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ABSTRACT

Rugby union, like many sports, is based around sequences of play, yet this sequen-

tial nature is often overlooked, for example in analyses that aggregate performance

measures over a fixed time interval. We use recent developments in convolutional

and recurrent neural networks to predict the outcomes of sequences of play, based

on the ordered sequence of actions they contain and where on the field these actions

occur. The outcomes considered are gaining territory, retaining possession, scoring

a try, and being awarded or conceding a penalty. We consider several artificial neu-

ral network architectures and compare their performance against baseline models.

Accounting for sequential data and using field location improved classification accu-

racy over the baseline for some outcomes. We then investigate how these prediction

models can provide tactical decision support to coaches. We demonstrate that tac-

tical insight can be gained by conducting scenario analyses with data visualisations

to investigate which strategies yield the highest probability of achieving the desired

outcome.
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Introduction

In all sport, teams and players develop and employ ‘tactics’ – plans to guide how they

should play during a performance to maximise their chance of success against their

opposition. Tactical decision support – being able to provide feedback to coaches or

players on their chosen actions, in light of the available options and game circumstances

– is an important goal for performance analysis (Nevill, Atkinson, & Hughes, 2008;

Wright, 2009). Historically this has been done mainly using univariate key performance

indicators (KPIs), but the ability of these measures to accurately predict key outcomes

is limited (Watson, Durbach, Hendricks, & Stewart, 2017). A key reason for this is

that rugby union involves complex inter-player interactions that exhibit non-linear

self-organising features (Dutt-Mazumder, Button, Robins, & Bartlett, 2011), where

success is determined by sequences of actions that occur in space as well as time.

Input data is thus fundamentally spatio-temporal.

As far as we are aware, this study is the first to consider the sequential nature

of rugby union in predicting intra-game outcomes. We build on recent advances in

artificial neural networks (ANNs) to model game outcomes as a function of sequences

of actions as well as the field locations where these occur. We assess the degree to which

doing so improves our ability to discriminate successful from unsuccessful passages of

play.

Sequences of actions have been used to predict the outcome of entire sports games

(Bosch & Bhulai, 2018; Teich, Lutz, & Kassarnig, 2016), short passages of play (Har-

mon, Lucey, & Klabjan, 2016; Shah & Romijnders, 2016; Wang & Zemel, 2016), and

physical ball or player movements (Harmon et al., 2016; Mehrasa, Zhong, Tung, Bornn,

& Mori, 2018; Zhao, Yang, Chevalier, Shah, & Romijnders, 2018). Most of these studies

have employed convolutional or recurrent neural network and have focused on basket-

ball or American football. The sequential, spatio-temporal nature of rugby union thus

presents an excellent opportunity to apply these architectures in a novel setting to

provide tactical decision support.

The objective of all ‘invasion’ sports is to ‘invade’ the opposition’s territory in ad-

vancing towards their goal line to score a goal. The majority of performance research
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in invasion sports consists of studies that examine the relationship between KPIs and

only the overall outcomes of contests, with few relating KPIs to intra-game outcomes

(Clarke & Norman, 1998; dos Santos et al., 2017; Lim, Lay, Dawson, Wallman, & An-

derson, 2011). The application of ANNs to invasion sports is expanding, in part due

to their ability to model non-linear behaviour. ANNs have primarily been applied in

predicting the outcome of sporting events (McCabe & Trevathan, 2008), where most

of these studies used only multilayer perceptrons (MLP). In rugby union, Reed and

O’Donoghue (2005) and O’Donoghue and Williams (2004) used MLP in predicting

the outcome of games, while Passos, Araújo, Davids, Gouveia, and Serpa (2006) in-

vestigated the use of ANNs in developing models of interpersonal dynamics between

players.

Recently, spatio-temporal research in invasion sports has grown (see Gudmunds-

son and Horton (2017)), with a considerable amount of work using location data in

analysing tactical issues in football (Memmert, Lemmink, & Sampaio, 2017). Cur-

rently, only a small subset of this corpus has used machine learning techniques in

analysing and classifying intra-game events in basketball (Franks, Miller, Bornn,

& Goldsberry, 2015; Miller, Bornn, Adams, & Goldsberry, 2014; Yue, Lucey, Carr,

Bialkowski, & Matthews, 2014), football (Horton, Gudmundsson, Chawla, & Es-

tephan, 2015) and American football (Strange & Shamir, 2014). Few other studies

have recognised the sequential, time-bounded, and spatial aspects of invasion sports

(Dutt-Mazumder et al., 2011), a problem that has only recently been acknowledged

in the literature (Woods, Sinclair, & Robertson, 2017).

Even if, as we find in the current study, advanced ANN models can improve predic-

tive accuracy, these have limited value for decision support if the link between inputs

and outcomes is not easily interpreted. Traditionally, decision-makers have struggled

to trust the insights generated by these models (Namatēvs, Aleksejeva, & Poļaka,

2016). We address this issue by demonstrating how to provide tactical insight through

combining complex models with data visualisation in scenario-type analyses.

