surface temperature 64 

retrieved by satellites have been used to explore foraging strategies of albatrosses (Kappes et 65 

al., 2015) and investigating the habitat use of sharks (Howey et al., 2017). 66 

 Amongst all remotely sensed data, NDVI (Normalized Difference Vegetation Index) is one of 67 

the most widely used to contextualize movement, particularly for understanding the effects of 68 

vegetation on wildlife movement (Pettorelli et al., 2011). NDVI is a proxy for the content and 69 

state of the live green vegetation (Rouse et al., 1973) and one of the most successfully used 70 

remote sensing products in movement research (Pettorelli et al., 2011). NDVI is often used to 71 

assess the primary productivity distribution of an area, which has been shown to correlate with 72 
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behaviour of several species (Pettorelli et al., 2011). It has been successfully combined with 73 

movement data of many species for varied purposes, such as understanding long-distance bird 74 

migration (Thorup et al., 2017), exploring the movement of waterfowl in arid landscapes 75 

(Henry, Ament and Cumming, 2015), studying the effects of environment on the movement of 76 

monkeys and birds (Buchin et al., 2015) and investigating the effects of vegetation productivity 77 

on roe deer performance (Pettorelli et al., 2006).  However, almost all of these studies only use 78 

remotely sensed data from a single source, which can lead to high uncertainties in either spatial 79 

or temporal dimension of the context of movement, particularly for studies lasting months or 80 

years. 81 

A single satellite source can provide NDVI data with either high spatial resolution or high 82 

temporal resolution. For example, sensors providing daily data have spatial resolutions varying 83 

between 250 - 5000 m. On the other hand, sensors providing higher spatial resolution data (0.5 84 

- 30 m), have temporal resolutions between 15 days and several months, which is temporally 85 

much coarser than most wildlife tracking data. This trade-off means that either the spatial or 86 

temporal resolution component will often be prioritized when linking environmental to 87 

movement data (Neumann et al., 2015), which can be problematic for certain types of 88 

movement behaviour analysis. 89 

We propose that the use of remote sensing data with concurrent high level of spatial and 90 

temporal detail has potential to improve our understanding of movement behaviour. To date, 91 

most studies linking wildlife tracking data with Earth observation data use only a single-source 92 

of satellite data (Bühne and Pettorelli, 2017). Alternative methods are therefore required to 93 

develop new remote sensing products for movement analysis, specifically methods that match 94 

the spatial and temporal scales of Earth observation products to those required to link movement 95 

processes with changes in the environment at the scale that both makes sense from data point 96 

of view and biological context. In particular, multi-source data fusion methods, which 97 
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systematically combine remote sensing data from multiple sensors to capitalize on their 98 

complementary characteristics (Wald, 1999), offer a substantial opportunity for developing new 99 

lines of analysis and answering increasingly complex questions at the intersection of wildlife 100 

movement and environmental change. These methods have only recently been applied 101 

movement ecology (Berman et al., 2019) and are not widely known or used. 102 

In this work, we propose a methodology for data fusion of multi-source optical satellite imagery 103 

and tracking data to investigate movement patterns of a specific animal species. We evaluate 104 

three different approaches for calculating NDVI (Normalized Difference Vegetation Index) at 105 

different spatial and temporal resolutions and combine these products with wildlife tracking 106 

data. Specifically, we hypothesize that by fusing high spatial and temporal resolution Earth 107 

observation data, we will be able to better predict the movement and habitat selection of wildlife 108 

species that respond dynamically to environmental conditions. We used data from seven 109 

different sensors to create a synthetic daily and spatially detailed NDVI series with high 110 

temporal and spatial detail (the Multi-source data Fusion product, MF-NDVI), NDVI from 111 

MODIS with high temporal and low spatial resolution (the Single Source product, SS-NDVI), 112 

and NDVI data from ASTER, Landsat 4-5-7-8 and CBERS 2-2B, with low temporal and high 113 

spatial resolution (the Multi-Source product, MS-NDVI). We demonstrate the use of our 114 

proposed methodology on a case study of maned wolves (Chrysocyon brachyurus) in the 115 

Brazilian Cerrado to investigate habitat selection relative to primary productivity across the 116 

landscape (defined by NDVI). We used Step-Selection Functions (SSFs), which are a common 117 

approach for studying habitat selection from wildlife tracking data (Thurfjell, Ciuti and Boyce, 118 

2014) to test the relationship between NDVI and habitat selection by maned wolves.  119 

The rest of the paper is structured as follows: First we describe related work on movement 120 

contextualization with remote sensing data and provide a description of the biology of our case 121 

study species. In section 3 we describe the data, the Multi-Source (MS), the Single Source (SS),  122 
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and the Multi-source data Fusion (MF) approaches and explain how we link wildlife tracking 123 

data to the resulting NDVI data sets to compare their performance. This is followed by results. 124 

