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Three-dimensional quasi-geostrophic staggered vortex arrays
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Abstract—We determine and characterise relative equilibria for arrays of point vortices in a
three-dimensional quasi-geostrophic flow. The vortices are equally spaced along two horizontal
rings whose centre lies on the same vertical axis. An additional vortex may be placed along
this vertical axis. Depending on the parameters defining the array, the vortices on the two rings
are of equal or opposite sign. We address the linear stability of the point vortex arrays. We
find both stable equilibria and unstable equilibria, depending on the geometry of the array.
For unstable arrays, the instability may lead to the quasi-regular or to the chaotic motion of
the point vortices. The linear stability of the vortex arrays depends on the number of vortices
in the array, on the radius ratio between the two rings, on the vertical offset between the
rings and on the vertical offset between the rings and the central vortex, when the latter is
present. In this case the linear stability also depends on the strength of the central vortex.
The nonlinear evolution of a selection of unstable cases is presented exhibiting examples of
quasi-regular motion and of chaotic motion.
editorial@rcd.ru.

MSC2010 numbers: 76B47,76E20

DOI: 10.0000/S1560354700000012

Keywords: Quasi-geostrophy, point vortex dynamics, equilibria, vortex arrays

INTRODUCTION

Arrays of point vortices have been investigated nearly as early as Helmholtz (1858) [1] derived
the equations governing flows with vorticity. Kirchhoff [2] first introduced the notion of a point
vortex where the vortex circulation is locally concentrated on a Dirac distribution. Configurations
of two-dimensional point vortices in mutual equilibrium were identified by Thomson (Lord Kelvin)
[4]. At this stage, we should mention analogous works on floating magnets [5] which motivated the
study of arrays of vortices in mutual equilibrium. The linear stability of circular arrays of two-
dimensional point vortices was addressed by J. J. Thomson in 1883 [6]. The problem was later
revisited by Haverlock (1931)[7], Moser (1935) [8], Khazin (1976) [9] and by Mertz (1978) [10].

In the context of large-scale oceanic vortices, the flow dynamics is strongly influenced by the
background planetary rotation as well as the stable density stratification. When these effects are
dominant, the flow remains close to both geostrophic and hydrostatic balance whereby the hori-
zontal pressure forces are (approximately) balanced by the Coriolis forces and the vertical pressure
force is (approximately) balanced by the gravitational force. In such geophysical environments, the
existence and the stability of vortex arrays were first studied in a shallow water model by Stewart
(1943, 1945) [11, 12], and in more detail by Morikawa and Svenson (1971) [13]. In the latter study,
the influence of a central vortex on the stability of the vortex array was also considered. Following
these early studies, a vast body of literature has extended the results on the stability of point
vortex arrays [14–29] as well as finite core vortex arrays e.g. [30–33]. Additionally, Sokolovskiy
et al. (2020) [34] have recently studied the evolution of non-equilibrium four-vortex arrays in a
two-layer quasi-geostrophic system.
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Reinaud (2019) [35] studied vortex arrays in a three-dimensional quasi-geostrophic flow under the
Boussinesq approximation, relevant to oceanic applications. Both point vortices and finite volume
vortices were considered in the study. It was shown that an array consisting of a single ring of n ≤ 5
vortices is linearly neutrally stable. Arrays of n > 5 vortices are unstable. This is in contrast to
the classical result for two-dimensional vortices where the array is stable for n ≤ 7. A like-signed
central vortex may however stabilise the array for a larger number of vortices in both cases. Such
vortex arrays may natural emerge from the destabilisation of circular shear zones, see [36]. More
recently, Dritschel (2021) has extended the study by considering arrays of point vortices along a
single ring in an exponential density stratification, relevant to atmospheric applications.

During the nonlinear evolution of vortex arrays with an even number of vortices, the vortices
may become staggered. Every other vortex moves inward (resp. outward) to re-organise the array,
albeit temporarily, into an array of vortices staggered onto two rings of different radius. Dritschel
(2021) [37] presented examples of equilibria for staggered vortices but has not formally addressed
their linear stability.

In the present paper, we study arrays of point vortices in mutual equilibrium where the point
vortices are distributed along two rings with, possibly, an additional central vortex. We show the
existence of relative equilibria and we study their linear stability. Equilibria are often unstable
but there also exist regions of the parameter space where the arrays are robust and may stably
persist. Thus, the study justifies, in an idealised set-up, the possible existence of robust vortex
configuration in rotating and stratified fluids, such as the storm clusters recently observed over
the poles of Jupiter by [41]. We also present examples of the evolution of various unstable vortex
arrays.

1. THE MODEL

1.1. The quasi-geostrophic approximation

The quasi-geostrophic (QG) model is the simplest dynamical model which takes into account, at
leading order, the effects of the rapid background planetary rotation and of the stable background
density stratification. In the context of the present study, the model is obtained by a Rossby number
expansion of the full three-dimensional rotating stratified Euler’s equations under the Boussinesq
approximation. A detailed derivation of the quasi-geostrophic model can be found in [38]. The
QG model is strictly valid when Fr2 � Ro� 1, where Fr = U/(NH) is the Froude number and
Ro = U/(fL). Here, U is a characteristic horizontal velocity scale, H and L are characteristic
vertical and horizontal scales respectively, N is the buoyancy frequency and f is the Coriolis
frequency. For simplicity we assume both N and f are constant and we rescale the physical vertical
coordinate zp by the constant ratio N/f , i.e. z = Nzp/f , while the two horizontal coordinates
x, y remain unchanged. The ratio N/f is typically large at mid-latitudes, hence in practice the
physical vertical direction is stretched in the rescaled coordinate system (x, y, z). In this system,
the potential vorticity anomaly q (hereinafter referred to as PV for simplicity) the Laplacian of a
stream function ϕ,

q = ∇2ϕ =
∂2ϕ

∂y2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
. (1.1)

At leading order in Ro the advecting velocity field is a layer-wise two-dimensional divergence-free
field given by

u = −∂ϕ
∂y
, v =

∂ϕ

∂x
. (1.2)

