Application of NMR Crystallography to Highly Disordered Templated Materials: Extensive Local Structural Disorder in the Gallophosphate GaPO-34A

Sharon E. Ashbrook a, Daniel M. Dawson a, Zhehong Gan b, Joseph E. Hooper a, Ivan Hung b, Laurie E. Macfarlane a, David McKay a, Lucy K. McLeod c, and Richard I. Walton c

a. School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
b. Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310
c. Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

ABSTRACT: We present an NMR crystallographic investigation of two as-made forms of the recently characterised gallophosphate GaPO-34A, which has an unusual framework composition with a Ga : P ratio of 7 : 6 and contains both hydroxide and fluoride anions and either 1-methylimidazolium or pyridinium as the structure-directing agent. We combine previously reported X-ray crystallographic data with solid-state NMR spectroscopy and periodic density functional theory (DFT) calculations to show that the structure contains at least three distinct types of disorder (occupational, compositional and dynamic). The occupational disorder arises from the presence of six anion sites per unit cell, but a total occupancy of these of five, leading to full occupancy of four sites and partial occupancy of the fifth and sixth (which are related by symmetry). The mixture of OH and F present leads to compositional disorder on the occupied anion sites, although the occupancy of some sites by F is calculated to be energetically unfavorable and signals relating to F on these sites are not observed by NMR spectroscopy, confirming that the compositional disorder is not random. Finally, a combination of high-field 71Ga NMR spectroscopy and variable-temperature 13C and 31P NMR experiments shows that the structure directing agents are dynamic on the microsecond timescale, which can be supported by averaging the 31P chemical shifts calculated with the SDA in different orientations. This demonstrates the value of an NMR crystallographic approach, particularly in the case of highly disordered crystalline materials, where the growth of large single crystals for conventional structure determination may not be possible owing to the extent of disorder present.

Introduction

Solid-state NMR spectroscopy has long been recognized as a sensitive probe of atomic-scale local structure in materials and of dynamic processes occurring over timescales that vary from nanoseconds to days. However, in many materials the presence of disorder (spatial, compositional or temporal) leads to complex spectral lineshapes that can be challenging to interpret. In recent years this has led to the development of periodic density functional theory (DFT) codes that can accurately predict NMR parameters from structural models. However, such models are typically based on manual or random modifications of experimentally-derived average structures, and usually need to be optimized before a good match is obtained with experimental NMR parameters. This approach of combining NMR spectroscopy and computational models to provide structural information not readily available from the length-averaged diffraction approaches (or simply in the absence of data from diffraction experiments) has become known as NMR (or SMARTER) crystallography. In recent years NMR crystallography (with varying levels of input from diffraction-based crystallography) has been applied to great effect on systems including organic solids, porous materials and dense phases. Porous materials have been a particular focus of NMR crystallography, as these typically comprise a reasonably well-ordered periodic framework but with pore contents that often exhibit little order on the time and length scales required for diffraction experiments. This is relevant for their practical applications where exchange of, or reactions involving, extra-framework species are the basis of molecular sieving and catalysis. In favorable cases, as demonstrated by Brouwer and co-workers for SiO2 zeolites, NMR crystallography can be used to determine the framework topology and atomic coordinates of microporous materials with minimal (or even no) input from diffraction experiments. However, it is more common that some structural information is known from diffraction but, owing to either disorder or small/poor
quality crystals, it may not be possible to provide a complete picture and NMR crystallography is required to obtain a truly atomic-level description of the structure. This additional information may include the detailed distribution of different cations or anions occupying the same crystallographic sites (compositional disorder),24–26 the populations and orientations of species exhibiting spatial disorder,28,34,35 and information on the type and timescales of motional processes (temporal disorder).36,37

The synthesis of the gallophosphate, GaPO-34A, was first noted by Schott-Darie et al.,38 who identified it as an impurity phase in the synthesis of GaPO-34 (chabazite-type framework). More recently, we were able to report a reliable synthetic procedure and the crystal structure of two forms GaPO-34A,39 which can be formed from the same precursor gel as GaPO-34, depending on the time for which the gel is aged at room temperature prior to hydrothermal treatment. Prior to the structure being determined by diffraction, multinuclear NMR spectra were also recorded,40 which provided important information such as the rather unusual framework stoichiometry (Ga: P ratio of 7 : 6), consistent with elemental analysis, ultimately helping to lead to the structure solution. In our earlier publication, we reported some initial NMR spectra and noted that they indicated the presence of some disorder in the material (as also indicated by the crystallographic measurements carried out). Here, we provide an in-depth multinuclear NMR investigation, combined with DFT calculations, to provide detail beyond that available from the average diffraction structure. GaPO-34A provides a particularly complex and interesting example for NMR crystallography, exhibiting compositional and occupational disorder of OH and F anions (leading to positional disorder of some framework atoms) and dynamic disorder of the structure directing agent (SDA) molecules.

Experimental Details

Synthesis

GaPO-34A was prepared as described previously39 with pyridine (py) or 1-methylimidazole (mim) as the SDA, yielding GaPO-34A[pyH] and GaPO-34A[mimH], respectively. A precursor gel of composition 1 Ga: O : 2 H3PO4 : 1 HF : 70 H2O : 1.7 SDA was prepared in the Teflon liner of a 25 mL autoclave and stirred at room temperature for 1 h. As previously reported, this short aging time is critical for the formation of GaPO-34A, with longer aging times leading to CHA-type GaPO-34.39 The autoclave was then sealed and heated to 170 °C for 24 h. After cooling to room temperature, the white powder was collected by suction filtration, washed with copious amounts of deionized water and dried at 70 °C in air overnight.