This study illustrates how data science and operational research (OR) can be com-

bined to provide decision support. The rise in popularity of data science and the

associated focus on generating insights from big datasets creates an opportunity for
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OR. Traditionally, the availability of large amounts of data has not been a focal point

of OR. In practice OR methods are often used in data-scarce environments where they

develop mathematical models that elicit data from decision-makers or are not subject

to the amount of data available. The increasing availability of more copious amounts

of sports data can be leveraged in at least two ways to improve the decision support

provided by an OR intervention – by incorporating some methods that would not

typically be considered and by improving the parametrisation of existing OR models.

Hence, investigating how data science and OR can be integrated to provide decision

support represents a pertinent research avenue for OR.

We make the following contributions in this paper:

• We apply convolutional and recurrent ANNs to model sequences of player actions

in rugby union, and compare the accuracy of several architectures of these models

with other machine learning methods;

• We quantify the value of including the field locations and sequential nature of

actions in classifying intra-game outcomes;

• We demonstrate how these models can provide tactical decision support via sce-

nario analyses using data visualisations to contrast the probabilities of achieving

a desired outcome across various plays.

Methods

Data. Opta provided data for all games of five competitions across 2013, 2014 and 2015:

the Heineken Cup, European Rugby Championship, Super Rugby, the Six Nations, and

the Rugby Championship.

A total of 313 games were available for analysis. Two teams of two Opta analysts

collected the data live, after which another two analysts performed a post-match

screening involving numerous accuracy checks. Analysts undergo training for 3 to 6

months before coding live games. Opta performs regular data accuracy checks and

monitors each analyst’s accuracy throughout the season. Each match consists of

approximately 1500 observations that capture each action performed by a player or

a group of players. There are 29 unique categories of actions recorded in the data,
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e.g. a ‘carry’, a ‘tackle’, or a ‘pass’. These actions are augmented by variables that

describe the type of action. There are 475 unique action descriptors, e.g. for a carry

it may be any one of a: ‘one out drive’, ‘pick and go’ or ‘support carry’, each of

which has more detailed descriptions. For the current study, we considered only the

actions and action description variables along with the x and y field locations for each

action. These x and y coordinates are relative to the team in possession, with x = 0

representing the team in possession’s try-line, x = 100 the opposition’s try-line, y =

0 the left-hand touchline and y = 68 the right-hand touchline of the team in possession.

Data preparation. All data preparation and analyses were conducted in the R program-

ming language (R Core Team, 2017). In rugby union, every possession is made up of

one or more sequences of play called ‘phases’ that consist of the actions performed by

players in-between ‘breakdowns’ in play. A breakdown typically occurs when a player

is tackled to the ground by opposition player(s), and one or more players from each

team contest for the ball on the ground. This situation is referred to as a ‘ruck’. If

the team in possession protects the ball at the ruck, the next phase of play begins.

We considered both individual phases of play and possessions of multiple phases of

play with their outcomes. Each phase or possession of actions, action descriptions and

(x; y)-coordinates were extracted from the data. Table 1 shows one sample of each of

these four input variables for a possession that consists of three phases. The outcomes

of the possessions or phases were chosen based on questions that we deemed of interest

to coaches:

• Was territory gained or lost?

• Was possession maintained or lost?

• Was a try scored?

• Was a penalty awarded to the team in possession?

• Was a penalty conceded by the team in possession?

Each of these outcomes (ten in total across phases and possessions) is binary, with a

‘positive’ or ‘negative’ outcome. Thus the models were used to classify which sequences

of actions, action descriptions and their associated (x; y) field positions would yield a

6



positive label for each of the five outcomes.

We truncated the earliest parts of the phase input data to 11 actions and the

possession input data to 39, ensuring that over 90% of each of the sequences remained

intact. This truncation reduced the sparsity of the data, as a feature of sequential

models is that shorter sequences must be “padded” with additional zero values to

ensure equal length of all input sequences.

Most of the outcomes consisted of imbalanced data, with the prevalence of the

majority label ranging between 59.88% and 98.25%. Since some classifiers perform

poorly on heavily imbalanced data (Mazurowski et al., 2008), we decided to either up-

sample or down-sample the training data to counteract the effect of the class imbalance

on model performance. We conducted experiments on the impact of up-sampling versus

down-sampling on test set error across the four outcomes that had the most potential

for improvement over a null model that only predicts the majority label. Up-sampling

resulted in an average decrease in test set error of 3.54% across these outcomes when

compared to down-sampling. Hence the training data were up-sampled for all future

experimentation.

We decided to retain the field locations for the ‘gain in territory’ outcome for the

following reasons: (1) we removed the actions ‘end of possession’ and ‘end of sequence’

that contain information on the final x-coordinate value, (2) the territory gained from

the last action in a sequence is not included, and (3) the variation in x-coordinates

during a sequence is seldom linear or monotonic.

As most possessions ended with the overt actions ‘end of possession’, ‘restart of play’

or ‘end of sequence’, these actions were removed. Similarly, for the ‘try’ and ‘penalty’

outcomes, the actions ‘try scored’, ‘penalty’ and ‘goal kick’ were removed to force the

models to learn patterns in the sequences instead of recognising only one patent action.