Strictly speaking the vertical velocity w is not zero in the QG model but is too small to contribute
to the advection at the order in Ro considered. In the absence of frictional and diabatic effects, and
for a constant Coriolis frequency, the PV is materially conserved,

Dq

Dt
=
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0. (1.3)
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Staggered vortex arrays 3

Equation (1.1) can be formally inverted to find ϕ from q,

ϕ(x) =

∫∫∫
G(x− x′) q(x′) d3x′, (1.4)

where G is the Green’s function giving the stream function at x induced by a point source at x′,

G(x− x′) = − 1

4π|x− x′| , (1.5)

in an unbounded domain and for the three-dimensional Laplacian in (1.1). For a system of N point
vortices of strength κj = (4π)−1

∫∫∫
Bj q(x)d3x , and located at xj , 1 ≤ j ≤ N , where Bj is a ball

containing the point vortex i only, the PV field is

q(x) = 4π
N∑
j=1

κj δ(x− xj). (1.6)

Here δ() is the Dirac distribution. The stream function is therefore

ϕ(x) = −
N∑
j=1

κi
|x− xj |

, ∀x 6= xj , 1 ≤ j ≤ N, (1.7)

and the velocity is

u = (u, v, 0) =

(
−∂ϕ
∂y
,
∂ϕ

∂x
, 0

)
=

N∑
j=1

κj(−y + yj , x− xj , 0)

|x− xj |3
. (1.8)

When applying the above formula to the location of point vortex k, one simply removes the
spurious infinite self-induced contribution for j = k from the sum (see the discussion in [39]). In a
reference frame rotating uniformly at the angular velocity Ω about the vertical axis, the relative
velocity u′ is simply

u′ = u− Ω(−y, x, 0). (1.9)

1.2. The problem’s general geometry

We consider arrays of N = 2n or N = 2n+ 1 vortices. The first set of n vortices is located
along a horizontal ring of radius re at height ze. The vortices are located at the azimuthal angles
θj = 2(j − 1)π/n, 1 ≤ j ≤ n and have equal strength κe. A second set of n vortices is located
along a horizontal ring of radius ri at height zi. The vortices are located at azimuthal angles
θj = (2(j−n− 1) + 1)π/n, n+ 1 ≤ j ≤ 2n and have equal strength κi. In the case the array contains
a central vortex, the central vortex is located at (0, 0, z0) and has strength κ0. Fig. 1 shows a top
view of the geometry for a vortex array containing a central vortex and with n = 5. We consider
staggered vortex arrays with n ≥ 2, hence N ≥ 4. Four vortices is the minimum number of vortices
for chaotic dynamics to be possible, in absence of external forcing.

Without loss of generality, we set ze = 0, re = 1 and κe = 1. We take ri ≤ re, and zi ≥ 0. We
denote ∆ = zi − ze the vertical gap between the two rings. The full interaction depends on

(a) n, the number of vortices along each ring,

(b) ri/re, the radius ratio between the two rings,
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(c) ∆, the vertical offset between the two rings,

(d) κ0, the strength of the central vortex (the cases without central vortex can be seen as special
cases κ0 = 0),

(e) z0, the height of the central vortex.

The parameter space is too large to consider a comprehensive investigation. We will therefore focus
on a few cross-sections of the full parameter space.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

ri re

π/n

2π/n

κ0, z0

κe, ze
κi, zi

Fig. 1. Geometry of the vortex array for N = 11 (n = 5).

To find an equilibrium, we set values for n, ∆, ri/re, z0 and κ0 and we determine κi so that the
vortices on both rings rotate at the same angular velocity Ω. In practice this is done by expressing
the angular velocity |u1|/re of vortex 1 and the angular velocity |un+1|/ri of vortex n+ 1 as
functions of κi and equate the two velocities to obtain an explicit equation for κi. This, in turn,
allows one to evaluate Ω. The vortex array is then in equilibrium (or steady) in a reference frame
rotating uniformly at the angular velocity Ω. We also address the linear stability of the array with
respect to vortex displacement modes

xi(t) = xeqi + x̂ie
σt, (1.10)

in the reference frame rotating at Ω. Here xeqi is the vortex location at equilibrium, while
x̂i = (x̂i, ŷi, 0) is the horizontal perturbation mode (amplitude) and σ = σr + iσi ∈ C is the mode’s
complex growth rate. The real part σr of σ is the actual growth rate while its imaginary part
σi is its frequency. The perturbed locations are substituted into (1.9) where u is replaced by the
linearised form of (1.8). This leads to an eigenvalue problem of size 2N where σ is an eigenvalue
and x̂ is an eigenvector. This approach has been used in [35, 40]. All numerical codes are written
in Fortran and the eigenvalue problem is solved using the standard Lapack library.

2. EQUILIBRIA AND LINEAR STABILITY

2.1. Vortex arrays without a central vortex: N = 2n

We first consider cases without a central vortex. To that purpose we explicitly remove the central
vortex rather than setting κ0 = 0. If we set κ0 = 0 and retain a passive vortex located at (0, 0, z0),
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Fig. 2. Normalised strength κ∗
i (left), normalised equilibrium rotation velocity Ω∗ vs ri/re (middle), and

normalised maximum growth rate σ∗
max (right) vs the radius ratio ri/re for vortex arrays with no central

vortex (q0 = 0), ∆ = 0 and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted black),
n = 6 (dotted red), n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed red).

the stability analysis could pick up spurious unstable modes for the passive particle which neither
affect the vortex array nor the flow dynamics.

We start by considering the case ∆ = 0 where the two vortex rings of n vortices are co-planar.
The arrays contain N = 2n vortices in total. We study eight families of equilibria for 2 ≤ n ≤ 9.
For each value of n, we vary the radius of the inner ring in the range 0 < ri/re ≤ 1, considering
1000 equally-spaced values. As mentioned above, we first determine κi so that the vortices are in
mutual equilibrium, then we deduce Ω. We define a pseudo-time scale τ

τ =
1√

κ2e + κ2i

(2.1)

and from this we define the normalised strength κ∗i and the normalised rotation velocity Ω∗

κ∗i = τ κi, Ω∗ = τ Ω (2.2)

Strictly speaking τ does not have the dimension of a time since the strengths κ have the dimension
of a volume integrated vorticity. But since we have taken re = 1, τ plays the role of a time scale in
the problem.