NMR Spectroscopy

Solid-state NMR spectra were recorded using Bruker Avance III spectrometers equipped with either 9.4 T or 14.1 T wide-bore superconducting magnets (31P Larmor frequencies of 400.13 and 600.13 MHz, respectively) at the University of St Andrews, at the UK 850 MHz solid-state NMR facility using a Bruker Avance II spectrometer equipped with a 20.0 T wide-bore superconducting magnet (‘H Larmor frequency of 850.13 MHz), or at the National High Magnetic Field Laboratory of the US using the 36 T Series-Connected-Hybrid (SCH) magnet and a Bruker Avance NEO Console. Details of the SCH magnet, field regulation using an external ‘Li lock system and operation of the SCH are described elsewhere.31 For 71Ga NMR measurement, the SCH magnet was operated at a lower 34.1 T field due to the limit of tuning frequency of the home-built 3.2 mm MAS being used, 13C and 31P NMR spectra were recorded with cross polarization (CP) from ‘H. Key experimental details are given in the figure captions and full details are provided in the Supporting Information (S1). Chemical shifts are reported in ppm relative to (CH3)4Si (1H and 13C), CFCl3 (19F), 85% aqueous H3PO4 (21P) and 0.1 M aqueous Ga(NO3)3 (71Ga) using L-alanine (δ(NH3) = 8.5 ppm, δ(CH3) = 20.5 ppm), poly(tetrafluoroethylene) (δ(19F) = –122.7 ppm), BPO4 (δ(21P) = –29.6 ppm) and GaPO4 berlinite (71Ga δiso = 111.2 ppm, C0 = 8.8 MHz, η0 = 0.46) as secondary solid references. On the SCH, the 71Ga chemical shift reference was calibrated externally through 15O signal of D2O using the method described by Harris et al.42 (and references therein).

DFT Calculations

DFT calculations were carried out using CASTEP 18.1,43 employing the GPAW approach44 to reconstruct the all-electron wavefunction in the presence of a magnetic field. Calculations were performed using the GGA PBE functional,45 with dispersion corrections using the scheme of Tkatchenko and Scheffler.46,47 Ultrasoft pseudopotentials were used with the inclusion of ZORA scalar relativistic effects, with a modified pseudopotential48 for Ga. A planewave energy cutoff of 60 Ry (~816 eV) was used, and integrals over the first Brillouin zone were performed using a Monkhorst-Pack grid49 with a k-point spacing of 0.03 or 0.04 2π Å−1. Optimization of atomic coordinates and unit cell parameters was carried out prior to calculating NMR parameters. Calculations were performed on a computing cluster at the University of St Andrews, consisting of 90 32-core Intel Broadwell nodes, Infiniband FDR interconnect and a 300 TB GPFS distributed filesystem. Typical calculation times were ~20 h (geometry optimization) and ~1 h (NMR parameters), using 192 cores. Isotropic shielings, δiso, were obtained from the trace of the absolute shielding tensor, σ, and isotropic chemical shifts, δiso, were given by δiso = (σiso – σref)/μ, where the values used for σref and μ were 37.62 ppm and 1.763 for 19F, and 287.1 ppm and 1.165 for 31P. The quadrupolar coupling constant, C0 = eQ/Vzz/f, and the asymmetry parameter, η0 = (Vxx – Vyy)/Vzz, are obtained directly from the principal components of the electric field gradient tensor, V. Q is the nuclear quadrupole moment, for which values of 146.6 and 107 mb were used for 27Al and 71Ga.50

Results and Discussion

The Average Structure of GaPO-34A

Figure 1 shows representations of the experimental crystal structures of GaPO-34A[pyH] (from single-crystal
Atoms are colored with C = black, N = pale blue (orientation A of the SDA, 50% refined occupancy), C = purple, N = teal (orientation B of the SDA, 33% refined occupancy), framework O = red, hydroxyl O = cyan, water O = dark blue, F1 = green (100% refined occupancy), F3 = dark green (33% refined occupancy), P = grey, Ga = orange, Ga3A = brown (33% refined occupancy). H atoms are not shown or not located (see ref 39 for further details of the crystal structures). The atom numbering scheme shown assumes that site F3 is vacant: when occupied, the adjacent F1 is termed F2 and the P and Ga sites on the same side of the unit cell are labelled with "A" and, the position of Ga3A is different from that of Ga3, as described in more detail in the text.

Figure 1. Experimental crystal structures of (a) GaPO-34A[mimH] and (b) GaPO-34A[pyH]. Atoms are colored with C = black, N = pale blue (orientation A of the SDA, 50% refined occupancy), C = purple, N = teal (orientation B of the SDA, 33% refined occupancy), framework O = red, hydroxyl O = cyan, water O = dark blue, F1 = green (100% refined occupancy), F3 = dark green (33% refined occupancy), P = grey, Ga = orange, Ga3A = brown (33% refined occupancy). H atoms are not shown or not located (see ref 39 for further details of the crystal structures). The atom numbering scheme shown assumes that site F3 is vacant: when occupied, the adjacent F1 is termed F2 and the P and Ga sites on the same side of the unit cell are labelled with "A" and, the position of Ga3A is different from that of Ga3, as described in more detail in the text.