Modelling strategy. We considered the following ANNs capable of modelling sequences:

• A one-dimensional convolution neural network (CNN) (LeCun, Bengio, et al.,

1995)

• Three types of recurrent neural networks (RNN) (Rumelhart, Hinton, Williams,

et al., 1988), each of which incorporates different mechanisms to ‘remember’ the
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entire sequence of data:

◦ Gated recurrent units (GRU) (Cho, Van Merriënboer, Bahdanau, & Bengio,

2014)

◦ Long short-term memory units (LSTM) (Hochreiter & Schmidhuber, 1997)

◦ Bi-directional recurrent units (BI-RNN) (Schuster & Paliwal, 1997)

• A combined CNN-RNN model consisting of both convolutional layers and recur-

rent layers with gated recurrent units

We compared the classification performance of these networks with the performance

of a null model that predicts the most commonly observed label, a random forest (RF)

and a MLP as baseline models. The RF was fitted using the RandomForest package

(Liaw & Wiener, 2002) that specifies default parameters of 500 trees and number of

variables available at each split equal to the square root of the length of the input

sequence. These parameters were not optimised as the goal was only to evaluate the

classification performance of a non-sequential model. The MLP baseline model was

tuned similarly to the other sequential models.

For each network, including the MLP, we fitted three varieties: (i) a single-input

model using only the actions, (ii) a multi-input model of the actions and their field

locations, and (iii) a multi-input model of the actions, action descriptions and their

field locations. The RF model can only take a single input and was thus fed only the

sequences of actions. We used a cut-off threshold probability of 0.5 for all models,

whereby all samples with an output probability greater than 0.5 were classified as ‘1’.

We represented each categorical action as a numerical vector whose entries are

parameters to be estimated by the model, a standard practice in machine learning

known as “embedding” (Bengio, Ducharme, Vincent, & Jauvin, 2003). The choice

of the embedding layer dimension is subjective, although typically it is much smaller

than the total number of unique actions in the data. We experimented with embedding

dimensions of 3 to 15 for the actions, choosing 5, and 12 to 50 for descriptors, choosing

25.

Models were fitted using a 60/20/20 training, validation and test split of the data.

The training data were then up-sampled to ensure an even separation between the

classes for each outcome, while the validation and test datasets were left with the
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original class balance. Tuning was undertaken for each ANN architecture separately,

and early stopping was employed in all experiments to prevent over-fitting, monitoring

both the validation loss and validation accuracy. The maximum number of complete

passes through the training data (epochs) any model could perform was set at 200.

However, with early stopping employed, most models took 15-35 epochs (mean =

27.19, sd = 9.33) to train.

Hyperparameter experimentation. We conducted a hyperparameter experiment,

varying the dropout rate (0.05 or 0.5), embedding dimension (3, 9 or 15), kernel

size (3, 9 or 15), minibatch size (32, 128 or 256) and the number of layers (1,

2 or 3). We evaluated the performance of the models for all hyperparameter

combinations, resulting in a total of 162 ‘runs’ for each type of ANN. The only

hyperparameter that yielded any noticeable difference was the number of layers, with

a 1.087% test set performance improvement between 2 and 3 hidden layers. Thus,

only the effect of the number of hidden layers was investigated when fitting the models.

Model fitting. The models were fitted on an Amazon Web Server instance with an Intel

Xeon Platinum processor with 8 virtual CPUs, 16GB of RAM and a clock speed of 3.5

GHz. Figure 1 illustrates the architecture of the multi-input CNN-RNN model. A single

convolutional layer followed by a single recurrent layer was used for each input ‘stream’

– the embedded actions, embedded action descriptors, x and y-coordinates. Outputs

from these hidden layers were concatenated and passed to two fully-connected layers,

separated by a single dropout layer with 30% dropout rate, before the final output

layer. All the other multi-input models have similar model structures.

5-fold cross-validation was used with a minibatch size of 32, as smaller minibatch

sizes have recently been shown to result in better training stability and generalizability

of models (Masters & Luschi, 2018). We used binary cross-entropy as the loss function

and the Adam (adaptive moment estimation) optimiser with its default parameters.

The models were compared based on their test error and their percentage improvement

over a null model that predicts the most commonly observed label for every prediction.

The performance metrics calculated for each fold included the test, validation and
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training error and loss, the specificity, sensitivity, precision, F1 score (the harmonic

mean of sensitivity and precision) and area under the receiver-operator curve (AUC).

The final values in Tables 2 and 3 are the averages of these metrics across the 5

folds, while Table 4 shows summary results across all outcomes.

Results

The performance of the models across each outcome for phase and possession sequences

are displayed in Table 2 and Table 3 respectively. The single-input models that involve

some form of recurrency outperform a feed-forward MLP in eight out of the ten out-

comes, and the RF in three outcomes (Tables 2 and 3) on classification accuracy.