We conclude with a discussion on how advanced remote sensing techniques such as our new 125 

methodology could improve spatial analysis of wildlife movement. 126 

2. Methods  127 

We propose and test three methodologies to produce contextual data on vegetation for 128 

movement analysis (Figure 2).  129 

In Step 1, we create three NDVI products at three different levels of resolution: a Multi-Source 130 

product (MS), a Single Source (SS) product,  and a Multi-Source Data Fusion product (MF). 131 

For this we acquired and fuse high spatial resolution images from seven sensors (MS) and daily 132 

MODIS NDVI (250 m) (SS) to produce daily NDVI data at a higher spatial granularity (15m -133 

30 m) (MF). We create the MF-NDVI by adapting the method proposed by (Rao et al., 2015), 134 

in which multi-temporal MODIS NDVI, higher resolution NDVI and land cover classification 135 

are used to obtain a NDVI temporal series with high spatial detail.  136 

In Step 2, we use the three NDVI products to annotate maned wolves' GPS tracking data and 137 

create Step-Selection Function (SSF) models to evaluate the suitability of each NDVI dataset 138 

for predicting habitat selection of used areas in regard to vegetation greenness. In the rest of 139 

this section we describe the data, the MS and MF approaches and finally how we linked NDVI 140 

data sets to movement data using SSFs to evaluate their use for movement analysis. 141 
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Figure 2 - The overview of our framework for producing and testing the performance of SS-, 144 

MF-, and MS NDVI for context-aware movement analysis of maned wolves' tracking data. Step 145 

1 shows how each of the NDVI data sets were produced and Step 2 shows how tracking data 146 

were linked to NDVI data sets for performance assessment through Step-Selection Functions. 147 

Blue ellipses show inputs, grey rectangles show processing steps, yellow rectangles are 148 

secondary outputs and green rectangles show primary outputs, i.e., the final products. 149 

2.1.  Study Area and Species 150 

Maned wolves (Chrysocyon brachyurus) are the largest South American canid (de Paula and 151 

Desbiez, 2014) and are savannah-adapted omnivores found south of the Amazon Forest. Their 152 

range extends from Bolivia into eastern Brazil, through northern Argentina and Uruguay, to 153 

central Paraguay (Deem and Emmons, 2005) (Figure 1A). Considered "vulnerable" until 1996 154 

by IUCN (International Union for Conservation of Nature), the species is currently classified 155 

as "near threatened" (de Paula and DeMatteo, 2015) and "vulnerable" by the Brazilian 156 

environmental authorities (ICMBio, 2016).  157 

158 

Figure 1 - A) The range of the maned wolf (Chrysocyon brachyurus) in South America. B) 159 
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Borders of Serra da Canastra National Park (CNP) in Minas Gerais state in Brazil, home of the 160 

wolves whose tracking data are used in this study. C) Lobinha (one of the individuals from our 161 

study), a female maned wolf of approximately two years old, wearing a GPS tracking collar. 162 

 163 

The main threat to the species comes from the continuous large scale habitat loss (Noss and 164 

Lima, 2007) which is especially significant in Brazil because of the extensive conversion of the 165 

Cerrado (Brazilian savannah) into farmland (Fonseca et al., 1994). Only 20% of Cerrado is still 166 

covered by native vegetation (Myers et al., 2000) and less than 2.5%  is protected by law. One 167 

of the protected areas, the Serra da Canastra National Park (CNP) (Figure 1B) has been key to 168 

the preservation of maned wolves. The extensive conversion of the park's surroundings into 169 

farmland has exposed the wolves to many anthropogenic threats, such as road traffic, culling 170 

and disease contamination by domestic animals (Deem and Emmons, 2005), all of which can 171 

result in large fluctuations in population size, eventually leading to extinction (de Paula and 172 

Desbiez, 2014). 173 

Understanding interactions with the environment and relevance of different habitats for survival 174 

is of prime importance for preserving a species (Garshelis, 2000). There has been only one 175 

study based on GPS and satellite data on the habitat use by maned wolves, and it was restricted 176 

to one male and one female (Coelho et al., 2008). Most studies on maned wolves were 177 

performed in a captive population and little is known about maned wolves in the wild (Bueno 178 

and Motta-Junior, 2009; de Paula et al., 2013).  179 

 180 

2.2. GPS tracking data  181 

Tracking data were collected using GPS collars - (Pinnacle Lite G5C 275D by Sirtrac, 3300S 182 

and Iridium Track 1D by Lotek Wireless Inc) for 13 maned wolves between March 2007 and 183 
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July 2015 (see Table 1 in Supplementary information A for a summary of the tracking data), 184 

the most complete attempt to study this species to date (de Paula, 2016). Our sample included 185 

seven females and six males, with the tracking period varying from 59 to 841 days per 186 

individual. We calculated home ranges of each individual as the 95% isopleth from kernel 187 

density utilisation distribution (UD) surfaces to show the extent of territories (Worton, 1989) 188 

of each individual’s GPS tracking data (Figure 3). A home range is defined as a set of bounded 189 

areas used by an animal in the course of its normal activities, such as foraging and mating (Burt, 190 