Laboratory X-ray diffraction and GaPO-34A[pyH] (from powder synchrotron diffraction) previously reported by Broom et al.⁵⁹ The framework topology is analogous to that of DIPYR-GaPO, reported by Weigel et al.,⁵¹ although the shapes of the pores in the framework varies significantly depending on the SDA present. The crystal structure determined for GaPO-34A[mimH] contains three distinct P atoms and four distinct Ga atoms, with the inversion center at Ga4 giving a 6:7 ratio of P:Ga. In the average crystal structure, there are two types of framework-bound F anions: F1, which bridges between Ga1 and Ga4, and F3, which bridges between Ga2 and Ga3. Ga3 was refined as having two possible positions, Ga3 and Ga3A, with 67% and 33% occupancy, respectively, and F3 was also refined as having 33% occupancy, indicating that Ga3A is associated with the presence of F3. F2 is formally related to F1 by inversion but occurs when the closest F3 site is vacant. The partially-occupied F3 site is shown in dark green in Figure 1a. Owing to the excess of Ga in the framework, all P atoms have four P-O-Ga linkages, as shown in Figure 2a, but this full condensation is not possible for the Ga atoms, which have a variety of coordination geometries and numbers, as shown in Figure 2b. Ga1 is octahedral, with three Ga-O-P linkages and one Ga-O-Ga linkage (again assumed to be OH). When F3 is occupied, Ga2 is pentacoordinate (denoted Ga2A), with an additional Ga-F-Ga linkage to Ga3A (although, unlike Ga3, the position of Ga2 was not refined as changing with the coordination number). Ga3 is tetrahedral and fully condensed, with four Ga-O-P linkages. When F3 is occupied, Ga3 is vacant and the adjacent pentacoordinate Ga3A site is occupied, with an additional Ga-F-Ga linkage to Ga2A. Ga4 is octahedral and fully condensed, with four Ga-O-P linkages and two Ga-F-Ga linkages to two different Ga1. The methylimidazolium SDA is refined as disordered over two sites, the first of which (termed orientation A) has 50% occupancy and the second of which (orientation B) has 33% occupancy, although it should be noted that there is 1.0 SDA per formula unit, with the remaining 17% occupying an ill-defined orientation that is not considered further in this work or in the published structure (see Supporting Information (S3) for more details). The second N atom on the imidazolium ring (N3) was not located by diffraction and so, in addition to the two orientations shown in Fig. 1, orientations A' and B' are possible, with the imidazolium rings rotated 180° about the H3-C-N bond. The remaining 17% of the anion required for charge balancing is assumed to be occupied on site F3 (to give 50% total occupancy for each of F3, Ga3 and Ga3A). The published crystal structure has a formula of Ga₄P₂O₆·(OH)₂·(H₂O)·F₅·2(mimH). The structure of GaPO-34A[pyH] was refined with a doubled a axis, compared to GaPO-34A[mimH], allowing the partial occupancy of F3 and the corresponding split-site Ga3 to be explicitly refined as two sites, each with 100% occupancy. The determined formula of Ga₄P₂O₆·(OH)₂·(H₂O)·F₅·2(pyH), is analogous to that of GaPO-34A[mimH]. However, both descriptions of the disorder are essentially equivalent and, to facilitate comparison of the analogous Ga and P species within the two frameworks, we will use the numbering scheme shown in Figures 1 and 2, rather than that originally published.

Figure 3a shows ¹H MAS NMR spectra of the two materials, with the resonances at high shift (12.5 and 13.4 ppm, for the mim, and pyr forms, respectively) confirming that, as expected, the SDAs are protonated in both cases. As shown
Figure 2. Local environments of the (a) P and (b) Ga sites in the structure of GaPO-34A[mimH] determined from diffraction. Atoms are colored with framework O = red, hydroxyl O = cyan, water O = dark blue, F = green, P = dark grey and Ga = orange. H atoms are not shown. Note that, for P1A, the adjacent F3 and OH are in different unit cells, so the presence of F3 does not determine whether P1 is adjacent to OH4 or OH5. For Ga3A, the position of Ga3 is shown as transparent.

The 1H NMR spectrum of GaPO-34A[pyH] is highly sensitive to the hydration state of the material and, as such, the following discussion relates only to the spectra of the “as prepared” forms GaPO-34A, which may contain additional molecules of water that have not been located in the crystal structure. The resonances of the SDAs are broadened relative to those for GaPO-34, confirming the presence of structural disorder within GaPO-34A. The 19F MAS NMR spectra of the two materials, shown in Figure 3c appear very similar, with a resonance centered at 113 ppm and two others between ~128 and ~134 ppm. These shifts are slightly lower than observed for GaPO-34, but still within the expected range for bridging Ga-F-Ga species (likely indicating a shorter Ga-F bond length in GaPO-34A). The presence of both OH and F suggests that the anion sublattice of GaPO-34A may exhibit compositional disorder (i.e., the anion sites could be occupied by F or OH), which is corroborated by the integrated intensity ratios of the 19F resonances (approximately 2 : 3 : 3 for GaPO-34A[mimH] and 1 : 1.2 : 4.5 and 6.5 ppm could be assigned to OH. The 13C CP MAS NMR spectra of the two materials, shown in Figure 3b, contain resonances in very similar positions to those for the same SDAs in GaPO-34. However, the resonances are broadened and split relative to those seen for GaPO-34, again confirming the presence of structural disorder within GaPO-34A. The 31P MAS NMR spectra of the two materials, shown in Figure 3d appear very similar, with a resonance centered at ~3.3 ppm and the resonances between 0 and 5 ppm.