Results for κ∗i and Ω∗ are summarised in Fig. 2. Results show that κ∗i → 0 as ri/re → 0 and

κ∗i → 1/
√

2 ⇐⇒ κi → κe as ri/re → 1 for all values of n considered. The limiting case ri/re → 1
is simply the single ring of 2n vortices of equal strength, as expected. It should also be noted that
the problem degenerates at ri = 0 as all vortices of the inner ring converges to a single (central)
vortex. In this case, the system is an equilibrium for any arbitrary strength of the single central
vortex. We also see that there exists a critical radius rc for the inner ring, which depends on n
and for which no equilibrium is possible. Indeed κ∗i → ±1 as ri → r−c and κ∗i → ∓1 as ri → r+c . For
n ≤ 3, κ∗i → −1 (resp. +1) as ri → r−c (resp. r+c ) while it is the reverse for n ≥ 4.

The detailed dependence of κ∗i on ri is however non trivial. For n = 2 and r < rc ' 0.578 re,
κ∗i < 0 and decreases monotonically as ri increases. The vortices of the two rings are opposite-
signed. For r > rc, κ

∗
i > 0 and also decreases monotonically as ri increases, and the vortices of

the two rings are like-signed. For n = 3, κ∗i → 0+ as ri → 0. It increases to a local maximum of

κ∗i ' 2.8× 10−2 at ri ' 0.319 re as ri increases before decreasing and reaching negative values for
0.413 re < ri < rc ' 0.617 re. For ri > rc, κ

∗
i > 0 and decreases monotonically as ri increases. For

n ≥ 4 the situation changes. The vortex normalised strength κ∗i first increases with ri ≤ rc, with
rc(n = 4) ' 0.624 re, rc(n = 5) ' 0.625 re, rc(n = 6) ' 0.628 re, rc(n = 7) ' 0.631 re, rc(n = 8) '
0.635 re, rc(n = 9) ' 0.639 re. The values of the critical radius rc are summarised in Table 1. We
observe that rc weakly depends on n, only slightly increasing as n increases. Then κ∗i increases again
as ri increases for ri > rc. The normalised strength κ∗i is first negative, with κ∗i → −1 as ri → r+c ,
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n 2 3 4 5 6 7 8 9

∆ = 0 0.578 0.617 0.624 0.625 0.628 0.631 0.635 0.639

∆ = 0.2 0.588 0.636 0.649 0.655 0.661 0.666 0.672 0.678

∆ = 0.4 0.621 0.692 0.727 0.754 0.778 0.802 0.831 0.879

∆ = 0.8 0.739 0.903 - - - - - -

Table 1. Relative critical inner ring radius rc/re for 2 ≤ n ≤ 9 and ∆ = 0, 0.2, 0.4 and 0.8.

then it becomes zero for some rp < re which depends on n, and it is positive for ri > rp. Again the
threshold rp increases monotonically with n. The global rotation rate of the system Ω∗ is strongly
correlated to the strength of the vortices on the inner ring and follows a similar tendency as shown
in Fig. 2.

The linear stability of the vortex arrays is complicated. We define the normalised growth rates

σ∗ = τ σr. (2.3)

The maximum normalised growth rate σ∗max of the vortex displacement modes is also shown in
Fig. 2. For n = 2, the array is unstable for ri < 0.528 re. In this range the vortices lying along
the inner ring have moderate (in magnitude) negative normalised strength −0.963 < κ∗i < 0. It
should be noted that κ∗i = −0.963 corresponds to κi/κe ' −3.57. The system becomes stable for
ri > 0.528 re. In particular we recover, for ri/re = 1, the result that a single ring of four vortices is
stable [35]. It should also be noted that the arrays are stable in the vicinity of ri = rc. For n = 3,
the situation is different. The array is stable for ri < 0.21 re for which the vortices of the inner
ring have a small positive strength. The array is unstable for 0.21 re ≤ ri < 0.597 re. There is a
secondary narrow region of weak instability in the range 0.602 re ≤ ri ≤ 0.613 re. The equilibria
are however stable for ri in the near vicinity of rc. Finally, the equilibria are also unstable for
0.96 re ≤ ri ≤ re. We recover that the single ring of six vortices is indeed unstable [35]. For n = 4,
the array is stable for ri < 0.32 re, a region where the vortices of the inner ring have a strength
0 < κ∗i < 0.0903. The array is then unstable for 0.32 re ≤ ri < 0.614 re and for ri > 0.624 re. We
recover for ri = re that the single ring of eight vortices is unstable [35]. The narrow range of stable
arrays for 0.614 re ≤ ri ≤ 0.624 re corresponds to arrays with relatively intense positive strength
vortices on the inner ring κ∗i > 0.953. For n = 5, the arrays are stable for 0.37 re < ri where
0 < κ∗i < 0.166. The arrays are unstable for 0.37 re ≤ ri < 0.612 re. As for the case n = 4, there is
a very narrow region of stability of intense strength inner ring vortices for 0.613 re < ri < 0.627 re.
The arrays are unstable for ri ≥ 0.627 re. For n = 6, the arrays are unstable for ri ≤ 0.087 re for
which the vortices in the inner ring have very low normalised strength, 0 < κ∗i < 1.752× 10−3. The
arrays are then stable for 0.087 re < ri < 0.299 re, then unstable for ri ≥ 0.299 re. For n = 7, 8, 9
all arrays are unstable.