1943) and is typically calculated as an isopleth of the UD density estimate.  191 

Home ranges varied in size with an average of 64.5 km2 ∓ 34.5 km2 standard deviation but were 192 

generally compact in shape. Only two individuals stay completely within the CNP, five transit 193 

between the CNP and its surrounding areas, and the remaining six are based outside the park in 194 

landscapes extremely influenced by anthropogenic activity (primarily agriculture) (Figure 3). 195 

Maned wolves are known to be territorial, and we found that home ranges had generally little 196 

overlap, except between mates (Figure 3). 197 
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 198 

Figure 3 - Home ranges (95% utilization distribution) for each individual and Canastra National 199 

Park (CNP) limits overlaid on top of land use classes. Home ranges of the two individuals in 200 

each couple (Table 1 in Supplementary information A) intersect to a large extent. The land use 201 

map was produced by (de Paula, 2016) based on automatic and supervised multi-temporal 202 

classification (2009 - 2011) of RapidEye images with 5 m spatial resolution. 203 

2.3. Remote sensing data  204 

We integrate coarse spatial resolution - fine temporal resolution MODIS (Moderate Resolution 205 

Imaging Spectroradiometer) data and higher spatial resolution - coarse temporal resolution data 206 

from Terra - ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), 207 

Landsat 4-5-7-8, CBERS 2 (China-Brazil Earth Resources Satellite) and CBERS 2B) (Table 1) 208 

to create a high spatial and temporal granularity NDVI data set (Multi-Source Data Fusion 209 
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product, MF-NDVI). We use data from the same seven higher spatial resolution - coarse 210 

temporal resolution data sensor to calculate fine spatial resolution - coarse temporal resolution 211 

NDVI (Multi-Source Data product, MS-NDVI). We also use the daily reflectance (MOD09 212 

product) to calculate coarse spatial resolution fine temporal resolution NDVI (Single-Source 213 

Data product, SS-NDVI) and cloud mask (MOD35 product) products to filter out clouds, both 214 

products from Terra - MODIS.  Our study period spans from 2007 to 2013, and during this 215 

period we acquired 2260 total images, with the vast majority (2227) coming from MODIS (due 216 

to high temporal resolution) and 33 images coming from the other sensors (Table 1). We only 217 

retrieved images with cloud coverage lower than 5%. 218 

Table 1 - Remote sensing data used as input for the SS, MS and MF approach to produce NDVI 219 

data sets. The letters along with spatial resolutions are specifying the spectral bands for sensors 220 

with multiples spatial resolutions, sensors without letters have a uniform spatial resolution 221 

along the spectral bands. R stands for red, G for green, B for blue, NIR for near infra-red, VNIR 222 

for visible (RGB) and near infra-red, SWIR for short wavelength infra-red, FI for far infra-red 223 

and TIR for thermal infra-red. 224 

Satellite Sensor Temporal 

resolution 

(days) 

Spatial  

resolution (m) 

Images 

used 

CBERS 2-2B High Resolution CCD 

Camera (HRCC) 

26 20 3 

Landsat 4-5 Thematic Mapper (TM) 16 30 16 

Landsat 7 Enhanced Thematic  

Mapper plus (ETM+) 

16 30 
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Landsat 8 Operational Land Imager 

(OLI) 

16 30 14 

Terra Moderate Resolution 

Imaging 

Spectroradiometer 

(MODIS) 

1 - 2 250 (R/NIR)     

500 

(B/G/SWIR) 

1000 

(VNIR/FI) 

2227 

Terra Advanced Spaceborne 

Thermal Emission and 

Reflection Radiometer 

(ASTER) 

16 15(VNIR)             

30 (SWIR)            

90 (TIR) 

3 

2.4. Step 1: Multi-source data fusion 225 

 We performed the absolute calibration of satellite data to guarantee consistency among 226 

the measurements from different satellites. NDVI growth rates were extracted from MODIS 227 

and we performed land cover classification on the finer resolution data, so that we could 228 

compute land cover fractions within each MODIS pixel. The land cover fraction and the daily 229 

NDVI growth rates from MODIS were used to calculate the NDVI growth rate for each land 230 

cover fraction, which was then applied to the finer NDVI data to generate a time series of daily 231 