The ability of these networks to ‘remember’ information further back in the sequences

improves their performance. The single-input CNN-RNN and LSTM networks outper-

form the BI-RNN, CNN and GRU networks across all outcomes and the MLP in nine

out of ten outcomes. The CNN-RNN was the best-performing single-input model in 6

outcomes and the LSTM in 4 outcomes.

The inclusion of field locations improves performance, with the networks including

these inputs outperforming all others in all five of the phase outcomes (Table 2). The

best-performing sequential ANN with field locations (‘xy’ models) outperforms the

MLP xy models across all outcomes (Tables 2 and 3). The best-performing network

with field locations and action descriptors (‘xyd’ models) outperforms all other models

in nine out of ten outcomes, with the CNN-RNN xyd model being the best in seven

outcomes and the LSTM xyd model in two. A similar trend to the single-input models

is observed in both the xy and xyd models, with the CNN-RNN and LSTM variants

most often the best-performing models. The amount of improvement over the best-

performing single-input model, i.e. one of the RF, MLP or best single-input network, by

including the field locations varies considerably across the network types and outcomes:

• MLP xy model (min = -11.691%, max = 98.642%, mean = 5.894%)

• xy model (min = 0.432%, max = 90.369%, mean = 25.416%)

• xyd model (min = 3.019%, max = 98.642%, mean = 30.753%)
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The mean relative improvement over the best single-input model is 4.3 times greater

for the best-performing xy model and 5.2 times greater for the best-performing xyd

model than the MLP xy model, and more than 5% greater for the best-performing

xyd models than the best-performing xy models. All models generally perform better

on the phase outcomes than the possession outcomes. The mean relative improvement

drops from 18.168% to -6.380% from phases to possessions for the MLP xy model,

and from 43.661% to 7.172% and 48.477% to 12.029% for the xy and xyd models

respectively.

The mean test set error across all outcomes is lower for the best-performing MLP xy,

xy and xyd models than the RF (Tables 2 and 3). The RF has the second-lowest sensi-

tivity and the lowest specificity and AUC across all outcomes. The best-performing xy

and xyd models have much higher mean percentage improvement across all outcomes

than any of the single-input models or the MLP xy model.

The AUC for the best performing single-input ANNs is higher than the single-

input MLP across all outcomes and the RF and in nine out of ten outcomes, even

when their test error is larger (Tables 2 and 3). This result indicates that these ANNs

are more robust to the threshold classification probability. In general, the specificity

of all the models was higher than the sensitivity, implying that they were better

at correctly classifying negative than positive labels. The sensitivity of the models

should be evaluated in light of the often heavily imbalanced class balances . Half of

the outcomes have fewer than 10% positive labels, and nine out of ten outcomes have

fewer than 30% positive labels.

If compared to random chance predictions, the outcomes that are most difficult

to predict are ‘gain in territory’ and ‘maintaining possession’ for longer sequences

of play (possessions). However, when compared to a null model that predicts the

majority label, the ‘penalty’ outcomes were the hardest to predict. This result is likely

due to there being a wide range of patterns of play that lead to penalties, making

them particularly challenging to model. Predicting penalties in shorter sequences of

play (phases) is more challenging than longer sequences (possessions). Tries are well-

predicted by the models – even though they are two of the three most imbalanced

datasets – implying that there are distinct patterns of play or actions that lead to
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tries. For example, a sequence of play that involves a linebreak in the opposition’s

22m area would have a high probability of leading to a try.

Integrating models into decision support

After fitting the models, we investigated how to use the best overall model to identify

tactics that are successful in achieving their desired outcome. We used the CNN-

RNN xyd model to predict the outcome probabilities of hypothetical sequences of

actions, action descriptions and their field locations. These predictions were then vi-

sualised as ‘heat map’ scenario plots – a demonstration of how the models could be

used in a decision support system to provide tactical insight. The approach detailed

here could assess any sequence of play and would ideally be performed in consultation

with stakeholders in a performance analysis system.

To demonstrate the type of decision support that the models can provide, we ex-

tracted possession sequences from the data representing different hypothetical scenar-

ios. Each scenario starts with a ‘setup’ event (one of a lineout, a scrum or from broken

play) and ends with a ‘strategy’ (e.g. carry or pass or tackle). For this study, the

scenario analysis was conducted only on possessions consisting of multiple phases of

play. The scenario of actions, action descriptions, x and y-coordinates were input into

the model to predict the probability of the desired outcome. Predictions were made

for many different scenarios, as detailed in the paragraphs that follow. This results

in vectors of probabilities across almost all possible starting field locations, with each

vector corresponding to a different scenario of ‘setup event’, ‘strategy’ and ‘number of

phases’. These probabilities are what are plotted as heat maps in Figures 2 and 3.

To investigate the effect of sequence length, we calculated the average number of

phases per possession (and double this average), based on the mean number of actions

in a possession and a phase, as 14.71/5.37 = 2.74 and 2 × 2.74 = 5.48, and rounded

up to the nearest integer. We thus considered possessions consisting of either three or

six phases, and evaluated each combination of setup event, strategy and number of

phases.