We next briefly discuss the modes of instability affecting the vortex arrays. The vortex
displacement x̂i for the most amplified mode is shown in Fig. 3 for ri = 0.5 re and various values
of n. Recall that, since σ ∈ C, the displacement x̂i = (x̂i, ŷi, 0) ∈ C3 in general. In all cases, the
modes instability are associated with vortices being moved away from its equilibrium position (a
stationary point in the reference frame rotating with the configuration). It is therefore related to the
topology of the local strain and shear exerted at the stationary points by the vortices. For n = 2
the most unstable mode has a growth rate σmax = σr ∈ R. The vortex displacement mode, also
real, does not coincide with a global rotation nor a global translation and disrupt the equilibrium
by making the vortices move relatively to each other. For n = 3 and ri = 0.5 re the most amplified
mode also corresponds to a real eigenvalue σmax = σr. The displacement mode mostly affects the
vortices of the inner ring whose strengths are κi ' −0.167κe, and make them mode outward (or
inward, depending on the sign of the perturbation). For n = 4, 6, 8, where the number of vortices
along each ring is even, the most unstable mode corresponds to the staggering of the vortices of
the inner ring, see Fig. 3. It should be noted that the staggering of the vortices along a single ring
of vortices is commonly observed for circular vortex arrays, see [35] and [36].
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Fig. 3. Description of the most unstable displacement mode for vortex arrays without central vortex. ∆z = 0
and ri = 0.5 re is all cases. The number n of vortices in the array is indicated in each panel. The black bullets
indicate the location xeq

i of the point vortices while the red arrow show the most unstable displacement mode
x̂i (real in these cases).

For odd values of n the situation may be more complex as shown in Fig. 4 for n = 9. First it
should be noted that there are numerous unstable modes for any value of ri/re (see the right panel of
Fig. 4 for n = 9). The growth rates σ of the modes appear as pairs of complex conjugate eigenvalues.
For ri/re = 0.5 the complex conjugate pair of modes corresponding to the most amplified mode
corresponds to a global rotation. The second most amplified mode mostly affects the vortices of the
inner array, disrupting the relative equilibrium. For larger ri/re the most amplified mode mostly
affects the inner ring, again disrupting the relative equilibrium. Qualitatively, similar results are
obtained for n = 5 and n = 7 (not shown).

We next briefly compare the stability properties of the three-dimensional QG arrays with the
ones of planar two-dimensional ones. To that purpose, and using similar techniques we have first
determined the equilibrium states for the arrays and studies their linear stability. Fig. 5 gives σ∗max
for the planar, two-dimensional vortex arrays. Qualitatively the results are very similar except for
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Fig. 4. Instability modes for ∆z = 0, n = 0 and no central vortex vs ri/re. Growth rates σr vs ri/re (left
panel). Displacement modes for ri/re = 0.5 (middle panel) and ri/re = 0.9 (right panel). The black bullets
indicate the location xeq

i of the point vortices while the arrows show the real part (red) and imaginary part
(blue) of the displacement modes x̂i for the pair of complex conjugate modes with the largest growth rate σr.
Same for the mode with the second largest growth rate with the green (real part) and yellow (imaginary part)
arrows.
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Fig. 5. Normalised maximum growth rate σ∗
max vs the radius ratio ri/re for the planar, two-dimensional

staggered vortex arrays without central vortex, and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid
blue), n = 5 (dotted black), n = 6 (dotted red), n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed
red).

the fact that the regions of stability are slightly shifted. In particular, as already pointed out by [35],
for ri = re and n = 3, the planar, two-dimensional vortex array is stable while its QG counter-part
is unstable.

Going back to the QG vortex arrays, we next investigate the influence of ∆ on the characteristics
of the equilibria and on their stability properties. We first look in detail at families of equilibria
for three values of the vertical offset ∆/re = 0.2, 0.4 and 0.8 before providing an overview in a
larger parameter space for ∆/re ∈ [0, 1]. Results for κ∗i , Ω∗ and σ∗max are presented in Fig. 6 for
∆ = 0.2 re, in Fig. 7 for ∆ = 0.4 re, and finally in Fig. 8 for ∆ = 0.8 re. Again, none of these arrays
contains a central vortex. For ∆ = 0.2 re, the qualitative trends are the same as for ∆ = 0. The
main difference is a slight shift of rc to a larger value for each n, see Fig. 6 and Table 1. We can
also notice an overall reduction of the normalised rotation velocity Ω∗, associated with the decrease
in the interaction intensity between the rings. This is due to their vertical separation, see Fig. 6
(middle panel). The qualitative structure of the unstable regions remains similar to the one for
∆ = 0 apart from a couple of noticeable differences. For n = 3, the small region of instability for
ri ' re, observed for ∆ = 0 disappears for ∆ = 0.2 re. Again, this can be related to the weakening
of the interaction between the two rings. The same is true for the narrow secondary region of
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Fig. 6. Normalised strength κ∗
i (left), normalised equilibrium rotation velocity Ω∗ vs ri/re (middle), and

normalised maximum growth rate σ∗
max (right) vs the radius ratio ri/re for vortex arrays with no central

vortex (q0 = 0), ∆ = 0.2 and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted
black), n = 6 (dotted red), n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed red).

0.00 0.25 0.50 0.75 1.00

ri/re

−1.0

−0.5

0.0

0.5

1.0

κ
∗ i

0.0 0.2 0.4 0.6 0.8 1.0

ri/re

−4

−2

0

2

4

6

8

Ω
∗

0.0 0.2 0.4 0.6 0.8 1.0

ri/re

0

5

10

15

20

25

30

σ
∗ m
a
x

Fig. 7. Normalised strength κ∗
i (left), normalised equilibrium rotation velocity Ω∗ vs ri/re (middle), and

normalised maximum growth rate σ∗
max (right) vs the radius ratio ri/re (right) for vortex arrays with no

central vortex (q0 = 0), ∆ = 0.4 and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted
black), n = 6 (dotted red), n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed red).