Figure 3. Solid-state NMR spectra of Gap0-34A[pyH] (black): (a) 1H (14.1 T 55 kHz MAS), (b) 13C (CP 14.1 T 12.5 kHz MAS), (c) 19F (14.1 T 55 kHz MAS), (d) 31P (CP 14.1 T 14 kHz MAS 293 K), (e) 71Ga (20 T 50 kHz MAS) and (f) 71Ga (34.1 T, 18 kHz MAS). Asterisks (*) indicate spinning sidebands and daggers (†) indicate the position of the 71Ga signal from GaPO4 berlinite (~5% impurity in both samples). See Supporting Information (S1) for further experimental details.
1.9 for GaPO-34A[pyH]). The possible presence of disorder on the anion sites is investigated further below. Both materials contain a small amount of dense GaPO₄ berlinite (~5%), which gives rise to resonances in the ³¹P and ⁷¹Ga MAS NMR spectra. However, as reported by Broom et al. and discussed in the Figure S2.2, the ³¹P NMR spectra can be recorded with CP from H, which removes the signal from the aprotic dense phase, yet remains quantitative for the resonances from GaPO-34A. Figure 3d shows the ³¹P CP MAS NMR spectra of the two materials, which contain two resonances at higher shift (~2.8 and ~3.8 ppm for GaPO-34A[mimH]) and ~3.4 and ~4.6 ppm for GaPO-34A[pyH]) and a series of signals between ~6.6 and ~12.4 ppm in both cases. It is challenging even to decompose the overlapped spectral llineshapes into a reliable number of resonances, let alone obtain accurate integrals. However, it is clear from Figure 3d that more than six well-defined resonances are present in both spectra, as might be expected given the disordered nature of the structure. The effects of OH/F disorder on the anion sites in aluminophosphates (AlPOs) has been investigated by Martineau et al. for AlPO-Cl₂ and AlPO-CLO₂, with a Ga-bound OH anion leading to a ca. 1.5 ppm higher shift for connected P than F in the same site. Therefore, the splitting of the ³¹P resonances could be attributed at least partially to disorder on the anion site, as proposed above. While it has been demonstrated in aluminophosphates that low-power ²⁷Al decoupling can provide impressive resolution enhancement for ³¹P NMR spectra, such an approach is not as straightforward for GaPOs owing to the two NMR-active isotopes of Ga, ⁶⁷Ga (I = 3/2, 60.1% natural abundance) and ⁷¹Ga (I = 3/2, 39.9% natural abundance), both of which would need to be decoupled. In addition, both isotopes of Ga tend to have larger C than ²⁷Al, such that decoupling conditions would likely be more challenging. Such an approach would also be unlikely to yield significant resolution enhancement for a material as disordered as GaPO-34A, in which the linewidths are dominated by a chemical shift distribution.

The quadrupolar characteristic of ⁷¹Ga (I = 3/2) means that, despite a shift range here of ~200 ppm, the individual resonances are significantly broadened and overlapped even at an external field strength of 20.0 T (Figure 3e). Signals can be observed for tetrahedral, pentacoordinate and octahedral Ga (denoted Ga⁶, Ga⁷ and Ga⁹, respectively, spanning the shift ranges of 170 to 45, 45 to ~25 and ~25 to ~200 ppm) with an approximate integrated intensity ratio of 2.5 : 1 : 2.5 and 1.8 : 1 : 2 (for GaPO-34A[mimH] and GaPO-34A[pyH], respectively), in poor agreement with the anticipated intensities of 2 : 2 : 3 based on the published crystal structures. In an attempt to obtain higher resolution ⁷¹Ga NMR spectra were recorded at 34.1 T (but with slower MAS) and are shown in Figure 3f. Slightly different intensity ratios of 1.9 : 1.8 and 2.0 : 1.2, respectively, were obtained, suggesting that, even at these very high fields, spectral intensities have contributions from overlapping resonances and spinning sidebands. However, it should be noted that the broad resonances observed for ⁷¹Ga, even at 34.1 T, necessitate the use of a spin echo pulse sequence to minimize baseline distortions and the spectra are, consequently, not expected to be truly quantitative.

Anion Disorder in GaPO-34A

From the crystal structure and proposed formula of GaPO-34A, one would expect a ratio of F₁ : F₂ : F₃ of 1 : 1 : 1, which is in poor agreement with the intensities of the signals observed in the ¹⁹F NMR spectra. In addition to these different and unexpected intensity ratios, the signals at ~113 ppm in both materials have much slower spin-lattice relaxation than the other two signals, with time constants (T₁) summarized in Table 1. A ¹⁹F double-quantum (DQ) NMR spectrum of GaPO-34A[mimH], shown in Figure 4a, reveals that the slowest-relaxing ¹⁹F nuclei are spatially separate from the others. This combination of very different relaxation behavior and spatial separation may seem indicative of the presence of two separate phases in the sample. However, as reported previously, the powder XRD patterns refined well with a single phase with only a minor impurity of GaPO₄ berlinite. Furthermore, as shown in Figures 4b and 4c, all three ¹⁹F signals could be correlated with ³¹P signals from the GaPO-34A framework, and also with ¹H signals from the methylimidazolium SDA. It can, therefore, be concluded that all observed ¹⁹F resonances arise from the same phase, but that there must be very different local F environments present.