To assess the sensitivity of predicted probabilities to field locations, we simulated
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the same sequence of actions across multiple field positions. This simulation allowed

us to compare many different scenarios across the entire field of play. For example,

comparing the probability of scoring a try when starting from a set-piece versus bro-

ken play in the opposition’s half, or the probability of conceding a penalty when in

possession for only three phases versus six phases in the 22m area. The illustrative

examples in this paper consider sequences that advanced only 5m up the field and

15m to either the left or right of the starting y-coordinate, i.e. (x+5; y±15), but this

is not restrictive.

The resulting scenario probabilities were overlaid onto a plot of a rugby union field,

along with probability contour lines. These plots provide a graphical display of the

probability of achieving the desired outcome subject to a scenario, for any starting

field position on the field where the top of the plot is the opposition’s try-line. The

aim is to stimulate discussion around what underlying tactics are most likely to yield

the outcome of interest, and thus provide decision support to decision-makers. For

example, such plots could be used to answer a question like: ‘If we have the option

of a scrum or a lineout in our half, which decision will incur less risk of conceding a

penalty?’.

Figure 2 displays the probability of conceding a penalty from a turnover in the sixth

phase of play, between possessions that start with broken-play versus a lineout versus a

scrum where the scrum-half passes from the base of the scrum. There is little difference

in the chance of being penalised due to conceding a turnover from broken-play or a

lineout. However, conceding a turnover from a scrum from 30 metres onwards yields

a much higher chance of being penalised. What is not readily apparent is the reason

for this difference, but that discussion is beyond the scope of the present paper. Even

from this ‘static’ visualisation, a coach gleans valuable decision support. If they are

concerned about conceding a penalty, and they have the option of choosing between

a lineout and a scrum to start their possession, then for any starting position more

than 30 metres from their try-line they should opt for a lineout.

Figure 3 shows the probability of scoring a try in the third phase of play when the

setup event is a lineout and the strategy is to carry the ball. This sequence is one that

is typical in a rugby union game. The ball travels from left to right on the field, while
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the defending team attempt to tackle the current ball carrier, resulting in rucks and

multiple phases of play. The sequence of actions is randomly overlaid to demonstrate

the progression of the team in possession. The different point markers indicate the

three phases of play. The decision support provided here could be that if one wishes

to score a try within three phases of play from a lineout, then there is a good chance

of doing so from around 70 metres onwards.

The plots presented here use all the data across all teams and competitions. These

plots are not intended as a panacea; they are hypothetical illustrations of the potential

these models have to provide decision support. There is room for further work that

would incorporate important factors that we have not considered, e.g. accounting for

the relative strengths of teams in the model. This factor could be incorporated by

including a ‘game-state’ variable – some function of the current score difference and

time left in the game.

There is considerable variation in the plot patterns when any of the outcome, setup

event or strategy are changed. Hence, these plots have the potential to provide more

robust support should they be made interactive. For example, in Figure 3 a more

dynamic visualisation may allow a coach to change any of the actions in the sequence

and render a new heat map.

A decision support system developed around these models would likely be used

offline in a post-match analysis setting. An online, game-specific, system could be

developed, but that would necessitate first training the model offline and then using

it to make in-game predictions. A key question here would be whether live data of

the required detail would be available. How much of the significant amount of data

pre-processing needed to create the input data could be automated would also need

to be considered. Discussion around the ethics of such an online system is beyond the

scope of the current study. Both an offline and online version of such a system could

provide practical decision support.
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Discussion

Our findings highlight the importance of the sequential and spatial dimensions of rugby

union when evaluating team performance. In invasion sports, no actions are performed

without considering what previous actions have occurred (or anticipating what con-

sequent actions may occur) and their locations. We posit that not incorporating this

information is a key reason why few KPIs in rugby union reliably discriminate be-

tween successful and unsuccessful teams. To develop KPIs with more discriminatory

power, one has to move on from univariate KPIs and simple regression-based meth-

ods, while still clearly communicating insights in a manner accessible to stakeholders.

These aspects have received little attention in the literature, highlighting the need for

the transparent application of methods to model the spatio-temporal nature of the

game. The demonstrated predictive ability of ANNs in modelling the spatio-temporal

nature of events here emphasises the value of applying such methods to sport. Our

study serves as an example of how this can be achieved.

Dutt-Mazumder et al. (2011) recommended that ANNs are more appropriate for

sports performance analysis than conventional statistical methods and should be used

in a qualitative way to understand the dynamical attributes of football players. The

current study has shown that ANNs can be used quantitatively to provide tactical

decision support to coaches in rugby union by combining them with data visualisation.

We recommend further research that applies ANNs and other appropriate machine

learning techniques to better model the inherent complexity of rugby union and other

invasion sports.

Across most invasion sports, the focus is almost exclusively placed on the player

or team in possession (Franks et al., 2015). This emphasis reflects in the data, where

often observations of only the player or team in possession are available. However,

the advent of global positioning (GPS) and other camera-based motion tracking sys-

tems has translated into the availability of an increasingly large amount of spatial

information on both attacking and defending players. Nascent analysis of this type of

data has concentrated on American-based sports. While some studies have focused on

modelling sports and the interactions between players as dynamic systems, there is a
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need for more studies to include the spatial information of the defence when evaluating

performance.