instability observed in the range 0.602 re ≤ ri ≤ 0.613 re for ∆ = 0. No such region is found for
∆ = 0.2 re. For n = 4, the narrow region of stable equilibria for 0.641 re ≤ ri ≤ 0.656 re, located
between the the main regions of unstable arrays is slightly wider that the equivalent one observed
for ∆ = 0 and occurs in a range of slightly larger radii. This is associated with the shift of rc to a
larger value. The qualitative differences for the other values of n are less noticeable. The limits in ri
separating the regions of stability/instability are slightly shifted towards higher values of ri and the
growth rates of the modes are marginally smaller when ∆ 6= 0. Increasing ∆ further to ∆ = 0.4 re
leads to more substantial differences from the arrays having ∆ = 0. The values of rc increase, see
Fig. 7 and Table 1, and overall the normalised rotation velocity Ω∗ and the normalised growth rates
σ∗max are smaller. The most striking differences are κ∗i (ri/re) and Ω∗(ri/re) for n = 4. Now κ∗i → −1
as ri → r−c and κ∗i → 1 as ri → r+c . The opposite occurs for ∆ = 0 and for ∆ = 0.2. This means
that the sign of the strength of the vortices along the inner ring has changed compared to the cases
with lower ∆ in the vicinity of rc. The behaviour of κ∗i for both ri → 0 and ri → 1 however remains
qualitatively similar to the previous cases. A second qualitative difference is the appearance of two
further discontinuous changes in κ∗i as a function of ri/re for n = 8 and 9. For n = 8, κ∗i → −1
(κi < 0 and |κi| � κe) as ri/re → 0.969− and κ∗i → 1 (κi � κe) as ri/re → 0.969+. For n = 9 the

same behaviour happens around ri/re ' 0.913. In both cases, we still recover κ∗i → 1/
√

2 as ri → re.
For ∆ = 0.8 re, more qualitative differences are observed. First, the curves κ∗i (ri/re) are continuous
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Fig. 8. Normalised strength κ∗
i vs the radius ratio ri/re (left) and the normalised equilibrium rotation velocity

Ω∗ vs ri/re (right) for vortex arrays with no central vortex (q0 = 0), ∆ = 0.8 and for n = 2 (solid black), n = 3
(solid red), n = 4 (solid blue), n = 5 (dotted black), n = 6 (dotted red), n = 7 (dotted blue), n = 8 (dashed
black), n = 9 (dashed red).

in the full range [0, 1] for n ≥ 4. This is the result of the continuous increase of rc as ∆ is increased.
For n = 4, this implies the disappearance of the region of instability observed for smaller ∆ for
ri > rc. It also means that the very narrow region of stability observed for ri → r−c for smaller ∆
also disappears.

Fig. 9. Normalised strength κ∗
i for vortex arrays without central vortex in the plane (ri/re,∆) for ri/re ∈ [0, 1]

and ∆/re ∈ [0, 1]. From left to right then first row to second row: n = 2, 3, 4, 5, 6, 7, 8 and 9.

We finally provide a complete overview of the characteristics of the vortex arrays without a
central vortex by providing the full fields κ∗i (ri/re,∆) for 0 ≤ ri/re ≤ 1 and 0 ≤ zi/re ≤ 1, using
1000 uniformly-spaced values for both parameters, in Fig. 9, Ω∗(ri/re,∆) in Fig. 10 and σ∗max in
Fig. 11. The figures confirm the general trends analysed above by detailing the four cross-sections
for fixed values of ∆.

2.2. Vortex arrays with a central vortex: N = 2n+ 1

We next investigate the influence of the addition of a central vortex on the characteristics
of the equilibria and on their linear stability. The introduction of a central vortex adds two
parameters: its strength κ0 and its height z0. A comprehensive analysis of the full parameter space
(n, ri/re,∆, q0, z0) is out of reach.
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Fig. 10. Normalised rotation velocity Ω∗ for vortex arrays without central vortex in the plane (ri/re,∆) for
ri/re ∈ [0, 1] and ∆/re ∈ [0, 1]. From left to right then first row to second row: n = 2, 3, 4, 5, 6, 7, 8 and 9.

Fig. 11. Normalised maximum growth rate σ∗
max for vortex arrays without central vortex in the plane

(ri/re,∆) for ri/re ∈ [0, 1] and ∆/re ∈ [0, 1]. From left to right then first row to second row: n =
2, 3, 4, 5, 6, 7, 8 and 9.

For simplicity, we restrict attention to vortex arrays with ∆ = 0 in the rest of the section.
We start by considering vortex arrays with z0 = 0 and κ0/κe = 0.5 and we vary 0 ≤ ri/re ≤ 1 for
2 ≤ n ≤ 9. Results are presented in Fig. 12. First, it should be noted that the location (or existence)
of the critical radius rc remains unchanged as it does not depend on the central vortex. The central
vortex however modifies κ∗i and Ω∗ by affecting the rotation of both rings. It also affects the stability
of the rings, as already shown for a single ring [13, 35, 37]. First, we see that limri→0 κ

∗
i 6= 0. But

we recover limri→re κ
∗
i = 1/

√
2, corresponding to a single ring of 2n equal-strength vortices. The

presence of the positive strength vortex also changes the sign of κ∗i for n = 4 and small ri. The
stability properties of the vortex arrays are also changed. The family of equilibria for n = 2 is
unstable over a wider range of ri compared to the case with no central vortex. For n = 3 the region
of instability starts from ri → 0, with limri→0 σ

∗
max = 0 in contrast with case without a central

vortex for which the region of small ri is stable. We should note however that the sign of the
vortices in the inner ring is different in the two cases. For n ≥ 4, the array is strongly unstable for
small ri with much larger σ∗max compared to the array without a central vortex. The introduction of

REGULAR AND CHAOTIC DYNAMICS Vol. 00 No. 0 0000



12 Jean Reinaud

0.00 0.25 0.50 0.75 1.00

ri/re

−1.0

−0.5

0.0

0.5

1.0

κ
∗ i

0.0 0.2 0.4 0.6 0.8 1.0

ri/re

−10

−5

0

5

10

Ω
∗

0.0 0.2 0.4 0.6 0.8 1.0

ri/re

0

10

20

30

40

50

60

70

80

σ
∗ m
a
x

Fig. 12. Normalised strength κ∗
i vs the radius ratio ri/re (left) and the normalised equilibrium rotation

velocity Ω∗ vs ri/re (right) for vortex arrays with ∆ = 0, a central vortex at z0 = 0 and strength κ0 = κe/2
and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted black), n = 6 (dotted red),
n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed red).

a central vortex has created a wider range of stable arrays for intermediate radii, 0.6 ≤ ri/re ≤ 0.685
for n = 4. It has also created small stable regions for larger n. For example, even for n = 9 the arrays
for 0.436 ≤ ri/re ≤ 0.488 are stable, while all equilibria for n = 9, ∆ = 0 and no central vortex are
unstable.
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Fig. 13. Normalised strength κ∗
i vs the radius ratio ri/re (left) and the normalised equilibrium rotation

velocity Ω∗ vs ri/re (right) for vortex arrays with ∆ = 0, a central vortex at z0 = 0 and strength κ0 = κe and
for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted black), n = 6 (dotted red), n = 7
(dotted blue), n = 8 (dashed black), n = 9 (dashed red).