The use of DFT calculations to assist in the interpretation and assignment of NMR spectra of disordered materials is now relatively well established. Here, ordered model structures of GaPO-34A[mimH] were generated based on a single unit cell of the experimental structure determined from diffraction, with all possible combinations and permutations of OH and F occupying the five different anion sites, while the SDA was fixed in the orientation that was refined to have the highest occupancy (other models with the SDA occupying orientations A', B and B' showed little difference in favored fluorination sites, as discussed further in the Supporting Information, Figures S3.3-S3.6). These structures were optimized and their relative energies and NMR parameters calculated as described above (see Figures S3.7-S3.9 for NMR parameters of alternative cation orientations). Figure 5 shows plots of the

Table 1. Summary of the isotropic shifts, relative spectral intensities and T₁ relaxation constants of the ¹⁹F resonances observed for GaPO-34A. See Supporting Information (S1) for further experimental details.

<table>
<thead>
<tr>
<th>Material</th>
<th>¹⁹F δiso (ppm)</th>
<th>Intensity (%)</th>
<th>T₁ / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaPO-34A[mimH]</td>
<td>-113.0(1)</td>
<td>24.7</td>
<td>39(2)</td>
</tr>
<tr>
<td></td>
<td>-130.2(1)</td>
<td>37.7</td>
<td>6(1)</td>
</tr>
<tr>
<td></td>
<td>-134.2(1)</td>
<td>37.5</td>
<td>6(1)</td>
</tr>
<tr>
<td>GaPO-34A[pyH]</td>
<td>-113.0(1)</td>
<td>24.6</td>
<td>43(2)</td>
</tr>
<tr>
<td></td>
<td>-128.9(1)</td>
<td>28.6</td>
<td>16(1)</td>
</tr>
<tr>
<td></td>
<td>-132.4(1)</td>
<td>46.7</td>
<td>16(1)</td>
</tr>
</tbody>
</table>
Figure 4. (a) 19F (14.1 T, 55 kHz DQMAS), (b) 19F-31P (14.1 T, 50 kHz MAS) CP-HETCOR and (c) 19F-1H (9.4 T, 40 kHz MAS) HMQC spectra of GaPO-34[mimH]. Note that, for presentation purposes, the spectrum in (a) has been rotated such that δ_1 (the 19F MAS dimension) is along the vertical axis. The grey line in (a) shows the $\delta_1 = 2\delta_2$ double-quantum autocorrelation diagonal. The 1H, 19F and 31P NMR spectra from Figure 3 are shown along the relevant axes. See Supporting Information (S1) for further experimental details.

Figure 5. Plots of relative energies (E_{rel}) of models of GaPO-34A[mimH] with different numbers of anion sites occupied by F and all remaining anion sites occupied by OH. Models have (a) one, (b) two, (c) three and (d) four F anions per unit cell. Dashed lines indicate $E_{\text{mix}} = 0$ for each specified composition. See Supporting Information (S3) for further details and additional models with different SDA orientations.
fluorinated. It therefore seems likely on the grounds of energetics that fluorine will mainly occupy sites 1, 2 and 3 regardless of the total fluorine content of the material, but some fluorination of site 5, and possibly even of site 4 cannot be ruled out entirely at a composition of 3 F per unit cell (i.e., close to the average experimental compositions of the materials studied here).