NDVI with higher level of spatial detail. In this section we provide the details of this 232 

methodology, while figure 2 illustrates the proposed process. 233 



Accepted to Environmental Informatics on 15 Aug 2020 

14 
 

 234 

2.4.1. Absolute calibration of remote sensing data  235 

Absolute calibration is necessary to convert the digital numbers stored within a remotely sensed 236 

image to spectral reflectance, the physical quantity of the object (Rees, 2001), which is 237 

important for integrating multi-source remotely sensed data. MODIS data (MOD09) have been 238 

pre-processed to spectral reflectance values, therefore we only calibrated the 33 images from 239 

the other seven satellites. This was done using sensor-specific scaling parameters and equations 240 

that are provided in the meta data for each image and user's handbook of each sensor. We further 241 

re-sampled the 33 images, i.e. all except MODIS, to 15 m in order to match the finest spatial 242 

resolution of our data sets. We used the nearest neighbour method to perform the resampling, 243 

which does not create values that were not in the original data (Meneses and Almeida, 2012). 244 

This is important to preserve the relationship between what was measured on the ground by the 245 

satellite and the biophysical variable being analysed.   246 

2.4.2. Calculating SS-NDVI and MS-NDVI 247 

The calibrated spectral reflectance bands were then used to compute the SS-NDVI (Single 248 

Source)  time series with 2227 images based on MODIS data and a MS-NDVI (Multi-Source) 249 

time series with 33 images based on data from the other seven satellites. NDVI is a proxy for 250 

the content and state of the live green vegetation and its computation requires information on 251 
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the spectral reflectance in the red and near infra-red portions of the electromagnetic spectrum 252 

(Rouse et al., 1973):   253 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅ρ−𝑅𝑒𝑑ρ

𝑁𝐼𝑅ρ+𝑅𝑒𝑑ρ
        (1) 254 

Here 𝑁𝐼𝑅ρ is the reflectance in near infra-red interval (800 - 1000 nm1) and 𝑅𝑒𝑑ρ is the 255 

reflectance in the red interval (650 - 700 nm).  NDVI values range from -1 to 1. Values smaller 256 

than 0.1 are usually related to bare rocks, sand, or snow; values around 0.2 to 0.5 are related to 257 

sparse vegetation such as shrub, grasslands or senescence crops; values between 0.6 and 1.0 258 

correspond to dense vegetation, such as tropical forests or crops at their peak growth stage 259 

(Rouse et al., 1973; Xue and Su, 2017).  260 

2.4.3. Generating time-series of SS-NDVI growth rates  261 

We calculated the daily NDVI time series, which we here call MF-NDVI (Multi-Source Data 262 

Fusion product), by adapting downscaling methods from Rao et al. (2015).  263 

MODIS data have been previously used for extracting growth rates and understanding 264 

vegetation dynamics (Lu et al., 2015). Their high temporal resolution allows daily monitoring 265 

of changes in vegetation, however, the extraction of accurate NDVI growth rates requires a 266 

rigorous filtering process to de-noise the data series, i.e., to reduce the known interference of 267 

clouds, atmosphere dynamics, variability on the detectors that register reflectance and other 268 

 
1 Theoretical limit according to Jensen (2006), these limits may vary from satellite to satellite but will stay within 

this range. 
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factors. A wavelet transform (WT) is particularly efficient in identifying and reducing noise 269 

while preserving useful information in time-series (Lu et al., 2007) and it has been widely used 270 

in the extraction of vegetation patterns via radiometric indices (Sakamoto et al., 2005; 271 

Priyadarshi et al., 2017). 272 

We used the 2227 SS-NDVI (Single Source NDVI) images to create a temporal profile of NDVI 273 

for each 250 m pixel in our study area. We first used the cloud mask product (MOD35) 274 

(Strabala, 2018) corresponding to each SS-NDVI image to remove cloud contamination. In the 275 

next step, we converted the images into 46,710 time-series of NDVI values, one time-series for 276 

each 250m pixel, and applied two consecutive WT using the Daubechies 4 mother wavelet 277 

(MW) (Daubechies, 1990). This MW has been extensively used for de-noising and it is 278 

commonly used for NDVI data (Kaddar et al., 2017). We performed a four level soft threshold 279 

WT of the NDVI temporal series for each pixel (2227 samples/pixel) in the MODIS data, then 280 

we reconstructed the series, then repeated the procedure once again to obtain the final filtered 281 

NDVI pixel series. The NDVI daily growth rates were then computed for each pair of SS-NDVI 282 

images by calculating the first derivative for each filtered SS-NDVI pixel time series. 283 

2.4.4. Calculating MF-NDVI 284 

The filtered NDVI daily growth rates extracted from SS-NDVI (Single Source NDVI) reflect 285 

the average of the vegetation dynamics covered by each 250 m x 250 m pixel. To obtain more 286 

detailed information on the vegetation dynamics within each pixel, we calculated the 287 

contribution of each land cover fraction to the growth rates (Rao et al., 2015) (Figure 5).  288 
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 289 