For κ0 = κe, the trends are similar but accentuated. Results are presented in Fig 13. For n = 9,
the range of ri for which the array is stable is extended to 0.4485 ≤ ri/re ≤ 0.547, and is almost
twice as wide as for κ0 = κe/2. Note that the region of stability has also shifted toward larger ri.
For n = 4 all arrays are now stable for ri ≥ 0.597. On the other hand, the region of stability for
n = 2 is drastically reduced, and stable arrays are only found for ri/re ≥ 0.963.

Changing the sign of the central vortex fundamentally changes the characteristics and the linear
stability of the arrays. Results for κ0 = −κe are presented in Fig. 14. The normalised strength κ∗i
increases monotonically as ri increases for all values of n considered, both for ri < rc and ri > rc.
As for the other cases, limri→re κ

∗
i = 1/

√
2. We also note that κ∗i > 0 for small ri. The opposite is

true in the two cases with κ0 > 0 discussed previously. It should be noted however that the total
vortex strength in the central region, obtained by adding the strength of the central vortex and
the strengths of the vortices of the inner ring is not zero, even in the limit ri → 0. The stability
properties of the arrays are also different and the regions of stability are typically smaller. For
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Fig. 14. Normalised strength κ∗
i vs the radius ratio ri/re (left) and the normalised equilibrium rotation

velocity Ω∗ vs ri/re (right) for vortex arrays with ∆ = 0, a central vortex at z0 = 0 and strength κ0 = −κe

and for n = 2 (solid black), n = 3 (solid red), n = 4 (solid blue), n = 5 (dotted black), n = 6 (dotted red),
n = 7 (dotted blue), n = 8 (dashed black), n = 9 (dashed red).

example, all arrays for n = 2 are unstable. Moreover, in contrast with all other cases discussed for
κ0 > 0, the arrays for n = 3 are unstable as ri → re. Arrays with n = 4 and 5 have only a narrow
region of stability of intermediate values of ri/re. All arrays for n ≥ 6 are unstable.

Fig. 15. Normalised strength κ∗
i for vortex arrays with a central vortex in the plane (q0, z0) for q0 ∈ [−5, 5] and

z0/re ∈ [0, 1] when ∆ = 0 and ri/re = 0.5. From left to right then first row to second row: n = 2, 3, 4, 5, 6, 7, 8
and 9.

We finally present an overview for two sets of families of equilibria with ∆ = 0 and for fixed ri/re.
Fig. 15 shows the normalised strength κ∗i in the plane (κ0/κe, z0/re) for ri/re = 0.5. Fig. 16 shows
the normalised rotation velocity Ω∗ and Fig. 17 shows σ∗max for the same equilibria. Similarly, Figs.
18, 19 and 20 show the same fields for ri/re = 0.8. In both cases we consider 1000 values of κ0/κe
uniformly spaced between −5 and 5, and 1000 values of z0/re uniformly spaced between 0 and 1.
For ∆ = 0, the value ri = 0.5 re is less than rc while the value ri = 0.8 re is larger than rc, for all n
considered. For all ri = 0.5 re and all z0, κ

∗
i decreases as κ0/κe goes from −5 to 5. As z0 increases

the amplitude of the variation decreases, indicating the weakening of the influence of the central
vortex as it is moved away from the two rings. This appears to be more pronounced for large n. For
larger n the vortices on the rings are closer together and interact more strongly together. Th central
vortex has less relative influence. As expected, the trend for Ω∗ is the same as it is closely linked to
κ∗i . For n = 2, the system is strongly unstable if the central vortex is intense (|q0| large) and close
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Fig. 16. Normalised rotation velocity Ω∗ for vortex arrays with a central vortex in the plane (q0, z0) for
q0 ∈ [−5, 5] and z/re ∈ [0, 1] when ∆ = 0 and ri/re = 0.5. From left to right then first row to second row:
n = 2, 3, 4, 5, 6, 7, 8 and 9.

Fig. 17. Normalised maximum growth rate σ∗
max for vortex arrays without central vortex in the plane (q0, z0)

for q0 ∈ [−5, 5] and z0/re ∈ [0, 1] when ∆ = 0 and ri/re = 0.5. From left to right then first row to second row:
n = 2, 3, 4, 5, 6, 7, 8 and 9.

to the horizontal plane of the rings (z0 small). Stability and weak instability can be achieved for
a weak central vortex or if the central vortex is located sufficiently far above the plane containing
both rings. The situation changes for n = 3 where stability can be achieved for strong central vortex
close to the rings. For n ≥ 4, the linear stability of the arrays are qualitatively similar. Stability or
weak instability is reached if the positive central vortex has a moderate influence on the ring. This
is the case for small, positive κ0 when z0 is small and for increasing κ0 as z0 increases. In these
cases the vortices on both rings are also positive. For ri/re = 0.8 > rc/re, the variation of κ∗i vs
κ0 is reversed. It goes from negative values to positive values as κ0/κe goes from −5 to 5. Again,
the variation decreases as z0 increases. Arrays of n = 2 vortices are unstable. For n = 3, stability is
reached if κ0 is larger than a negative threshold, which decreases as z0 increases. For n = 4, arrays
are stable if κ0 is larger than a positive threshold which increases as z0 increases. For n = 5, arrays
can be stable for an intense central vortex close to the plane of the rings. All arrays are unstable
for n ≥ 6, at least within the range of parameters considered. Additional numerical experiments
(not shown) indicate that stability can however be reached for in a finite range of larger |κ0|.
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Fig. 18. Normalised strength κ∗
i for vortex arrays with a central vortex in the plane (κ0/κi, z0/re) for

κ0/κe ∈ [−5, 5] and z0/re ∈ [0, 1] when ∆ = 0 and ri/re = 0.8. From left to right then first row to second
row: n = 2, 3, 4, 5, 6, 7, 8 and 9.