Figure 7 shows the experimental 19F MAS and 31P CP MAS NMR spectra of GaPO-34A[mimH], overlaid with the calculated values of δ_{iso} for each of the F and P sites in the structural models considered above. The tentative conclusions about the occupancies of the anion sites based on energetics is supported by the calculated 19F peak positions (Figure 7a), which suggest that the resonance at higher shift and with longer T_1 relaxation can be assigned to F3, whereas the two resonances at lower shift and with similar T_1 values can be assigned to the very similar species, F1 and F2. In light of this assignment, the difference in T_1 relaxation constants may explain the appearance of the 19F DQMAS spectrum in Figure 4a: the shortest F-F contacts are 3.9 Å for F1-F2, 4.8 Å for F1-F3 and 5.1 Å for F3-F3, but the much longer coherence lifetimes for F3 mean that DQ coherences may build up through weaker dipolar couplings. There is no indication of any spectral intensity that could be assigned to F4 and, while it is possible that signals from F5 could contribute to the signal at –130 to –134 ppm, this resonance would be expected to be broadened to lower shifts, which is not observed. (It should be noted that structures with fluorination on F3 lead to shifts for F5 of around –140 to –148 ppm, whereas models with OH on site 3 and F on site 5 give F5 shifts of around –129 to –139 ppm, so a tail to lower shifts would indicate the presence of less favorable F/F pairs on sites 3 and 5.) Assignment of the 31P resonances is more challenging since, as shown in Figure 7b, not only is there more overlap of spectral resonances, but the calculated shift ranges for the different P species are overlapped in all cases other than the resonances at –2.8 and –3.8 ppm, which can be assigned to P2A. From the 19F/31P correlation shown in Figure 4b, the resonance at –3.8 ppm can be assigned to P2A associated with F on site 3, whereas the less intense resonance at –2.8 ppm can be assigned to P2A associated with hydroxide on site 3 (which, given the composition of the material, may be expected to be disfavored, cf. Figure 5c). The order of magnitude of this shift difference and the slightly lower 19F DQMAS spectrum in Figure 4a: the shortest F-F contacts are 3.9 Å for F1-F2, 4.8 Å for F1-F3 and 5.1 Å for F3-F3, but the much longer coherence lifetimes for F3 mean that DQ coherences may build up through weaker dipolar couplings. There is no indication of any spectral intensity that could be assigned to F4 and, while it is possible that signals from F5 could contribute to the signal at –130 to –134 ppm, this resonance would be expected to be broadened to lower shifts, which is not observed. (It should be noted that structures with fluorination on F3 lead to shifts for F5 of around –140 to –148 ppm, whereas models with OH on site 3 and F on site 5 give F5 shifts of around –129 to –139 ppm, so a tail to lower shifts would indicate the presence of less favorable F/F pairs on sites 3 and 5.) Assignment of the 31P resonances is more challenging since, as shown in Figure 7b, not only is there more overlap of spectral resonances, but the calculated shift ranges for the different P species are overlapped in all cases other than the resonances at –2.8 and –3.8 ppm, which can be assigned to P2A. From the 19F/31P correlation shown in Figure 4b, the resonance at –3.8 ppm can be assigned to P2A associated with F on site 3, whereas the less intense resonance at –2.8 ppm can be assigned to P2A associated with hydroxide on site 3 (which, given the composition of the material, may be expected to be disfavored, cf. Figure 5c). The order of magnitude of this shift difference and the slightly lower 19F shift of the fluorinated species is consistent with previous studies on the energetics that fluorine will mainly occupy sites 1, 2 and 3 regardless of the total fluorine content of the material, but some fluorination of site 5, and possibly even of site 4 cannot be ruled out entirely at a composition of 3 F per unit cell (i.e., close to the average experimental compositions of the materials studied here).
can be made by consideration of the crystal structure and the 19F-31P correlation spectrum shown in Figure 4b. The correlation at $(\delta(\hat{P}), \delta(\hat{F})) = (-11.4, -134)$ ppm arises from a P species close to F3, which could be P1A or P3A, both of which are relatively close (within 4 Å) to anion site 3. Indeed, as this is the only other correlation between F3 and a 31P resonance, it can be concluded that P1A and P3A are coincident in chemical shift. P3A is only near to F3, whereas P1A is also close to F1 and F2, giving rise to the correlations at (-11.4, -130) and (-11.4, -134) ppm. P2 and P3 are only close to anion site 4, which is energetically unlikely to be occupied by F and, therefore, signals from these species would not be expected to be observed in Figure 4b. From the calculated shift ranges for these species presented in Figure 7b, the 31P resonance at -7.2 ppm can be assigned to P2 and that at -10.4 ppm to P3. The remaining intense 31P-19F correlation at (-9.4, -134) ppm can, therefore, be assigned to a correlation between P1 and F2, with a low-intensity resonance at (-9.4, -130) ppm attributed to a correlation between P1 and F1, which occurs over a slightly longer range (4.0 Å compared to 3.3 Å for P1-F2). This final point means that the assignment of the 19F resonances at -130 and -134 ppm must be F1 and F2, respectively, although the DFT calculations (Figure 7b) indicate that the ranges for these species may overlap. One final point of note is that the presence of the 19F DQ correlation corresponding to F3-F3 indicates that there must be some longer-range ordering along the crystallographic a axis such that pairs of F3 are occupied on the same side of adjacent unit cells.

Multinuclear or multidimensional NMR experiments involving 71Ga are challenging owing to the quadrupolar interaction, which necessitates rapid MAS (i.e., small sample volume) and high magnetic fields. Even at 20.0 T, it was not possible to obtain sufficient sensitivity for 19F-71Ga or 31P-71Ga experiments to gain any further structural insight into GaPO-34A. However, there remains the question of the precise number of 71Ga resonances in the spectra shown in Figure 3. A multiple-quantum (MQ) MAS experiment would be an option to obtain a higher-resolution isotropic 71Ga NMR spectrum, but this experiment is particularly insensitive in the regime of fast MAS and large quadrupolar coupling,56 such that no useful signal was obtained at 20.0 T, even with attempts using FAM-N37 (which does not require knowledge of the values of C_0) to enhance the efficiency of the conversion of MQ coherences. An alternative to MQMAS is to use the satellite transition (ST) MAS experiment, which has much higher sensitivity and is more tolerant of larger values of C_0.56 While the experiment does have the rather exacting technical demands of a very well-set magic angle (to within 0.001°), very stable MAS (ideally within ± 2 Hz) and accurate rotor synchronization of pulses, these are achievable using modern hardware. Figure 8 shows the 71Ga STMAS NMR spectrum of GaPO-34A[mimH], which contains only one signal, corresponding to the 5% hectorite impurity. The observation of this signal is both evidence that the angle is well set and the MAS rate is stable, and testament to the exceptionally high sensitivity of the STMAS experiment. However, the question remains as to why the 95% of the signal corresponding to GaPO-34A[mimH] is not observed. Antonijevic et al.56 observed a similar phenomenon in the 27Al STMAS NMR spectra of AlPO-14, which was shown to arise from microsecond dynamics broadening the ST spinning sidebands. This phenomenon leads to signals that can be broadened beyond the limit of detection in the STMAS spectrum.58 Therefore, the lack of any signal from GaPO-34A[mimH] in Figure 8 provides strong evidence that, in addition to the static disorder discussed above, there is likely to be at least one dynamic process occurring within the material.