In any applied research, the question of how the intended audience can assimilate

insight gleaned from experiments is crucial. To date, the vast majority of KPI analyses

in rugby union seek to answer this question by offering only a few suggestions as to

how stakeholders could apply research insights. It is not clear how likely it is to provide

constructive decision support to stakeholders – both the utility of research insights and

how this information is assimilated into their decision making. This question is one

that needs attention.

This paper serves as a starting point in demonstrating how data science and OR

methods can be combined to provide decision support. Here we have developed a

tool that can visualise tactical insight in a way that is easy to understand and apply.

However, there is room for more research. For this study, this is partly due to some

outcomes not being well predicted. Further research is needed to answer questions

around why that is and how to better predict those outcomes. There are other related

questions that further investigation could answer. For example, the sheer range of

possible intra-game outcomes – how might one guide the choice of which to model?

Machine learning methods need larger datasets than most OR or traditional statistical

methods. What does a small team with limited data do in light of this? The nature

of the easily accessible data, particularly the lack of important spatial information of

the defence, is relevant here too.

Many kinds of OR models are designed to operate in relatively data-scarce envi-

ronments. The increasing availability of big datasets means that aggregating this data

can now allow for the parametrisation of some OR models that would previously have

been achieved via consulting a small number of experts. For example, decision sup-

port for sports may have used interviews with coaches, as in expert systems. The two

processes are neither the same nor mutually exclusive and work on integrating data

into traditional OR models is ongoing, as evidenced by recent calls for studies that

blend data science and OR across a variety of topics and methods (“Call for Papers”,

2018; Giesecke, Liberali, Nazerzadeh, Shanthikumar, & Teo, 2018). Research of this

type is growing, with healthcare (Galetsi & Katsaliaki, 2019) and financial services
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(Andriosopoulos, Doumpos, Pardalos, & Zopounidis, 2019) receiving attention in re-

cent years. From an OR perspective, research that combines softer OR methods and

data science when engaging with decision-makers has great potential to yield valuable

contributions to the literature.

The goal of OR in sport should be to provide transparent, actionable decision sup-

port to stakeholders (Hurley, 2006). There are relatively few instances detailing how

data science is combined with OR, with the current study serving as an example of

how this could be achieved. This lack is especially evident when considering the ques-

tion of how to successfully engage with stakeholders to ensure the uptake of decision

support.

Many factors may come into play to determine whether a decision support inter-

vention is effective, all of which revolve around generating ‘buy-in’ from stakeholders.

These include navigating the firmly held beliefs of coaches and the knowledge gap

between the OR practitioner and stakeholders around the scientific method (Hurley,

2006), having a short time-frame to convince stakeholders of the value of the proffered

decision support, and the perceived utility and ease of use of the decision support

system (Shibl, Lawley, & Debuse, 2013). Having a competent model (or at least a

functional prototype) that is transparent, robust and easy to explain to stakehold-

ers (Levasseur, 2015) is critical. In a high-pressured sports performance environment,

there is little room for coaches to engage in discussions around what a decision sup-

port system may be able to achieve. There is a heightened need for discussions to

revolve around the implementation and improvement of a decision support system

that can already be demonstrated. Hence, careful planning must go into how to man-

age interactions with stakeholders (Hurley, 2006) tactfully. The application of problem

structuring methods to this crucial area could provide helpful insight.

Conclusion

This study is the first known of its kind in rugby union where machine learning methods

have been combined with data visualisation to provide coaches with decision support

for their tactical decision-making. We have demonstrated that the sequential nature
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of rugby union is an important factor in the assessment of team performance. This

paper is one of only a handful to have applied multi-input RNN and CNN to sport

and shown the utility of these networks in classifying sequences of intra-game events.

We have established that incorporating field locations improve the accuracy of these

models for some outcomes. The best ‘sequential’ network outperformed both a RF and

a MLP in every outcome.

The model developed in this study was limited by the nature of the data available.

For example, the data did not include the positional information of any player other

than the one currently in possession. This information, along with other variables

like individual player identifiers, current score difference and time left in the game

would facilitate richer scenario analyses and be easily input into the model. The out-

comes chosen for this study were also limited to actual measurable events, but there

may be other, more subjective measures of success. Here, engaging with coaches and

other stakeholders in a real-world performance analysis system would provide valu-

able insight and feedback on the decision support tool. Each of these limitations offers

opportunities for future research.

We envision that coaches and other stakeholders would use the tools developed here

to provide tactical decision support, as part of their post-match analysis. This decision

support would be achieved by investigating similar scenarios to what happened in

the game to inform them of which tactics would be optimal to achieve their desired

outcome for that scenario. The system could also be used to inform coaches on what

tactical plays to focus on in training before an upcoming game. Finally, the system

can serve as a tool via which important tactical information is communicated to and

discussed with players via the visualisations.

The methodology employed here is an example of how data science and OR can

be combined to provide decision support and is transferable to other invasion sports.