Fig. 19. Normalised rotation velocity Ω∗ for vortex arrays with a central vortex in the plane (κ0/κe, z0/re)
for κ0/κe ∈ [−5, 5] and z0/re ∈ [0, 1] when ∆ = 0 and ri/re = 0.8. From left to right then first row to second
row: n = 2, 3, 4, 5, 6, 7, 8 and 9.

3. NONLINEAR EVOLUTION

We next show examples of the nonlinear evolution of unstable vortex arrays. Some comments on
accuracy are presented in the Appendix. The vortex locations xi, 1 ≤ i ≤ N are marched in time
using a fourth-order Runge-Kutta scheme. All trajectories are plotted in a reference frame uniformly
rotating at the angular velocity Ω of the equilibrium. Hence for a stable equilibrium the vortices
remain still. Perturbations are not imposed and they solely arise from the small numerical noise.
This includes the finite accuracy of the value of κ∗i for the equilibrium which is first determined
numerically. We present a selection of cases where the vortices of the array have either a quasi-
periodic or quasi-regular trajectories as well as cases where their motion appears to be chaotic.
Recall that all arrays considered contain at least four vortices.

Fig. 21 shows the trajectories of the point vortices in the array with ∆ = 0 for n = 2, ri = 0.2 re
and no central vortex. The figure also shows the evolution of the distance d3 = |x3| between vortex
3, which belongs to the inner ring, and the origin. The equilibrium is unstable. There is first a
transient phase where the vortices remain close to their equilibrium location. During this phase
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Fig. 20. Normalised maximum growth rate σ∗
max for vortex arrays without central vortex in the plane

(κ0/κe, z0/re) for κ0/κe ∈ [−5, 5] and z0/re ∈ [0, 1] whens ∆ = 0 and ri/re = 0.8. From left to right then
first row to second row: n = 2, 3, 4, 5, 6, 7, 8 and 9.
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Fig. 21. Top view on the nonlinear evolution of the vortex array without central vortex and ∆ = 0 for
n = 2, ri = 0.2 re, tmax = 30 (left). Distance d3 = |x3| vs time t for 0 ≤ t ≤ 150 (right).

perturbations build up from the small numerical noise. Then the vortices commence a quasi-periodic
motion, recovering periodically a near equilibrium configuration. Eventually, asymmetries build up
from the numerical noise and the late time evolution becomes irregular as hinted by the evolution
of d3.

Fig. 22 shows the evolution of two other unstable arrays without a central vortex for ∆ = 0. The
first array has n = 3 and ri/re = 0.5. The three vortices of the inner ring first exchange location,
with vortex 4 moving to the initial location of vortex 6, vortex 6 to the initial location of vortex 5
and vortex 5 to the one of vortex 4. This motion perturbs the rest of the array and all vortices move
in a more convoluted pattern which becomes increasingly asymmetric. The second array has n = 4,
and ri = 0.7 re. In this case the vortices of the inner ring have κi ' 1.79× 10−2κe. This means that
the vortices of the inner ring have a small strength in magnitude compared to the vortices of the
outer ring and are almost passively advected. The vortices of the inner ring nearly move along the
streamlines created by the strong outer vortex quartet, in the reference frame rotating with the
equilibrium. The outer vortices slowly drift as a consequence of small perturbations induced by the
moving weak inner vortices.

For comparison, we show the nonlinear evolution of equilibrium planar, two-dimensional vortex
arrays for the same vortex numbers and same radius ratio ri/re as the three examples detailed
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Fig. 22. Top view of the nonlinear evolution of vortex arrays without central vortex and ∆ = 0 for
n = 3, ri/re = 0.5, tmax = 15 (left) and for n = 4, ri = 0.7 re, tmax = 15 (right).
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Fig. 23. View on the nonlinear evolution of planar, two-dimensional unstable arrays with no central vortex
for n = 2 and ri/rr = 0.2 (left panel), n = 3 and ri/re = 0.5 (middle panel) and n = 4 and ri/re = 0.5 (right
panel).

above. Note that however, since the Green’s function is different, the strength ratios κi/κe and
the background rotation Ω for the equilibria differ between the two-dimensional and the QG cases.
Recall indeed that the velocity induced by a planar two-dimensional vortex (an infinite vortex line in
the three-dimensional space) decays as the inverse distance between the vortex and the evaluation
point while it is the distance squared in the QG case. Hence the configurations of planar, two-
dimensional arrays and the QG arrays (with ∆ = 0) are not identical for a given n and ri/re. For
n = 2 and ri/re = 0.2 the nonlinear evolution of the planar two-dimensional arrays and the QG
arrays are qualitatively similar. The quasi-periodic quasi semi-circular trajectories of the vortices
has radii of curvature smaller for the QG array than the ones for the planar two-dimensional array.
The same is true for n = 3 and ri/re. In both cases, the strength of the vortices of the inner ring
is less, in magnitude, in the QG case compared to the one of the planar, two-dimensional case. For
n = 4 and ri/re the two-dimensional vortex array is more sensitive to chaotic dynamics.

Going back to the QG vortex arrays, Fig. 24 shows the chaotic motion of the vortices of the
unstable array with n = 5, ∆ = 0, ri = 0.5 re and no central vortex. The evolution of the distance
d1 = |x1| confirms the erratic motion of the point vortices.