 290 

Figure 4 - The filtered SS-NDVI growth rates are combined with MS land cover data to produce 291 

the MF-NDVI, which has the same temporal resolution as the SS-NDVI and similar spatial 292 

details to the MS-NDVI. Land cover data are used to find the NDVI growth rate for each MS 293 

pixel (15 m). Growth rates are then applied to the available 33 MS-NDVI images to create the 294 

temporal series of MF-NDVI. 295 

To calculate land cover fractions within each SS pixel, the calibrated spectral reflectance bands 296 

in the finer resolution images were used to obtain 33 land cover maps. We use the BIRCH 297 

(Balanced Iterative Reducing and Clustering using Hierarchies) algorithm (Zhang, 298 

Ramakrishnan and Livny, 1996) to perform automatic non-supervised classification. The 299 

algorithm requires three input parameters: 1) a threshold for the maximum allowed radius for 300 

the cluster resulting from the grouping of a sub-cluster and the closest sample (the cluster is 301 
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partitioned if the radius is bigger than the chosen threshold); 2) a branching factor that 302 

determines the maximum number of sub-clusters in each node (if a new sample is added such 303 

that the number of sub-clusters exceeds the branching factor the node is split into two); and 3) 304 

the number of clusters after the final clustering step, which prunes the resulting hierarchical 305 

tree. We used a branching factor of 100 for all images, varied the threshold from 0.2 to 0.7 by 306 

0.02 for each image and did not use pruning. For each threshold we computed the Calinski-307 

Harabaz Index (CHI) (Calinski and Harabasz, 1974) to measure the intra- and inter-cluster 308 

quality of our land cover classes, and for each image we kept the threshold that achieved the 309 

lowest within-cluster dispersion and highest between-cluster dispersion. This produced the 310 

optimal data-driven unsupervised land cover classification for each image.  311 

For each of the 33 land cover classifications (15 m) we then calculated the percentage of each 312 

land cover within the corresponding SS pixel (250 m), which produced 33 maps of land cover 313 

fractions for our study period. The use of multiple land cover fractions maps is important to 314 

account for possible land cover changes within a SS pixel during the study period. The 315 

contribution of each land cover fraction and the growth rates were then applied to the 33 MS-316 

NDVI (Multi-Source Data product) images to generate the MF-NDVI (Multi-Source data 317 

Fusion product) images (Rao et al., 2015).  Mathematical details of our procedure are presented 318 

in Supplementary information B. The assessment of the resultant MF-NDVI time series is 319 

presented in Supplementary information C. 320 

2.5. Step 2: Context-aware movement analysis 321 
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2.5.1. Linking NDVI data sets and wildlife tracking data 322 

To explore which of the three different NDVI data sets better predict wolves' habitat selection, 323 

we annotated the wildlife tracking data with NDVI values from each of the three data sets and  324 

used Step Selection Functions (SSF) to assess NDVI effects on movement probability. We 325 

linked GPS fixes to the NDVI datasets by matching both the temporal and spatial coordinates 326 

using the nearest neighbour method (Dodge et al., 2013; Brum-Bastos, Long and Demšar, 327 

2016). We then created SSFs models for each NDVI data set and compared them through 328 

statistical analysis of results from 10-fold cross-validations. 329 

SSFs statistically model the effects of landscape on movement probability by contrasting used 330 

and available resources (Equation 2).  SSFs require real steps to characterize used resources 331 

and random steps to characterize available resources. Real steps are the locations registered by 332 

tracking data. Random steps are defined from each tracked location by applying a step length 333 

and turning angle, which are drawn from the distributions of step lengths and turning angles 334 

observed from all tracking data (Thurfjell, Ciuti and Boyce, 2014).  335 

𝑤(𝑥) = 𝑒𝑥𝑝(β1𝑥1 + β2𝑥2 +⋯+ β𝑝𝑥𝑛)      (2) 336 

 where 𝑤(𝑥) is the likelihood of a step (random or real) with the associated resources 𝑥 = 𝑥1 to 337 