With the increasing availability of more massive sports datasets, we recommend that

more research be conducted across all sports to leverage this data in blending these two

approaches. We have raised and discussed some pertinent issues around the nature and

availability of data for this purpose in rugby union. We have highlighted the value of

combining data science and OR techniques in providing decision support and the need
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for more studies of this type. We have also discussed challenges to the effectiveness of

OR interventions in terms of the uptake of decision support and identified the need for

more soft OR studies to detail examples of successful engagement with stakeholders

in this regard.
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Passos, P., Araújo, D., Davids, K., Gouveia, L., & Serpa, S. (2006). Interpersonal dynamics in

sport: The role of artificial neural networks and 3-d analysis. Behavior Research Methods,

38 (4), 683–691.

21



R Core Team, R. (2017). R: A language and environment for statistical computing [Computer

software manual]. Vienna, Austria.

Reed, D., & O’Donoghue, P. (2005). Development and application of computer-based predic-

tion methods. International Journal of Performance Analysis in Sport , 5 (3), 12–28.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations by

back-propagating errors. Cognitive modeling , 5 (3), 1.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing , 45 (11), 2673–2681.

Shah, R., & Romijnders, R. (2016). Applying deep learning to basketball trajectories. arXiv

preprint arXiv:1608.03793 .

Shibl, R., Lawley, M., & Debuse, J. (2013). Factors influencing decision support system

acceptance. Decision Support Systems, 54 (2), 953–961.

Strange, R., & Shamir, L. (2014). Prediction of American Football Plays Using Pattern

Recognition. International Journal of Computer Science in Sport (International Association

of Computer Science in Sport), 13 (2), 6.

Teich, B., Lutz, R., & Kassarnig, V. (2016). NFL Play Prediction. arXiv preprint

arXiv:1601.00574 .

Wang, K.-C., & Zemel, R. (2016). Classifying NBA offensive plays using neural networks. In

Proceedings of MIT Sloan Sports Analytics Conference (Vol. 4).

Watson, N., Durbach, I., Hendricks, S., & Stewart, T. (2017). On the validity of team perfor-

mance indicators in rugby union. International Journal of Performance Analysis in Sport ,

17 (4), 609-621. Retrieved from https://doi.org/10.1080/24748668.2017.1376998

Woods, C. T., Sinclair, W., & Robertson, S. (2017). Explaining match outcome and ladder

position in the national rugby league using team performance indicators. Journal of Science

and Medicine in Sport , 20 (12), 1107–1111.

Wright, M. (2009). 50 years of or in sport. Journal of the Operational Research Society ,

60 (sup1), S161–S168.

Yue, Y., Lucey, P., Carr, P., Bialkowski, A., & Matthews, I. (2014). Learning fine-grained

spatial models for dynamic sports play prediction. In 2014 IEEE International Conference

on Data Mining (pp. 670–679).

Zhao, Y., Yang, R., Chevalier, G., Shah, R. C., & Romijnders, R. (2018). Applying deep

bidirectional lstm and mixture density network for basketball trajectory prediction. Optik ,

158 , 266–272.

22



Possession example Phase 1 Phase 2 Phase 3

Actions CL CR TK TK RK PS CR TK RK PS CR TK RK
Action descriptions LB OT LN LN – CP OT CT – CP PG LN –

x-coordinate 54 54 59 60 61 60 59 61 64 64 63 68 69

y-coordinate 41 41 38 35 33 31 31 31 20 19 17 16 15

Table 1. Example of the four input ‘streams’ for a possession that consists of multiple phases, prior to being

embedded (Actions & Action descriptions) and normalised (x-coordinates & y-coordinates). Each vector here

represents one sample of each variable. This possession started with a player collecting (CL) a loose ball (LB)
and carrying it (CR) before two opposition players tackled (TK) him, resulting in a ruck (RK) to end the first

phase. The next two phases both involve a pass (PS) from the base of the ruck followed by a carry, a tackle
and another ruck.
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Figure 1. Model architecture of the combined CNN-RNN
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Outcome Model Test error % % Improvement Sensitivity Specificity AUC

Phase-territory RF 29.704 25.962 0.674 0.746 0.710

MLP 31.064 22.572 0.602 0.820 0.782

Null model error % LSTM 29.733 25.890 0.642 0.792 0.790
40.120 MLP xy 12.066 69.925 0.847 0.928 0.956

LSTM xy 8.609 78.542 0.904 0.929 0.975

CNN-RNN xyd 8.683 78.357 0.906 0.923 0.972

Phase-possession RF 6.172 75.984 0.933 0.952 0.943
MLP 6.430 74.980 0.926 0.963 0.979

Null model error % LSTM 6.179 75.956 0.928 0.968 0.982

25.699 MLP xy 6.163 76.019 0.928 0.967 0.984
LSTM xy 6.014 76.598 0.931 0.964 0.984

CNN-RNN xyd 5.396 79.003 0.946 0.946 0.984

Phase-try RF 1.375 26.667 0.899 0.988 0.943

MLP 1.336 28.747 0.877 0.989 0.971
Null model error % CNN-RNN 1.187 36.693 0.906 0.990 0.995