SDA Dynamics in GaPO-34A

In a GaP, the SDA or any water molecules within the pores may be dynamic, as might the flexible framework itself. Figure 9 shows variable-temperature (VT) 13C, 19F and 31P NMR spectra of GaPO-34A[mimH], from which it is clear that the spectrum, and therefore the structure, varies with temperature. While the static disorder discussed above precludes a detailed analysis of these VT NMR spectra, some key observations can provide insight into the nature of the motion present. Firstly, the CH$_2$ signal narrows with increasing temperature and the splitting observed at 273 K is absent at 343 K (Figure 9a). However, while the aromatic CH signals change in shape and do narrow slightly, they do not resolve neatly to the three resonances observed for GaPO-34A[mimH].52 Secondly, the P1 and P2 signals are much more sensitive to changes in temperature than the P1A, P2A, P3A and F3 signals (Figure 9b). Finally, the 19F resonances are all affected differently by changes in temperature (Figure 9c), although all resonances exhibit a slight move to higher shift with increasing temperature, consistent with lengthening of the Ga-F bonds.52 These observations, taken together, suggest that, on the microsecond timescale, the SDAs may switch between the different crystallographic orientations identified in the diffraction structure, with this reorientation becoming more rapid with increasing temperature. The framework itself is not dynamic on the longer range (e.g., in the sense of “breathing”), as evidenced by the VT X-ray diffraction experiments of

![Figure 8. 71Ga (20.0 T, 60 kHz MAS) STMAS NMR spectrum of GaPO-34A[mimH]. The resonance corresponding to the central-transition autocorrelation signal is indicated with a dagger (†). See Supporting Information (S1) for further experimental details.](image-url)
Figure 9. (a) 13C (9.4 T, 12.5 kHz CP MAS), (b) 19F (14.1 T, 35 kHz MAS) and (c) 31P (14.1 T, 12.5 kHz CP MAS) variable-temperature NMR spectra of GaPO-34[mimH]. See Supporting Information (S1) for further experimental details.

Broom et al., which show no significant changes in the position of the Bragg peaks from the framework until the onset of decomposition. However, the parts of the framework closest to the SDA, and those with the greatest flexibility (i.e., P1 and P2, which are not part of three-membered rings) do experience a temperature-dependent environment owing to the reorientation of the nearby molecules. This is supported by the calculated 31P δ_{iso}, which shows significant variation with SDA orientation (see the Supporting Information, S3). As discussed in the Supporting Information (S3), SDA orientations A and B are consistently lower in energy than A’ and B’, suggesting that any reorientation is likely to involve predominantly exchange between A and B. This exchange can be modelled by averaging δ_{iso} calculated for models containing the SDA in orientations A (Figure 7) and B (see Figure S3.4). As shown in Figure 10 for models with three F per unit cell (see Figure S3.10 for models with all F and OH combinations), this averaging provides a much better agreement with the experimental 31P NMR spectrum than calculated parameters assuming only one orientation of the SDA is present (note that points for P3 and P3A with lower calculated δ_{iso} in this model tend to have anion site 4 fluorinated, so such shifts are unlikely to be observed experimentally). The reorientation of the SDA molecules is also consistent with the very different 19F T_1 values observed for F3 compared to F1 and F2, since F1 and F2 are located on the pore walls of GaPO-34A and are, therefore, more exposed to any interactions between the SDA and the framework than F3, which is embedded within the inorganic part of the material (see Figure 1).

Disorder in GaPO-34A[pyH]

While not discussed in detail here, all NMR spectra recorded for GaPO-34A[pyH] are very similar in appearance to those for GaPO-34A[mimH], suggesting that the same types of disorder are present in both materials and the spectral assignments are similar (see Figure S2.3 for additional spectra). One point of note is that the DFT calculations for GaPO-34A[mimH] suggest that the SDA orientation may affect the relative stabilities of different arrangements of anion occupancies, such that it may not be particularly surprising that using an entirely different organic species leads to a different ratio of F1 : F2 : F3, as reported in Table 1.

Conclusions

GaPO-34A represents an intriguing case of a material that displays multiple levels and types of disorder, the detail of which cannot be captured by the average X-ray crystallographic picture. This includes partial occupancy of the anion sites, compositional disorder arising from occupancy of the anion sites by the isoelectronic OH and F (and concomitant positional disorder in the framework) and multiple orientations of the SDA, which appear to interconvert dynamically at higher temperature. Indeed, given that GaPO-34A is the kinetic product of the synthetic process (with CHA-type GaPO-34 being the thermodynamic product), and given the extensive disorder present in GaPO-34A, it is not surprising that the material
only forms small crystals that lead to a very challenging
structure determination by diffraction methods alone. How-
ever, by combining X-ray crystallography (previously
reported39), multinuclear NMR experiments and periodic
dFT calculations for a range of structural models, it has
been possible to obtain a significant level of local structural
detail for this complex material.

Fluorination was found to be most favorable on anion sites
1, 2 and 3, with sites 4 and 5 preferentially occupied by OH.
However, at the compositions obtained experimentally,
dFT calculations suggested that some fluorination of site 5
may be possible, especially in conjunction with OH on site
3 to provide favorable O-H···O\text{(framework)} hydrogen bonding.
The experimental crystal structure of GaPO-34A[mimH]\text{]}
contains three possible orientations of the mi cations (and
two possible arrangements of N atoms on the ring for each
orientation). DFT calculations suggested that the A and B
orientations were energetically similar and evidence from
variable-temperature 13C, 19F and 31P NMR spectra as well
as the absence of signal in a 71Ga STMAS NMR spectrum and the
different 19F T1 relaxation times for F3 relative to F1 and F2, suggested that the SDA dynamically reorients
on the microsecond timescale. Despite this very
complicated structural behavior, it was still possible to
assign the 19F and 31P NMR spectra of both the
methylimidazolium and pyridinium forms of GaPO-34A,
although further high-field, high-resolution experiments
would be required to determine accurate 71Ga NMR
parameters for the material.