𝑥𝑛   being used by the animal, and β1 to β𝑝 are coefficients estimated by conditional logistic 338 

regression for the associated resources (Fortin et al., 2005). Steps with a higher SSF score 𝑤(𝑥) 339 

have a higher likelihood of being chosen by the tracked animal. 340 
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We created five random steps for each GPS location as recommended by (p.6 Thurfjell, Ciuti 341 

and Boyce, 2014), which were defined by randomly drawing a step length and a turning angle 342 

from the observed distributions of these parameters. Similarly, to the GPS points, random steps 343 

were also annotated with NDVI values from the three NDVI data sets. Next, we perform a 10-344 

fold cross-validation by training the SSF model on one-fold (GPS points and random steps) and 345 

predicting only on the GPS points (used resources) of the remaining folds. As Steps with a 346 

higher SSF score 𝑤(𝑥) have a higher likelihood of being chosen by the tracked animal, we can 347 

use the prediction on used areas (GPS points only) to compare which NDVI data set is more 348 

accurate in predicting habitat use. We do this by calculating and comparing the sum of the 349 

logged odds for each fold cross-validation for the three NDVI datasets. As a used resource or 350 

GPS point should have 𝑤(𝑥) = 1 and 𝑙𝑜𝑔(1) = 0, the best model is the one that yields the 351 

maximum of the summed log-odds. We use ANOVA and Students T-tests to assess differences 352 

between the three data sets. We also retrieve and compare the distribution of angular 353 

coefficients and p-values for the three SSF models. 354 

3. Results 355 

3.1. Step 1: Multi-source data fusion 356 

The MS (Multi-Source) approach with higher spatial resolution data was able to provide more 357 

NDVI images than a single-source approach would at the same spatial resolution. However, 358 

even using multiple satellites the NDVI data retrieved covered only 1% of the wildlife tracking 359 

period (Table 2) and there were data gaps as long as almost two years (Figure 4A) due to cloud 360 
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coverage. The SS (Single Source) approach with coarse spatial resolution data, which is the 361 

common practice in movement ecology, was able to provide daily images for 80% of the 362 

wildlife tracking period (Table 2) with some gaps of approximately two months around August 363 

(Figure 4A) due to cloud coverage. Finally, the MF (Multi-Source Fusion) provided daily 364 

images for 100% of the wildlife tracking period (Table 2) (Figure 4A) due to cloud coverage. 365 

Figure 4B shows scaled pixel sizes overlaying an image from a portion of the study area, 366 

highlighting how the heterogeneity of environmental conditions might be camouflaged by the 367 

spatial resolution of the SS approach, but can be captured by the MS and MF approaches. 368 

Table 2 - Characteristics of the NDVI data sets produced by the SS, MS and MF approaches. 369 

Approach 

  Number of  

NDVI images 

 Tracking 

days covered 

(%)    

 Revisiting  

time 

(days)   

 Spatial detail 

(m) 

SS  2227 70 1 250 

MS  33 1  < 15* 15-30 

MF  3150 100 1  15-30 

*If gaps due to cloud coverage are not considered 

 370 
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  371 
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Figure 5 - Results from the three approaches used to obtain NDVI data sets. Panel A) shows a 372 

timeline covering the wildlife tracking period, where horizontal dashes indicate availability of 373 

NDVI images from each approach. The image source is specified by the colour of the bar shown 374 

in the legend. MF images are plotted on the right timeline, SS images are plotted in the middle 375 

timeline and MS images are plotted on the left timeline. Panel B) shows scaled pixel sizes 376 

overlaying an image from a portion of the study area, highlighting how the heterogeneity of 377 

environmental conditions might be camouflaged by the spatial detail level of the SS approach. 378 

A SS pixel covers 62500 m2 and originally the data used to produce MS and MF images were 379 

as follows: a Landsat pixel covers 900 m2, a CBERS pixel covers 400 m2 and an ASTER pixel 380 

covers 225 m2. However, they were all re-sampled to 15 m pixel size covering 225 m2. 381 

3.2. Step 2: Context-aware movement analysis 382 

 We found that the MS-NDVI (Multi-Source NDVI) had the highest predictive probability 383 

(largest log-odds) based on our k-fold cross validation procedure. This was followed by the 384 

MF-NDVI (Multi-Source Fusion) and lastly the SS-NDVI (Single Source) data (Figure 6A). 385 

Therefore, the model that included only the high spatial resolution satellites (but not the high 386 

temporal resolution MODIS NDVI data) was the best at predicting habitat selection in terms of 387 

NDVI. The poorest performing model was the SS-NDVI model. The MF model therefore 388 

achieved a relatively middle performance level, falling in between the MS-NDVI and the SS-389 

NDVI (Figure 6B).  390 
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 391 

Figure 6 - Sum of logged predicted probabilities for used areas (GPS points) for each of the ten-392 

fold cross validations performed for each step-selection model. Panel A shows the results for 393 

MF-, MS- and SS-NDVI. Panel B zooms in to the results of MF and SS-NDVI. 394 

The ANOVA indicates that the use of different NDVI data sets have a statistically significant 395 

effect (p-value < 0.01) on the sum of the logged predicted probabilities for the GPS points 396 