1.875 MLP xy 0.721 61.547 0.949 0.994 0.993

CNN-RNN xy 0.582 68.960 0.945 0.995 0.993
LSTM xyd 0.364 80.587 0.931 0.998 0.987

Phase-penalty-awarded RF 7.177 -47.766 0.731 0.938 0.835

MLP 7.342 -51.163 0.707 0.938 0.822

Null model error % CNN-RNN 7.299 -50.278 0.722 0.938 0.837
4.857 MLP xy 6.853 -41.095 0.741 0.941 0.879

CNN-RNN xy 5.601 -15.318 0.658 0.959 0.876
CNN-RNN xyd 4.776 1.668 0.659 0.967 0.887

Phase-penalty-conceded RF 5.485 -132.711 0.637 0.952 0.795
MLP 5.796 -145.906 0.619 0.950 0.771

Null model error % CNN-RNN 5.844 -147.942 0.62 0 0.949 0.790

2.357 MLP xy 5.124 -117.395 0.595 0.957 0.836
CNN-RNN xy 3.355 -42.342 0.496 0.978 0.838

CNN-RNN xyd 3.160 -34.069 0.511 0.979 0.847

Table 2. Model fitting results for phase sequences. The top three models in each outcome are the best-

performing single-input RF, MLP and sequential ANN models. Models with the suffixes ‘xy’ and ‘xyd’ are

the best-performing models that include the field locations for actions and both the field locations and action
descriptors, respectively.
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Outcome Model Test error % % Improvement Sensitivity Specificity AUC

Possession-territory RF 16.770 -8.776 0.903 0.450 0.676

MLP 18.543 -20.276 0.872 0.504 0.721

Null model error % CNN-RNN 18.887 -22.508 0.863 0.529 0.776
15.417 MLP xy 18.105 -17.435 0.832 0.746 0.856

CNN-RNN xy 13.012 15.600 0.896 0.727 0.906

CNN-RNN xyd 12.406 19.530 0.923 0.622 0.890

Possession-possession RF 18.191 30.142 0.700 0.859 0.780
MLP 20.461 21.425 0.643 0.848 0.759

Null model error % LSTM 17.559 32.569 0.726 0.859 0.852

26.040 MLP xy 17.785 31.701 0.707 0.862 0.850
CNN-RNN xy 17.731 31.909 0.729 0.855 0.870

CNN-RNN xyd 16.633 36.125 0.736 0.868 0.872

Possession-try RF 1.553 70.665 0.946 0.987 0.966

MLP 1.595 69.872 0.883 0.990 0.989
Null model error % CNN-RNN 1.174 77.824 0.942 0.991 0.997

5.294 MLP xy 1.383 73.876 0.931 0.989 0.993

CNN-RNN xy 0.735 86.116 0.966 0.994 0.998
LSTM xyd 0.576 89.120 0.969 0.996 0.998

Possession-penalty-awarded RF 10.409 33.890 0.804 0.913 0.859

MLP 11.269 28.428 0.698 0.923 0.865

Null model error % LSTM 9.955 36.774 0.891 0.902 0.949
15.745 MLP xy 11.015 30.041 0.771 0.912 0.896

CNN-RNN xy 10.341 34.322 0.848 0.906 0.935
CNN-RNN xyd 8.742 44.478 0.786 0.936 0.94

Possession-penalty-conceded RF 8.818 -16.748 0.547 0.941 0.745
MLP 9.538 -26.281 0.472 0.940 0.755

Null model error % CNN-RNN 8.989 -19.012 0.537 0.941 0.817

7.553 MLP xy 9.701 -28.439 0.510 0.935 0.788
CNN-RNN xy 8.743 -15.755 0.485 0.947 0.832

CNN xyd 8.117 -7.467 0.462 0.956 0.798

Table 3. Model fitting results for possession sequences. The top three models in each outcome are the best-

performing single-input RF, MLP and sequential ANN models. Models with the suffixes ‘xy’ and ‘xyd’ are

the best-performing models that include the field locations for actions and both the field locations and action
descriptors, respectively.
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Test error % % Improvement Sensitivity Specificity AUC

RF 10.565 5.731 0.777 0.873 0.825

MLP 11.337 0.240 0.730 0.887 0.841
Best single input network 10.681 4.597 0.778 0.886 0.879

MLP xy 8.892 13.875 0.781 0.923 0.903
Best xy network 7.472 31.863 0.786 0.925 0.921

Best xyd network 6.885 38.733 0.783 0.919 0.918

Table 4. Model fitting results summary: mean values across all outcomes
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Figure 2. The probability of conceding a penalty from a turnover is much higher for scrumhalf-pass-based

sequences than if play emerges from broken play or a lineout, but only in the top half of the field. Close to a
team’s own try line there are little differences between the actions.
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Figure 3. The probability of scoring a try when carrying the ball in the third phase of play from a lineout is

uniformly low when starting in your half. It rises steadily when the sequence begins in the opposition’s half and

remains equally high within the opposition’s 22m area. The shape of the point markers indicate the different
phases in the possession.
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