Figure 25 shows example of the chaotic motion of the vortices for three unstable vortex arrays
with no central vortex and n = 4 and ∆ = 0.2 re, n = 5 and ∆ = 0.2 re, and finally n = 9 and
∆ = 0.4 re. In all three cases ri = 0.5 re. For n = 4, the initial evolution conserves some symmetries.
For the two other cases presented, with a larger, odd number of vortices along the rings, symmetries
are broken early. Recall that these vortex arrays are typically sensitive to numerous unstable modes
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Fig. 24. Top view of the nonlinear evolution of the vortex array without central vortex and ∆ = 0 for
n = 5, ri = 0.5 re, tmax = 6.25 (left). Distance d1 = |x1| vs time t for 0 ≤ t ≤ 60 (right).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Fig. 25. Top view of the nonlinear evolution of the vortex array without central vortex and ∆ = 0.2 re and
ri = 0.5 re and for n = 4 (left) and n = 5(middle). The right panel shows the nonlinear evolution of the vortex
array with n = 9 ri/re = 0.5 and ∆ = 0.4 re.

which can all compete. These examples show that, qualitatively, the same regimes of nonlinear
motions can be observed in arrays with ∆ 6= 0.

We finally consider another case where the early evolution of the vortices exhibits a regular
behaviour before becoming chaotic. We consider the unstable vortex array with a central vortex for
n = 9, ∆ = 0, ri/re = 0.8, κ0 = κe, z0 = 0. A top view of the vortex trajectories is shown in Fig.
26 while Fig. 27 shows the evolution of d1 = |x1|. In this case, the vortices of the inner ring have
strength κi ' −0.92κe. Hence the vortices of the two rings have an opposite strength of comparable
magnitude. This provides the conditions for the formation of vortex dipoles. Indeed, the instability
first makes each vortex of the inner ring move closer to one of the vortices of the outer ring, forming
a vortex dipole. The dipoles then move away from the centre of the domain. The vortex dipoles
reach an apogee at t = 2.17, see the right panel of Fig. 26 and Fig. 27. The vortex dipoles then
converge back to the configuration in relative equilibrium, see the middle panel of Fig. 26 and
Fig. 27. Then each inner vortex moves on the other side of an outer vortex while the outer vortex
shifts one place in the array. Both motions are clockwise, see the right panel of Fig. 26. The latter
sequence repeats three times, see Fig. 27. Then the vortices form dipoles again which move outward
as indicated by the increase of d1 in Fig. 27 from t & 5.5. By the time the dipoles move back inward
for t & 6.55, asymmetries due to numerical noise have built up. The symmetry breaking eventually
induces an erratic vortex motion (not shown).
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Fig. 26. Top view of the nonlinear evolution of the vortex array with a central vortex for n = 9, ∆ = 0,
ri/re = 0.8, κ0 = κe, z0 = 0. Trajectories for 0 ≤ t ≤ 21.7 (left), 21.7 ≤ t ≤ 33 (middle), 33 ≤ t ≤ 39.1. In each
panel the bullet indicates the starting location in the time window shown.
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Fig. 27. Distance d1 = |x1| vs time t for the vortex array with a central vortex for n = 9, ∆ = 0, ri/re = 0.8,
κ0 = κe, z0 = 0.

4. CONCLUSIONS

We have determined relative equilibria for staggered vortex arrays in a dynamical regime relevant
to the oceans. Some equilibria are stable, others are unstable. Our results however suggest that it
is possible to find stable configurations for all numbers of vortices n especially if the array contains
a central vortex. This may help to explain the apparent robustness of the staggered eight-vortex
array (n = 4) having a central vortex observed over the north pole of Jupiter [41].

The nonlinear evolution of unstable arrays exhibits an extremely rich dynamics and deserves
further investigation. Another natural extension of this work is to consider finite volume vortices
and to investigate how the vortex deformation influences the evolution. Despite being a classical
problem which has already been extensively studied in the literature, the dynamical richness offered
by vortex arrays still provides new directions for future study.

APPENDIX. INVARIANTS AND ACCURACY

We briefly discuss the accuracy of the calculations. To that purpose, we verify that the flow
invariants are respected within acceptable limits for the practical relevance of the discussion.
Similarly to the classical planar, two-dimensional vortex dynamics, the QG vortex dynamics
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conserves some fundamental invariants, namely the linear impulse I, defined for a set of discrete
point vortices as

I = (Ix, Iy) =
N∑
i=1

κi (xi, yi), (A.1)

the angular impulse

J =
1

2

N∑
i=1

κi (x2i + y2i ), (A.2)

and the interaction energy (which is also the Hamiltonian of the system)

H =
N∑
i=1

N∑
j=i+1

κiκj
|xi − xj |

(A.3)
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Fig. 28. Evolution of the linear impulse Ix, Iy and the scaled angular impulse J/J0 and interaction energy
H/H0 for the case shown in Fig. 21 with n = 2 ∆z = 0, ri/re = 0.2 and no central vortex (top panels) and
for n = 9, ri/re = 0.8, and a central vortex (κ0, z0) = (1, 0).
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Figure 28 shows the evolution of the linear impulses Ix, Iy and of the scaled angular impulse J/J0
and interaction energy H/H0 for the case presented in Fig. 21 with n = 2, ∆ = 0, ri/re = 0.2 and no
central vortex (top panels) and for n = 9, ∆ = 0, ri/re = 0.8, and a central vortex (κ0, z0) = (1, 0)
presented in Fig. 26. Here J0 and H0 are the initial values of the angular impulse and the interaction
energy respectively. Results show that the linear impulse (initially zero by symmetry) is conserved
within machine precision. Angular impulse J is conserved within 0.012% for the case with n = 2
while the energy is conserved with 0.2% for a time step ∆t = 0.075 which is enough for the purpose
of the discussion. In particular, for the initial evolution t < 50 (which includes the first phases of
the non-trivial unstable evolution), accuracy is much higher. For n = 9 accuracy is higher as the
time step used is smaller ∆t = 0.0025 (the vortex velocities are larger in this case). Small errors are
associated with the finite accuracy of the time integration, especially when some vortices get close
together and their velocity increases. For long integration periods, these errors could be mitigated
by using an adaptive time step. We are however only interested in the early evolution of the arrays.
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