(used areas). Pairwise Students T-tests indicated that the MS-NDVI produced superior models 397 

in comparison to the other two data sets (p-value < 0.01) and that the MF-NDVI performed 398 

significantly better than SS-NDVI (p-value < 0.01).  399 

Importantly, the NDVI coefficient was not significant in the SS-NDVI SSF models but was 400 

always significant in the models using MS-NDVI and MF-NDVI (Figure 7). The coefficients 401 

for NDVI ranged between 1.9 and 2.0 in the MS-NDVI model and were always under 0.02 in 402 

the other two models MF- and SS-NDVI. 403 
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  404 

Fig 7 - Distribution of the parameters from the ten Step-Selection Functions generated for with 405 

each NDVI data set. Panel A shows the p-values for MF-, MS- and SS-NDVI; the red line 406 

indicates p-value = 0.01. Panel B shows the SSF angular coefficients for NDVI for MF-, MS- 407 

and SS-NDVI.  408 

4. Discussion and conclusion 409 

In this paper, we used multi-source data fusion to combine MODIS data with higher spatial 410 

resolution data (ASTER, Landsat 4-5-7-8, CBERS 2-2B) and created a synthetic NDVI product 411 

with a 15 m spatial detail and daily temporal resolution (MF-NDVI). We also used the higher 412 

spatial resolution data to create a multi-source NDVI product (MS-NDVI) with same level of 413 

spatial detail but coarser temporal resolution and data from MODIS to create a single-source 414 

NDVI product with high temporal resolution but coarse spatial resolution (SS-NDVI). We 415 
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combined the three different spatial-temporal resolution NDVI products with GPS tracking data 416 

of maned wolves to create step-selection functions (SSF), which are models used in ecology to 417 

investigate and predict habitat selection by animals. We used SSFs to investigate which data 418 

approach created a NDVI dataset with higher accuracy in predicting habitat selection for maned 419 

wolves. In the following we discuss some of advantages and limitations of this approach and 420 

contextualise our findings. 421 

We hypothesized that the MF-NDVI data would be best at predicting habitat selection (defined 422 

by NDVI) because these data capture both the fine spatial heterogeneity and temporal dynamics 423 

of primary productivity. However, we found that the MS-NDVI model was the strongest 424 

predictor of habitat selection by maned wolves, and that the SS-NDVI was the poorest predictor. 425 

Therefore, it is perhaps unsurprising that the performance of the MF-NDVI model lied in 426 

between the other two models. This seems to suggest in the case of maned-wolves in the 427 

Brazilian savannah that spatial heterogeneity in the availability of primary productivity is far 428 

more important than the temporal dynamics when predicting fine-scale movement and habitat 429 

selection.  430 

MODIS data, which were used in the SS approach, were designed for mapping vegetation at 431 

global, continental or national scale, while the data used for the MS and MF approaches were 432 

designed for mapping vegetation at the community and species level (Xie, Sha and Yu, 2008), 433 

which is closer to the scale at which maned wolves were experiencing the landscape. In animal 434 

ecology, detailed information on habitat allows the representation of the cognitive map of 435 
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animal's environment and the observation at approximately same spatio-temporal scale as an 436 

observer's experience (Cagnacci et al., 2010), which is important for understanding individual's 437 

decision making processes. In addition, the MF approach had performance in between the SS 438 

and the MS, which makes sense as this product is a combination of the two previous ones and 439 

some of the interval we have between the MS scenes are probably too long to allow changes on 440 

vegetation be modelled as a linear function, which added uncertainty to the MF-NDVI. In 441 

addition, the MF approach requires a sufficient number of landcover classifications adequately 442 

distributed across the study period. Ideally, there would be one landcover classification for each 443 

15 days interval, but that can be especially difficult to guarantee in areas with high cloud 444 

coverage, such as the Amazon forest, or during specific seasons, such as the wet season in the 445 

Atlantic forest. Moreover, this approach has higher data and computational complexity, which 446 

can be challenging for researchers that are no acquainted with advanced remote sensing 447 

techniques. Lastly, it is difficult to obtain ground truth data to validate the product generated 448 

by the MF approach, as it ideally it would require either fieldwork sampling on different days, 449 

or leaving out MS images and trying to reproduce them with the MF approach for comparison. 450 

The validation itself can take as much or more time than processing the data, but it is necessary 451 

to know if the data will actually be representing the experience of an individual in that 452 

landscape. Still, the MF approach performed better than what is traditionally used in movement 453 

ecology 454 
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The temporal resolution of data produced using a multi-sensor approach might drastically 455 

improve in areas less densely covered by clouds. We had bigger relatively large data gaps in 456 

our MS-NDVI data because we were extremely conservative with the cloud coverage threshold 457 

for accepting images (< 5%), particularly for an area that is known to have a concentrated and 458 

seasonal rainfall regime. Another reason for our conservative threshold was the use of these 459 

images for creating the MS-NDVI data set, which requires scenes with clear sky.  460 