The methodology described here illustrates the level of
structural insight that is now possible for highly complex
materials that is hidden in diffraction studies, by
combining local spectroscopy with computation and with
reference to average crystal structures. This approach is
applicable to many classes of materials, particularly hybrid
organic-inorganic materials, where conformational
disorder or organic components is likely to be
commonplace. This will include not only the type of
templated materials we have studied here, but other families of
materials, such as metal-organic frameworks and
coordination polymers.

ASSOCIATED CONTENT

Supporting Information. Additional NMR experimental
details, additional NMR spectra, DFT calculations with
different SDA orientations. This material is available free of
charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

* sema@st-andrews.ac.uk (SEA)
* dmd7@st-andrews.ac.uk (DMD)

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT

SEA, DMD, JEH and DM thank the ERC (EU FP7 Consolidator
Grant 614290 "EXONMR") for funding. SEA would like to
thank the Royal Society and the Wolfson Foundation for a

merit award. The National High Magnetic Field Laboratory is
supported by National Science Foundation Cooperative
Agreement DMR-1644779 and the State of Florida.
Development of the 36 T SCH magnet and NMR
instrumentation was supported by NSF (DMR-1039938 and
DMR-0603042) and NIH (BTRR 1P41 GM122698). The UK
850 MHz solid-state NMR Facility used in this research was
funded by EPSRC and BBSRC (contract reference PR140003),
as well as the University of Warwick including via part
funding through Birmingham Science City Advanced Materials
Projects 1 and 2 supported by Advantage West Midlands
(AWM) and the European Regional Development Fund
(ERDF). Collaborative assistance from the 850 MHz Facility
Manager (Dr Dinu Iuga, University of Warwick) is
acknowledged. The research data supporting this publication
can be accessed at DOI: 10.17630/d7ea0d6e-4620-4c5d-
8734-3bd355e2716f.

REFERENCES

(1) Apperley, D. C.; Harris, R. K.; Hodgkisson, P. Solid-State
NMR: Basic Principles and Practice. Momentum Press, New York,
(2) Moran, R. F.; Dawson D. M.; Ashbrook, S. E. Exploiting NMR
(3) Ashbrook, S. E.; Dawson, D. M. Exploiting Periodic First-
Principles Calculations in NMR Spectroscopy of Disordered Solids.
(4) Ashbrook, S. E.; McKay, D. Combining Solid-State
Spectroscopy with First-Principles Calculations – a Guide to NMR
(5) Sneddon, S.; Dawson, D. M.; Pickard, C. J.; Ashbrook, S. E.
Calculating NMR Parameters in Aluminophosphates: Evaluation of
Dispersion Correction Schemes. Phys. Chem. Chem. Phys.,
2014, 16, 2660.
(6) Chang, B. K.; Bristowe, N. C.; Bristowe, P. D.; Cheetham, A. K.
Van der Waals Forces in the Perfluorinated Metal-Organic
Framework Zinc 1,2-Bis(4-Pyridyl)Ethane Tetrafluoroterephthalate. Phys. Chem. Chem. Phys., 2012, 14,
7059.
(7) NMR Crystallography. ed. Harris, R. K.; Wasylischen, R. E.;
(8) Taulelle, F.; Bouchevrevou, B.; Martineau, C. NMR
Crystallography Driven Structure Determination: Nanoporous
(9) Florian, P.; Massiot, D. Beyond Periodicity: Probing Disorder in
Crystalline Materials by Solid-State Nuclear Magnetic Resonance
(10) Taulelle, F. NMR Crystallography: Crystallographic Formula
(11) Martineau, C.; Cadiau, A.; Bouchevrevou, B.; Senker, J.;
Taulelle, F.; Adil, K. SMARTER Crystallography of the Fluorinated
Inorganic–Organic Compound Zn$_{2}$AlF$_{12}$[HAmTAZ]$_{6}$. Dalton
Transact., 2012, 20, 6232.
(12) Bryce, D. L. NMR Crystallography: Structure and
Properties of Materials from Solid-State Nuclear Magnetic
(13) Baias, M.; Dumez, J.-N.; Svensson, P. H.; Schantz, S.; Day, G.
M.; Emsley, L. De Novo Determination of the Crystal Structure of a
Large Drug Molecule by Crystal Structure Prediction-Based Powder
(14) Widdifield, C. M.; Nilsson Lill, S. O; Broo, A.; Lindkvist, M.;
Peeterson; A; Svensk Ankarberg, A.; Aldred, P.; Schantz, S.;
Emsley, L. Does Z' Equal 1 or 2? Enhanced Powder NMR
Crystallography Verification of a Disordered Room Temperature
Crystal Structure of a p38 Inhibitor for Chronic Obstructive

Using an in-depth NMR crystallographic approach, we demonstrate how even extensive structural disorder in complex materials, hidden in conventional crystallography, can be described from a local atomic perspective. In the gallophosphate GaPO-34, we combine multinuclear NMR experiments and periodic DFT calculations with existing X-ray crystallography to reveal the disorder of vacancies, fluoride and hydroxide across the anion sublattice, as well as microsecond-timescale dynamics of the guest molecules.