In terms of new insights into movement behaviour, the SSF model of each NDVI data set 461 

reported different relationships between vegetation and maned wolves’ movement. The 462 

traditional SS approach reported no statistically significant relationship between vegetation and 463 

habitat selection for maned wolves, whilst the MS and MF models, which had higher spatial 464 

resolution, reported a statistically significant relationship. This differences in significance of 465 

vegetation for habitat selection reinforce the capacity of multi-source and multi-source data 466 

fusion methods to provide new insights into movement analysis when compared to the 467 

traditional single-source approaches. In addition, the difference between the distributions of the 468 

NDVI coefficients for each model highlights once again that much of the patterns we see are 469 

related to the granularity and scale of the data we use (Laube and Purves, 2011). Therefore, 470 

when selecting earth observation data for movement analysis, it is essential to consider the 471 

scales of the movement but also the scales of the earth observation data being linked to 472 

movement. The goal is to capture data that can portray the changes in environmental conditions 473 

that closely match the reality perceived by the individual moving, i.e., at the spatial and 474 
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temporal scale at which the individual is interacting with environment. Multi-source and multi-475 

source data fusion methodologies offer tremendous potential in the study of wildlife movement, 476 

because these data will better match the spatial heterogeneity and temporal dynamics associated 477 

with environmental conditions experienced by wildlife. 478 

The three approaches we tested (i.e., using single source data, combining multiple medium/high 479 

resolution sensor data and fusing these data with high temporal resolution Earth observation 480 

data) are not limited to optical satellite imagery, but can be used for other types of Earth 481 

observation data captured using a variety of other sensors. For example, different satellite 482 

systems are now collecting detailed information on environmental conditions such as, water 483 

content, chlorophyll, snow coverage, vegetation type, land or sea surface temperature, 484 

humidity, rainfall, air pressure and Earth’s magnetic field (Sadeghi et al., 2018), which can be 485 

useful for  explaining wildlife movement patterns. There is a potential to extend our 486 

methodology beyond optical imagery and include all these different types of environmental 487 

data. We note here that we found that a multi-source approach was more predictive of 488 

movement and habitat selection than a multi-source fusion approach, and we recommend that 489 

future research first explores the use of multi-source Earth observation data for movement 490 

analysis at local and spatially detailed scales. Further, a multi-source approach is less 491 

computationally demanding than multi-source data fusion methods, which may not lead to 492 

improvements in predictive capability as shown here.  Moreover,  the need to ensure enough 493 

landcover classifications at reasonable intervals it is important to highlight that  494 
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This paper is, as far as we are aware, one of the first attempts to combine data from multiple 495 

satellites and sensors for the purpose of analysing animal movement patterns (but see Berman 496 

et al., 2019) . While remotely sensed data has become more widely used in movement ecology 497 

studies, using data from more than one source (either in a multi-source or a multi-source data 498 

fusion context) and linking these data to yet another complex data source (i.e., GPS tracking 499 

data) is a complicated task (as demonstrated by the procedures used in this paper) that many 500 

ecologists may still refrain from undertaking (Pettorelli et al., 2014). The primary conceptual 501 

challenge in this process is the mismatch between the spatial and temporal resolutions of 502 

different sources of satellite remotely sensed data and wildlife tracking data – in this paper we 503 

demonstrated how this challenge can be tackled by applying multi-source and multi-source data 504 

fusion techniques. 505 

Monitoring changes in the biosphere across sufficient spatial and temporal scales and linking 506 

the information on these changes with detailed in situ data, such as wildlife tracking data, 507 

represents an area of opportunity for further discovery in the field of movement ecology. While 508 

there are a number of tools that can support this process, methods for combining remote sensing 509 

data with wildlife tracking data are still in their infancy  (Neumann et al., 2015; Remelgado, 510 

Wegmann and Safi, 2019). As demonstrated here, these analyses can be undertaken using 511 

relatively simple single-source remotely sensed data but become increasingly complex as 512 

multiple sources of earth observation data are included, and further complicated when using 513 

true data fusion methods. Here we find that (in the case of a terrestrial omnivore) a multi-source 514 
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approach that focuses on high spatial resolution data, outperforms single source high temporal 515 

resolution data, and a more complex multi-source fused dataset. Thus, future research may wish 516 

to first explore multi-source high resolution datasets where the spatial heterogeneity of 517 

resources is more likely to be predictive of movement and habitat selection over temporal 518 

dynamics. In contrast, in species where temporal dynamics are crucial to movement and habitat 519 

selection, high temporal resolution earth observation data or a more multi-source data fusion 520 

approach (as demonstrated here) are likely to provide higher predictive outcomes, leading to 521 

better insights in to the movement of wildlife species. 522 
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